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Abstract

We consider random dynamical systems with slow and fast variables driven
by two independent metric dynamical systems modelling stochastic noise. We
establish the existence of a random inertial manifold eliminating the fast vari-
ables. If the scaling parameter tends to zero, the inertial manifold tends to
another manifold which is called the slow manifold. We achieve our results
by means of a fixed point technique based on a random graph transform. To
apply this technique we need an asymptotic gap condition.

1 Introduction

Mathematical modelling of continuous spatially homogeneous deterministic pro-
cesses with different time scales leads in general to systems of singularly perturbed
differential equations

d
€ _:L‘ = f(xayatat/g?g)a

o (1)
dy

E _g(xayatat/8?8>

or, using the scaling ¢ — t, to slow-fast systems of the type

d

= = f(z,y,et1,2),
&y _ eg(x,y,et,t,e)
dt g 7y7 » 7 N

Here, ¢ is a small positive parameter, z € R%, y € R%. A variety of perturba-
tion methods has been developed to investigate systems with different time-scales:
matched asymptotic expansion [8, 17|, method of multiple scales [15], boundary
layer function method [4], averaging [19], renormalization group theory [18].

The theory of invariant manifolds [10, 23| is another approach for the qualitative
analysis of dynamical systems with different time-scales. Its goal consists in estab-
lishing an invariant manifold M, of dimension m < d; + dy permitting a reduction
of the dimension of the state space by eliminating fast variables. In applications,
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M. is exponentially attracting and has in general the dimension d; characterizing
the number of slow variables such that it can be used to justify the so-called quasi-
steady state assumption [13, 21, 22|. In that case, M. is referred to as slow invariant
manifold.

Generically, the invariant manifold M, persists under small perturbations |9, 24| of
system (1) or (2) which can be interpreted as multiplicative or additive deterministic
noise. This property inspires the question for the influence of stochastic noise on the
persistence of the slow manifold in slow-fast systems. A first answer in this direction
has been given by N. Berglund and B. Gentz [3|. They considered the following
singularly perturbed autonomous system under the influence of noise taking into
account different time scales

1 o
de = —f(x,y,e)dt + — F(x,y,&) dW,,

gf( Y, €) z (z,y,¢) dW; )
dy = g(x,y,e)dt + o' G(x,y,e) dW,.

Here, W, denotes a standard Brownian motion, ,0 and ¢’ are small parameters,
where o and ¢’ depend on €. The authors do not introduce the concept of an
invariant manifold for a stochastic differential system. Their main goal is to estimate
quantitatively the noise-induced spreading of typical paths as well as the probability
of exceptional paths. They show that the sample paths of (3) are concentrated in
some neighborhood of the slow/adiabatic invariant manifold of the corresponding
deterministic system up to some time with certain probability.

In this paper we model the stochastic noise by a metric dynamical system © =
(Q,F,P,0) and describe the influence of noise on our process under consideration
by a random dynamical system. Especially, we consider the following random dy-
namical system with two time scales

Ccll—f = f(Ow1, 07 wa, x,y) == A(Bjwi, 07 “wa)a + F(0}wi, 6w, ), n

% = Eg(etlwb 915276(")27 €, y) = SB(etlwh 9§7€w2)y + 60(9251(,01, 9376(")27 €, y)
Our goal is, for sufficiently small ¢, to establish the existence of a random invariant
manifold M, for system (4) that eliminates the fast variables. Our approach consists
in deriving an appropriate random graph transform for random dynamical systems.
Such a transform was introduced for very special random dynamical systems, see
[7], [20]. Here, we describe this transform for general random dynamical systems
and apply this technique to slow—fast random dynamical systems. Assuming a gap
condition for the slow—fast system we can establish a random fixed point of that
transform whose graph yields the wanted invariant manifold. From that point of
view our approach is indeed geometric.

We also refer to the book by Kabanov and Pergamenshchikov [14] which deals with
the behavior of two-scale stochastic differential equations. However, our ansatz
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differs from that ansatz. In particular, the limit behavior in [14] is determined by
the zeros of the time dependent drift coefficient of the fast system. In contrast to
that system we only use the stationary regime given by the dynamics of our equation
which allows us to introduce a (stationary) slow manifold.

The paper is organized as follows. In Section 2 we recall some basic facts from the
theory of random dynamical systems. Section 3 is devoted to random dynamical
systems with two time scales. In Section 4 we establish an inertial manifold M. for a
random dynamical system with two time-scales, Section 5 shows that M. converges
to the slow invariant manifold of system (4) with ¢ = 0.

2 Preliminaries on Random dynamical Systems

In this section we are going to introduce the main tools we need to find inertial man-
ifolds for systems of differential equations driven by random perturbations. These
tools stem from the theory of random dynamical systems. For a comprehensive
presentation of this theory see Arnold [1].

A standard model for noise is a metric dynamical system © = (Q,F, P, 6) which
consists of a probability space (2, F,P) and a flow 0 = {0, }cr:

0:RxQ— Q, 90 = ldQ, Htl @) 9252(: 9t19t2) = 9t1+t2.

The flow 6 is supposed to be B(R) @ F, F-measurable. We also assume that the
measure P is invariant (ergodic) with respect to the mappings {0, }icr.

For example, the Brownian motion represents a metric dynamical system, where
Q = Cy(R,RY) is the set of continuous paths on R with values in R? that are zero
at the origin. This set is equipped with the compact open topology. F is supposed
to be the associated Borel-o-algebra and P the Wiener measure with respect to a
covariance operator (). The flow @ is given by the Wiener shifts

bw(-) =w(-+1t) —w(t), weQ teR.

This metric dynamical system is related to a two-sided Wiener process appearing as
a white noise in stochastic differential systems. Note that the measure P is ergodic
with respect to the Wiener shifts.

Let H be some separable Banach space. A random dynamical system with phase
space H consists of a mapping ¢:

o R" xQOxH—H
that is Rt ® F @ B(H), B(H) -measurable and satisfies the cocycle property:

6(0,w,z) =2 € H,
(b(tl + t27 w, 33') - ¢(t17 9152(“‘)7 ¢(t27 w, 33'))



A random dynamical system is called continuous if x — ¢(¢,w, x) is continuous for
t >0, w e Q. If we omit all the w’s in (5), then ¢ becomes a semigroup. Random
dynamical systems are generated by systems of differential equations with random
stationary coefficients or with a white noise. For our application it is sufficient to
suppose that H = R%.

Note that the formulation of the cocycle property does not contain the term almost
surely which often appears in the formulation of a stochastic differential equation
problem. However, in the case that (5) is only satisfied on a f-invariant set €' of
full measure, then we can define ¢ outside of 2’ by the identical mapping.

We now introduce some objects describing the dynamics of a random dynamical
system.

