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1 Introduction

Rate-independent models for material behavior are useful in many contexts. Elasto-
plasticity is the most prominent application, but recently also damage, fracture,
hysteretic behavior in magnetic, magnetostrictive and ferroelectric materials, and
phase transformations in shape-memory alloys have been described via such mod-
els, see [Mie05] and the references there.

Here, we want to contribute to the abstract mathematical foundations for such
models. While a quite flexible existence theory has been developed over the last years
(cf. [MTLO0O2, MT04, MMO05, Mie05, FMO6]), there is still a need to develop a theory
for parameter dependence and for numerical approximation properties. The first
part of this work will address these questions in the framework of I'-convergence. In
the second part, we are concerned with the question of relaxation of rate-independent
evolutionary systems. This topic is important for the understanding of evolution of
microstructures in materials, see [ORS00, BCHH04, Mie04, KMR05, CT05, MOO06].
While the static questions of I'-convergence or relaxation are well studied, the related
questions for evolutionary systems are treated less systematically, see e.g., |Ott98,
Bre99, Bre00]. Only recently, a systematic study for gradient flows was initialized
in [SS04, Ort05b, Ort05a, Ste06].

To present our main ideas we introduce the main notions. The state space of our
system is denoted by Q and the stored-energy functional £ : [0,T]xQ — R, =
R U {00} is assumed to depend on the (process) time through a time-dependent
loading. Additionally, there is given a dissipation distance D : QxQ — [0, 0],
which is assumed to satisfy the triangle inequality but may be unsymmetric. Here,
D(qo, ¢1) measures the minimal amount of energy that is dissipated when the state is
changed from ¢y into ¢;. In rate-independent systems the dissipation depends only
on the path but not on the velocity.

A process ¢ : [0,T] — Q is called an energetic solution of the rate-independent
process associated with the functionals £ and D, if it satisfies the stability condition
(S) and the energy balance (E) for all t € [0,T]:

(S) Vge Q: &(tq(t) <&, q) +Dlg(t), q),
(E) E(t,q(t)) + Dissp(q; [0,1]) = £(0,4(0)) + fy D€ (s, a(s)) ds.

Here, the dissipation Dissp(q; [r, s]) along a part of the curve is defined as a total
variation with respect to the “metric” D. In this case, we also say that ¢ solves the

(1.1)
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energetic formulation (S)&(E). If £ and D are replaced by & and Dy, we call this
the energetic formulation (S),&(E),.

Under the assumption that Q is a Banach space, that D is translation invariant, i.e.
D(q0,q1) = R(q1—qo), and that E(¢, ) is convex, the energetic formulation (S)&(E)
is equivalent to the doubly nonlinear differential inclusion

0€ IR(4(t)) + 0E(t,q(t)) < QF (dual space),

cf. [IMT04, Mie05]. The advantage of the energetic formulation (S)&(E) is that it
is totally derivative free and hence can be formulated on an abstract topological
space Q, see [MMO5|. The stability is a purely static concept and the evolutionary
concept is brought into hearing solely by the scalar energy balance.

In Sections 2 and 3 we study the situation that a sequence of pairs (&, Dy) is given
as well as limit functionals (€, Dy ). Assume that g : [0,7] — Q is an energetic
solution associated with & and Dy. We study the question in what sense (&, D)
has to converge to (€, Ds) such that a limit process ¢(t) = kh_}rgo qx(t) solves the

energetic formulation (S)_ & (E)__. It turns out that the right notion of convergence
is related to I'-convergence. However, it is easy to see that

Eoo = f];—lim &, and Dy = Fk—lika (1.2)

is not sufficient. See (2.14) for the definition of I'-convergence and Example 3.2 for
a simple system where (1.2) is not sufficient for convergence of solutions. Note also,
that the I'-limit D, may no longer satisfy the triangle inequality, so this will be an
extra assumption.

Central objects are the set of stable states and stable sequences. The sets of stable
states Si(t) depend on t € [0,7] and k € Ny, := NU {oo} and are defined via

Si(t) ={q€ Q; &t q) <oo, Vg€ Q: &(t,q) < &t q) +Dile,q) - (1.3)
A sequence (t;, gx, )ien is called a stable sequence if

Qs € Sk, (t) and iug Er, (t1, q,) < 0. (1.4)
€

Here we always assume that (k;);eny denotes a subsequence, i.e., k; < ki1 — 0.
The crucial conditions for the desired convergence result are now

(a) Exo(t,q) < inf{ lilrgci)?f Ek(ti, qr,) 5 (t1, qr,) is stable and (¢, qx,) orxe (t,q) },

(b) Dusolq,q) < inf{ 1igg1f D (ar, @) 5 (1, ax,), (f1, Gr,) are stable,
(tla%) [Oﬂi;g (tv q)7 (Evakl) [Oﬂl;(Q (E@ }7

0,T]xQ

(c) V stable sequences (¢, qx, )ien : (t, qx,) 011 (t,q) = qé€ Sx(t).



While the conditions (a) and (b) are usually satisfied by assuming (1.2), the con-
dition (c) is genuinely new and concerns the interplay between the two sequences
(Ek)ken and (Dg)ren. In Section 2 we provide several sufficient conditions for the
implication (c¢), which can be understood as conditioned upper semi-continuity of
the stable sets. The strongest of these conditions is that £, = F,;l,&n &, and that Dy,

continuously converges to D,,. Note that (a) and (b) only ask for a lower estimate,
however our theorems will prove that, along the approximate solutions, the lower
limits &, and D, are attained, see assertions (i) and (ii) in the Theorems 3.1, 3.3,
and 4.1.

Having in mind numerical approximation we also combine this result with time
discretizations. The most effective way to study energetic formulations is based on
the incremental minimization problems

(IP)y qf € Arg min{ Ek(tf,é) +Dk(‘¥f—1a® ;g€ QY

where I, = {0 =tf <t} <--- <tk =T} is an arbitrary partition of [0,7]. Us-
ing the same conditions as for the above convergence result together with suit-
able uniform compactness results, we show that the piecewise constant interpolants
qr : [0, T] — Q associated with solutions of (IP); contain a subsequence that con-
verges to a solution of (S) &(E)_, see Theorem 3.3.

In Section 4 we consider the situation that the sequences (Ex)reny and (Dy)ren are
constant, i.e. &, = & and D, = D;. However, we do not assume that & and
D, are lower semi-continuous. Hence, (IP); may not be solvable and we replace it
by an approximate incremental problem (AIP), where we only need to reach the
infimum up to an accuracy e (t¥ —t¥ ;). Of course, (AIP), is solvable and we study
the sequence ¢ : [0,7] — Q of piecewise constant interpolants. Using a slightly
strengthened version of the upper semi-continuity of the stable sets we show that
the sequence (qr)reny again contains a convergent subsequence the limit of which
solves (S)_ & (E), . The construction of subsequences relies on an abstract version
of Helly’s selection principle that is due to [MMO05]| and that we prove in a slightly
more general form in Appendix A.

In the final Section 5 we illustrate the two main results by three relatively simple
examples. In Section 5.1 we deal with a quadratic energy functional £, on a Hilbert
space H = Q and a weakly continuous and translationally invariant dissipation dis-
tance D,,. Defining a sequence Hj, of finite-dimensional subspaces of H with U2, H,
dense in H, we define &, equal to & on H; and +oo else. Letting Dy = Dy it is
easy to check the abstract conditions and, thus, a convergence result for space-time
discretizations is established. The idea of using I'-convergence for treating numerical
approximations was first investigated in [KMRO05|. As a particular application, this
provides the convergence result in elastoplasticity derived first in |[HR99a|. Further
applications that use the full strength of the theory developed here, are found in
[MRO6a|. Stronger convergence results of numerical methods, also giving specific
convergence rates are discussed in [HR99b, AMS06].
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In Section 5.2 we address the question of the continuity of the play and the stop
operator with respect to the yield or characteristic set C;. This question was studied
in [Kre99, Thm.3.12] and [Ste06, Cor.4.6] and we show that our abstract result
recovers the known results.

The example in Section 5.3 deals with Q@ = H!((0,1)) equipped with the weak
topology, with the dissipation Dy(q, ¢) = |[¢—q||L1 and with the energy functional

Exlt q) = / W) + g(2)? — f(t,2)g(z)dz,

where W : R — R is a coercive, nonconvex double-well potential. The I'-limits in
the weak topology of H!((0,1)) of the constant sequences Dy, = D; and &, = &, are
Do = D; and &, = conv&y, which has the same form as &, but W is replaced by
its convexification W**. Using the results of Section 4 we show that the solutions of
(AIP), which develop microstructure, converge weakly to an energetic solution as-
sociated with the relaxed functionals £, and D,,. The question of relaxations of this
type was already addressed in [MTL02, Mie04, MOO06]. However, rigorous results
were only obtained in [The02, CT05|. The analogous is obtained by regularizing &
in the form E(t,2) = & (t,2) + 1 [1(2"(z))? da.

