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Abstract. We consider a linear-quadratic elliptic optimal control problem with pointwise state constraints. The
problem is fully discretized using linear ansatz functions for state and control. Based on a Slater-type argument, we
investigate the approximation behavior for mesh size tending to zero. The obtained convergence order for the L2-error of
the control and for H1-error of the state amounts 1 − ε in the two-dimensional case and 1/2 − ε in three dimension. In a
second step, a state-constrained problem with additional control constraints is considered. Here, the control is discretized
by constant ansatz functions. It is shown that the convergence theory can be adapted to this case yielding the same order
of convergence. The theoretical �ndings are con�rmed by numerical examples.

1. Introduction. In this paper, we focus on the error analysis for a �nite element
discretization of linear elliptic optimal control problems with pointwise state constraints.
It is well known that, in contrast to the control-constrained case, these problems provide
some particular di�culties. This especially concerns the regularity of the Lagrange multi-
pliers associated to the state constraints that are generally regular Borel measures (see for
instance Casas [6] or Alibert and Raymond [1]). As a consequence, the optimal controls
are in general only elements of W 1,σ(Ω) with some σ < 2 (cf. [6]). This lack of regularity
naturally a�ects the behavior of �nite element discretization and numerical optimization
algorithms. Consequently, several articles addressed the numerical treatment of state-
constrained problems in the recent past. We only mention Bergounioux and Kunisch [4]
and the regularization approaches proposed by Meyer, Rösch and Tröltzsch [19] and Hin-
termüller and Kunisch [17]. In contrast to the control-constrained case, where the �nite
element discretization is well investigated (see for instance [14, 2, 9] and the references
therein), �nite element convergence analysis for state-constrained problems still provides
several open questions. Here, we refer to Casas [7], Casas and Mateos [8], and, in partic-
ular, to Deckelnick and Hinze [12] and [13]. The �rst two articles deal with �nitely many
state constraints, whereas in the latter, Deckelnick and Hinze established error estimates
for a semi-discrete approach in the spirit of [18]. In [12], they considered the following
purely state-constrained problem

(P)





minimize J(y, u) :=
1

2

∫

Ω

|y − yd|2 dx +
α

2

∫

Ω

u2 dx

subject to −∆ y(x) + y(x) = u(x) in Ω

∂ny(x) = 0 on Γ

and y(x) ≤ yb(x) a.e. in Ω

and derived a convergence order of h1−ε, ε > 0, in the two-dimensional case and h1/2−ε in
three dimensions. Furthermore, it turns out that, in the purely state-constrained case, the
semi-discrete solution coincides with the solution of the fully discretized problem using
linear ansatz functions for the control. In other words, the results of [12] also apply to
a full discretization of (P) (see [12, Remark 2.2]). Here, we will con�rm their results for
the fully discretized case by using a completely di�erent technique. Based on a Slater-
point assumption, we establish the existence of a function which is, in some sense, close
the solution of (P) and, on the other hand, feasible for the discrete version of (P). By
similar arguments, one shows the existence of another function which is feasible for (P)
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and close to the discrete solution. Together with the variational inequalities for (P) and
its discretization, this two-way feasibility is the basis for the overall error analysis. In the
second part of the paper, we use this technique to verify a similar result for the case with
additional control constraints, i.e.

(Q)





minimize J(y, u) :=
1

2

∫

Ω

|y − yd|2 dx +
α

2

∫

Ω

u2 dx

subject to −∆ y(x) + y(x) = u(x) in Ω

∂ny(x) = 0 on Γ

and ya(x) ≤ y(x) ≤ yb(x) a.e. in Ω

ua ≤ u(x) ≤ ub a.e. in Ω.

In contrast to (P), the controls are now discretized with piecewise constant functions. The
error analysis for (Q) represents the genuine result of this article since, in case of (Q), the
discrete solution di�ers from the semi-discrete one. Hence, the theory developed in [13]
for the semi-discretization of (Q) cannot be applied to the full discretization.
The paper is organized as follows: In Section 2, we specify the assumptions for the analysis
of problem (P) and describe the discretization of (P). After stating some basic properties
of (P) and its state equation in Section 3, we derive some auxiliary results in Section
4. These are needed for the proof of the main convergence result Section 5 is devoted
to. In Section 6, we turn to problem (Q) and derive an analogous convergence result for
this problem by using the same technique. The obtained error estimates are discussed in
Section 7, whereas Section 8 �nally presents some numerical examples.

2. Notation and Assumptions. In the following, we state the assumptions required
for discussion of the �nite element discretization of (P). The additional assumptions for
the analysis of problem (Q) are mentioned in Section 6.
Assumption 2.1. Let Ω be a bounded C1,1-domain in RN , N = 2, 3. Moreover, we
assume that yd is a given function in L2(Ω), while the bound yb is de�ned in C(Ω̄). The
Tikhonov parameter α is a real positive number.
For an interpolation of yd and yb, higher regularity is required. This is discussed in detail
in Section 7. It is well known that, under Assumption 2.1, to every u ∈ L2(Ω) there exists
a unique solution of the state equation in H2(Ω) ⊂ C(Ω̄) (cf. for instance [15]). Thus,
we introduce the control-to-state mapping S : L2(Ω) → H2(Ω) that maps u to y. In the
subsequent sections, the control-to-state mapping is considered with di�erent ranges. For
simplicity, the associated operators are also denoted by S. In view of the de�nition of S,
we are in the position to introduce the reduced optimal control problem by

(P)





minimize f(u) :=
1

2
‖S u− yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω)

subject to u ∈ L2(Ω) and (S u)(x) ≤ yb(x) a.e. in Ω.

Now, we turn to the discretization of (P). To that end, let us introduce a family of
triangulation of Ω̄, denoted by {Th}h>0. Each triangulation is assumed to exactly �t the
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boundary of Ω such that

Ω̄ =
⋃

T∈Th

T.

Hence, the elements of Th lying on the boundary of Ω are curved. With each element
T ∈ Th, we associate two parameters ρ(T ) and R(T ), where ρ(T ) denotes the diameter of
the set T and R(T ) is the diameter of the largest ball contained in T . The mesh size of
Th is de�ned by h = max

T∈Th

ρ(T ). We suppose the following regularity assumptions for Th:

Assumption 2.2. There exist two positive constants ρ and R such that
ρ(T )

R(T )
≤ R ,

h

ρ(T )
≤ ρ

hold for all T ∈ Th and all h > 0.
With this setting at hand, we are in the position to introduce the discretized control
space:
Definition 1. The space of discrete controls is given by

Vh = {uh ∈ C(Ω̄) | u|T ∈ P1 ∀ T ∈ Th}.