A random variable w — X*(w) with values in H is called a random fized point of
the random dynamical system ¢ if

o(t,w, X*(w)) = X*(Ow) for t>0,we Q.

Since 6, leaves the measure P invariant, the random variables w — X*(w) and
w — X*(Ow) have the same distribution. Hence, the process (t,w) — X*(fw) is
a stationary process and therefore a stationary solution to the differential equation
generating the random dynamical system ¢.

A family of nonempty closed sets M = { M (w) }.eq is called a random set if for every
y € H the mapping

Q35w —dist(y, M(w)) := ei]\r/llf( : |l — yllu

is measurable, where ||.||5 is some norm in H. M is called (positively) invariant
with respect to the random dynamical system ¢ if

o(t,w, M(w)) C M(Ow) for t>0,weN. (6)

We now consider random sets defined by a Lipschitz continuous graph. In the sequel
we suppose H = R? = R% x R% and denote by |.| the Euclidean norm, where we
omit an index characterizing the dimension. Let

QxR2 3 (w,y) — 7" (w,y) € R"

be such a function that v*(w,y) is globally Lipschitzian in y for all w € Q and that
for any y € R% the mapping w — v*(w,y) is a random variable. We define

M*(w) == {(v"(w,y), y)ly € R®}.

Lemma 2.1. The family of sets {M*(w)}oeq is a random set.



Proof. Since the mapping v*(w, -) is continuous we have for z € R?

Qs3w — inf |Z—(9€,y)| = inf |z—(’y*(w,y),y)|

(z,y)eM*(w) yeR2
= inf |Z - (/y*(way)ay”
yeQd2

is measurable for any z € R? because the set Q% of rational dy-tuples is countable.
O

Since we supposed that for any w € € the mapping 7*(w, .) is a globally Lipschitzian
function, the random set M*(w) satisfying (6) is called a Lipschitz random invariant
manifold. If in addition

tlim dist(¢(t,w, z), M*(Bw)) =0 for z € R
with exponential decay rate, then the manifold M is called a random inertial man-
ifold with respect to the random dynamical system ¢.

Later on we have to transform a random dynamical system into another random
dynamical system which is simpler to treat. Let VV : Q@ x R¢ — R? be a mapping such
that for any fixed w the mapping V(w,-) is a homeomorphism. The corresponding
inverse mapping is denoted by V~!(w,-). For any z € R? we suppose that V (-, 2)
and V~!(-, 2) are measurable. Then it follows from Lemma III.14 in [5] that V(-,")
and V7I(-,+) are F @ B(R?), B(RY)-measurable.

Let ¢ : RT x Q x R? — RY be a random dynamical system. Then the mapping
b : RT x Q x R? — R? defined by

Ot w, 2) =V (b, d(t,w, V" (w, 2)))
represents also a random dynamical system. Let us set
M () =V M),

where M* is a random invariant set for the random dynamical system ¢. From the
properties of V' it follows that M* is a random set. In addition, M* is also invariant
with respect to the random dynamical system ¢.

3 Random dynamical systems with slow and fast
variables

In what follows we will study random dynamical systems generated by systems of
differential equations under the influence of a noise in different time scales. At first
we consider systems of differential equations with coefficients that are stationary
with respect to a metric dynamical system ©. Next, we will be concerned with



systems of differential equations driven by white noise. The associated metric dy-
namical system is the Brownian motion introduced in Section 2.

The random dynamical systems under consideration contain slow and fast variables
and random perturbations in different time scales. For scaled perturbations we
introduce a scaled metric dynamical system

@5 = (Qv Stv I[Da ‘95)7 0° = {QEt}tER

for some € > 0. It is straightforward that the operators ., leave [P invariant.

Let ©1, Oy be two independent metric dynamical systems. We scale the flow in ©
with the factor 1/e. With respect to these metric dynamical systems we consider
the following singularly perturbed system of random differential equations

d 1 1
€ d_f = A(0276w1,8?w2)x + F(0376w1,03w27$ay)a
(7)
d 1 1
d_ZZ = B0, wy, 0%ws)y + G0, wi, 02w, 1, y),

where 0 < ¢ < 1. Concerning the right hand side of (7) we suppose

(Ay). The functions
Q= Ql X QQ = (wl,ng) — A(wl,wQ) € L(Rdl,Rdl),

Ql X QQ > (wl,wg) — B(wl,wg) € L(RdQ,RdQ)

are measurable, their norms ||.|| are contained in L'(Q,F P) (see Example
2.2.8 in Arnold [1]).

(As). There are constants ¢4 > 0 and c¢g > 0 such that
(A(w, wo)z, ) < —calal? V(w,we) € QY x Qy, Vo € R,
||B(w1,w2)|| < cp V(wl,wQ) € X Qg,

where [|.|| be the norm of a matrix K mapping R* into R* such that |Kxz| < ||K]|||z|
for any = € R*.

With respect to the scaled metric dynamical system
O° i =01 X Oy, = (1 x Qo, F1 ® Fy, Py x Py, (91792’5))
we introduce the abbreviations

0w = (Olwr, 07°ws), w = (w1, ws) € .

Let U5 (t,w) and UZz(t,w) be the fundamental solutions of the linear systems

dx . dy
— = A(b;w)x, pri

g eB(O;w)y,



respectively. These operators generate linear random dynamical systems such that
the cocycle property is satisfied. The exponent ¢ in the symbols for these systems
indicates that the noisy input comes from ©%. In the case that A, B are independent

of w these fundamental solutions U4, U.p are groups on the spaces of linear mappings
L(R% R%), =1,2.

Hypothesis (Ay) implies that there are positive constants a and b such that
|US(t — s,w)|| < ae~ea=9) for t>s weQ, (8)

1U(t = s,w)l| < be“sl*l forany  t,5, w e Q. (9)

(A3). For any fixed (z,y) € R%, the mappings

U X Qy 3 (wi,ws) — F(wi,wa, 2,9) € R,
O x Qg 2 (w1, ws) — Gwy,wa, z,y) € R®

are measurable. There is a positive constant L such that for any (w;,ws) €
Q1 x Qy and for any (x1,1), (22, y2) € R

|F(wi,ws, 21, Y1) — F(w1,wa, T2, y2)| < L(|z1 — 22| + |y1 — v21),

| <
10
|G (w1, wa, 21, Y1) — G(wy, wa, T, Y2)| < L(|z1 — 22| + |y1 — 2)). (10

Due to Castaing and Valdier (see Lemma II1.14 in [5]), assumption (Asz) implies that
F and G are measurable with respect to all variables. Finally, we assume

(Ay4). There exist positive numbers ¢ and ¢ such that

sup |F (w1, we, z,y)| =: cF,
(z,y) € RY,
(wl,wg) S Ql X QQ
sup |G (wy,wa, x,y)| =: ca-
(z,y) € RY,

(wl,wg) S Ql X QQ

We now scale the time ¢ — et such that we can rewrite (7) as

d
d_x = A(etlwla ‘9?’6(’02)1' + F(etlwlv 015275(")27 Z, y)a
; (11)

d
W (6, 62wy + <GBl 02,7, ).