Another application of the theory presented here is given in [GP06|, where the I'-
convergence of families of crack problems is studied. There the notion of “stability
of the unilateral minimality property” is used for what we call upper semi-continuity
of the stable sets.

2 Assumptions and preliminary results

Throughout this work we assume that the state space Q is a product Q = FxZ,
where each of the factors is a Hausdorff topological space. All our notions con-
cerning (lower semi—) continuity, closedness and compactness are in fact meant
“sequentially”. (The typical applications we have in mind are the weak topologies in

a separable, reflexive Banach spaces, possibly restricted to a weakly closed subset.)

We will denote the convergence in these spaces by g, i, and 2 respectively. For

sequences (tg, qx)ken We write (fx, qx) oo (t,q) if ty — ¢t in R and g 5 q.

On the state space Q a sequence of time-dependent energy functionals & : [0, T]xQ —
R, as well as a limit £ : [0,7]xQ — Ry, are given. Moreover, we have a sequence
of dissipation distances Dy : Zx2Z — [0, 00| and a limit D, : ZxZ — [0, 00]. Note
that our dissipation distances are not assumed to be symmetric, i.e. Dy(z1, 22) #
Dy (z2, z1) is possible. Moreover, we allow for the value +oo, which is often needed in
continuum mechanical models. We use the notation N, := NU {cc} which enables
us to address the sequence as well as the limits together.

Throughout we will switch between the two equivalent notations ¢ € Q and (¢, 2) €
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FxZ as it is most appropriate in the given context. In particular, we also consider
Dy, k € Ny, as functions on Q x Q and write D(q1, ¢2) instead of Dy(z1, 22), where
q; = (pj,zj) € FxZ = Q is taken for granted.

To formulate our assumptions we recall the definition of the stable sets Si(t) from
(1.3) and call a sequence (t;,qx,)ien a stable sequence (abbreviated as “stab.seq.”
further on), if

Qe € Sk, (ty) foralll e N and  sup &, (4, qp,) < oo. (2.1)
leN

Note that (g, )ien denotes a subsequence to indicate the index k; for which we have
stability. We now state our assumptions in one list and comment on it afterwards.

Pseudo distance: Yk € Ny V21,29,23 € Z:

(2.2)
Di(z1,21) =0 and Dy(z1, 23) < Di(21, 22) + Di(22, 23).
Lower semi-continuity of Dy: (2.3)
VkeNy: Dy: ZxZ —[0,00] is lower semi-continuous. -
Positivity of Dy For all compact K C Z : (2.4)

If 2z, € K and min {Dy(2k, 2), Deo(2, 2x)} — 0, then z 2

Lower I'-limit for Dy,:
~ - . [0.T]xQ ~ _ | [0TI]1xQ
V stab.seq. (tl,qkl), (tl,qkl) Wlth (tl,qkl) — (t,q), (tl,qkl) — (t,Z]) . (25)

Compactness of energy sublevels:

For all t € [0,7] and all E € R we have

(i) VkeNy: {qeQ; &lt,q) < E} iscompact;
(i) U {q€ Q; &klt,q) < E} is relatively compact.

Here (with our agreement about “sequential” notions) relative compactness of A C Q
means that every sequence in A has a convergent subsequence.

Uniform control of the power 0;E:

JF eRIF >0VEe N, Vte[0,T|Vqge Q:
If £.(t,q) < oo, then &+, q) € C'([0,T]) and
10:Ex(5,q)| < cF(cF+E(s,q)) for all s € [0,T].

(2.7)

Uniform time-continuity of the power 0;E:
Ve>0VEe€R3)>0: (2.8)
goo(ouq) S E and |t1_t2‘ < 0 g ‘atgoo(tlaq)_atgoo(t%q)‘ <E.
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Conditioned continuous convergence of the power:

[0,T]xQ (29)
Vstab.seq. (t,qr,) — (t,q):  0:h(t, qr) — 0€(t, q)
Lower I'-limit for &: 510
V stab.seq. (i, q,) with (¢, qx,) IS () Exlt,q) < lilrgionf Ery (b, qy)- (2.10)
Conditioned upper semi-continuity of stable sets: (2.11)

V stab.seq. (i, qx,) “IEC (tq) 1 g€ Solt).

Assumptions (2.2)-(2.5) mainly concern the dissipation distances, whereas assump-
tions (2.6) (2.10) are mainly on the stored-energy functionals. Conditions (2.5),
(2.9) (2.11) are based on the stable sets, which involve the interplay of & and Dy.

For a given function z : [0,7] — Z (defined everywhere!) we define the dissipation
associated with Dy, k € N, on the subinterval [r, s], via

N
Dissy(2; [, 5]) = sup{ S Du(2(tyo1), 2(t) s NEN, r <tg<tp < <ty< 5}.
7j=1

The lower I-limit condition (2.5) for Dy implies that, if z; : [0,7] — Z converges
pointwise to z : [0,7] — Z and if (¢, gx(t)) is stable for all ¢ € [0, 7], then

Disseo(2; [, 8]) < li];rn inf Dissy(zx; [r, s]). (2.12)

The positivity condition (2.4) for D, implies that a function z with Diss(z; [0, 7]) <
oo is continuous on [0, T'] except for at most countably many points, namely the jump
points of ¢ — Diss(z2; [0, ]).

The major compactness result is a generalization of Helly’s selection principle, which
is proved in Appendix A. Using (2.2), (2.4) and (2.5) it is shown that every sequence
of functions zj, : [0,7] — Z for which Dissy(2x;[0,77]) is bounded has a pointwise
convergent subsequence.

The compactness condition (2.6) on the energy functionals implies lower semi-
continuity of each &(t,:) : @ — R, and is essential for constructing solutions
for incremental minimization problems.

For a given ¢ € Q the mapping t — & (t,¢) maps [0, 7] into R,,. Hence the partial
derivative 9,E(t, q) makes sense even though Q does not have a manifold structure.
Moreover, it has the physical dimension of a power, namely energy divided by time.
In [MRO3] fot 0sE(s, q(s))ds is called the reduced work of the external forces, since it
relates to the “work of the external forces”, as used in the mechanics literature. In the
simple case E(t, ¢, z) = U(p, z) — (€(t), ) the former has the form — fg(ﬁ(s), ©(s))ds
while the latter one reads f;(ﬁ(s), Os0(s))ds. From our energy balance (E) in (1.1)
it is clear that 0,E(t, ¢(t)) is the power associated with the changing external forces.
For simplicity, we continue to call this term simply power.
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Condition (2.7) gives a uniform energetic control on the power 0,E(t,q). Using a
simple Gronwall argument yields the estimate

Enltr, q) + g < 1B (E(ta, q)+cf), (2.13)

which provides simple a priori estimates for the energy and the dissipation along
solutions, see Step 1 in the proof of Theorem 3.3.

The continuity condition (2.9) for the power 0, is weaker than the so-called con-
tinuous convergence of 0,&; to 0,€x, viz., (t, qx,) oIS (t,q) = 0, (ti,qr,) —
0,Ex(t,q). In fact, we only need to know the convergence of the power along con-
verging stable sequences. We will see that, under some additional assumptions, the
convergence of stable sequences leads to improved convergence, e.g., to convergence
of the energies &, (¢, qr,) — Ex(t,q), see Proposition 2.2(A) below. In the Banach
space context this may be used to convert a weak convergence into a strong one.
Moreover, the abstract Proposition 3.3 in [FMO06| shows that this energy conver-
gence together with the lower semi-continuity (2.10) of (&;)ken,, and (2.8) implies
the conditioned continuous convergence (2.9) of the power.

The two conditions (2.5) and (2.10) on the lower I'-limits of Dy and &, respectively,
are formulated in a general setting involving the stable sequences. However, in
all the applications in this paper we will use the major results under the stronger
assumption that D, and &, are the I'-limits in the usual sense:

() @ >q = Too(q) < liminfy_ . Zu(gr),
T =T limZ, €5 { (i) Vg€ Q3 (@)ren with G ¢ (2.14)
Zoo(q) = limsupy,_ o Zy.(qr)-

Here the sequence (qp)ren is called a recovery sequence for the limit g. Clearly
(i) and (ii) gives Zx(qr) — Zso(q). Our weaker assumptions (2.5) and (2.10) can
be useful in certain more involved applications since the additional stability and
energy boundedness for the converging sequences might be helpful in establishing
the desired lower bound. However, our main results in Sections 3 and 4 imply that
along our solution sequences ¢, we will have convergence of the energies, see the
statements (i) in the Theorems 3.1, 3.3, and 4.1.