Notice that Vh ∈ H1(Ω) ∩ C(Ω̄).
Furthermore, we de�ne by {xi}n

i=1 the set of all nodes of Th and denote the standard
continuous and piecewise linear �nite element ansatz function associated to xi, 1 ≤ i ≤ n,
by φi. In other words, φi satis�es φi ∈ Vh with φi(xi) = 1 and φi(xj) = 0 for all 1 ≤ j ≤ n
with j 6= i. In the same way as the control, the state is also discretized by linear ansatz
functions such that the discrete state is equivalent to

∫

Ω

∇yh · ∇vh dx +

∫

Ω

yh vh dx =

∫

Ω

u vh dx ∀ vh ∈ Vh

with an arbitrary u ∈ L2(Ω). The associated discrete solution operator is denoted by
Sh : L2(Ω) → Vh and hence, the discrete counterpart of (P) is given by

(Ph)





minimize fh(u) :=
1

2
‖Sh u− yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω)

subject to u ∈ Vh and (Sh u)(x) ≤ yb(x) a.e. in Ω

For the derivation of �rst-order necessary optimality conditions to (P), one needs the
following Slater condition:
Assumption 2.3. A function û ∈ H2(Ω) exists such that (S û)(x) ≥ τ with some τ > 0
for all x ∈ Ω̄.
This condition is also essential for the overall convergence analysis (see Lemma 4.4).

Notations. Due to the strict convexity of f(u) and fh(u), (P) and (Ph) admit unique
optimal solutions that are denoted by ū ∈ L2(Ω) and ūh ∈ Vh in all what follows. The
admissible set of (P) is de�ned by Uad := {u ∈ L2(Ω) | (S u)(x) ≤ yb(x) a.e. in Ω}, and
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a function v is called feasible for (P) if v ∈ Uad. Analogously, we set Uh
ad := {uh ∈

Vh | (Sh uh)(x) ≤ yb(x) a.e. in Ω} and say vh ∈ Vh is feasible for (Ph) if v ∈ Uh
ad. Given

a real number σ with 1 ≤ σ < N/(N − 1), N = 2, 3, we introduce the abbreviation
W = W 1,σ(Ω) and denote the dual space of W with respect to the L2-inner product by
W ∗. Furthermore, for a given 1 ≤ p ≤ ∞, we de�ne ‖ . ‖p := ‖ . ‖Lp(Ω), except p = 2,
i.e. the L2(Ω)-norm, which is denoted by ‖ . ‖. Moreover, (. , .) is natural inner product
in L2(Ω). The set C(Ω̄)+ is de�ned by C(Ω̄)+ := {v ∈ C(Ω̄) | v(x) ≥ 0 ∀x ∈ Ω̄}. Finally,
throughout the paper, c is a generic constant.

3. Known results. The subsequent section states some basic results needed for the
error analysis of (P). We start with the well known L2-projection that is de�ned in a
standard way as follows:
Definition 2. Let Vh be an arbitrary subspace of L2(Ω). Then, for an arbitrary u ∈
L2(Ω), the L2-projection on Vh, denoted by Πhu, is de�ned by

Πhu := arg min
vh∈Vh

‖u− vh‖2. (3.1)

The �rst-order optimality conditions for (3.1) immediately imply

(u− Πhu , vh) = 0 ∀ vh ∈ Vh, (3.2)

which will be used several times in the subsequent. Now, let us consider the control-to-
state mapping S that was introduced in Section 2.
Theorem 3.1. Suppose that Ω ⊂ RN is an open bounded Lipschitz domain. Then, there
is a p > N such that, for all N ≤ q ≤ p, the control-to-state operator is continuous from
W−1,q(Ω) to W 1,q(Ω). In other words, if the right-hand side in the state equation is an
element of W−1,q(Ω), then the solution belongs to W 1,q(Ω) and satis�es

‖y‖W 1,q(Ω) ≤ c ‖u‖W−1,q(Ω)

with a constant c independent of u. Moreover, if Ω is of class C1,1, then, for every right-
hand side in Lp(Ω), 2 ≤ p < ∞, there exists a unique solution of the state equation in
W 2,p(Ω) that depends continuously on the inhomogeneity.
For the �rst part of Theorem 3.1, we refer to Gröger [16] if N = 2. In the three dimensional
case, a corresponding result can be found in Zanger [23]. The second part of the Theorem
3.1 is a standard result that is for instance proven in Grisvard [15].
Remark 3.2. Using well known imbedding theorems, we �nd W 1,q(Ω) ↪→ C(Ω̄) for q > N
such that S : W−1,q(Ω) → C(Ω̄) continuously.
As indicated in the introduction, under Assumption 2.3, the generalized Karush-Kuhn-
Tucker theory implies the existence of the Lagrange multipliers associated to the pointwise
state constraints in the space C(Ω̄)∗, whose elements can be identi�ed as regular Borel
measures. This is also covered by the following theorem that states the �rst-order neces-
sary optimality conditions for (P). The corresponding proof can be found in Casas [6] or
Alibert and Raymond [1].
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Theorem 3.3. There exists a unique optimal solution to (P) in H2(Ω)×L2(Ω), denoted
by (ȳ, ū), that satis�es the following optimality system

−∆ ȳ + ȳ = ū in Ω

∂n ȳ = 0 on Γ

−∆ p + p = ȳ − yd + µΩ in Ω

∂n p = µΓ on Γ

α ū(x) + p(x) = 0 a.e. in Ω
∫

Ω̄

(ȳ − yb) dµ = 0 , ȳ(x) ≤ yb(x) ∀ x ∈ Ω̄

∫

Ω̄

y dµ ≥ 0 ∀ y ∈ C(Ω̄)+





(3.3)

with a Lagrange multiplier µ ∈M(Ω) and an adjoint state p ∈ W .
Remark 3.4. The gradient equation in (3.3) immediately implies ū ∈ W and hence
u /∈ C(Ω̄).
This remark illustrates an essential di�erence to the control-constrained case, where the
optimal control is even Lipschitz continuous. Due to this lack of regularity, we need
a generalized interpolation operator for functions in H t(Ω), t ≤ 1, that employs local
L2-projections. In case of polyhedral domains, this operator is given by the well known
Clément interpolation operator (cf. [10]) that is de�ned by

(Ihu)(x) :=
n∑

i=1

(Πiu)(xi)φi(x),

where Πi denotes the L2-projection on supp{φi}, i.e. the solution of

(Πiu , u) = (uh , u) ∀ uh ∈ Vh ∩H t(supp{φi}).

In [5], Bernardi generalized this concept for domains with curved boundary and proved
the following result:
Lemma 3.5. Let t ∈ [0, 1] be given. Then there exists an interpolation operator Ih :
H t(Ω) → Vh such that, for all u ∈ H t(Ω),

‖u− Ihu‖ ≤ c ht ‖u‖Ht(Ω)

is satis�ed with a constant c independent of t, h, and u.
For the particular form of Ih in case of curved domains, we refer to [5]. The operator Ih

will be called quasi-interpolation in all what follows. Next, we turn to the �nite element
approximation of the state equation in (P). Using again Bernardi's results for interpolation
error estimates on curved domains (cf. [5]), the standard theory for linear �nite elements
yields that, for all u ∈ L2(Ω), the discrete solution operator Sh satis�es the following error
estimates

‖(S − Sh)u‖ ≤ c h2 ‖u‖ (3.4)
‖(S − Sh)u‖∞ ≤ c h2−N/2 ‖u‖. (3.5)
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However, if u is more regular, then this result can be improved as shown by Deckelnick
and Hinze in [12].
Lemma 3.6. For every u ∈ W and all ε > 0,

‖(S − Sh)u‖∞ ≤ c h4−N−ε | log h| ‖u‖W

holds true with a constant c only depending on Ω.
To improve the readability, we use the notation

δ(h) := h4−N−ε | log h| (3.6)

in all what follows. The Tikhonov regularization term within the objective function
immediately implies that the discrete controls are uniformly bounded in L2(Ω). Moreover,
because of ūh ∈ Vh ⊂ H1(Ω), we have ūh ∈ W . In addition to that, Deckelnick and Hinze
proved that, for the semi-discrete approach, the discrete solutions are uniformly bounded
in W (cf. [12, Lemma 3.5]). It is easy to see that the same arguments can also be applied
in case of the full discretization such that the following result is obtained:
Lemma 3.7. The sequence of discrete optimal solutions, denoted by {ūh}h>0, is uniformly
bounded in W .