System (11) is a slow-fast system with random perturbations in two time scales
which has a unique global solution ¢°(t,w, (zo,yo)) for any initial condition



(70, y0) € R1T% and every (wi,ws) € Q1 x Qs.

The solution operator of the initial value problem to system (11) denoted by

gbe(t’ W (1:0’ yO)) = (gbi(t’ W (1'07 yo))’ gb;(tv W (an yO))) S (Rdla RdQ) (12)

defines a random dynamical system.

Now, we are going to show that the stochastic differential system

1 1 1
de = — Azxdt + — F(x,y)dt + —=duwy,
5 5 5

Ve (13)
dy = Bydt + G(z,y)dt + dws,,

where A and B are constant matrices, can be transformed into the systems (7)
or (11). The processes wi, wo are independent standard Wiener processes with
covariance )1 = idga,, Q2 = idga, related to the Brownian motion metric dynamical
systems O, Oy introduced in Section 2, dw;, dwy are Ito differentials. For the
transformation we need particular properties of the linear systems

1 1
dr = —Ax dt + —d dy = By dt + dw,. 14
v= Az +\/g wy, y = By dt + dw, (14)

Lemma 3.1. Suppose assumption (Ay) to be satisfied. Additionally we suppose

that B has no eigenvalue on the imaginary axis. Then there exist random variables
1

w; — ohe(wr) € RM, wy — y?(wq) € R such that

(etlwl)a (t,w2) - 92(93002)

are continuous stationary solutions to the systems in (14) defined on (6%, 62)-invariant
sets of full measure.

=

(t,wy) — b

Proof. For the proof we note that by (As) the fundamental solution U, is an expo-
nentially stable semigroup. Therefore, we can refer to the proof of a corresponding
result in [7]. By the hyperbolicity assumption on B we can represent R% as the
direct sum of the linear eigenspaces Y, Y~ belonging to the eigenvalues of B with
positive and negative real parts, respectively. The construction in [7] applied to
the projections of the second equation of (14) on Y with respect to RT and Y~
with respect to R~ yields the existence of random variables generating stationary
solutions for (14). O

Next we will transform the stochastic differential system (13) into a system of type
(11). In contrast to the definition of a cocycle, a stochastic differential equation
is only defined almost surely, where the initial exceptional set may depend on the
initial condition. To find a version which doesn’t have this dependence we introduce
the random transformation

()=t =(5255)
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Then (Z(t),5(t)) = Vo(0}w, 02w, 2(t), y(t)) satisfies

T 1 1
L as 4 L 1 a2 (00n), 5+ 52 (0200)),
dt g g (15)
dy

op = BI G+ 2% (0jwn). § + y* (0Fwn)).
This can be seen by a formal differentiation of z — z% (wy), ¥ — y2(w2). (15) can
be solved for any w contained in a #-invariant set of full measure and for any initial
condition (xg, o) such that the cocycle property is satisfied. Applying the ideas
from the end of Section 2 with V' := V. to the solution of (15), then system (13)
also has a version satisfying the cocycle property. Hence by the particular structure
of V. if (15) has an inertial manifold so has (13).

In the following we will omit the tilde in (15). Preparing the time scaling transfor-
mation we need the lemma:

Lemma 3.2. The process (t,w;) — xl’%(egtwl) has the same distribution as the
process (t,wy) — x4 (0lwy) (setting & = 1), where xV= is defined in Lemma 3.1.

Proof. Let U1, be the fundamental solution of dz/dt = éAx and let Uy the funda-

mental solution for ¢ = 1. The processes (f,w1) — V¢ (0Lw), (t,ws) — y2(02w,)
are centered Gaussian processes. Hence, the finite dimensional distributions of these
processes are uniquely determined by the covariance matrix. This matrix can be cal-
culated by

cov(xl,%(geltwl)’ xl’%(eiswl))
. 1 o 1
~=( [ vt -n gzt [ vites = zmiman)

=E (/; Ua(t — g)%dwl(ﬂ wy) ® /OO Ua(s — g)%dwl(ﬂ wl))
_ / Ua(t — 1)U (s — 7)dr for t > s,

oo

where we have used Ui 4(et) = Uy(t). Hence, the expression on the right hand side
of the chain of equations is independent of € > 0. 0

The scaling ¢ — et in (15) yields

d 1
d_:;‘ = Ax + F(x + xl’E(thwl), Y+ yz(egtw2>>7

16)
d 1 (
d—:Z =eBr +eG(z + 2b= (0Lwy), y + y? (07 ,ws)).



The Lipschitz constant of the functions on the right hand side are not influenced by
1 1

the additional terms z'=, y* If we now replace z=(0}w;) by 2" (6}w;) that has

the same distribution by Lemma 3.2, then we obtain a system of the form (11)

d
d—i = Az + F(z+ 2" (0jwr),y + y* (02 w2)),

17)
d (
d—ZZ = eBx +eG(x + " (Ojwr),y + y?(02,w2)).

Note that by the independence of 2! and y? the distribution of the solution of

(17) is the same as the distribution of the solution of (16). In the next sections we
will establish for some general class of systems including (17) as special case the
existence of inertial manifolds with a particular limiting behavior for ¢ — 0. By
the method mentioned at the end of Section 2 we then can show that the original
system (13) also has an inertial manifold.

In the following section we will show that system (11) generates a random dynamical
system that has a random inertial manifold for sufficiently small € > 0. However,
it makes also sense to study (11) for e = 0. In that case we can prove that there
exists a random invariant manifold consisting of random fixed points. We call this
manifold the slow manifold of the slow-fast system (11). We emphasize that this
situation differs from the deterministic case.

4 Inertial manifolds for random dynamical systems

In this section we will establish the existence of a random inertial manifold for sys-
tem (11) introduced in Section 2. Random invariant manifolds for different types
of stochastic differential equations have been studied in [2], [6], [11]. Here, we will
introduce another technique that can also be used for random dynamical systems.
A similar approach has been applied to prove the existence of invariant manifolds
for stochastic partial differential equations in [7]. Note that our technique allows us
to formulate optimal conditions for the existence of inertial manifolds.

Our approach to establish an inertial manifold for system (11) is based on some
graph transform. It corresponds to Hadamard’s method for proving the existence of
invariant manifolds for ordinary differential equations [12|. To be able to explain this
idea we have to introduce two basic hypotheses which we call (H;) and (H;). Later
on we will show that these hypotheses are valid under the assumptions (A;) — (A4)
and the additional assumption

(A5)
ca > al.