The major condition that makes the whole theory working is (2.11). This condition
couples the potentials & and D, and provides a kind of upper I'-limit estimate
for & and Dy simultaneously. In |GP06| a similar condition is derived to study
the I'-convergence of the solutions in families of crack problems. There our notion
of stability is called “unilateral minimality property” and our notion of upper semi-
continuity of the stable sets is called “stability of the unilateral minimality property”.
In that paper the Theorems 7.2 and 8.3 provide what we call condition (2.11).



Lemma 2.1 The upper semi-continuity condition (2.11) is equivalent to

0,T]xQ

V stab.seq. (ti,qx,) o113 (t,q) Vg€ Q3 (qr,)ien :
llTlII sup (gkl(tb akl)_l_pkl (qkm akl)_gkl(tla le)) S goo (ta ®+DOO(Q> @“goo(t> q)
(2.15)

Proof: For abbreviation we set Hy(t,q,q) = Ex(t,q) + Di(q,q) — Ek(t,q). Then,
q € Sk(t) is equivalent to Hy(t,q,q) > 0 for all g € Q.

The implication (2.11) = (2.15) follows immediately by taking the sequence g, =
qr,- Then, (2.15) holds, since Hy, (¢, gr,» qr,) = 0 and (2.11) implies Hoo(t, g, q) > 0.

The opposite implication (2.15) = (2.11) is seen as follows. For arbitrary ¢ we choose
a sequence (gy, )ien according to (2.15). Using qx, € Sk, (t;) we have Hy, (¢, qx,, qr,) >
0. Taking the limsup,_ ., and employing (2.15) we conclude Ho. (¢, ¢,q) > 0. Since
g € Q was arbitrary, this gives ¢ € So(t). m

Note that condition (2.15) does not ask for gy, 2 ¢, hence (g, )ien is not a recovery
sequence in the sense of (2.14). In fact, the inequality in (2.15) has the property
that the right-hand side depends on g but not on (g, )en, while the left-hand side
is independent of ¢. Nevertheless, the condition is useful when choosing a suit-
able sequence (g, )ieny with g, 2 q such that &, (¢, gr,)+Dx, (qx,, @) —Ex, (L, qr,) —
Eoo(t, )+ Doo(q, ) —Ex(t,q). For later use we display this slight strengthening of
(2.15) for finding a joint recovery sequence (g, )ien:

V stab.seq. (%, qx,) oIS (t,q) Vq € Q3qy, = q:
lirln Sup (gkz(th akz)+pkz (qkw ?jkz)_gkz(tla qkl)> <& (t’ a)_l—poo(q’ a_goo(t’ Q)-
(2.16)

We provide two more conditions which are stronger than (2.16) and, hence, can be
used to establish the crucial upper semi-continuity (2.11) of the stable sets. The
weaker of these two conditions is based on the existence of a joint recovery sequence
and reads

[0,T1xQ

V stab.seq. (t,qr,) — (t,q) Vg€ Q 3gy, =2 q:
hm Sup (81171 (th a/kl>+Dkl (Qk” Z]Vkl)) S 500 (t7 a)_'_,DOO (q7 62)

l—o0

(2.17)

The stronger of these two conditions consists on two separate convergence results
for the energy functionals and for the dissipation distances: £ is the I'-limit of &,
ie.,
(2.10) holds and Vt € [0, T|Vqge Q
. i o~ 9~ ~ . ~
(@ )ren with @ = G Exo(t,q) > limsup Ex(t, Gr),

k—oo

(2.18)



and Dy continuously converges to D, conditioned by bounded energy, i.e.,

b —  Diand@) — Dulg,d). (219)
a; ) - [e'e} ) . .
s (Ert, qe)+Ex(t, @) < o0 K\ Gk G 7.9
eN

Proposition 2.2 Assume that (2.10) holds.

(A) If for each stable sequence (t;,qx,) that converges to (t,q) there exists a sequence
(@1)1en such that limsup,_, . E, (t1, @) +Dk, (qk,, @) < Exo(t,q), then the energy con-
verges along the stable sequences, i.e.,

¥ stab.seq. (tn,qn) 5 (tq) 1 Ex(ty ) — Exlt q). (2.20)

In particular, we have (2.17) = (2.20).
(B) We have the following implications:

((218) & (2.19)) = (2.17) = (2.16) = (2.15) < (2.11).
Proof: ad (A). By (2.10) we have £ (t, ¢) < liminf; . &, (¢, qx,). Using Dy, (¢x,, @)

0 we immediately obtain limsup;_, . &, (4, qr,) < Ex(t,q). This proves (2.20). Since
(2.17) includes the assumption by specifying ¢ = ¢, the final implication holds.

v

ad (B). For the first implication we start from a converging stable sequence (t;, gx,) —
(t,q) and from a general . We choose ¢, via the recovery sequence @ from (2.18),
namely ¢ = q,. Employing (2.19) we then obtain lim sup,;_, . &, (t1, @) +Dr, (@, ©1) <
Eoo(t,q)+Dx(q, q), which is the desired result (2.17).

For “(2.17) = (2.16)” note that (2.10) implies lim sup,_ . (=&, (t1, qi)) < —Ex(t, q),

whenever (¢, qx,) 52 (¢, ¢q). Adding this to (2.17) we easily find the desired result

(2.16).

The next implication follows directly from the definition as the requirement gy, 2 q
is dropped. The final equivalence is the content of Lemma 2.1. [

The following examples show that the above implications cannot be reversed. It
is easy to provide such examples taking £, and D, strictly lower than the corre-
sponding I'-limits. Our examples below are chosen such that equality between £,
and D, and the corresponding I'-limits hold. In particular, this means that (2.10)
and (2.18) hold. For simplicity, we drop the dependence on the time ¢ € [0,77,
as the main emphasis of condition (2.11) is on the convergence of ¢z. Using the
assumptions (2.7) (2.9) it is then easy to obtain the more general version including
tk — t.

Example 2.3
(T) “(2.16) # (2.17)”. Consider Q = L*(Q) equipped with its weak topology. The se-
quences &, and Dy, are assumed to be constant, namely & (t, q) = [, 2q(2)?—f (¢, z)q(z)dx
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with f € CH([0,7],L2(Q)) and Di(qo, q1) = ||q1—qol|. Obviously, we have Sy(t) =
{qel2(Q); |lg—f(t,)|le <1} and it is easy to see that (2.11) holds. However,
even without this knowledge, we may establish (2.16) directly. We choose the recov-
ery sequence gy, = ¢ — q + qi,, hence g, — g. Moreover, Dy, (qx,, Gr,) = ||g—q|lL1 =
Do (q,q) and

E (b1, Q) — Er (b ar) = (5(0—0) + ary — F (1), G—4)
- <%(CY+Q) - .f(tb ')7 a_Q>L2 = goo(t> a) - goo(ta Q),

which proves (2.16) with equality.

To show that (2.17) does not hold we consider ¢, = 0 and the stable sequence ¢; with
lgi—f(0,-)] = 1 but ¢ — ¢ = f(0,-). Moreover, let ¢ = g, such that the right-hand
side in (2.17) takes the value —1||¢||?,. Writing the joint recovery sequence ¢ in the
form ¢, = ¢; + w; we must have w; — 0 and the left-hand side in (2.17) gives

~ ~ 2
£(0,q) +Dla, @) = [q 5 (atwi—q)” — lqI* + |w|dz
> Jo5 = slafdz > —3llgllf. = £(0,9)+D(q, 9).

where we used |¢—¢| = 1 and minimized with respect to w;. Thus, we have shown
that (2.17) cannot hold.

This example is relevant to the classical linearized elastoplasticity with hardening.
An application of (2.16) in the framework of two-scale homogenization is given in

[MTO6].

(IT) “(2.16) # (2.17) % (2.19)”. We consider Q@ = R, &(q) = 3(k“q)?, and Di(q,q) =
kP|g—q|. Here, a, 3 > 0 are parameters. The corresponding stable sets are Sy, =
[—kP~ kP=2]. The I'-limits are easily obtained, namely &, = & if a = 0 and
Ex = Ifoy else and Do (q, q) = |g—q| if =0 and D (q,q) = L0} (q—q) else.