4. Auxiliary results. Before we are in the position to prove the main convergence
theorem, we have to derive some auxiliary results. In particular, Lemma 4.4 is essential
for the overall theory. Nevertheless, let us start with a result on the Slater point û that
follows immediately from the required regularity of û (cf. Assumption 2.3).
Lemma 4.1. There is an h0 > 0 such that, for all h ≤ h0,

(Sh Πhû)(x) ≥ τ0 > 0 a.e. in Ω

is valid with a constant τ0 > 0 independent of h.
Proof. Using Assumption 2.3, the proof follows from standard interpolation error esti-
mates for curved domains (cf. Bernardi [5]) and approximation arguments:

(Sh Πhû)(x) = (S û)(x) +
(
S(Πhû− û)

)
(x) +

(
(Sh − S)Πhû

)
(x)

≥ τ − ‖S‖L(L2(Ω),L∞(Ω)) ‖Πhû− û‖ − c h2−N/2 ‖Πhû‖
≥ τ − c h2−N/2 ‖û‖ =: τ0.

Hence, if h0 is chosen su�ciently small, we obtain τ0 > 0 for all h ≤ h0.
Now, we turn to the approximation error for the optimal control ū. As stated above,
one has to apply quasi-interpolation to approximate ū. Based on Lemma 3.5, we �nd the
following estimates:
Lemma 4.2. For every function u ∈ W , there exists a constant c , independent of u and
h, such that

‖u− Πhu‖ ≤ c h2−N/2−ε ‖u‖W (4.1)
‖u− Πhu‖W ∗ ≤ c h4−N−ε ‖u‖W (4.2)

hold true for all ε > 0.
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Proof. Imbedding theorems imply that W ↪→ H t(Ω) with t = 2−N/2−ε. Hence, Lemma
3.5 yields

‖u− Πhu‖ ≤ c ht ‖u‖Ht(Ω) ≤ c h2−N/2−ε ‖u‖W . (4.3)

For the second statement, we argue in a standard way: due to (3.2), for every vh ∈ Vh, it
follows

‖u− Πhu‖W ∗ = sup
ϕ∈W,ϕ6=0

(u− Πhu , ϕ)

‖ϕ‖W

= sup
ϕ∈W,ϕ6=0

(u− Πhu , ϕ− vh)

‖ϕ‖W

= ‖u− Πhu‖ sup
ϕ∈W,ϕ6=0

‖ϕ− vh‖
‖ϕ‖W

.

(4.4)

Now, we choose the quasi-interpolant for vh, i.e. vh = Ihϕ, such that, analogously to
above, Lemma 3.5 implies

‖ϕ− Ihϕ‖ ≤ c h2−N/2−ε ‖ϕ‖W .

Inserting this together with (4.3) in (4.4) �nally yields the assertion.
Lemma 4.3. Let u be an arbitrary function in W . Then, the following estimate holds
with a constant c, independent of h and u,

‖Sh(Πhu− u)‖∞ ≤ c h4−N−ε ‖u‖W

for all ε > 0.
Proof. We start with the triangle inequality that implies

‖Sh(Πhu− u)‖∞ ≤ ‖(Sh − S)(Πhu− u)‖∞ + ‖S(Πhu− u)‖∞. (4.5)

For the �rst addend, (3.5) and (4.1) yield

‖(Sh − S)(Πhu− u)‖∞ ≤ c h4−N−ε ‖u‖W .

It remains to estimate the second addend in (4.5). According to Remark 3.2, we have
S u ∈ L∞(Ω) if u ∈ W−1,N+ε(Ω), ε > 0. Moreover, due to σ < N/(N − 1), the associated
conjugate exponent σ′, de�ned by 1/σ + 1/σ′ = 1, satis�es σ′ > N and hence W ∗ =
W 1,σ(Ω)∗ ↪→ W−1,N+ε(Ω). Consequently, we obtain

‖S(Πhu− u)‖∞ ≤ c ‖Πhu− u‖W ∗ ≤ c h4−N−ε ‖u‖W ,

where we used (4.2) for the last estimate.
With these results at hand, we are now able to show the key point of our convergence
theory. Here, by using the Slater condition, we prove the feasibility of ūh − c δ(h)û for
the in�nite dimensional problem (P), where δ(h) is as de�ned in (3.6). On the other
hand, Πhū− c δ(h) Πhû is feasible for the discrete problem (Ph). This two-way feasibility
represents the basis for the convergence theory in Section 5.



8 C. MEYER

Lemma 4.4. Let δ be de�ned by (3.6). Then there exist positive constants γ1 and γ2, each
independent of h, such that, the function v1, de�ned by

v1 := ūh − γ1 δ(h) û,

is feasible for (P), whereas, for all h < h0,

v2 := Πhū− γ2 δ(h) Πhû

is feasible for (Ph).
Proof. First, we show (S v1)(x) ≤ yb(x) a.e. in Ω. Together with Assumption 2.3 and
Lemma 3.6, the feasibility of ūh for (Ph) implies

(S v1)(x) = (Sh ūh)(x) +
(
(S − Sh)ūh

)
(x)− γ1 δ(h) (Sû)(x)

≤ yb(x) + ‖(S − Sh)ūh‖∞ − γ1 δ(h) τ

≤ yb(x)− (
γ1 τ − c ‖ūh‖W

)
δ(h) (4.6)

for almost all x ∈ Ω. Because of Lemma 3.7, ‖ūh‖W is bounded by a constant independent
of h and hence, (4.6) yields the feasibility of v1 for su�ciently large γ1. Next, let us turn
to the feasibility of v2 for (Ph). First, we have v2 ∈ Vh by construction. To verify the
inequality constraints in (Ph), we deduce from Lemma 4.3, Lemma 3.6, and Lemma 4.1
that

(Sh v2)(x) = (S ū)(x) +
(
Sh(Πhū− ū)

)
(x) +

(
(Sh − S)ū

)
(x)− γ2 δ(h) (Sh Πhû)(x)

≤ yb(x) + ‖Sh(Πhū− ū)‖∞ + ‖(S − Sh)ū‖∞ − γ2 δ(h) τ0

≤ yb(x) + c h4−N−ε ‖u‖W + c δ(h) ‖ū‖W − γ2 δ(h) τ0, (4.7)
and hence

(Sh v2)(x) ≤ yb(x)− (
γ2 τ0 − c ‖u‖W

)
δ(h).

