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ABSTRACT. 
The paper considers some questions of the numerical analysis of stochastic auto-
oscillating systems and their simulation on computers. A low computer costs, 
variable stepsize algorithm based on local error estimation of stochastic Runge-
Kutta-Fehlberg methods is stated for solving nonlinear stochastic differential 
equations. In particular, it turns out to be very efficient for dynamical systems 
with small noise intensity. Results of numerical experiments for a plenty of well-
known examples from Physics, Chemistry, Biology and Ecology are illustrated 
with the help of the dialogue system 'Dynamics and Control'. 
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1. INTRODUCTION 

In recent years chaotic oscillations in dynamical systems of different nature have 
aroused considerable interest among physicists and mathematicians [l, 33]. Since 
deterministic chaos is observed in nonlinear systems of Ordinary Differential Equa-
tions (OD Es) when their dimension is N 2: 3, obviously, the role of numerical 
simulation in analyzing ODEs is rising. Using classical Runge-Kutta methods of 
4-th order for the numerical solution of auto-oscillating ODEs with a constant 
integration stepsize may lead to quite untrue conclusions about properties of the 
solution oscillations of ODEs. The complicated nonregular behaviour of solution 
trajectories of such 0 D Es requires the compulsory presence of the estimation of the 
error of numerical solutions and the procedure of automatic choice of the integra-
tion stepsize in numerical algorithms. A number of very effective variable stepsize 
algorithms for solving ODEs has been constructed up to now [12, 17]. 
Random fluctuations affecting auto-oscillating systems may have principal sig-
nificance; because they can determine the type of newly established oscillations 
[l]. The numerical simulation of oscillat.ing ODEs under the influence of random 
fluctuations merges to statistical sipmlation of solution trajectories of systems of 
nonlinear Stochastic Differential Equations (SD Es).· As in the deterministic analy-
sis, variable stepsize algorithms for numerical solution of oscillating SDEs are also 
urgently required. An already existing algorithm with variable stepsizes is based on 
embedded 5- and 6-stage Runge-Kutta methods [5]. It is intended for solving those 
problems of optimal control, where usually there is no need in the simulation of a 
large number of trajectories. However, for obtaining different probabilistic charac-
teristics of stochastic oscillations the simulation of a large number of trajectories 
is needed. Then it is a very time-consuming task. Therefore variable stepsize 
algorithms for solving stochastic oscillation systems have to cause relatively low 
computer costs. In this paper we will use generalized 3-stage Runge-Kutta meth-
ods as a basis for low computer cost variable ~tepsize algorithms for solving_ SDEs. 
The main requirement for such algorithms is to provide the possibility of simu-
lating oscillating trajectories with sufficiently high accuracy and efficiency, with 
stable integration stepsizes and with lowest possible information on the o--algebra 
generated by the underlying noise sources (e.g. using only local noise increments). 
By a result of Clark & Cameron [8] the global error of mean square convergence 
of such numerical solutions can not exceed the level one while using only noise 
increments for approximating diffusion parts of SDEs. ' 
The paper is organized as follows. Section 2 briefly describes the dynamical sytems 
to be considered here, as well as it recalls some basic notions. In the next se~tion we 
introduce a variable stepsize algorithm for solving SDEs. This algorithm is based 
on well-known deterministic Runge-Kutta-Fehlberg methods with lower order of 
c:onvergence, but under low smoothness conditions on drift and diffusion of SDEs. 
Section 4 exhibits the results of a large variety of numerical experiments fo'r such 
systems as stochastically perturbed Lorenz, Rossler and Brusselator equations. 
These experiments are carried out by using the system 'Dynamics and Control' 
which includes the constructed variable stepsize algorithm, and they indicate the 
efficiency of the proposed algorithm under small noise to some extent. The paper 
ends with some conclusions and an appendix on the interactive system ~Dynamics 
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and Control'. 