The different conditions can be checked easily. In particular, (2.19) holds if and only
if o >p>0orif a=0F=0. Condition (2.17) holds if and only if « > > 0 or if
a = 0, which is a strictly bigger set. Note that for 0 < o < (3 the property (2.20)
does not hold and hence, by Proposition 2.2(A), condition (2.17) must be violated.
Finally, condition (2.16) holds in all cases by choosing i, = g, +7—¢-

(IIT) #(2.11) & (2.15) # (2.16)”. We let Ex(q) = E(q) = 24¢* for k € Ny, and choose
Dy, via Di(q,q) = }qu my(p) dp| with my(p) = 1 for p > 0 and k otherwise. The
[-limit Do, reads Dy (q,q) = |g—q| for ¢,q > 0, Doo(q,q) = 0 for ¢ = ¢ < 0, and
+00 otherwise. Some computations give Sy = [k, 1] and S, = (—00, 1], and thus
(2.11) holds. The sequence g = —1/k is a stable sequence converging to ¢ = 0. For
g = 1, any sequence (qx)ren With gz — ¢ = 1 satisfies Dy(qr, Gr) — 2 < Dso(q,q) =
D (0,1) = 1. Hence, since £ is continuous, (2.16) cannot hold.

The next result states that the stability condition (S) in (1.1) implies a lower energy
estimate. This observation was first done in [MTLO02| and is proved more generally
in [Mie05, Prop. 5.7].
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Proposition 2.4 Let the condition (2.7) for k = oo and (2.8) hold. If ¢ : [0,T] —
Q satisfies (S) ., if Exol(+,q(+)) € BV([0,T]) and if 0,Ex(+, q(+)) € L*([0,T]), then for

all r;s € [0, T] with r < s we have the lower energy estimate

Eoo(8,q(8)) + Dissoo(q; [1, 8]) = Eao(r, q(1)) + frs i€ (t, q(t))dt.

Proof: Take an arbitrary partition r = 79 < 74 < --- < 75y = s of [r, s]. Testing
stability of ¢(7;_1) with ¢(7;) we find

Eoo(Tj- 1=Q(Tj 1)) <& (Tj 1,4 ( '))+D (q(75-1),a(75))
= Eo(jra(r) — [ (75))ds + Doo(q(Tj-1), q(75))-

Rearranging this inequality and summation over j =1,..., N gives

( q(s)) + Dissao(g; [, 5]) > Exc(s,4(5)) + 211, Docla(mi-1), (7))
Eoo(r,q(r)) + Z] 1 fTJ D€oo(t, q(7y)) dt

= Eoo(r,q )+ [7 0 (t, q(t))dt (2.21a)
+Z§v135 (75, (Tj))( —7i1) — [T 0i€x(t,q(t))dt (2.21b)
+Z] T (Ot q(TJ))—ﬁtgoo(rj,q(Tj)))dt (2.21c)

Here (2.21a) contains the desired estimate, the term in (2.21b) tends to 0, if we
choose a suitable sequence of partitions such that the Riemann sums converge to
the the L'-integral, see [FM06]. The term in (2.21c) tends to 0 because of (2.8). m

Remark 2.5 In fact, the notion of stable sequences could be strengthened slightly
by asking also that the dissipation distance remains bounded as well. For this one
has to fix a sequence of initial conditions (¢¥)ren such that the initial conditions g&
to be imposed later for the solutions satisfy D* = sup,cy Di(q", ¢f) < oo. By the
uniform control of power it is shown that all solutions (incremental or continuous)
satisfy the a priori bound

Diaf, a* (1)) + Ex(t,d"(8) < D* + 257 (cff + sup Ex(0, 7)),
see (3.10) and (3.11). Hence, we could use the additional condition

sup Dr(q*, q,) < 00 (2.22)
leN
in the definition (2.1) of stable sequences, which will weaken the crucial condition
(2.11) as well as some of the other. Since this does not lead to any substantial im-
provement in the present analysis, we refrained from using the weakening condition
(2.22) in the definition of stable sequences and, thus, keep our text easier readable.
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3 TI'-convergence

Our first result concerns the convergence of the solutions g : [0,7] — Q of the
energetic formulations (S),&(E), associated with the functionals &, and Dy:

(S), Vte|0,T]: q(t)e Si(t),

(E), Vtel[0,T]: &kt qu(t)) + Dissi(qr; [0,1]) (3.1)
= £,(0,4x(0)) + [, 0:Ex(s, qi(s)) ds.

Theorem 3.1 Let assumptions (2.5), (2.7)-(2.11) hold and let q; : [0,T] — Q be
solutions of (3.1). If for all t € [0,T] we have q(t) 2 q(t) for k — oo and if

E:(0,91(0)) — £x(0,¢(0)), then ¢ : [0,T] — Q is a solution of (S) &(E), i.e., for
all t € [0,T] we have
S alt) € Sult) )

(B Exclt,a(t)) + Dissc(; [0,1]) = Ex(0,4(0)) + [ sEacl(s,q(s)) ds.

Moreover, for all t € [0, T] we have

() &t a(t)) — Ex(t q(t)),
(i) Dissg(qx; [0, ¢]) — Dissso(t, q(t)), (3.3)
(iti)  Op&i(t, qr(t)) — 0Euo(t, q(t)).

Proof: First we use &(0,qr(0)) — £(0,¢(0)) and condition (2.7) to show that
Ek(t, qx(t)) is bounded uniformly in ¢ € [0,7] and k& € N, see also (2.13). Now,
condition (2.11) gives (S)__ and condition (2.9) implies the convergence (iii) in (3.3).

Passing to the limit £ — oo in (E), and using (2.12) and (2.10) we find the upper
energy estimate

Exo(t,q(1)) + Dissag (; [0, 1]) < en(t) + 6,(t) = Exc(0,(0)) + fy D:Exols, (s)) ds,

where e, (t) = liminf,_ . Ex(t, qx(t)) and 6.(t) = liminf,_ . Dissk(qx; [0,¢]). Propo-
sition 2.4 shows the opposite estimate and we obtain e, (t) = £ (¢, q(t)) and .(t) =
Diss(q; [0,%]). Since the limits inferior e, (t) and §,(¢) are identified a priori and do
not depend on choosing a subsequence, we conclude that they are true limits such
that (i) and (ii) in (3.3) are shown. m

The following counterexample shows that a joint condition on the sequences (E)xen
and (Dg)ren is necessary to obtain the above convergence result. In particular, the
above result as well as the conclusion of Theorem 3.3 below may be false if we have
merely the following two independent I'-convergences

Eoo = Il; lim &, and Dy, = Il; lim Dy,. (3.4)
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Example 3.2 Take Q = R? and, for a > 0 and $ > 0 let

1 e 1 \2 _ _
Enlt,q) = iqf - 7(612—%611) —tq and Di(q,q) = |a—@1| + k°|ga—a|.

Under the initial condition ¢(0) = 0, the explicit solution can be obtained from the
subdifferential equation

cf. IMT04, MROG6b| for the equivalence to (S),&(E), in the convex case. Here

1 k‘a_2 —k‘a_l
A,f( P ) IRy (v) = Sign(v) x (K*Sign(v2)) € R,

where Sign is the multi-valued signum function. With T'(k) = 1+ k71 + kP12 we
have the solutions g, : [0, 00) — R? with

(0,0)7 for t € [0, 1],
q(t) = (ot 0) " for t € [1, T(k)],
(t—1—k"1, #)T for t > T'(k).

For all choices of o and g, the limit ¢(t) = limy_ qx(t) exists. For ¢t € [0,1] we
always have ¢(t) = 0, and for ¢t > 1 we find

( (max{0,t—1},0) " for 8 €[0,1) or a € (0,2),
(max{0, (t=1)/2,t—2},0) " for (o, 8) = (2, 1),
/}1—{20 q(t) = (max{0, (t—1)/2},0)" fora =2 and > 1,
(Ir1a:><;{0,15—2},0)T fora >2and =1,
\ 0,0)" for > 2 and § > 1.

It is easy to see that we have

00 otherwise.

For 8 = 0 we have D,, = D and conclude the continuous convergence (2.19).
Hence, (2.11) holds. For 3 > 0 we have

lgi—q1| for o = g2 = 0,
00 otherwise.