Due to ū ∈ W , the expression in the brackets is non-negative, if γ2 is chosen su�ciently
large, giving in turn the assertion.
The following lemma is an immediate consequence of the variational inequalities for (P)
and (Ph).
Lemma 4.5. For every v ∈ Uad and every vh ∈ Uh

ad, we �nd
α ‖ū + ūh‖2 + ‖S ū− Sh ūh‖2

≤ α (ū , v − ūh) + α (ū , vh − ū) + α (ūh − ū , vh − ū)

+
(
Sh ūh − S ū , (Sh − S)vh + S(vh − ū)

)

+
(
S ū− yd , S(v − ūh) + S(vh − ū) + (S − Sh)ūh + (Sh − S)vh

)
.

(4.8)

Proof. The proof is completely analogous to the control-constrained case presented by
Falk in [14] and follows from straight forward computation. We start with the variational
inequalities for (P) and (Ph), respectively, given by

(S ū− yd , S v − S ū) + α (ū , v − ū) ≥ 0 ∀ v ∈ Uad (4.9)
(Sh ūh − yd , Sh vh − Sh ūh) + α (ūh , vh − ūh) ≥ 0 ∀ vh ∈ Uh

ad. (4.10)
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Adding both inequalities yields

=: A︷ ︸︸ ︷
(S ū− yd , S v − S ū) + (Sh ūh − yd , Sh vh − Sh ūh)

+ α
[
(ū , v − ū) + (ūh , vh − ūh)

]
︸ ︷︷ ︸

=: B

≥ 0
(4.11)

for all v ∈ Uad and all vh ∈ Uh
ad. Straight forward computations show for A and B

B = (ū , v − ūh) + (ū , ūh − ū) + (ūh , vh − ū) + (ūh , ū− ūh)

≤ −‖ū− ūh‖2 + (ū , v − ūh) + (ū , vh − ū) + (ūh − ū , vh − ū)
(4.12)

and

A =
(
S ū− yd , S(v − ūh) + (S − Sh)ūh + Sh ūh − S ū)

)

+
(
Sh ūh − yd , (Sh − S)vh + S(vh − ū) + S ū− Shūh

)

=
(
S ū− yd , S(v − ūh) + S(vh − ū) + (S − Sh)ūh + (Sh − S)vh

)

+
(
Sh ūh − S ū , (Sh − S)vh + S(vh − ū)

)
− ‖Sh ūh − S ū‖2.

(4.13)

Inserting (4.12) and (4.13) in (4.11) �nally implies the assertion.

5. Convergence analysis. With the results of the previous section at hand, in par-
ticular Lemma 4.4, we are now able to prove our main result, which is the following
convergence theorem:
Theorem 5.1. Let ū denote the optimal solution of (P), while ūh is the optimal solution
of (Ph). Then the following estimate holds true

‖ū− ūh‖+ ‖S ū− Sh ūh‖ ≤ C h2−N/2−ε

for all ε > 0 with a constant C depending on ε, Ω, α, ū, and û.
Proof. We start by estimating the right hand side of (4.8). For the �rst two expressions,
we obtain

(ū , v − ūh) + (ū , vh − ū) ≤ ‖ū‖W

(‖v − ūh‖W ∗ + ‖vh − ū‖W ∗
)
.

The next two addends are estimated by using Young's inequality such that

(ūh − ū , vh − ū) ≤ 1

2
‖ūh − ū‖2 +

1

2
‖vh − ū‖2

and
(
Sh ūh − S ū , (Sh − S)vh + S(vh − ū)

)

≤ 1

2
‖Sh ūh − S ū‖2 + ‖(Sh − S)vh‖2 + ‖S(vh − ū)‖2

≤ 1

2
‖Sh ūh − S ū‖2 + ‖(Sh − S)vh‖2 + c ‖vh − ū‖2

W ∗ ,
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are obtained. Here, we used the continuity of S from W ∗ to H1(Ω) that follows from
S : H1(Ω)∗ → H1(Ω) continuously and W ∗ ⊂ H1(Ω)∗ because of H1(Ω) ⊂ W . The last
term on the right hand side of (4.8) is estimated by the Cauchy-Schwarz inequality, i.e.

(
S ū− yd , S(v − ūh) + S(vh − ū) + (S − Sh)ūh + (Sh − S)vh

)

≤ c ‖S ū− yd‖
(
‖v − ūh‖W ∗ + ‖vh − ū‖W ∗ + ‖(S − Sh)ūh‖+ ‖(Sh − S)vh‖

)
,

where we again used S : W ∗ → H1(Ω) continuously. Inserting these estimates in (4.8)
yields

α

2
‖ū + ūh‖2 +

1

2
‖S ū− Sh ūh‖2

≤ α

2
‖vh − ū‖2

+
(
α ‖ū‖W + c ‖S ū− yd‖

)(
‖v − ūh‖W ∗ + ‖vh − ū‖W ∗

)

+ c2 ‖vh − ū‖2
W ∗ + ‖(S − Sh)vh‖2

+ ‖S ū− yd‖
(
‖(S − Sh)ūh‖+ ‖(S − Sh)vh‖

)
∀ v ∈ Uad, vh ∈ Uh

ad.

(5.1)

Thanks to Lemma 4.4, we are now allowed to insert v = v1 and vh = v2. Let t again be
de�ned by t = 2−N/2− ε. Then, by means of Lemma 4.2, we obtain

‖vh − ū‖ ≤ ‖Πhū− ū‖+ γ2 δ(h) ‖Πhû‖
≤ (

c ‖ū‖W + γ2 ‖û‖
)
max{ht, δ(h)} = c1 ht,

(5.2)

‖vh − ū‖W ∗ ≤ ‖Πhū− ū‖W ∗ + γ2 δ(h) ‖Πhû‖W ∗

≤ (
c ‖ū‖W + c γ2 ‖û‖

)
max{h2t, δ(h)} = c2 δ(h),

(5.3)

and in case of v = v1

‖v − ūh‖W ∗ ≤ c γ1 δ(h) ‖û‖ = c3 δ(h). (5.4)

For the remaining expressions in (5.1), one can apply (3.4), i.e.

‖(Sh − S)vh‖ ≤ c h2 ‖Πhū− γ2 δ(h) Πhû‖
≤ c h2

(‖ū‖+ γ2 ‖û‖
)

= c4 h2
(5.5)

and

‖(Sh − S)ūh‖ ≤ c h2 ‖ūh‖ = c5 h2, (5.6)

where the optimality of ūh guarantees its uniform boundedness in L2(Ω) such that c5 is
independent of h. If, we now insert (5.2)�(5.6) in (5.1), we obtain

α

2
‖ū + ūh‖2 +

1

2
‖S ū− Sh ūh‖2

≤ α

2
c2
1 h2t +

(
α ‖ū‖W + c ‖S ū− yd‖

)
(c2 + c3) δ(h)

+ c2 c2
2 δ(h)2 + c4 h2 + ‖S ū− yd‖ (c4 + c5) h2

≤ C δ(h).
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With the de�nition of δ(h) and t, we therefore end up with
‖ū− ūh‖2 + ‖S ū− Sh ūh‖2 ≤ C h4−N−ε | log h|, (5.7)

where C is independent of ε. Now, for a �xed ε > 0, there exists a constant c(ε) such
that

h4−N−ε | log h| = h4−N−2ε hε | log h| ≤ c(ε) h4−N−2ε.