2. STRANGE ATTRACTORS, BIFURCATION, PHASE TRANSITIONS 

Consider a system of 0 D Es in the form: 

dy(t) 
dt - J(t,y(t),µ), 

y(to) - Yo, 

(2.1) 

where J is d-dimensional vector-valued function,µ = (µ1 , ... , µk) is a vector of real 
parameters. Throughout the paper we assume that system 2.1 for a certain µ is 
auto-oscillating, i.e. it has a limit cycle. The limit cycle is a particular case of 
the attractor - a bounded, attractive limit set. Attractors which have a nonperi-
odic auto-oscillating mode are called strange. Only auto-oscillating systems with 
dimension d > 3 can have strange attractors. The classical example of a system of 
ODEs with a strange attractor is the Lorenz system 

dy1(t) 
dt 

dy2( t) 
dt 

dy3(t) 
dt 

(2.2) 

·with µ continuously changing along some curve I in the space of parameters it 
can occur that a qualitative rebuilding of the phase portrait takes place in passing 
some points on this curve. Such values of parameters are called bifurcation points 
of the phase portrait, and this phenomenon is said to be bifurcation. Then p* is.the 
point of bifurcation if in an arbitrary small vicinity of this point there are points 
with qualitatively different phase portraits. The transition from one phase portrait 
to another while changing the vector of parameters µ is called phase transition. 
Bifurcation of strange attractors can occur as phase transition of the types 'chaos 
- chaos' or 'chaos - order'. 
Any movement of real dynamical objects takes place under the influence of random 
fluctuations. The role of fluctuations gains special importance near bifurcation 
points, when even small fluctuations of parameters or external noise can initiate 
vari'ous phase transitions. The investigation. of influence of random disturbances 
on a dynamical system usually reduces to the analysis of SDEs 

dy ( t) = f ( t, y ( t), Jl) dt + a ( t, y ( t)) dw ( t), _(:2.3) 

where a( t, y) is a matrix-valued function with dimension d x m, w( ·) - is a rn -
dimensional standard vViener process. Solution of SDEs have such probabilistic 
characteristics as the mean, matrix of covariance, function of correlation and prob-
ability distribution density. For stationary, ergodic random processes their spectral 
density is also a probabilistic characteristic. 
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3. VARIABLE STEPSIZE ALGORITHMS BASED ON DRIFT COMPARISON 

As-stage Runge-Kutta method for solving ODEs 2.1 has the form 

s 

Yn+l = Yn + LPiki, (3.1) 
i=l 

i-1 

ki = hJ(tn + Cih, Yn + L /3ijkj, µ), i = 1, ... , s, 
j=l 

i-1 

/310 = 0' Ci = L /3ij' i = 2' ... ' s' 
j=l 

where Pi, /3i,j are the coefficients of this method, Yn is a numerical solution at 
the mesh node tn and h the integration stepsize at the mesh node tn. It can be 
generalized to the solution of SD'Es in the sense of Ito 2.3 by methods 

s 

Yn+l = Yn + L Piki + Vha(tn, Yn)(n (3.2) 
i=l 

where (n are m-dimensional random vectors of independent, standard Gaussian 
distributed components. More detailed description of various families of numerical 
methods for solving SDEs can be found, e.g. in [3, 4, 27, 28, 31, 47]. An alter-
native approach to that numerical analysis is given by the construction of Markov 
chain approximations in stochastic control problems, cf. Kushner and Dupuis [29], 
whereas we will follow the suggestions made by references above. 
A deterministic Taylor expansion of numerical solution 3.2 in a neighbourhood of 
point tn on a uniform mesh takes the form 

(3.3) 
under sufficient smoothness of function f. The moments of the remainder term 
C( h) possess the following asymptotic behaviour 