Dkibm:@@w{

The unique energetic solution associated with &, and D, 1is given by
q(t) = (max{0,t—1},0)". Thus, we conclude that convergence of g, to the limit
solution holds if and only if @ € (0,2) or 8 € [0,1).
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It is interesting to see that the crucial conditional upper semi-continuity of (2.11)
of the stable sets holds if and only if § € [0,1). To see this, note S(t) =
[t—1,t+1]x{0} and that Si(t) is the parallelogram defined by the corners A, '(t +
o1,09kP) T with 0,09 € {—1,1}. Note that the restriction sup & (¢, qx) < oo for
stable sequences implies g;-(0,1)T — 0. In fact, the stronger condition of uncondi-
tioned upper semi-continuity of the stable sets (i.e., (2.11) without the boundedness
of the energy in the definition of “stab.seq.”) holds if and only if 0 < 5 < min{«, 1}.

The major result of this section is the construction of solutions of (S)_ &(E)_ with-
out first deriving solutions g, of (S),&(E),. Instead it is sufficient to have solutions
of the time-incremental minimization problems (IP)y.

For this we choose a sequence of partitions

Hk:{0:7‘5“<7f<---<7']'§k_1<7']'f,k:T}

such that the fineness ¢(Il;) = max;—;  n, (Tf—rf_l) satisfies ¢(Il;) — 0. The
time-incremental problem reads as follows:

(IP), Given ¢f € Q, for j=1,..., Ny find q € Argelg/hn <5k( T ,®+Dk(q] I,ED)
q

This incremental problem is fully implicit and thus can be called a backward Euler
or Rothe scheme. We then define the (backward) piecewise constant interpolants

G : [0,7] — Q via

@(t) = q;y forteriy mf)  and q(T) = qy,. (3:5)

Theorem 3.3 Let the conditions (2.2) (2.11) hold. Let the sequence of partitions
I, k € N, satisfy ¢(Ily) — 0. Let ¢f, k € N, be a sequence of initial conditions
satisfying
Q
@ eS0), ¢ =q and  E0,¢8) — £4(0,q). (3.6)
Then, each (IP)y has at least one solution G, = (P, Zx) : [0,T] — Q = FxZ and

there exist a subsequence (qy,)jen and a solution ¢ = (p,2) : [0,T] — Q = FxZ of
(S) &(E), such that (i)—(v) hold:

(i) VEel0,T]: &t q,(t) — Exlt, (),
(i) V¢ €[0,T7 : Dissy;(gy,; [0,7]) — Disseo(g; [0,1]),
) Vtel0,T): 2, (t) > 2(t), (3.7)
(iv) 0, (i, (1)) = %hEx(v,q(+)) in LH([0, T]),
(v) Vte|o, T] 3 subsequence (K)nen of (kj)jen : P (t) 7 o(t).

Moreover, any q : [0,T] — Q obtained as such a limit is a solution of (S)_&(E)_ .

Finally, if the topology on Q restricted to compact subsets is separable and metrizable,
then the mapping ¢ : [0, T] — F can be chosen measurable, i.e., for any open subset
A C F the pre-image ¢ (A) C [0,T] is Lebesque measurable.
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An alternative way of formulating the convergence in (v) is based on convergence of
nets, see Remark 3.4 below.

Proof: We follow the six steps of the existence proof for rate-independent problems
given in [Mie05, FM06] and add Step 7 to prove the measurability.

Step 1: A priori estimates

Using assumptions (2.3) and (2.6) we immediately see that the solution (¢})je(1,....n,}
exist by induction on j. Thus, the interpolants g, : [0,7] — Q are well defined.
Moreover, we have qf € Sk(Tf), since for all ¢ € Q we have

gk(T]k’q;?) S(IP)k gk(,rjk?a) _I_Dk(q;g—l?a) - ’Dk((Jf_u(J;g)
<p2 &E(TF,7) + Di(d}, Q).

Letting e = &E(T; ,q]) and 5;? = Dk(qf_l, qf) and using the minimization property
in (IP), once again, we derive the upper energy estimate

el + 08 <upy, E(F,qf ) =€} 1+fT - 0sEk(s,qf-,)ds. (3.8)

Inserting first (2.7) and then (2.13) into (3.8) we obtain

k
k k k i E(,k BN cF(s—1F )
ej +07 < e+ foil (el + e ds

o (3.9)
b+ (b + ) (e T ) — 1),

Neglecting 6% > 0 we obtain by induction €f 4 ¢f < (ef + cgj)ec%ﬂk and using (2.13)

and the definition of g, we find, with E, = ¢’ + sup,cy (0, ¢¥),

Vie [0, TIVkeN: &t q.t) +cf < Bt (3.10)

Note that F, < oo by assumption (3.6). Summing (3.9) over j € {1,..., M} we
find

ef — ek + Y0 (eh 4+ ) (eT T T — 1)
E_ _k E -k

(e + cf) — (ks + ) + (ef + ) Ly (e — et 7m)

(ef + et .

Z] 15;C

IAINIA

Choosing M = N}, and using the definition of g, we find

Dissy (q,; [0, T)) = Y2, oF < Eect™ (3.11)

Finally we want to show that the functions & : [0, 7] — R with & (¢ ) Ek(t,q,(1))
satisfy a BV bound independent of k. For this we test the stablhty of ¢, € S (Tk 1)
)-

< gk( 17q])+Dk(QJ 1?q]) < 6 +5k+0(7— _T 1

_ k
by ¢ = qj and obtain e [

7—1
Together with (3.9) we obtain

lef + 6% — ek, < Ci(rf—7F), (3.12)
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k

where (' is independent of £ and j. Moreover for t € [ " 1,7} ) we have en(t) =

9Ek(t, ¢f_,) and conclude, using (2.7), that f ()| dt < Co(rF—7F ).

Finally, using (3.12) we estimate the jumps
TI-C -
Aef = limp o (Br(7)) = Er(7f—h)) = ej — (ef_ + [ @n(t)dt)
ko
< |e§‘? — e§_1| + C’Q(Tj —Tf_l) < 5;‘? (Cl+02)(7‘f—7'f_1).
Combining everything we arrive at

Var(ek, 0,7]) = Z] 1 (fgﬂ e, (t)]dt + Aef)

M (68 + (Cr 420y (th—7E ) < BoetT + (C1420y)T.

(3.13)

Step 2: Selection of subsequences

Estimates (3.10) and (3.11) provides bounds, which are independent of k. The
dissipation estimate (3.11) together with the assumptions (2.2),(2.5) and (2.4) allow
us to extract a subsequence (not renumbered) and limit functions z : [0,7] — Z,
oo 1 [0, T] = R, and d : [0,7] — R such that for all s,¢ € [0,T] with s < ¢ we have

Diss (qx; [0,t]) = doo(t),  €x(t) — eoo(t),
Zu(t) S 2(t),  Disswo(2:[5,1]) < Goo(t) — duc(s).
Moreover, the energy boundedness (3.10) together with assumption (2.7) shows that

the sequence py : [0,7] — R, ¢ — 0,&(t,G,(t)) is bounded in L>([0,7]). Choosing
a further subsequence (not renumbered) we may assume

P = Po in L=([0, 7).
We also define p* € L>([0,71]) via

p"(t) = limsup py(t).

k—o0
By Fatou’s lemma we know p,, < p* a.e. on [0, 7.

The construction of the limit function ¢ : [0,7] — F is more involved. For each
t € [0, 7] we define

Alt) = {3 € F 5 080t 3.2(t) = p'(t), 3 (k)ien: T, (t) = & 1.

First, we show that A(t) is nonempty. We are now careful about subsequences,
since they now depend on t € [0,7]. First, choose a subsequence (K})en such
that pg:(t) — p*(t) for I — oco. Next, we use the energy bound (3.10) and the
uniform compactness of sublevels postulated in (2.6), which allows us to extract

a subsequence (my,)en from (K7)ien such that g, (t) < q(t) = (e(t),2(t)) for
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n — oo. Lett, = max{7 € [y, ; 7 < t}, then g, (t) € Sy (ts). Hence,

(tn, @y (t)) forms a converging, stable sequence and assumption (2.9) provides
O, (b Tt (1)) — OrEs(t, q(1)) = p7(1). (3.14)

Thus, ¢ = p(t) from q(t) = (p(t), 2(t)) lies in A(t). Using the axiom of choice we

find a mapping ¢ : [0, 7] — F with ¢(t) € A(t).

Step 3: Stability of the limit process

The limit process ¢ = (¢, 2) : [0,7] — Fx2Z = Q was defined for each ¢t € [0,7]

such that @, (t) — ¢(t) and G, € Sy (tn) with ¢, — . As in Step 2 we have a

converging, stable sequence and assumption (2.11) provides ¢(t) € S (t).