This condition can be interpreted as a gap condition for the existence of an invariant
manifold of system (11) for sufficiently small e.

10



We denote by Lip(R%,R%) the set of globally Lipschitz continuous functions ~
mapping R% into R%. On this set we have the seminorm

L= ol = sup TUDZI o
y17Yy2ERD2 ‘yl - y2‘

We recall that ¢5(t,w, (2o, y0)) is the second component of the solution operator
&°(t,w, (zo,yo)) of system (11) introduced in (12).

We need two basic hypotheses to explain the idea of graph transform. The first
hypothesis is:

(H,) For any ~ € Lip(R% R%) the map

R% 3 yo — ¢5(t, 6w, (v(v0), %0)) = § € R®

is invertible for ¢ = T, where T is any positive number.

We denote the corresponding inverse mapping by W&(7', 05w, y) such that we have

Yo = e (Ta ‘9%(,(), 7) (g)

Using this map we can define the random graph transform ®°(T',w,~) mapping some
function v € Lip(R%,R%) into a function 4 : R% — R% by

(T, w,7) () := 1T, w, (Y(W(T, 07w, 7)(9)), V(T b70,7)(1))).  (18)

Our second hypothesis reads as follows:

(Hs) The mapping ®°(T,w, ) satisfies the cocycle property for small £ > 0, i.e. for
any T, T we have

(T + T, w,y) = (T, 0w, D (T3, w,7)).
Under the validity of these hypotheses the following fact holds.

Lemma 4.1. For w € Q let v*¢(w,.) € Lip(R% ,R%). Suppose that v**(w,-) is a
random fized point of ®°: fort > 0, w € Q) we have

O (t, w, v (w, ))(G) =7 (Brw, 9).

Then the random Lipschitz manifold defined by

M#(w) = {(7"*(w,9), 9|7 € R}

s positively invariant.

11



Proof. Since v*¢ is a fixed point of ®° we have

¢ (t, w, (v (W, v0), o)) = (97 (t, w, (V"*(w, %0), ¥0)), ¥5(t, w, (V" (w, Yo), Yo)))
(95 (t, w, (Y (w, U(t, Orw, 7™ (w, ) (¥)), W=(t, 05w, 7" (w, ))(¥))), §)
(D°(t, w, v (w, ))(@),9) = (V" (05w, §),§) € M*(Ofw).

O

From Lemma 4.1 we can conclude that the graph of this fixed point represents an
invariant manifold of system (11).

The following nonstandard boundary value problem plays a fundamental role in
establishing the validity of the hypotheses (H;) and (H) under our assumptions.

% = A(b;w)x + F (0w, z,y), 0<t<T,
(19)
Y~ eBOw)y + <C(bw,7,),
z(0) =(y(0),  y(T) =17, (20)

where ¢ is a small positive parameter, 7 € R% T > 0, and v € Lip(R% R%) are
given.

Remark 4.2. Suppose this boundary value problem has the unique solution

ZE('? w? T? 77 g) = (xs('7 w? T? 77 g)? ys('7 w? T? 77 g))'

Then, there is a one-to-one relation between 3 and y°(0,w,T,7,9)) = yo, that is,
hypothesis (Hy) is valid and the inverse mapping V¢ and the graph transform ®° are
given by

QE(T’ 9%w77)(g) = ys(()?w?T? 77 g)? ®€(T7w7’y)(g) = xE(T7w7T7’y7g)' (21)

Lemma 4.3. Assume the hypotheses (A1) — (As) and (As) to be valid. Then for any
7€ R2T > 0,w e Qv € Lip(R" R®) there exists a sufficiently small positive
number ey such that for 0 < € < g¢ the boundary value problem (19),(20) has a
unique solution (z°(t,w,T,~,9),y*(t,w, T,7v,7)).

Proof. We first note that the boundary value problem (19),(20) is equivalent to the
system of integral equations

o) = U (.01 (9(0) + | Ut = 5,60)F (85, 0().y()ds,
o, (22)

ylt) = Usp(t = T.05)5 + = [ Utp(t = s, 0505w, (). () ds.

T

12



To study system (22) we introduce the following spaces

Cy = C([0,T],R™), Cy:= C(]0,T]),R%)

and endow these spaces with the norms

lell10 = e =T Ola(t)] for 2 € Cy,

23)
— —a(T—t) (
[Yll2.0 == max e [y(1)] for y € Cs,
where « is a positive number satisfying

ca—a > al. (24)

Let C' be the product space C' := C} x Cy, z = (x,y) € C. C equipped with the
norm

|2lla = llellva + [[9ll2.0 (25)

is a Banach space.
For fixed w, T, 7,y we introduce the operators J7 : C' — C and T5 : C' — (3 by

§(0) = T3] =Usy(t — T, 65) §
+ E/T Usp(t — s, 0cw) G(6iw, z(s),y(s))ds,
#(t) = T2 (2()] =5 () ((0) (26)

o [ U3 5 000, ) (o

and define the operator J¢ by
== (33

It is obvious that a fixed point z° of J¢ represents a solution of system (22), and
thus of the boundary value problem (19), (20).

Under our assumptions above, 7 maps C' into itself. In what follows we show that
J* is also strictly contractive.
For z; = (z;,y;) € C,i = 1,2, we set

Az =21 — 22, Ay :=ys — 1, |Az| 1= |Az| + [Ay|. (27)

Analogously, we define Az, Ay, and AZ.
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From (26), (9), (10), (27) and (25) we get
T
[Ag(1)] < 55/ PG (0w, 21(5), 11(s)) — G(05w, wa(s), ya(s))|ds
.
< 5bL/ efen(st) gaT=8) o=aT=9)| A 2 ()| ds
t T
< &bl ||Az||a eO‘T_Eth/ e (@meen)s g,
¢

For the sequel we assume € to be so small that
a—ecg > 0.

Taking into account this relation we have

ebL
Ag(t)] < A o(T=1) 2
89(0)] <~ [JAcl |y €T, (28)
and thus it holds by (23)
R ebL
|AG[l2.0 < 1Az][a- (29)
a — ECp

Analogously, we obtain from (26), (27) and (8)

t

|AZ(t)| < e “'aL,|Ag(0)| + aL/ e A= Az(s)| ds
0
¢
< e “4aL,|Aj(0)| + aL||Az||, e_cAteo‘T/ elea=s s,
0
We then get from (30)
aLea(Tft)
|AZ(t)] < e”'aL,|AG(0)| + ———[|Az]]a.
Cp —

Hence, we have by (28) and (24)

bL.L L
uAsﬁums(E“ L, _a )HAzHa- (31)

o —€eCg €y —Q

From (25), (29), and (31) we get

[[AZ]|a < K(e, Ly)[|Az]]a; (32)
where b I
€ a

= L)) = 1 L . 33

() = (e, L) = =2 (1 al) + —— (3)

14



By (33) and assumption (Aj) it holds

L
k(0) = cAa— - < 1, K(g)>0 for e>0.