Notice however that c(ε) → ∞ if ε ↓ 0. Hence, the right hand side in (5.7) can be
estimated by C h4−N−2ε with C depending on ε, which gives in turn the assertion.
Using standard �nite element error estimates, we deduce

‖S u− Sh uh‖H1(Ω) ≤ ‖S(u− uh)‖H1(Ω) + ‖(S − Sh)uh‖H1(Ω)

≤ c ‖u− uh‖+ c h ‖uh‖.
Hence, Theorem 5.1 implies the following result:
Corollary 5.2. For the optimal states of (P) and (Ph), we have

‖ȳ − ȳh‖H1(Ω) ≤ c h2−N/2−ε.

6. A problem with pointwise state and control constraints. As already men-
tioned in the introduction, the previous theory for (P) can be adapted to problem (Q)
with additional box-constraints on the control. Analogously to (P), we introduce the
reduced optimal control problem by

(Q)





min
u∈L2(Ω)

f(u) :=
1

2
‖S u− yd‖2 +

α

2
‖u‖2

subject to ya(x) ≤ (S u)(x) ≤ yb(x) a.e. in Ω

ua ≤ u(x) ≤ ub a.e. in Ω.

Beside Assumption 2.1, we need the following assumptions on the additional quantities
in (Q):
Assumption 6.1. The bounds ya and yb are given in C(Ω̄). Moreover, ua and ub are real
numbers satisfying ua ≤ ub.
In contrast to the discretization of problem (P), the control is now discretized by piecewise
constant ansatz functions, while the discrete state is still an element of Vh as de�ned in
De�nition 1.
Definition 3. The space of discrete controls is given by

Uh = {uh ∈ L2(Ω) | u|T = const. ∀ T ∈ Th}.
Notice that Uh * W . With the discrete control-to-state mapping, again denoted by Sh,
the discrete optimal control problem now reads

(Qh)





min
u∈Uh

fh(u) :=
1

2
‖Sh u− yd‖2 +

α

2
‖u‖2

subject to ya(x) ≤ (Sh u)(x) ≤ yb(x) a.e. in Ω

ua ≤ u(x) ≤ ub a.e. in Ω.
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Again, a Slater condition is needed to derive �rst-order necessary conditions Similarly to
Assumption 2.3, it is now given by:
Assumption 6.2. A function û ∈ W exists such that

ya(x) + τ ≤ (S û)(x) ≤ yb(x)− τ

ua ≤ û(x) ≤ ub

holds for all x ∈ Ω̄ with some τ > 0.
As in case of (P), the Karush-Kuhn Tucker theory implies the existence of Lagrange
multipliers µa, µb ∈ M(Ω) associated to the state constraints in (Q). Again, the lack of
regularity of the multipliers impairs the regularity of p such that p ∈ W . Moreover, the
pointwise control constraints in (Q) can be discussed in a standard way such that the
overall optimality system reads as follows:

−∆ ȳ + ȳ = ū in Ω

∂n ȳ = 0 on Γ

−∆ p + p = ȳ − yd + µb,Ω − µa,Ω in Ω

∂n p = µb,Γ − µa,Γ on Γ

ū(x) = Πad

{− 1

α
p(x)

}

ya(x) ≤ ȳ(x) ≤ yb(x) ∀ x ∈ Ω̄
∫

Ω̄

(ya − ȳ) dµa = 0 ,

∫

Ω̄

(ȳ − yb) dµb = 0

∫

Ω̄

y dµa ≥ 0 ,

∫

Ω̄

y dµb ≥ 0 ∀ y ∈ C(Ω̄)+,





(6.1)

where Πad denotes the pointwise projection operator on [ua, ub]. Hence, we have u ∈
W ∩ L∞(Ω).
Our aim is now to derive results analogous to the ones in Section 4 for the new discrete
control space Uh. Therefore, let us de�ne the projection of a function u ∈ L2(Ω) on Uh.
Based on (3.2), it is straight forward to see that Πh : L2(Ω) → Uh is given by

Πhu|T =
1

|T |
∫

T

u dx ∀ T ∈ Th.

Lemma 6.3. For every u ∈ W , it holds
‖u− Πhu‖ ≤ c h2−N/2−ε ‖u‖W ,

for all ε > 0 with a constant c only depending on Ω.
Proof. Let T be an arbitrary element of Th. Then, according to Stampacchia [21, Theorem
6.6], one �nds

‖u− Πhu‖Lσ∗ (T ) ≤ c
hN

|T | ‖u‖W 1,σ(T ),

where σ∗ is de�ned by σ∗ = N σ/(N − σ). Together with the de�nition of σ, this yields
σ∗ < N/(N − 2). Applying Hölder's inequality then yields

‖u− Πhu‖L2(T ) ≤ |T |(σ∗−2)/(2σ∗) ‖u− Πhu‖Lσ∗ (T )
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and hence

‖u− Πhu‖L2(T ) ≤ c hN |T |(σ∗−2)/(2 σ∗)−1 ‖u‖W 1,σ(T ). (6.2)

Now, by de�nition of h, there is a constant c such that |T | ≤ c hN . Thus, regarding
σ∗ < N/(N − 2), we obtain

hN |T |(σ∗−2)/(2 σ∗)−1 = hN(σ∗−2)/(2 σ∗) ≤ h2−N/2−ε. (6.3)

Now, given an arbitrary set of non-negative real numbers {ai}, we have
∑

i a
2/σ
i ≤( ∑

i ai

)2/σ since 2/σ > (2N − 2)/N ≥ 1 for N = 2, 3. Hence, together with (6.3),
(6.2) implies

‖u− Πhu‖2
L2(Ω) = c h4−N−2ε

∑
T∈Th

(‖u‖σ
W 1,σ(T )

)2/σ

≤ c h4−N−ε‖u‖2
W ,

(6.4)

giving in turn the assertion.
Now, we can argue analogously to the proof of Lemma 4.2 and Lemma 4.3, respectively,
(with Πh instead of Ih) to obtain the following result:
Corollary 6.4. Suppose that u ∈ W . Then, the following estimates hold true

‖u− Πhu‖W ∗ ≤ c h4−N−ε ‖u‖W (6.5)
‖S(Πhu− u)‖∞ ≤ c h4−N−ε ‖u‖W , (6.6)

for all ε > 0.
Based on Lemma 6.3, a discussion analogous to the proof of Lemma 4.1 yields the following
result:
Lemma 6.5. There exists a τ0 > 0, independent of h such that,

ya(x) + τ0 ≤ (Sh Πhû)(x) ≤ yb(x)− τ0

holds for all 0 < h ≤ h0.
As mentioned above, we have Uh * W such that one cannot use this additional smoothness
for the estimation of ‖(S−Sh)ūh‖∞ as done in the proof of Lemma 3.6 (see [12]). However,
here we bene�t from the additional control constraints that guarantee ū, ūh ∈ L∞(Ω). For
a corresponding lemma, we argue analogously to Deckelnick and Hinze [12, Lemma 3.4].
Lemma 6.6. Suppose that u ∈ Lq(Ω) is given with N < q < ∞. Then a constant c
independent of h and u exists such that

‖(S − Sh)u‖∞ ≤ c h2−N/q | log h| ‖u‖q. (6.7)