Step 4: Upper energy estimate

Recall €, (t) = Ex(t,qx(t)), ok(t) = Dissg(gy; [0,t]) and the fineness ¢ = ¢(Il;) —

0. Using the energy bound (3.10) and (2.7) we have [ex(t)—el ;| < C¢; for t €
k

[7F_,,7F). Moreover, summing (3.8) over j € {1,...,m} gives ek( kY 4+ ae(Th) <

0) + fOT’I% 0s&k(5,G,(s)) ds. Since pp = 0s&(-,q,(+)) is uniformly bounded in
L>(]0,17]) by C,, we find

en(t) + 0(t) < &0, a8) + [y pr(s)ds + (C + Cp) .. (3.15)

By (2.10) and (2.5) we have E,,(t, ¢(t)) < ex(t) = limy_, o €x(t) and Diss(2; [0, t]) <
Joo(t) = limy_ Ox(t). Hence, passing to the limit & — oo in (3.15) and using the
assumption (3.6), we conclude

Eoo(t, q(t)) + Disso(g; [0,2]) < €ao(t) + 0o ()

3.16
<5(0q0+f0poo ds<5(0q0+f ds. (3.16)

Step 5: Lower energy estimate

Since in Step 3 we have found ¢(t) € S (t) and since (3.14) provides 0,E(t, ¢(t)) =
p*(t) with p* € L>([0,T]), we can employ Proposition 2.4, which gives the lower
energy estimate giving E(t, ¢(t)) + Dissw(q; [0,1]) > Ex(0, qo) + f(f ps(s)ds

Step 6: Improved convergence

Combining (3.16) and Step 5 we obtain £, (¢, q(t)) + Dissw(q; [0, t]) = € (t) + doo(t)
for all t € [0,7] and po = p* ae. in [0,7]. Using Ex(t,q(t)) < ex(t) and
Disss(q; [0,1]) < do(t) yields Ex(t, q(t)) = exo(t) and Dissw(q; [0,t]) = deo(t) for
all ¢ € [0, T], which establishes the assertions (i) and (ii) in (3.7). Finally, employ-
ing Proposition A.2 from [FMO06, Prop. A.2| together with p,, = p* gives (iv) in
(3.7).

Step 7: Measurability of the limit process

If the sublevels of £, are separable and metrizable, then it is shown in |[Mai05,
Sect. 1.6] that t — A(t) is a measurable set-valued map which allows us to find a
measurable selection ¢ : [0,7] — F. For the convenience of the reader we repeat
the main arguments. By Step 6 we have L'-convergence in (iv). Choosing a fur-
ther subsequence (not relabeled) we may assume that for a.a. t € [0,7] we have
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& (8, Gy, (1)) — 0Exo(t, q(t)). We now define

: ~ ‘ F o~
A(t) = Limsup{py, } = { ¢ € F 5 I subseq. (j(n))nen : ¢r,,, = ¢} C A1),
j—oo
which is a measurable set-valued mapping from [0, 7] into F with has closed nonempty
values, see [AF90, Thm.8.2.5]. Filippov’s theorem (cf. [AF90, Thm. 8.2.10]) now
provides a measurable selection ¢ : [0,T] — F with o(t) € A°(¢). n

Remark 3.4 As in [MR03, MRO06a|, the pointwise convergence in (3.7.v) can be
formulated alternatively via convergence on nets, which is a standard tool of general
topology. To do this, recall that an index set = is called directed by an ordering “=<",
if for any &1, & € = there exists 3 € = such that both, & < & and & < &3. Having
a directed set (Z, <) and another set B, we say that {b¢}ccz is a net in B, if there
is a mapping = — B : { — be. If B is a topological space, we write b = limgez be
if, for any neighborhood N of b there is { € = such that b € N whenever & < ¢,
and then we say that the net {b¢}ecz converges to b (in the so-called Moore-Smith
sense).

The notion “net” generalizes that of a “sequence”, where = equals N with the standard
ordering. The term “subsequence” is generalized via the notion “finer net”. A net
{Teteez in X is called finer than the net {x¢}ecz, if there is a mapping j : SR

2

such that x Tg = T;q for all 5 € = and that for any & € = there exists fo € = such

that j(f) - f for all f with 5 - 50 Obviously, a finer net may have an index set =
of strictly greater cardinality than the index set = of the original net.

To reformulate (3.7.v) we use = C N (ordered standardly) to denote the subsequence
(k;)jen and = C {finite subsets of [0, 7]} to denote pointwise convergence. Note that
= ordered by inclusion is indeed a directed set. Then Theorem 3.3 can be reformu-
lated in such a way that, instead of the mentioned subsequence {qy, }jen, there exists
a net {@%}EEE finer than the subsequence {gy }xen and such that lim, z k¢ = o0, and

a process ¢ : [0, 7] — Q such that, instead of (3.7.v), we have lim, =%, (?) S o(t)
for any ¢ € [0, 7.

4 Relaxation

In this section we treat a question that is closely linked to the I'-convergence con-
sidered above. However, this time we consider only one pair of functionals £ and
D, such that the incremental problem (IP) need not have any solution due to miss-
ing lower semi-continuity. We provide joint conditions on & and D; and suitable
relaxations £, and D, such that approximate solutions of the incremental problem
for £ and D; converge to energetic solutions associated with £, and D,,. Our
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assumptions on the stored-energy functionals &; : [0,7]xQ — R and dissipation
distances D; : ZxZ — Ry need the new notion of the set of a-stable points S ().
For o« > 0 we let

Si(t)={qeQ; &lt,q) <00, Vge Q: &t q) <a+&(t,q) +Dig,q) }-
Note that now j only takes the two values 1 or co. Our conditions are the following:

Vjie{l,oo} Vzi,29,23 € Z:

(4.1)
Dj(21,21) =0, Dj(21,23) < Dj(21, 22)+Dj(22, 23).
Voagr € S (1), Gr € SP(T) with o, \, 0 and gy > q, G > (42)
YV compact K C Z and z, € K : (4.3)

min{Dy(2k, 2), Doo(2,2k)} = 0 = 2z =
Vte[0,TIVEeR: {qe€ Q; &(t,q) < E} is relatively compact. (4.4)

IF eR3IE >0Vt e [0,T]V) € {1,00} :
If £(t,q) < oo, then &(-,q) € C([0,T]) and (4.5)
10:E;(s,q)| < cF(E(s,q) + c¥) for all s € [0,T).

VEERVe>0dd>0:

Eo(0,q) < Eand [ti—ts] <0 =  |0,€0(t1,9)—0i€x0(l2,q)| < €. (4.6)

(b i) = (1), sUPgen & (te ) < 00, g € ST (t) with az \, 0 (47)
= & (tk, @) — 0€xo(t, q).

G Sq = Exltig) < liminf & (1, qp). (4.8)

. € ST (1) with g N0, (tr,q) 57 (t,q), supgen &1 (t, ) < 00 (4.9)

— g€ S.(1).

Like in Section 2 the last condition can be established via a hierarchy of several
stronger conditions. We only state the simplest one, namely

(i) Dy =Dy and Dy : ZxZ — |0, 00) is continuous, 10
(i) Exl(t,) = F];limgl(t, ). (4.10)
Here (i) in (4.10) corresponds to the continuous convergence condition (2.19). The
[-limit € (t,-) of the constant sequence (&1(t,-))ren is exactly the lower semi-
continuous envelope of & (¢, -), see [Dal93, Bra02|. Like in Proposition 2.2 we easily
obtain that (4.10) implies (4.9).
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The essential difference to the previous section is that the incremental problem (IP)
for £ and D; may not be solvable. We replace it by an approximate incremental
problem (AIP). As before we choose an arbitrary sequence (II;)ren of partitions
with fineness ¢y := ¢(IIy) — 0. Moreover, the sequence (gj)reny with 0 < g — 0
will be used to control the accuracy in the energy minimization.

Given ¢f, for j =1,..., Ny find iteratively q;? € Q such that

AP\ it )+ D) < (et int (82 DDA D).
Clearly, (AIP), has always at least one solution (q;?)jzl,myNk, which leads to piecewise
constant interpolants g, : [0,7] — Q defined as in (3.5). Our main result is that
suitably chosen subsequences converge to a limit process ¢ : [0,7] — Q, which is an
energetic solution associated with £, and D,,.