Hence, there is a sufficiently small positive number ¢y and a constant x( satisfying
0 < kg < 1, such that

k(e) <kg<1l for 0<e<e.

Therefore, the operator J¢ is strictly contractive and has a unique fixed point 2 € C|
and, consequently, the boundary value problem (19), (20) has a unique solution

(xe(t7w7T7 77 g)?ye(t7w7T7 77 g))' D

Remark 4.4. We note that ko can be chosen independently of w,y and T. In addi-
tion, the constant €y introduced in the formulation of the last Lemma can be chosen
such that it depends only on L., the Lipschitz constant of v. Standard arguments
allow to conclude that the fized point depend Lipschitz continuously on the parameter

Y.

In what follows we investigate the dependence of the fixed point z° of the operator
T¢ on the function . To this end we restrict our space Lip(R% R%). We denote
by L the subset of Lip(R% R) consisting of bounded functions and introduce in
L the norm

[7]]se := sup [v(7)]-
geR™2

Since the operator T¢ explicitly depends on v we use in the following the notation
TE.
0l

Lemma 4.5. Suppose the hypotheses of Lemma 4.3 to be valid. Then to given w €
O, T > 0,9 € Rt €[0,T] and for sufficiently small € the solution 2*(t,w,T,~,7)
of (19), (20) depends Lipschitz continuously on vy € L:

—aT
_ _ ae
sup ||2°(,w, Ty, 9) — 2°(w, 1,72, ) [la < m 11 = 72l (34)

JER2 ) L’yl

where k(e, L) is defined in (33).
Proof. Let ~; and 72 be any functions from L. By Lemma 4.3, to given (w,T,7,7)
there exists for sufficiently small £ a unique fixed point 2° of the operator J5. We

set
sze(t) = Ze(ta W, Ta 15 g) - Ze(tv W, T> 72, g)

15



A corresponding notation is used for the components A, z°(t), A,y°(t) of A, z°(%).
By (32) we have
18525 la =175, 2w, Tm, §) = 75,250 w0, 172, ) o
<752 w, T, §) = 95,250 0, 172, 9) o
175,27 w, Ty2,9) = 75,27 w0, T 72, 9) [la (35)
<&, L)1 A2 o
+ 175,25 w, Ty 92, 9) — 72,2 (L w, T, 72, §) |la-

For the last term we get from (26)
|’7'€y1z5('7 w, Ta Y2, Zj) - T'Eygze('a w, Ta V2, Zj) Ha
<NUACO)lallr =2l < ae™ T = 22/l
Consequently, we get from (35), (36)

aefaT
[ASER S T eI

171 = 72lloo-
(e, Ly,)
Since the right hand side does not depend on g, we obtain (34)

For the components A, 2%, A,y we have

bL bL —aT
SUp [ Ay flaa < ——— | A7) < — «“
jeR2 a —ecp a—ecpl—k(e, Ly,

] =2l (37)

5 eabL. L alL ae~T
sup 18, < (S22 4 ) ST =l
]
For the following we recall that by (21) the graph transform ®° is given by
YT, w, 7)) = 2*(T\w,T,v,9) = Us(T,w)y(y(0))
(38)

T
+ / UiNT — s, 050)F (0w, 2°(s,w, T,7,9), ¥y (s,w, T, v,7))ds,
0

and that the set L consists of all bounded globally Lipschitz continuous functions
mapping R% into R%. For the following we introduce the set L C L whose elements
v satisfy

Ly = ||V||Lip < T.

We note that the set Lr is complete and separable with respect to the metric ||y, —
Yoo

16



Lemma 4.6. Assume that the assumptions (A1)-(Ay) hold. Then, for sufficiently
small e and sufficiently large T, the graph transform ®(T,w,.) maps the set Ly into
itself, where I is any positive number satisfying

b
Ta *

r>r:.=
1— 03 —abe” 2

Here, (3 is any given number from the interval (C“L 1) .

A—a’

Proof. By assumptions (As) and (A,) we get from (38) for v € £

—a acCp
195(T,w, )l oo < @™ [loe + - < 00

Set Ayz*(t) == 2°(t,w,T,v,01) — 2°(t,w,T,7,92), Ay := g1 — yo. Similar to (28)
and (30) we obtain for v € Lp-

bL
Ay ()] < — 1852° o €T + | Ag|be=n T, (39)
o —ecp
(3 —C (9 a/Lea(T_t) £
|Agz=(t)] < e”*aLl,|Agy®(0)] + HHA@Z |- (40)

According to these estimates we have
ebL

o — ecp

L bLL
||Agaf||1,as( al_ | eabLL,

CA— O «—ECR

12597 2.0 < 1A52"lo + 6] A,

> ||A?326||a + abLﬂA(qﬂe—T(a—ecB).

From (39), (40) we obtain
1852%la < K, L) (|82 |o + (b + abLye™ M=) | Ag],
where k(e, L) is defined in (33). According to |Ayz(T)| < ||Ajz|lo we have

b+ abL,e T teesT

(T o<
” ( 70‘)77)"141’ — 1 — H(E,L,y)

Let 8 € (k(0,L,) = aL/(ca — «),1). Then there is a sufficiently small ¢, such that
for0<e<egand any T' > 0

1 - 1
1—k(e,L,) 1-0

T
efT(afscB) < 677& )

Thus, we have for 0 < e < g

b(1 +aLye " "=r)) b1+ aL,e )
1 —k(e, Ly) - 1-p '
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There is a Ty > 0 such that for 7' > Tj
Tpo
1—0>abe "2 .
Hence, for T' > T} the inequality

b(1+aL,e )

1-p < Ly
is valid for
L, >T" = ’ Ty
1—0—abe 2
and we have
12T, w, )|y < Ly
for sufficiently large 7', sufficiently small e, and L, > I'*. O

Our intention is to establish a random fixed point of the graph transform ®°(7", w, .).
Then, by Lemma 4.1, the random inertial manifold is given by the graph of that
fixed point. Hence, in what follows we will show that the graph transform ¢¢(7, w, .)
is strictly contractive in Lp with I' defined in Lemma 4.6, for sufficiently small ¢
and sufficiently large 7T'.