Proof. Let us introduce the notations y = S u and yh = Sh u. First, according to
Grisvard [15], u ∈ Lq(Ω) implies y = S u ∈ W 2,q(Ω) ⊂ W 1,∞(Ω), where the embedding is
guaranteed by the assumption q > N . For y ∈ W 1,∞(Ω), Schatz proved in [20, Theorem
2.2] that

‖y − yh‖∞ ≤ c | log h| ‖y − Ihy‖∞,
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where Ih again denotes the interpolation operator. Now, together with interpolation error
estimates for curved domains (cf. Bernardi [5]), the regularity of y grants

‖y − Ihy‖L∞(Ω) ≤ c h2−N/q ‖y‖W 2,q(Ω) ≤ c h2−N/q ‖u‖q,

which concludes the proof.
This immediately implies the following result:
Remark 6.7. For every u ∈ L∞(Ω), there exists a constant c, independent of u and h,
such that for all ε > 0

‖(S − Sh)u‖∞ ≤ c h2−ε | log h| ‖u‖∞
is valid.
Notice that, thanks to the control constraints, we do not need the uniform boundedness
of the discrete controls in W as stated by Lemma 3.7 for the analysis of (Q). Similarly to
(3.6), we introduce the following abbreviation

η(h) := h2−ε | log h|.
Using the previous results, we are now ready to state the analogon to Lemma 4.4, which
is again the crucial point in the overall convergence theory.
Lemma 6.8. There exists a positive constant γ, independent of h, such that, the function
v1, de�ned by

v1 := ūh + γ η(h) (û− ūh),

is feasible for (Q). On the other hand, there is an h0 such that

v2 := Πhū + γ η(h) (Πhû− Πhū)

is feasible for (Qh) for all h < h0.
Proof. With the previous results at hand, the proof is similar to the one of Lemma 4.4. We
exemplarily show the feasibility of v2. In case of v1, the arguments are analogous. First,
we have v2 ∈ Uh by construction. Hence, it remains to show that v2 satis�es the inequality
constraints in (Qh). Clearly, if u(x) ∈ [ua, ub] for almost all x ∈ Ω, then (Πhu)(x) ∈ [ua, ub]
follows a.e. in Ω. Hence, we have (Πhū)(x), (Πhû)(x) ∈ [ua, ub] a.e. in Ω due to Assumption
6.2. Moreover, for h su�ciently small, we have γ η(h) ≤ 1 such that v2 is a convex linear
combination of two functions in [ua, ub] and consequently ua ≤ v2(x) ≤ ub a.e. in Ω. For
the upper state constraint in (Qh), Lemma 6.5, Corollary 6.4, and Remark 6.7 imply

(Sh v2)(x) = [1− γ η(h)](S ū)(x) + [1− γ η(h)]
(
S(Πhū− ū)

)
(x)

+ [1− γ η(h)]
(
(Sh − S)Πhū

)
(x) + γ η(h) (Sh Πhû)(x)

≤ [1− γ η(h)] yb(x) + γ η(h) (yb(x)− τ0)

+ [1− γ η(h)]
(
‖S(Πhū− ū)‖∞ + ‖(S − Sh)Πhū‖∞

)

≤ yb(x)− γ η(h) τ0 + c [1− γ η(h)]
(
h4−N−ε ‖ū‖W + η(h) ‖Πhū‖∞

)

≤ yb(x)−
(
γ τ0 − c

(‖ū‖W + ‖ū‖∞
))

max{h4−N−ε, η(h)}.
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Here, we used that ‖Πhū‖∞ ≤ ‖ū‖∞. Since ū is bounded in W and L∞(Ω) because of the
control constraints, the expression in the brackets is non-negative if γ is chosen su�ciently
large. Notice that γ depends on ū, ua, and ub, but not on h. The lower state constraint,
i.e. (Sh v2)(x) ≥ ya(x) a.e. in Ω, can be discussed analogously giving the assertion on v2.
Using again Remark 6.7 and Assumption 6.2, it is straight forward to show the feasibility
of v1 for (Q). Here, one again bene�ts from the control constraints in (Qh) that imply
‖ūh‖∞ ≤ max{|ua|, |ub|} for all h.
The remaining analysis follows the lines of the previous sections. First, Lemma 4.5 clearly
also holds in case of (Q), with

Uad := {u ∈ L2(Ω) | ua ≤ u(x) ≤ ub and ya(x) ≤ (S u)(x) ≤ yb(x) a.e. in Ω}
Uh

ad := {uh ∈ Uh | ua ≤ uh(x) ≤ ub and ya(x) ≤ (Sh uh)(x) ≤ yb(x) a.e. in Ω}.
Furthermore, with Lemma 6.3, Corollary 6.4, and Lemma 6.8, we obtain the following
estimates instead of (5.2)�(5.4):

‖v2 − ū‖ ≤ ‖Πhū− ū‖+ γ η(h) ‖Πhû− Πhū‖
≤

(
c ‖ū‖W + γ

(‖û‖+ ‖ū‖)
)

max{ht, η(h)} = c1 ht,

‖v2 − ū‖W ∗ ≤ ‖Πhū− ū‖W ∗ + γ η(h) ‖Πhû− Πhū‖W ∗

≤
(
c ‖ū‖W + c γ

(‖û‖+ ‖ū‖)
)

max{h2t, η(h)}
≤ c2 max{h2t, η(h)},

‖v1 − ūh‖W ∗ = c γ η(h) ‖û− ūh‖ = c3 η(h),

where t is as above de�ned by t = 2 − N/2 − ε. Moreover, using (3.4) for the L2-
approximation error, one �nds analogously to (5.5) and (5.6)

‖(Sh − S)v2‖ ≤ c h2 ‖Πhū− γ η(h) (Πhû− Πhū)‖
≤ c h2

(
(1 + γ)‖ū‖+ γ ‖û‖) = c4 h2,

‖(Sh − S)ūh‖ ≤ c h2 ‖ūh‖ = c5 h2.

Therefore, with these estimates at hand, we can proceed analogously to the proof of
Theorem 5.1 and in this way, one obtains the following result:
Theorem 6.9. Suppose that ū and ūh are the optimal solutions of (Q) and (Qh), respec-
tively. Then the following estimate holds true

‖ū− ūh‖+ ‖S ū− Sh ūh‖ ≤ C h2−N/2−ε

for all ε > 0 with a constant C depending on ε, Ω, α, ū, and û.
Remark 6.10. Notice that, in case of N = 3, the overall error is not longer dominated by
the L∞-error of the �nite element approximation (cf. Lemma 6.7), but by the interpolation
error of ū (see Lemma 6.3). Consequently, the constant C in Theorem 6.9 does not depend
on ε in the three-dimensional case.
Analogously to Corollary 5.2, one shows the following estimate:
Corollary 6.11. For the optimal states of (Q) and (Qh), it follows

‖ȳ − ȳh‖H1(Ω) ≤ c h2−N/2−ε.
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7. Discussion of the error estimates. In the following section, we highlight several
aspects of the error analysis presented before. First, one observes that, for simplicity, we
have not considered the discretization of the desired state yd as well as the bounds ya

and yb. However, it is easy to see that, if yd, ya, and yb are su�ciently smooth, then
the arguments can be modi�ed such that the presented theory still holds in case of a
discretizion of yd and the bounds. For convenience of the reader, we shortly present the
corresponding arguments. In case of a discretization of yd, the variational inequality (4.10)
for the discrete problem has to be replaced by

(Sh ūh − yd , Sh vh − Sh ūh) + α (ūh , vh − ūh)

+ (yd − Ih yd , Sh vh − Sh ūh) ≥ 0 ∀ vh ∈ Uh
ad.