Theorem 4.1 Let (I1)gen be a sequence of partitions of [0, T| with ¢y, = ¢(11) — 0
and let (e},)ren satisfy 0 < e, — 0. Let (q8)ren be a sequence of initial conditions
satisfying

&2 g, &(0,¢) — Ex(0,q0) and gb € S+ (0). (4.11)

Then, for every sequence (qi)ren of piecewise constant interpolants of solutions of
(AIP); with initial value qf, there exist a subsequence (ki)ien and a solution q =

(p,2):[0,T) = Q=FxZ of (S) &(E)_, such that (i)—(v) hold:

[e.9]

(ii) Vt € [0,T]: Dissi(gy,; [0,t]) — Dissw(q; [0,1]),

(iil) VEe[0,T]: 2,(t) > 2(t),

(iv) 91 ( Ty, () = 0sc(-1q()) in LY([0, T]),

(v) Vtel[0,T] 3 subsequence (K )nen of (Ki)nen: P (t) 7 o(t).

111

(i) Veel0,T]: &(t gy () — Exlt (1)),

Moreover, any q : [0,T] — Q obtained as such a limit is a solution of (S) & (E)

o
Finally, if the topology on Q restricted compact sets is separable and metrizable, then
the mapping ¢ : [0,T] — F can be chosen measurable.

Proof: We follow the proof of Theorem 3.3 and point out the differences only.

Step 1: A priori estimates
With ¥ = &,(7}, ¢F) we obtain as in (3.9) the estimate

k k k k k k EN/ cE(rk—rk
Introducing the auxiliary variable EF = e + ¢ 4+, /cf’ and Ef = ef + ¢/ we find

EF+oF <tk (4.12)
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With E, = sup (¢f + £1(0,¢)) < oo we find Ef < e’ B, and, hence, the k-
keN

independent a priory energy bound e;? < —cb + Ejk < —cf + TR, Adding (4.12)
over j =1,..., N, we find

N N CE Tk—T
Z] 2 55 < E(If - E]’i,k + ZE]:E(@ / V- 1)Ek
< EF 4+ M (VB — e E,) < efTE,.

Like in Section 3 we define, for the piecewise constant interpolant g, the real-valued
functions

0r(t) = Diss1(qy, [0,1]), ew(t) = &t qi(t)),  pr(t) = 0i&r(t,qy(t)).

Like in Step 1 of the proof of Theorem 3.3 we have |0x(t) 4+ €x(t) — 0x(s) — exr(s)| <
Cy|t — s| and thus

Var(8;: [0,7]) < e'TE, and Var(eg; [0,T]) < et TE, + C,T.

Step 2: Selection of subsequences
This part is identical to that in Section 3. We find one subsequence (k;) such that

5kl(t) - 500(t)> Ekl (t) - 6oo(t)a 2k, (t) i Z(t)> Pk, = Pso S p*'

Moreover, for t-dependent subsequences we have g (t) S o(t).

Step 3: Stability of the limit process

With ¢ = min{ 7 € I, ; 7 <t } and o = exgp > (7] — 77,) we find g, (t) €
S (t). Clearly, (tp,7u(t)) 52 (t,q(t)) and & (ts, G (1)) < eTTE,—cF. Hence,
(4.9) implies the desired result ¢(t) € Soo(t).

Step 4: Upper energy estimate

Using the approximate minimization property of ¢ = qk( ) for j = 1,...,m we

have, after summation, €,(7%) + 6,(7%) < € (0) + epk + fo s)ds. As before we
obtain the estimate g () + 0 (t) < ,(0) + 5t + [ pr(s)ds + C’gbk for all ¢ € [0, 7.
Using ér, e — 0, Pk = Doc, k(1) = eoo(t) and 0 (t) — 500( ) we find

Exo(t: 4())+Dissoc (; [0,1]) < oo (t)F0(t) < Excl0, @o)+ fy Poods < Ewc(0, o)+ fy p* ds.

Step 5: Lower enerqy estimate
Applying Proposition 2.4 to the stable limit process ¢ : [0,7] — Q for the limit func-
tionals E and Dy, results in Ex(t, ¢(t)) + Disseo(q; [0,1]) > Ex(0, qo) + f(f pi(s)ds
Step 6: Improved convergence
Exactly as in Step 6 of the proof of Theorem 3.3 we conclude Diss(g; [0, ]) = 0uo,

*

goo(vq() = €x0; and P =D -
Step 7: Measurability works exactly as above. [
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Remark 4.2 A closely related result concerning relaxations of rate-independent
processes is discussed in [MOO06|. There, the case is studied that Q is a reflexive
Banach space and that D; is given in the form D;(z,2) = Ri(2—=z). Besides of the
usual technical assumptions, the crucial convergence conditions of the functionals
are (4.10), namely (continuous) convergence of Ry to R and I'-convergence of &
to €. The relaxation of the non-relaxed, in most cases unsolvable rate-independent
system (S),&(E), is obtained by considering the functional

To(q) = [T e (Rl(z’) +mé&i(t, q(t))) dt.

Choosing the minimizers (or suitable approximate minimizers) ¢, : [0,7] — Q
for Z,, under the initial condition ¢,,(0) = ¢o we ask the question how possible
accumulation points ¢ : [0,7] — Q can be characterized.

The following three features of Z,,, strongly depend on the fact that we are dealing
with rate-independent systems, i.e., Ry is 1-homogeneous. First it is shown that
for fixed m € N the relaxation of Z,, : L'([0,7],Q) — R is given by the same
expression but with R; and &; replaced by R, and .. A second result states
that every minimizer of Z,, (or of its relaxation) satisfies the energy balance (E);
for j € {1,000}, ie., &(t,q(t) +f0 = &;(0,q0) +an5 (s,q(s))ds. This is
surprising since the functional depends on m Whereas the energy balance does not.
Finally, it is shown that accumulation points ¢ of minimizers g, of Z,,, are solutions
of the energetic formulation (S)_&(E)

el

5 Some applications

In this section we provide three examples to illustrate the theory developed above.
In the first example we treat the numerical approximation of a standard evolutionary
variational inequality with quadratic energy as an application of our I'-limit theory
in Section 3. The second example concerns the continuity of the so-called stop and
play operators. The third example considers a nonconvex functional & that has
a nontrivial lower semi-continuous envelope &, and thus provides an example of
relaxation. For more realistic applications we refer to |[KMRO05, MR06a|, where we
also take full advantage of the abstract theory using the weaker conditions (2.15) or
(2.17). In the present applications we will rely on the more restrictive assumptions
(2.18) and (2.19) for the first application, whereas we exploit directly (2.11) for the
second and (4.10) for the third one.

5.1 Approximation via finite-dimensional subspaces

We consider the case that F and Z are separable Hilbert spaces Hx and Hz, respec-
tively, and set H = HrxHz. For the topology we choose the weak topology such
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that bounded sets are relatively compact. For the energy we assume a quadratic
form

Exlt,q) = %(Aq,q> — (1), q),

where A = A* € L(H, H*) is a bounded symmetric operator, which is additionally
positive definite, i.e., there exists ¢ > 0 such that (Aq,q) > c||q||* for all ¢ € H,
where || - || stands for the norm in H. The loading satisfies ¢ € C*([0,T], H*).

The dissipation distance is given via a convex, 1-homogeneous functional R : Hz —
[0,00), i.e. R(yz) =~R(z) for all v > 0 and z € Hz, which satisfies

(i) 2z — 2z = R(z) — R(2), (5.1)
(i) 2#0 = R(z) > 0. '
Now we set Do (20, 21) = R(21—20)-

The sequence of functionals & and D, is now obtained by a choosing a nested
sequence of finite-dimensional subspaces HY and H%, k € N such that

HE C HEY and (U2, HE is dense in Hy,

5.2
H: C HEM™ and (32, HE is dense in Hz. (52
We now let H* = HYx HY and define

Ex(t,q) for g € HY,

%) otherwise,

R(z1—2) for zy,2 € HE,

00 otherwise.

E(t q) = { and Dy,(2, z1) = {
We claim that the conditions (2.2) (2.10) hold and that (2.11) can be deduced via
Proposition 2.2 from (2.18) and (2.19).

The triangle inequality (2.2) follows from R being 1-homogeneous and convex, which
gives R(zp+21) < R(20) + R(z1). By assumption (5.1)(i) the function R and hence
Dy : HzxHz — |0, 00) are weakly continuous. The definition of Dy, keeps convexity
and strong lower semi-continuity. Thus, all D, are weakly lower semi-continuous
and (2.3) is established. Using this and Dy, < Dy < Dy we immediately obtain
the lower I'-limit condition (2.4). Finally, for sequences (z;)reny on bounded sets
in Hz the condition Dy (zx,2) = R(z — zx) — 0 implies z; — z, since z; has a
convergent subsequence, namely 2z, — z, for some 2z, € Hz. By (5.1)(i) we have
R(z— z) = llim R(z — 2z,) = 0 and (5.1)(ii) yields z. = 2. Hence, the full sequence
must converge ovfreakly to z. Thus, all conditions on Dy, k € N, are satisfied.