Lemma 4.7. Suppose the hypotheses (A1) — (As) to be satisfied. Then, there is a
constant k(e,T) satisfying for sufficiently small € and sufficiently large T

0<k(e,T)<ky<l,

such for any v1, vo € Lr, where ' is defined in Lemma 4.6,

”(I)E(Ta(*)”}/l) - ®E(T7W772)|’00 < k(57T)|’71 - 72”007
Proof. Let v1, 72 be any functions in Lr, let (x°(t,w, T, i, 9), y*(t,w, T, i, 7)) be the

corresponding unique solution of the boundary value problem (19), (20) which exists
according to Lemma 4.3. We set

Ayt (t,g) =2 (t,w, T, m,79) — 2°(t,w, T, 72, 7),

Avye(t’ g) = ye(ta w, Ta T, g) - ye(ta w, Ta Y2, g)
By (38) we have

(I)E(Ta W, ’yl) - (I)E(T’ w, 72) - A’yxE(Ta g)
Furthermore, we introduce the notation

g5 (1) = ([ Ay (t Mloor Ay () = [|Ayy=(; Iloos A =71 =7

18



Using this notation the assertion of Lemma 4.7 takes the form
AE(T) < k(e, T)[AY ] co- (41)
Under our assumptions we get from (22)
ALEE(t) < ae” ([ (Y (0,w, Tom, §) = 92(y7(0,w, T, 72, ) o)

+ L/o ae” AU (A€ (s) + Ayp(s))ds, (42)

t
AnE(t) < —EL/ be =B (A €5(s) + Aynf(s) ) ds.

T

With respect to ||v1(y*(0,w, T, 7v1,9)) — Y2(y°(0,w, T, ¥2,9))||cc We obtain for
71,72 € Lr

||’71(y6(0aw7Ta ’Ylag)) - 72(y6(0’w7Ta ’YQag))HOO
< H’yl(ys(oﬂ"jaT’ 717:&)) - ’Yl(yE(O,W,T, 727@))”00 (43)
+ @ (0,w, T, 72, 9)) — 72(¥°(0,w, T, 72, §))[loo < TAN(0) + [|AY|oo-

Substituting (43) into the first inequality of (42) we get
A,€°(8) < ae™ (DA (0) + 171 = 7olleo)

‘ (44)
+ L/ ae” AU (AL E5(s) + Ayn(s))ds.
0

Using the norm

1flla := max e @ I|f(#)]  for feC([0,T],R),

0<t<T

where « is the positive number defined in (24), we obtain from the second inequality
in (42)

T
A () < DL E o+ 18,7 )T [ eenr
t

bl (45)
e
< A EE N A.nE N a(Tft).
> ch(H 3l A7 |a)e
Thus, we have
AN e > o —cop S la AN e )-

If we assume ¢ to be so small that
a—¢e(ecpg+bL) >0
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we get from (46)
beL

Anflle <
[1A7°] ~ a—ce(ecg+bL)

jraveyiee (47)
Putting ¢ = 0 in (45) and substituting the corresponding relation into (44) we get

elbLe®T

Q. — ECp
t

+ L/ ae~ A7) (ALE5(s) + Aynf(s))ds
0

elbLeoT

o — ecCp

Lea(T—t) . .
+a————([[A& [ + [[ A7 a)-

A — X

AL€°(t) a2 ( (A& o+ 1457 1) + 171 = 3l

(48)

<ae~t (1858 Lo+ 1A l0) + 11491 | )

Taking into account (47) we obtain from (48) by an elementary calculation

ALE () < k(€)™ VA€ o + ae™ || AY ||, (49)

where k;(¢) depends continuously on . By (24) it holds
0<ki(0)=———

such that we have
0 < k1(e) <1 for sufficiently small €.

Setting
B T) = 1
S T ()

we get from (49)
1A o < (e, T)[AY]|oo- (50)

It is obvious that k(e,T’) satisfies 0 < k(e,T") < ko < 1 for sufficiently small ¢ and
sufficiently large T'. Using the inequality

ALE(T) < |[AE o
we obtain from (50) the validity of inequality (41).
U

Suppose that 7" > 0 satisfies the conclusion of the last Lemma. According to Lemma
4.6 we note that there exists a I' € [0, 00) which can be larger than I'"* such that

sup ||q)6(t7wa’7)||LiP < FVF*
t<THELps
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To ensure that ®°(t,w, ), v € Lpyrs, t > 0 is well defined we have to choose g; (see
Lemma 4.3, Remark 4.4) sufficiently small. Then for the w-dependent non-empty
set
H(w) = U O°(t,0° ,w, L) C Lpyp-
>0
we have
Q°(t, w, He(w)) C H(F;w)
for t > 0. According to this relation we are able to prove the cocycle property for
the graph transform ®°.

Lemma 4.8. For sufficiently small positive € the graph transform ®° satisfies the
cocycle property: Forty, tos > 0,w € Q and v € H°(w) we have

(I)E(tl + t2aw77> = (I)E(tl’ etzwa (I)E(t2aw77>>‘

Proof. The above considerations ensure that all appearing operators are well defined.
Let

(@1(t),y1(1) = (21(t,w, 11,7, 9),y1(t,w, T17,9)), t€[0,T1]
be the solution of (19) satisfying the boundary conditions

21(0) =v(1(0)), y1(1) = 9.
Then 25(7}) defines (71, w,y)(y). Similarly, let
(@5(8), y5 (1)) == (3(t, 07,0, T, 11, ), 95 (8, 030, Ty 11, 9)), -t € [0, T3

be the solution of (19), (20) such that x5(7%) defines ®°(75, 0%, w, p)(7) with p :=
& (11, w,y) which is equal to z1(T1,w, T1,7,-). We set T'= Ty + T, and define the
functions y° and x° by

5 ~\ L yi(t’w7T1a’Yay;(ovegﬁwaTQa/‘Lv@)) for t€ [OaTl]a

Y (tvwaTavay) o { yg(t - Tlae’%lwaT%,uag) for € (TlaT]a (51)
€ ~\ L xi(tawaT1777y5(079%1w7T27M7g>> for € [07T1]7

v(tw, T,7,9) '_{ w5(t — Ty, 05,0, Ty, 1, 5) for te (Ty,T). (52)

(51) yields that y°(-,w,T,~,7) is continuous on [0,7] and in particular in ¢ = Tj.
Due to (22) the relation (51) can be written for ¢ € [0, 7}]

UEEB(t — T, G%IW)UEEB(_T% 9%+T2W)3?
0
b [ U~ T3 B0V (5,0, )07, 0, 55(5), 55 ds

Ty

t
b [ U5t - 501G 05, 55(5). () ds
Ty
t

:UEEB(t -1 - T27 0%1+T2w)g + 8/ z—fB(t -5 ezw)G(ezwv 1,5(8)’ ye(s))ds‘
Th+1>
(53)
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We can conclude that the left hand side of (51) satisfies the first equation of (22) on
[0,7]. From (53) we obtain

Y (0)) = v(y1(0,w, 71,7, 55(0, 07,0, T3, 11, 77))).- (54)
Hence by (22) and the definition of ®(T},w,y) we have

"L‘i (T17 w, TlaV) y;(ov 05“1(")7 TQ) 22 g)) - M(y;(oa 03“1(")’ T2a 2 g))

- 25
:$§(079§“1WaT2aN>y)- ( )

By the definition of 25 we have for t € (Ty, T} + T3] by (55)
xs(ta w, Ta s g) :l';(t - T17 9;“1(")7 T27 122 g)
=U4(t = Ty, 07,w0)i(y5(0, 07,0, To, 1, 9))

t—T1
T / Ut = T1 — 5,65, , ) F(65, o0, 25(5), 45 (5))ds
0
U (t = T4, 05,0) U (T, )y (550, 0, 7, 50, 65, o, 1 7))

Ty
LU T 6w) / US(Ty — s, 020) F (05w, 25 (s), v (5))ds
0

t—T1
T / Ua(t = T1 — 5,65 , ) F(65, o0, 75(), 45 (5))ds.
0

Applying the cocycle property of Ug to concentrate the integrals, (54) and (52) we
see that z° and y° satisfies (22).