< C(h) >= O(h2
), < C2(h) >= O(h3

) 

as h ~ 0. Here< · > denotes the operation of mean expectation. Comparing the 
Taylor expansion 3.3 with the Ito - Taylor expansion of the exact solution of SD Es 
(see [27]) we see ~t once that numerical methods 3.2 have first order of convergence 
in mean square sense for arbitrary SDEs and have second qrder for SDEs with 
constant matrices a. The stochastic notion of convergence mentioned here is also 
refered to global mean sqitare convergence, i.e. it exists a constant ]( > 0 such that 

sup .< llY(tn) - Ynll 2 > ::::; K(T) · (max hnf 
tn$,T tn$,T 

for sufficiently smooth systems 2.3, where hn = ltn - tn-11 (n = 1, 2, ... ). / > 0 is 
called the convergence order for a fixed terminal time T > 0. The order of global 
mean square convergence can be generally verified by the help of a theorem from 
[:31]. 
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The well-known embedded Runge-Kutta-Fehlberg methods of second and third 
order (see [17]) for solving ODEs 2.1 have the form 

. 
Yn+i = Yn + ~(k1 + k1 + 4k3), Y~+i = Yn + ~(k1 + k2), (3.4) 
k1 = hJ(tn, Yn, µ), 
k2 = hf(tn + h, Yn + k1, µ), 

h 1 
k3 = hf(tn + 2' Yn + 4(k1 + k2), µ) 

where Yn+l is the numerical solution at point tn+l which is obtained by the method 
of third order, y~+I the numerical solution at point tn+l which is obtained by the 
method of second order. According to 3.2 the following methods are a generaliza-
tion of 3.4 for solving SDEs in the sense of Ito 

Yn+i - Yn + ~(k1. + k2 + 4k3) + .fhu(tn, Yn)(n, (3.5) 

* Yn+I 
1 . 

- Yn + 2(k1 + k2) + /h,a(tn, YnKn · 

Variable stepsize algorithms automatically choose a stepsize at any integration step 
such that the local error of the methods should not exceed a given quantity E. The 
following procedure for choosing the current integration stepsize is usually used in 
variable stepsize algor~thms for ODEs 2.1 based on methods 3.4, cf. [17] and [45]. 
After choosing an initial stepsize h at point tn, Yn+l and Y~+i are calculated with 
this stepsize. Then the local, weighted error of the numerical solution at node tn+I 
is estimated by the formula 

1 d y* y _ L ( n+l,i - n+l,i )2 ' 

d i=l di . 
(3.6) 

wher_e the scaling factors are equal to di = max(l, IYn+i,d, IYn,il). The obtained 
estimation c5n+I is compared with a given error tolerance c. Based on extensive 
numerical experimentation, this allows us to predict the new. stepsize 

h 
hnew = S ' max(facl, min(Jac2, (7)113 / Jae)) 

(3.7) 

where J ac = 0.9 represents a suitable adjustment factor which is used for the 
estimation of the next mesh node being admissible with high probability. The 
coefficient for the maximum increasing stepsize is set as f acl = 0.1, the coefficient 
for minimum decreasing stepsize is taken as f ac2 = 5. The step from node ln to 
ln+I is considered as successful, if 

(:3.8) 
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and for further calculation from the mesh node tn+t to tn+2 the initial stepsize is 
chosen according to 3. 7. If inequality 3.8 is untrue then one repeats the whole 
procedure with hnew instead of h as initial stepsize according to 3. 7 for integration 
from mesh node tn to tn+t. • 
This procedure for choosing adaptively stepsizes can. be transferred to solving SD Es 
2.3 in the sense of Ito without considerable change. Inequality 3.8 is replaced by 
inequality 

(3.9) 
Fluctuations of numerical solutions at the expense of diffusion terms are not taken 
into account in the error estimation 3.6, since 

Yn+i - Y~+1 = -~(k1 + k2 - 2k3) . 

Thus, we obtained an adaptive algorithm for pathwise stepsize control without 
time-consuming, statistical estimation procedures. 
Method 3.4 can be generalized to the solution of SD Es in the sense of Stratonovich 
in the following way. Consider 

1 
Yn+l = Yn + 6(k1+k2+4k3) + Vh(2G3 - G1)(n, (3.10) 

G1 = O'(in, Yn), 
6 1 

G2 = O'( in, Yn + 5k1 + 2G1 Vh(n), 

G3 = a(tn + %,Yn + ~(k1 + k2) + ; 4 (G1+5G2)./h(n) 
. . 

where ki are the same as in 3.4. These numerical methods 3.10 have first order of 
convergence in mean square sense for arbitrary SDEs and second order for SDEs 
with constant matrices u. The procedure of estimation of the local error and the 
choice of integration stepsizes for solving SDEs in the sense of Ito is analogously 
transferred to solving SD Es in the sense of Stratonovich. Another alternative is 
given by the transformation of Stratonovich systems to corresponding Ito systems. 
For the transformation formula, e.g. see [27]. This happens without changing the 
dynamical system for SDEs with constant matrices. 