If we assume yd ∈ H2(Ω), the additional term is estimated by

(yd − Ih yd , Sh vh − Sh ūh) ≤ ‖yd − Ih yd‖ ‖Sh (vh − ūh)‖ ≤ c h2 ‖vh − ūh‖
with vh = Πhū− γ2 δ(h) Πhû in case of problem (P) and vh = Πhū + γ η(h) (Πhû− Πhū)
for problem (Q). Clearly, in both cases, ‖vh − ūh‖ is uniformly bounded by a constant
because of the optimality of ū and ūh such that the additional term does not in�uence the
theory. If ya and yb are discretized, the proofs of Lemma 4.4 and Lemma 6.8, respectively,
have to be modi�ed. We exemplarily study the �rst part of Lemma 4.4. The other cases
can be discussed analogously. To derive the feasibility of v1 := ūh − γ1 δ(h) û for (P), we
argue similarly to the original proof of Lemma 4.4:

(S v1)(x) = (Sh ūh)(x) +
(
(S − Sh)ūh

)
(x)− γ1 δ(h) (Sû)(x)

≤ Ih yb(x) + ‖(S − Sh)ūh‖∞ − γ1 δ(h) τ

≤ yb(x) + ‖Ih yb − yb‖∞ −
(
γ1 τ − c ‖ūh‖W

)
δ(h).

If yb is su�ciently smooth, i.e. yb ∈ W 2,∞(Ω), then interpolation error estimates for curved
domains yield

‖Ih yb − yb‖∞ ≤ c h2 ‖yb‖W 2,∞(Ω), (7.1)

giving in turn the feasibility of v1 for (P) provided that γ1 is chosen su�ciently large.
The analysis, presented in the sections before, is developed for triangulations that exactly
�t a C1,1-domain. Naturally, this assumption is fairly arti�cial. However, the regularity of
Ω is required for the second part of Theorem 3.1, i.e. S : Lp(Ω) → W 2,p(Ω) for all p < ∞.
This property of S is needed within the proof of Lemma 3.6 and Lemma 6.6, respectively.
In case of polyhedral domains, where exact triangulations are evident, this additional
regularity can in general not be expected. Nevertheless, if Ω is a convex and polyhedral
domain in two dimensions, one has S : Lp(Ω) → W 2,p(Ω) for all p ≤ q with some q > N
depending on the maximum angle of all corners of Γ (cf. Dauge [11]). Moreover, if the
maximum angle is less or equal than π/2, then the assertion again holds for all p < ∞
and thus, in this case, the presented error analysis applies in this case.
Next, let us turn to the semi-discrete approach according to Deckelnick and Hinze [12]. As
already mentioned in the introduction, this approach coincides with the full discretization
in the absence of additional control constraints, i.e. in case of problem (P). In contrast to
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that, the corresponding solutions di�er from each other in case of problem (Q). However,
one can easily verify that the theory, presented in Section 6, also applies to the semi-
discretization of (Q), which reads

(Qsh)





min
u∈L2(Ω)

fh(u) :=
1

2
‖Sh u− yd‖2 +

α

2
‖u‖2

subject to ya(x) ≤ (Sh u)(x) ≤ yb(x) a.e. in Ω

ua ≤ u(x) ≤ ub a.e. in Ω.

In this case, the arguments are even simpler since we do not have to account for the
approximation error of the control (see Lemma 6.3), as it is not discretized here. Therefore,
the error is dominated by the FEM-discretization error (cf. Lemma 6.6), and one obtains
the following result:
Theorem 7.1. Let ū and ūsh denote the optimal solutions of (Q) and (Qsh), respectively.
Then the following estimate holds true

‖ū− ūsh‖+ ‖S ū− Sh ūsh‖ ≤ C h1−ε
√
| log h|

for all ε > 0 with a constant C independent of h.
Notice that, in the three dimensional case, the semi-discrete approach achieves a higher
order of convergence than the full discretization (cf. Theorem 6.9). Moreover, similarly to
purely control-constrained problems, ūsh is not an element of the discrete space spanned
by the linear ansatz functions (see also Hinze [18]).
Now assume that problem (Q) is discretized by using linear ansatz functions for the
control as done in case of (P). Then one cannot proceed as carried out in Section 6 since
u ∈ Uc := {u ∈ L2(Ω) |ua(x) ≤ u(x) ≤ ub(x) a.e. in Ω} does in general not imply
Πh u ∈ Uc. It might be possible to work with a convex projection Ph de�ned by

‖u− Phu‖ = min
vh∈Vh∩Uc

‖u− vh‖.

However, up to the author's knowledge, there is no convergence result of the form of
Lemma 6.3 for this type of projection.

8. Numerical examples. In the following, we test the presented error analysis with
two di�erent examples. The �rst one refers to the purely state-constrained case, i.e. prob-
lem (P), see Section 8.1. Here, we use a primal-dual active set strategy to solve the
discretized optimal control problem (see for instance [3] or [4]). The latter test case corre-
sponds to problems with control and state constraints as discussed in Section 6. Here, we
apply two di�erent methods for the di�erent inequality constraints in (Q). More precisely,
the state constraints are penalized by a logarithmic barrier function (cf. for example [22]),
while the box-constrains on the control are treated by a primal-dual active set method
(see for instance [3]). The corresponding results are shown in Section 8.2. Both examples
are performed on the unit square such that the remarks on polyhedral domains in Section
7 apply.
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8.1. Example 1: pure state constraints. The test case for purely state-constrained
problems is given by the following optimal control problem

(PT)





minimize J(y, u) :=
1

2

∫

Ω

|y − yd|2 dx +
α

2

∫

Ω

u2 dx

subject to −∆ y(x) + y(x) = u(x) + f(x) in Ω

∂ny(x) = 0 on Γ

and ya(x) ≤ y(x) a.e. in Ω,

which can be reformulated by introducing the control-to-state operator into

(PT)





minimize f(u) :=
1

2
‖S u− (yd − S f)‖2 +

α

2
‖u‖2

subject to u ∈ L2(Ω) and (S u)(x) ≤ (yb − S f)(x) a.e. in Ω.

Let us assume that f ∈ W 2,∞(Ω) such that

‖S f − Sh Ih f‖∞ ≤ ‖(S − Sh)f‖∞ + ‖S(f − Ih f)‖∞
≤ c h2 | log h| ‖f‖∞ + c h2 ‖f‖W 2,∞(Ω).

Then, by using similar arguments as in Section 7, it is easy to see that the error analysis
for (P) can be adapted to problem (PT). For the optimal state, control, and adjoint state,
we choose

ȳ(x) = −16 x4
1 + 32 x3

1 − 16 x2
1 + 1 , p(x) = 2 x3

1 − 3 x2
1 , ū(x) = −(1/α) p(x),

such that the gradient equation in the optimality system (3.3) is satis�ed. Moreover, the
lower bound is given by

ya(x) =





ȳ(x1 = 0.2) , x1 ≤ 0.2
ȳ(x) , 0.2 < x1 < 0.8

ȳ(x1 = 0.8) , 0.8 ≤ x1.