O

In order to establish the existence of a random inertial manifold for the random
dynamical system defined by (11) we introduce the metric space Gr of bounded
measurable mappings from €2 into L equipped with the metric
doo(71,72) := sup sup |71 (w, §) — 72(w, §)|-
weN jeRd
It is not hard to prove that the space (SGr,d.,) is complete.
By means of the graph transform ®° we define an operator 8¢ on the space Gr by

(w,9) = 8 (N)(w,9) = ST, 0= rw, y(6=7w))(5)-

The following theorem gives conditions under which 8¢ has a unique fixed point "¢
in G- which defines the random inertial manifold M¢. The proof is similar to |7],
[16].

Theorem 4.9. Assume the hypotheses (A1) — (As) to be valid. Suppose that € > 0
i1s sufficiently small and T sufficiently large. Then the random dynamical system
defined by (11) has a random inertial manifold whose graph is defined by v**(w) €
Sr«. In addition, the following estimate holds true

ca(l— Il;(g,T))’

doo(v"5,0) = Sug HV*’E(C‘))HOO < (56)
we
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Proof. Let T be sufficiently large and ¢ sufficiently small such that the conclusions
of Lemma 4.7 hold. Then the mapping 8¢ is a contraction on Gp«. Moreover, &°
maps Gr- into itself by Lemma 4.6 and by the fact that ®*(7,-,~) is measurable
because the contraction constant for the fixed point problem of Lemma 4.3 can be
chosen independently of § and w (see Remark 4.4). Hence, 8¢ has a unique fixed
point v** € Gp-. Hence, replacing w by 07w

CDE(Tv w, ’7*’6)(') = 7*75(05“("}’ )
According to Lemma 4.8 we have for ¢ > 0

CI)E(t, W, 7*’6(w)) = @E(t’ ) 86(’7*’6(')))(“}) - q)e(tv W, @E(Tv QE—va 7*75(‘9€—Tw)))
:q)s(t + T7 eiva 7*75(‘95Tw)) = CI)E(Tv QETthw) q)e(ta eiva 7*75(05Tw)))
=8°(P(¢, 0%, 7"(0%,)) (O w).

The left hand side ®°(¢,w,v"*(w)) of this equation can be written as
(1, 0° 5o, 7 (07 B 0).

Since 8° has for small ¢ and large T" a unique fixed point also in Gp, - we have
o= (t,w, v (w)) = v**(#fw) which has to be in Gp«. According to Lemma 4.1 the
random dynamical system has a random invariant Lipschitz manifold.
To see that this manifold is exponentially attracting we first note that the conver-
gence

lim dOO((DE(t? ) 7)7 (I)E(tv i 7*’6('))) - tlgglo doo((I)E(t, " 7)7 7*’6(95')) = 0 for v € G-

t—o0
is exponentially fast. Indeed, we have

8708 (7)(w,y) = (T, 0w, P(T, 07w, (62 57w))) ()
= (2T, 0% yrw, Y(0% o7w) ) ()

and similarly

S0 08 () (w, §) = O (nT, 6°, rw, y(6°,7w))(T)

- i
~~

n—times

such that
lim dy (P (nT, -, 7v),y"(05)) =0 for v € Gp-

is exponentially fast by the contraction property of 8°. On the other hand, by the
cocycle property we have

(1, w,y(w)) = Ot = n()T + 1,0,y qw, O (n(t)T = T, w,~(w))),

where n(t) is the biggest integer such that n(¢)7 is smaller than or equal to ¢. The
above convergence now follows by the Lipschitz continuity of ¢, what follows from
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Lemma 4.7.
For some given (z9,7) € R? we set

(xe(t)a gt) = ¢€(t,w, ('Z‘Oa yO))
Choose some graph v € Gp- such that v(w,y9) = xo. Then ®°(¢,-,7) tends to
~v*%(05-) exponentially fast in Gr+. Hence

inf |¢°(t,w, (20, 50)) — 2| < [2°(t) = v (Ofw, Gn))|
zeMe (05w)

= ‘q)s(tvw77)(gt> - ’7*76(95(")? gt>| S doo(q)s(ta '77)77*78(95'))

gives us the asserted convergence to the invariant manifold.

To see the inequality (56) we define v; := 8%(70), 70 = 0. It follows by estimating
the first component of (22) that

7CAT)CF.

1
I =0llee = lInlle < —(1—e¢

CA
The standard a priori estimate of the Banach fixed point theorem (see Zeidler [25]
Theorem 1.A.c. ) implies (56). O

Remark 4.10. We have shown that the random dynamical system generated by
(11) has an inertial manifold with graph v*° for small e > 0. Thus also the system
derived from (7) has an inertial manifold with the same graph but interpreted in the
dynamics of (0% wy, 02ws).

5 Existence of a slow manifold

In this section we consider system (11) for ¢ = 0. We show that there exists a
random invariant manifold as a family of random fixed points depending on some
parameter § € R%. This manifold is called the random slow manifold for (7), (11).
The random slow manifold will be the limit of the random inertial manifold M®(w)
introduced in the last section. Using the inertial form for the inertial manifold we
are also able to describe the limiting behavior of system (7) using the graph of the
slow manifold. But this is the topic of a forthcoming paper.