4. MODELS AND NUi\tERICAL EXPERIMENTS 

Numerical experiments were made on a PC/ AT 486DX-2 using the dialogue system 
'Dynamics and ·Control' (DS) written at Novosibirsk Computing Center (Russia). 
Numerical tests for the constructed algorithm with variable stepsize are carried out 
for stochastic. dynamical systems with strange attractors. A preliminary attempt 
was made to calculate such systems with the help of several numerical methods 
with constant stepsize. They failed because of computer overflows, even while 
using very small stepsizes. 
All examples given below have been taken from books [l, :3:3]. The occuring OD Es 
were solved by the algorithm RKF45 with variable stepsizes, constructed on the 
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basis of embedded 5- and 6-stage Runge-Kutta-Fehlberg methods (12]. Parameters 
of 0 D Es are chosen such that the sohitions have complex nonregular oscilla:tions. 
Then the solution of SDEs in the sense of Ito obtained from ODEs by. 'noising' of 
parameters are simulated with the help of the constructed algorithm with variable 
stepsizes. In all examples the initial values of SDEs solution consist of Gaussian 
random vectors with independent components having the same variance D = 0.01. 
The desired accuracy of calculations is equal to c = 10-3 (error tolerance). ~fain 
objective of the following numerical experiments is to demonstrate the possibility of 
the constructed variable stepsize algorithm for simulating solutions of SDEs with 
complex oscillating character and to show what happens with SDEs solution if 
parameters of the system start to be 'noisy'. Note that the proposed algorithm is 
not intended for integration under very large noise influence. 
Example 1. Auto-oscillations are found in the.generator with inertial nonlinearity 
governed by 

dy1 ( t) 
Y2 + µ1Y1 - Y1Y3, dt -

dy2( t) -yi, dt 
dy3( t) 

µ2(-y3 + x(yi)yi), dt -

where x(y) is the Heaviside function, i.e. 

x(y) = U: if y > 0, 
if y ::; 0. 

( 4.1) 

The change in the phase diagram by the presence of noise in parameter fl is rec-
ognizable by Figures 1 and 2. We observe a more and more destructuring process 
under increasing noise in comparison with the deterministic movement in the phase 
plane. 
One trajectory of the SD Es. solution in the interval [0,200] on the grid having 
2000 nodes was simulated. The number of algorithm steps is equal to 2346 at 
'inessential' noise and 2412 at 'more intensive' noise. There we could not establish 
any wrongly predicted integration stepsizes (i.e. no repititions/rejections. in the 
algorithm during local stepsize selection). Thus the recommended cho.ice 3. 7 seems 
to be optimal in this sense. Figure 3 presents the graph of the estimated spectral 
density of component y1 of the SDEs solution 4.1 when 

div1 · div2 
µ1 == 1.45 + 0.01-d ' µ2 == 0.3 + 0.01-l-. t ct 

·with such parameters, the SD Es have a strange attractor and continuous spectrum 
of their solutions. 
Example 2. An example for Lorenz equations 2.2 is the simple three-mode model 
of convective turbulence. Assume that parameters ft 1 = 10 and p3 = ~ in system 
2.2 ate deterministic, whereas parameter ft 2 is 'noising'. 
In this example larger noise intensity of parameter p2 brings about a qualitative 
change of the phase portrait. Figure 4 shows a phase trajectory (.l)L, lh) of the SD Es 
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solution 2.2 with µ2 = 18 + q.04 d:ft1 
, and Figure 5 with µ2 = 18 + 0.4~. As there is 