Notice that ya /∈ W 2,∞(Ω), which was required in Section 7. However, the used meshes
are constructed such that the lines {(x1, x2) ∈ Ω | x1 = 0.2} and {(x1, x2) ∈ Ω | x1 = 0.8}
coincide with edges of the triangulation. Therefore, the kinks of ya at x1 = 0.2 and x2 =
0.8 are captured by the mesh and thus, estimate (7.1) also holds in this case. The de�nition
of ya implies that the state constraint is active in Ωa := {(x1, x2) ∈ Ω | 0.2 ≤ x1 ≤
0.8}. Hence, to ful�ll the complementary slackness conditions the associated Lagrange
multiplier must vanish on Ω\Ωa. Here, we choose a continuous multiplier given by

µ(x) =





0 , x1 ≤ 0.2
−ȳ(x) + y(x1 = 0.2) , 0.2 < x1 < 0.8

0 , 0.8 ≤ x1.

Finally, the state equation and the adjoint equation imply

f = −∆ȳ + ȳ − ū,

yd = ∆p− p + ȳ − µ.
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Figures 8.1�8.4 show the numerical solution for h = 0.02 and α = 10−4. If the bound ya is
discretized like the state y, then the inequality constraint in the discretization of (PT) is
equivalent to ya,h(xi) ≤ yh(xi), i = 1, ..., n, where xi denote the nodes of the triangulation.
The discrete Lagrange multiplier associated to this constraint is an element of Rn, whose
components can be interpreted as coe�cients in the following discretization of the in�nite
dimensional multiplier

µh =
N∑

i=1

µi δxi
,

where δxi
denotes the Dirac measure at xi (see also [12]). However, in this example, the

multiplier is a continuous function that can be interpolated by linear ansatz functions,
i.e. µ(x) ≈ µ̃h(x) =

∑n
i=1 µ̃i φi(x). In view of

∫
Ω̄

vh dµh =
∫
Ω

µ̃h vh dx for all vh ∈ Vh, we
have µ̃i =

∑
j M−1

ij µj, where M denotes the mass matrix corresponding to linear ansatz
functions. As approximation of the multiplier, the function µ̃h is shown in Figure 8.4.
We observe that the discrete Lagrange multiplier is fairly unregular, in particular at
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Fig. 8.1. Example 1: optimal control for h = 0.02.
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Fig. 8.2. Example 1: optimal state for h = 0.02.
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Fig. 8.3. Example 1: adjoint state for h = 0.02.
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Fig. 8.4. Example 1: multiplier for h = 0.02.

the boundaries of Ω and the active set. However, since the multiplier is in general only
an element of C(Ω̄)∗, one cannot expect convergence of the discrete multipliers in L2(Ω).
Table 8.1 displays the relative errors of control and state for this example and α = 10−1.
Here, e2 refers to the relative error in the L2-norm, whereas e1,2 denotes the relative error
in the H1-norm. The experimental order of convergence is shown in Table 8.2. In case of
u, it is computed by

EOC2(u) :=
log

(
e2(u, h1)

)− log
(
e2(u, h2)

)

log(h1)− log(h2)
,
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Table 8.1
Relative errors in the �rst example.

h/
√

2 e2(u) e2(y) e1,2(y)

0.04 9.4654e-03 3.9105e-03 7.2099e-02

0.02 2.5233e-03 9.8588e-04 3.6141e-02

0.01 6.9207e-04 2.4815e-04 1.8084e-02

0.005 1.9484e-04 6.2375e-05 9.0437e-03

0.0025 5.6086e-05 1.5663e-05 4.5221e-03

where h1 and h2 denote two consecutive mesh sizes. Similarly, EOC1,2(y) is computed with
e1,2(y) instead of e2(u). As one can see, the order of convergence in case of e2(u) is better

Table 8.2
Experimental order of convergence in the �rst example.

h2/
√

2 0.02 0.01 0.005 0.0025

EOC2(u) 1.907 1.866 1.829 1.797

EOC1,2(y) 0.996 0.998 0.999 0.999

than expected. This agrees with the numerical �ndings in [12], where a similar purely
state-constrained problem is solved with the semi-discrete approach. Notice that, as
mentioned above, the semi-discrete and the fully discretized problem coincide in this case.
A possible explanation for this superconvergence observation could be that the optimal
control in this example is much smoother than in the general state-constrained case.
However, if linear �nite elements are used, then the convergence order with respect to the
L∞-error of S−Sh is at best equal to h2 | log h|. Thus, also in case of higher regularity, the
presented theory only yields h1−ε for e2(u) and is therefore not appropriate to explain this
superconvergence e�ect. In contrast to that, EOC1,2(y) �ts to the theoretical predictions.

8.2. Example 2: state and control constraints. Now, let us turn to an example
with pointwise state and control constraints. The test case is identical to (PT), except
that we have additional box constraints on the control given by

ua ≤ u(x) ≤ ub a.e. in Ω.

The exact solution nearly coincides with the one of Section 8.1. The only di�erence is the
optimal control, which is now given by

ū(x) = max(ua, min(ub,−(1/α)p))

Hence, we also have to modify the correction term in the state equation, i.e. f = −∆ȳ +
ȳ − ū. Consequently, f /∈ W 2,∞(Ω). However, ua and ub are chosen such that the
kinks of f coincide with edges of the triangulation, and hence the same arguments as
in case of ya can be applied. Figures 8.5�8.8 show the numerical solution for α = 10−1

and h = 0.02. Notice that the active sets associated to the control constraints and the
active set corresponding to the state constraint are not disjoint. Since u is discretized by
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Fig. 8.5. Example 2: optimal control for h = 0.02.
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Fig. 8.6. Example 2: optimal state for h = 0.02.
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Fig. 8.7. Example 2: adjoint state for h = 0.02.
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Fig. 8.8. Example 2: multiplier for h = 0.02.

constant ansatz functions, Figure 8.5 shows the values of uh at each triangle. Furthermore,
the multiplier is approximated by ε/(yh − ya), where ε denotes the homotopy parameter
of the associated interior point method (see [22] for details). As before, Tables 8.3 and
8.4 present the relative errors and orders of convergence, respectively. We observe that,

Table 8.3
Relative errors in the �rst example.

h/
√

2 e2(u) e2(y) e1,2(y)

0.04 2.3751e-02 5.6749e-03 7.2242e-02

0.02 8.1245e-03 1.3651e-03 3.6158e-02

0.01 3.3656e-03 3.3680e-04 1.8086e-02

0.005 1.5419e-03 1.9980e-04 9.0441e-03

0.0025 7.8607e-04 1.6666e-04 4.5224e-03

Table 8.4
Experimental order of convergence in the �rst example.

h2/
√

2 0.02 0.01 0.005 0.0025

EOC2(u) 1.548 1.271 1.127 0.972

EOC1,2(y) 0.998 0.995 0.998 0.999
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for larger values of h, the experimental order of convergence in case of u is again higher
than the expected one. However, the di�erence is smaller than in the �rst example and
decreases if the mesh size is reduced such that, in the last step, it agrees with theoretical
predictions. Moreover, as above, EOC1,2(y) coincides with the theoretical �ndings.
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