In the following we denote by U9 the linear random dynamical system generated by
A(Htlwl, WQ) .
(Ag). Suppose that for any (wy,ws) € O x Qy and t > 0

1iI£l+ | A(wy, 077 ws) — Awr,w,)|| =0, and

lim |F'(w, Qf’awg,x, y) — F(wi, w2, z,y)| =0

e—0t

uniformly for x, y on compact sets.
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From the first property we have by (Ay) that

lim [|U(¢, Q;wl, Qgswg) — Ug(t, Q;wl,wg)H =0.

e—0t

If F' has the structure as in (15) with the Brownian motion metric dynamical system,
the second equation is always satisfied. We start to consider (11) for ¢ = 0. Let
y°(t,7) be the solution to (19), (20) for ¢ = 0 with end condition §. Then j —
yO(t,y) = y for t € [0,T]. Let us denote the solution operator of the first equation
of (11) for 2°(0) = xo € R¥ by @2 (t,wi,70) which depends on the parameters

g7w2
U, wo. This operator generates for every 7, wo a random dynamical system on O;.
In particular, we have the cocycle property

g’w2 (tl + tg, Wi, 1'0) = gbg’w2 (tl, (91512(4)1, gbg’u& (tg, Wi, 1'0))

For v € G, we introduce the operator

@O(tv W, ’7) (g) = ¢2M (ta w1, (7(1&), g))

This operator is defined analogously as the operator ®° in (18). The corresponding
inverse mapping U introduced in Section 3 is the identical mapping on R%.
Using the notation #%w = (0lw;,ws) we define on Gr the operator 8§° by

8°(7)(w, ) = (T, 023w, 7 (027w)) (7)
where 7', I" are given in Lemma 4.8, Theorem 4.9.

Theorem 5.1. Suppose the hypotheses (Ay) — (As) hold. Then the operator 8° has
a unique random fized point v*° € Gp..

Proof. The proof is analogous to the proof of Theorem 4.9. However, the proofs
for Lemma 4.6, 4.7 remains true for ¢ = 0. The associated contraction constant
kl(O) < 1. O

The random fixed point v*? defines an invariant manifold

Mo(wlvw%g) - {(7*70(“}1’0‘)27@)’@”@ € RdQ}'

This manifold will be called the random slow manifold for (7) or (11). But this
manifold does not have any dynamics with respect to y—direction. Hence, to describe
this objective it is more appropriate to say that v* is a family of random fixed points
for the random dynamical system ¢37w2 parameterized by ¥, ws.

It remains to prove that the inertial manifolds M¢ for (11) tend to the slow manifold
MO,

Theorem 5.2. Assume the hypotheses (A1) — (Ag) to wvalid. Then we have for
w1 € Qq, wo € N9, k€N and e > 0 small

lim sup |7 (w1, ws, ) — 'Y*’O(whwz,g” =0.

e=0% |g1<k
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Proof. Let 2°(t,w,y), y°(t,w,y), t € [0,T] for some T' > 0 and € > 0 be the solution
of (19), (20) for some € Gr«. Note that the constant I'* introduced in Lemma 4.6
can be chosen independently of € > 0.

It is straightforward that for ¢ € [0, 7]
¢
lim+ | / eUzp(t — s, 0:w)G(Ow, 2°(s, 1),y (s,7))ds| < lin% Tee* 5 e, =0
e—0 0 £—

uniformly for § € R% and w € Q. In addition, we have for any ¢ € [0, T
lim Ug(t —T,07w)y =
e—0t+

uniformly for § in a compact set. Hence

lim y*(t,w, ) = 7, lim v(y*(0,w, 7)) = 7(7) (57)

e—0t e—0t

uniformly for ¢ contained in a compact set.
Suppose that v € Gr~. We now show that

lim 2°(T,w,§) = 2°(T,w, §)

e—0t

uniformly for ¢ in a compact set. By the definition of ®¢ the last equality is equiv-
alent to

lim (T, w,7)(7) = (T, w,7)(7) (58)

e—0t

uniformly for ¢ contained in a compact set. For v € Gp« we have that ®(7T,w, ) is
well defined if ¢ > 0 and ¢ is small. In order to compare 2°(T) and z°(T') we derive
the estimate

|2°(T)=2*(T)| < [V (y*(0)) = v@DIIVA(T, )| + Y@V, w) — UX(T, w)|

4 / US(T — 5,00, 0.00) (F (0 or, 00, 2°(5), 4 (5)) — F (61, o, °(5), 7)) ds]

+| / (UA(T = 5,051, 02,w5) — U(T — 5, 0,01, ws)) F (001, w2, 2°(5), §)ds|.
0

From

F(0wr, 02 wo, 2°,y°) — F(Orwy, wy, 2°,§) = F(0lwy, 0% wo, 2°,y°) — F (01w, 02wy, 2%, 7)
F(eiwla 9528(4}2, xO’ g) - F(eiwla W2, xO’ g)

we obtain

|2%(T) = 2°(T)| <Iv(*(0)) = v(@)|ae™ " + [y DIIUA(T,w) = U3(T, w)|

T
ta / A9 (Lo () — a(s)| + LIy (s) — §
0

+ |F(0;w1a 02 w?a (8)7:&) - F(Q;wl,WQ,l'O(S), g)|)
+ | US(T — 8,0 w1, 02,w5) — UN(T — 5,0 w1, wy) | crds.
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The asserted convergence (58) follows from the Gronwall lemma, Lebesgue’s theo-
rem, (Ag) with (Az) and (57). The same result holds if we replace w by 5w for some
p € R.

We have for n € N:
|’7*’6(w’ g) - ’7*’0(“}7 g)|
:‘(I)E (nTa einTwa 7*76 (einTw» (g) - (I)O (nTa egnTwa 7*70(907nTw))(g)‘
S ”(I)E (nT? (9€—nTw7 7*,6(e€_nTw>> - (I)E (nT? ee—nTw? ’y*’o(eo—nTw)) ”00
+ |¢)€ (TLT’ ‘ge—nTw’ ’7*’0(027111«(4()))(@) - @O(TLTv QO—nTW’ ’7*’0(‘90—nTw)) (g)|
n QCF
<ky———
CA(l — ko)
+ |¢)E (TLT’ einTwa ’7*70(007nT ))(g) - @O(HTa anTwa ’7*70(‘907nT ))(g)|
where 0fw = (0}w;,ws). According to Lemma 4.7 and Theorem 4.9 the first term
on the right hand side can be made arbitrarily small if n is chosen sufficiently large

independently of € and w. On account of the calculations in the first part of the
proof also the second term becomes arbitrarily small for sufficiently small e. O

For an interpretation of the manifold v*° for the fast system (7) we refer to a forth-
coming paper by the authors. However in absence of w; similar to the deterministic
theory we can determinate v*° explicitly.

Corollary 5.3. Suppose (As) and (8) with a = 1 are satisfied. Then the equation
Alws)z + F(ws, z,y) =0 (59)

has a unique solution x*(ws,y) =: v*°(wa,y) for any wy, y. This solution depends
Lipschitz continuously on y for any ws € §2s.

Proof. By (As) the operator A(w,) has an inverse A(wy)~! with a norm ||A(ws) 7| <
é, (59) can be written as

v = —Alw)  Flwz,2,y)

The the conclusion follows by (A5) and the Banach fixed point theorem. O
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