seen, SD Es 2.2 have a regular attractor at inessential noise and a strange attractor 
at more intensive noise. One trajectory of the SDEs solution in the interval [0,100] 
on the grid having 2000 nodes was simulated. The number of algorithm steps is 
equal to 2330 at inessential noise and 4603 at intensive noise. There we could not 
establish any wrongly predicted integration stepsizes (no rejections). 
Example 3. The system of Rossler equations 

dy1 ( t) 
dt 

dy2(t) 
dt 

dy3(t) 
dt 

(4.2) 

describes a hypothetic chemical reaction. Figure 6 visualizes a phase trajectory 
(y1 , y3 ) of the OD Es solution 4.2 with µ1 = 0.2, µ2 = 0.2, µ3 = 2:83. 
Figure 7 presents the graph of joint density of the first and second components of 
the SDEs solution 4.2 with the noisy parameters 

dw1 µI - 0.2 + O.Oldt, 

dw2 
µ2 - 0.2 + O.Oldt, 

·· dw3 
µ3 - 2.83+ O.ldt. 

The estimation of the joint density is obtained along one trajectory of the SDEs 
solution in the interval (0,20000] on the grid having 2 · 105 nodes. The number of 
algorithm steps is equal to 266750. There were not any wrongly predicted integra-
tion stepsizes. With increasing noise intensity of parameters in the algorithm, the 
integration stepsize can decrease up to the computer zero, and simulation of the 
problem terminates with the message 'The demanded accuracy of computation is 
not attained' while using the computer package 'Dynamics and Control'. Figure 8 
presents a graph of the estimation of the spectral density of the component y1 of 
SDEs solution with · 

dw1 
µ1 - 0.3 + O.OOldt, 

dw2 
Jl2 0.4 + 0.001-l-, 

Gt 
dw3 

Jl3 8.5 + 0.001-l- . ct 
\Vith these parameters SDEs 4.2 have a strange attractor. 
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Example 4. Two connected brusselators 

dy1 ( t) 
f.l1 - 5.56y1 + YiY3 + µ2(Y2 - Y1), dt -

dy2(t) 
p3 - 3.308y2 + Y~Y4 + µ2(Y1 - Y2), dt - ( 4.:3) 

dy3(t) 
4.56y1 - YiY3 + P2(y4 - y3), dt -

dy4(t) 
2.308y2 - Y~Y4 + µ2 (y3 - Y4) dt -

describe the temporal evolution of the concentration of corresponding substances 
in a chemical reaction. For constant parameters µ1 = 1.6, µ2 = 0.125, µ3 = 0.555 
the phase trajectory (y2, y4) of the SD Es solution 4.3 is of the form presented in 
Figure 9. For component y3 of the SD Es solution 4.3, Figure 10 shows the estimated 
correlation function R(t, t+r) at point t-:- 10, computed with the noisy parameters 

dw1 
Pt - 1.6 + 0.ldt, 

dw2 
P2 - 0.125 + O.ldt, 

dw3 
µ3 - 0.555 + O.ldt. 

The correlation function estimation is obtained by the simulation of an ensemble of 
100 trajectories of the SD Es solution 4.3 in the interval [0,20] on the grid having 200 
nodes. The total number of steps of the algorithm is equal to 33563. 21 wrongly 
predicted integration stepsizes were fixed in the course of computation. 
Example 5. A seven-dimensional discrete model of Na vier-Stokes equation, as a 
system of Lorenz equations, describes a convective turbulence 

dy1 (t) 
-2y1 + µi(Y2Y3 + Y4Ys), dt -

dy2(t) 
-9y2 + µ2(Y1Y3 + YsY1 ), dt -

dy3(t) 
-5y3 + Jl3Y1Y1 - 7./5Y1Y2 + f.ts, dt -

dy4(t) 
-5y4 - /5y1vs, (4.4) 

dt 
dys(t) -ys - f.t4y1y4, 
. dt 
dy6(t) -8y6 - :.!./5y2y7, 

dt -

dy,( t) 
-5y1 + !5v2!J6 - J.lsY1Y3, dt -
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where µ6 is an anology to Reinold's number. Figure 11 views a phase· trajectory 
(y3, Ys) of the OD Es solution 4.4 with parameters µ1 ·= 4VS, µ2 = 3VS, JL3. = 9, 
JL4 = 3VS, µs = 9, µs = 360. 
Six noisy parameters will be set in the following manner 

Figure 12 presents the graph of the estimated joint density of the third and fifth 
components of the SDEs solution 4.4, and Figure 13 the one-dimensional density 
of the third component. 
Density estimations are obtained along one trajectory of the SDEs solution in the 
interval [0,500] on the grid having 2 · 105 nodes. There were no difficulties in the 
numerical simulation. The number of steps of the algorithm is equal to 379766, no 
wrongly predicted integration stepsizes were established. For testing the procedure 
of varying integration stepsizes, similar calculations for larger noise intensity of 
parameters 

were carried out. The number of steps has increased up to 427068, and 22 wrongly 
predicted integration stepsizes were found. 
Example 6. A model of three-wave resonance interaction serves for the description 
of combinative light scattering in a dielectric with 
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dy1 (t) 
Y1 - Jt1Y2 + Y2(Y3 +Yi), dt -

dy2(t) 
Y2 + µiY1 + Y1(3y3 - yi), (4.5) dt -

dy3(t) 
-µ2y3 - 2Y1Y2Y3 · · dt -

Figure 14 displays a phase trajectory (y2 , y3 ) of the ODEs solution 4.5 for the 
parameters µ1 = 1.15, µ2 = 2.52. 
Figure 15 shows a graph of the integral curve y1(t) of the SDEs solution 4.5 for the 
case of 'weakly noising' parameters 

. · dw1 
µ 1 1.15 + O.OOOldt, 

dw2 
µ 2 - 2.52 + O.OOldt, 

and Figure 16 for the case of 'intensively noising' parameters 

dw1 
µi - 1.15 + O.ldt, 

dw2 
µ2 - 2.52 + O.ldt. 

Integral curves are obtained by simulation of trajectories of the SD Es solution 4.5 
in the interval [0,200] on the grid havi.ng 2000 nodes. The number of steps of the 
algorithm at inessential noise is equal to 3785. At intensive noise we failed to do 
simulations due to decreasing integration stepsize up to the computer zero. 
Example 7. In a model of the ecological system 'plunderer - ·victim' 

dy1 (t) 
dt 

Y1Y2 · Y1lvlo 
- -µiYt - 21+0.08y1 + 1+0.081\llo' 

dy2(t) Y1Y2 
dt - -µ1y2 + 1+0.08y1' 

dy3 ( t) .-. y3y4 y3J\!f o 
-- -µ?y3 - L, + ----

dt - . 1 + 0.08y3 1 + 0.081vfo' 
dy4(t) Y3Y4 

dt = -µ2y4 + 1+0.08y3' 

(4.6) 

where 1110 is the quantity of the biogenic element with i\!lo = 20 - Y1 - Y2 - y3 - y4, · 
y1 and y3 are the biogenic contents in victims, Y2 and y4 are the biogenic contents 
ii1 plunderers. Figure 17 shows a phase trajectory (y3 , y4 ) of the 0 D Es solution 4.6 
with parameters Jt 1 = 1, P2 = 2. 
Two noisy parameters of the system a.re given as follows 



Simulation of Stochastic Auto-Oscillating Systems Through Variable Stepsize Algorithms 16 

l.B YJ 

1.6 

1.4. 

1.2 

O.B 

0.6 

0.4 

0.2 

-0.4 

-0.2-

-0.4-

-2-

I 
0 

0 0.4 O.B J.2 1.6 2.4 

FIGURE 1~. Phase trajectory (y2, y3) 

I I I j I 

I I I I I 
30 60 120 150 

I 

, I, 
I, 
~ i ! 
:1 

180 
I 

210 

Y2 

2.B 

FIGURE 15. Graph of the integral curve y1(t) at inessential noise 

3 

B 
7 

Q 

-l 

-2 

-J 
-4 

-5 
T 

0 " 4. 6 B 10 12 14 16 lB 

FIGURE 16. Graph of the integral curve y1 ( t) at intensive noise 



Simulation of Stochastic Auto-Oscillating Systems Through Variable Stepsize Algorithms 17 

6.4 Y4 

5.6 

4.B 

3.2 

0 
Y3 

0 2 3 4 5 6 7 B :l 10 11 U! 

FIGURE 17. Phase trajectory (y3, y4) 

COMPONENT'S CORRELATION FUNCTION 

FIGURE 18. Correlation function 
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1 dw1 
µi - .L + O.ldt, 

dw2 
µ2 = 2+0.ldt. 

Figure 18 presents the graph of the estimated correlation function R( t, t + r) of the 
third component of the SDEs solution 4.6. Estimation of the correlation function 
is obtained by the simulation of 200 trajectories of the SDEs solution 4.6 in the 
interval [0,10] on the grid with 80 nodes. The total number of steps of the algorithm 
is equal to 38245. Three wrongly predicted integration stepsizes were found in the 
course of computation . 

. 5. CONCLUSION.AND REMARKS 

Based on the results of numerical experiments we can conclude relatively high effi-
ciency of the variable stepsize algorithm applied to statistical simulation of auto-
6scillating stochastic systems. In particular, it is very appropriate for simulation 
studies under small noise perturbations. For those dynamical systems where noise 
decisively influences their behaviour it still exists the task of constructing very ef-
ficient, adaptive algorithms. Then the proposed algorithm does not work. This 
fact can be easily seen while simulating solutions of SDEs without drift terms. 
Thus, it would be important to incorporate the diffusion terms as well in the local 
error estimation and adaptive stepsize selection. The advantage of the suggested 
algorithm consists of its low computer costs, relatively low smoothness conditions 
on drift and diffusion terms and avoiding of the generation of fairly complicated 
multiple integrals. For the estimation of sufficiently smooth functionals of the form 
< g(y(t)) > one can also make use of well-known deterministic methods. A corre-
sponding exposition in this respect is worked out in [21], relying on extrapolation. 
methods and Talay's global error expansion ·[48]. 
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APPENDIX A. THE INTERACTIVE SYSTEM 'DYNAMICS AND CONTROL' 

The dialogue system (DS) has been worked out at the Computing Center of Sibirian 
Division of the Russian Academy of Sciences in Novosibirsk, Russia., This inter-
active system (DS) is intended for numerical experiments for solving problems of 
analysis and synthesis of the automatic control of dynamical objects. The sys-
tem works on IBM-compatible computers under MS-DOS with some minimum 
requirements. 
DS has the following algorithms for statistical simulation of solutions of SDEs: 
- Euler-Maruyama method for SD Es in the sense of Ito; 
- Generalized two-stage Runge-Kutta method for SD Es in the sense of Stratonovich; 
- Generalized one-stage Rosenbrock type method for SD Es in the sense of Ito; 
- Generalized two-stage Rosenbrock type method for SDEs in the sense of Ito 

and Stratonovich; 
- Mil'shtein method for SDEs in the sense of Ito with single noise; 
- Platen method for .SDEs in the sense of Ito with single noise; 
- Newton method for SDEs in the sense of Ito and Stratonovich with single 

n01se; 
- Two variable stepsize algorithms for SDEs in the sense of Ito and Stratonovich. 
The· DS allows to evaluate the following functionals of SD Es solutions: 
- mean; 
- covariance matrix; 
- correlation function of a desired component of the solution; 
- distribution density of a desired component of the solution; 
- spectral density of a d~sired component of the solution; 
- joint distribution density of two desired components of the solution; 
- two-dimensional distribution density of a desired component of the solution at 

two required grid points. 
New algorithms can be implemented, as well as special problems and computing 
tasks. For further details, please contact the second author. The publisher of 
Computing Center SD RAS plans to issue the monograph S.S. Artemiev, M.A. 
Yakunin, Y.G. Michaylichenko, LO. Shkurko 'Dynamics and Control' (pp. 270) by 
the end of 1994. 
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