For the conditions on &, we first consider &£, which satisfies
c .
Exo(t:q) = 5llall* = Aollgll with Ag = sup {|€(t)]]n-.
te[0,T

Hence, the sublevels are bounded. By strong continuity and convexity of &, the
sublevels are weakly compact. Since the E-sublevel of &(t,-) is the intersection of
H* with the E-sublevel of &€, the condition (2.6) follows.
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With Ay = supye(o 1 16(t)|| s+ and 9,Ex0(t,q) = —(4(t),q) we obtain |0;E(t, q)| <

Aillql| < 2—;(@ + Ex(t,q)). Since & and E coincide if & takes finite values, the
functionals & satisfy the same estimate. Thus, (2.7) is established. Moreover, by
uniform continuity of ¢ : [0,7] — H* we similarly obtain (2.8). Like for Dy, the
lower I'-limit condition follows from £, < &, and the weak lower semi-continuity of
&.. The convergence of the power is trivial, since 8,&(t, q) = —(£(t), q) is linear in
q and independent of k.

To prove the crucial upper semi-continuity of the stable sets we use Proposition 2.2
after establishing (2.17). Let (¢, qx,) be a stable sequence with limit (¢,¢). For a
given test function ¢ € H we choose any sequence ¢ such that ¢ € H* and ¢ — ¢.
For instance, §; may be the orthogonal projection of ¢ onto H*. Hence,

Ee(ti, @) + Diy(qry @1) = Eo(ti, @) + R(q1 — aw,)
— Exo(t, ) + R(GT— q) = Ex(t, ) + Do(q, q),

and (2.17) is established.

As a conclusion, we know that both theorems of Section 3 are applicable. In partic-
ular, taking finite-dimensional subspaces H* and choosing time partitions II; we are
left with a finite number of finite-dimensional minimization problems. If ¢(II;) — 0
and (H*)pen exhausts H (i.e., (5.2) holds), then Theorem 3.3 guarantees that there
exists subsequences that converge to an energetic solution associated with &£, and
Dy In fact, here the solution of (S)_&(E)_ for a given initial value ¢y € S5(0) is
unique (cf. [Mie05]). This proves that the whole sequence must converge.

o0

We close this subsection by relating our functionals to continuum mechanics. Let
Q) C R? be a bounded domain with Lipschitz boundary. We let Hr = (H}(Q))4,
which is the space for the displacements u(t,-) : Q@ — R For some m € N we let
Hz = (HY(Q))™ for the plastic variables, which contain the plastic strain epl.s =
Bz as well as possible hardening variables. For the dissipation we choose R(z) =
Jo p(x, 2(x))dz with p € C°(QxR™) such that ri|v| < p(x,v) < rofv| for all (z,v) €
OxR™ with 0 < r; < ry and p(zx,-) : R™ — [0, 00) is 1-homogeneous and convex.
Hence, R is equivalent to the L'-norm and (5.1) holds.

The energy functional £ is usually taken in the form

Exolt,u, 2) :g{%(E(u)—Bz):C(z):(s(u)—Bz)—l—%A(x)z-z—l—g’szdx—g{ fext(t)-udz,

where £(u) = 2(Vu+Vu'), & > 0, and B € R™>¥™ Moreover, C € L*(Q, Sym(R%*))
and A € L>°(Q, Sym(R™)) are assumed to be uniformly positive definite. Thus, all
conditions on &, are satisfied, if we impose fo € CH([0, 7], H71(Q)%).

Suitable finite-dimensional approximation spaces are, for instance, finite-element
spaces with continuous piecewise affine functions on a triangulation of the domain.
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The above result provides a simplified and more straightforward convergence proof
for elastoplasticity as given in [HR99a].

Further applications, which use the full strength of the abstract theory developed in
the present paper, are found in [MR06a]. Convergence results of numerical methods
with explicit convergence rates are discussed in [HR99b, AMS06].

5.2 Continuity of the vector-valued stop and play operator

In a Hilbert space H with the scalar product (-,-) the play operator and the stop
operator of rate-independent hysteresis are defined in terms of the characteristic or
yield set C C H, which is non-empty, convex, and closed. The stop operator maps
a given input function ¢ € CHP([0, T, H) and an initial value o € C to the solution
o € CHP([0,T], H) of the following evolutionary variational inequality:

0(0) =0¢ and for a.a.t e [0,T]:0(t) € C and (o(t)—c,a(t)—L(t)) <0 for all ¢ € C.

The play operator is simply defined via the mapping from (og, ¢) to z = Pe(0p, l) =
(—c € CHYP([0,T],H). These operators can equivalently be defined by the ener-
getic formulation used in this paper. For this we define the quadratic energy func-
tional £(t,2) = £(z,2) — ({(t),z). The dissipation distance is given as D(z, z1) =
R(z1—20), where the dissipation potential is the Legendre transform I} of the indi-

cator function I¢ of the yield set C:

R(v) = I5(v) = sup ((o,v)—I¢(0)) = sup (o, v).

oEH oeC

An important question is now the dependence of the play operator Pe on the yields
set C. Under the assumptions that all the sets C, contain 0, are closed and convex,
it is shown in [Kre99| that Hausdorff convergence of Cy to Co implies that Pe, (0, ¢)
converges to Pe_ (0, ) in C°([0,T], H). In [Ste06, Cor. 4.6] this result was generalized
to the weaker Mosco convergence:

% &C <d:ef> { (1) COOD{ZEH; ZkIAZWichklECkl}, (53)
k (e's) .

(ii) COOC{ZGH; széckzk—)Z}

We may now apply our I'-convergence result from Section 3. Since &, does not
depend on k and is a simple quadratic energy, the sublevels are balls, which are
compact with respect to the weak topology. Moreover, the stable sets can be given
explicitly in the form

Sty ={z€H; 0€IRL0)+2—L(t)} = ((t) — Ch.

The conditioned upper semi-continuity of the stable sets (2.11) now simply means
that zp,—0(t;)) € Ci, t; — t and 2z, — z imply z € C,. However, since ( is
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continuous, we easily see that this condition is equivalent to (5.3.i). The remaining
condition is the lower I-limit (see (2.5)), which now reads

vy —=vin H = Ro(v) <liminf Ry (vg). (5.4)

k—o0

It is easily seen that this condition is a consequence of condition (5.3.ii).

In fact, condition (5.3.ii) and (5.4) are actually equivalent in the present situation.
Since 0 € Cy for all k, one can simply follow the first steps in the proof of |Att84,
Thm. 3.11a, p. 282| in order to check that (5.4) yields

VoeH: inf{limsuple (ox); o — 0} < I (0),

k—o0
which is clearly equivalent to condition (ii) in (5.3).

Since the limit problem has a unique solution, we additionally conclude that the
whole sequence converges and we have thus recovered the result in [Ste06] that
Mosco convergence of Ci to Cy implies convergence of the stop operator. In fact,
the results in that paper address the more general situation of approximating the
data as well.

5.3 An example for relaxation and regularization

This example covers the theory of Section 4, where only two pairs of functionals are
considered. We choose @ = Z = H'((0,1)) equipped with the weak topology and
define the energy functionals

Ei(t, 2) fo (1)) + 2(2)* — f(t,2)2(x) dz,

Euolt,2) = [y W**(Z'(l“)) +2(2)? = f(t,2)2(2) du,
where f € CY([0,T],L%((0,1))), W(a) = min{(a—1)?, (a+1)*} and W** is the con-
vexification of W, i.e., W**(a) = W (a) for |a| > 1 and W**(a) = 0 for |a| < 1. It is

a well-known fact that &; is not weakly lower semi-continuous on Z and that £, is
its relaxation on Z. Thus, all conditions on & and &, are easily proved to hold.

For the dissipation we choose
D1(20721) =Dy 20721 fo \21 - Zo )|d33 = ||21 - Zo||L17
which makes it easy to check all the assumptions on D; and D,

The crucial assumption is the upper semi-continuity (4.9) of the stable sets.

Lemma 5.1 Let 0 < oy — 0, t; — t, zz = z in Z, and z € S“(t;) (i.e., VI €
NVzZe Z: &(t,z) < oq+&i(t, 2)+Di(z,2) ). Then, z € Soo(t).
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Proof: Choose an arbitrary test function z € Z = H'((0,1)). Since £ is the T'-
limit of (&;),en, there is a recovery sequence (Z;);en such that z; — Z and & (¢, 2) —
Exo(t, ). Now, we have

Exolt,2) < lilminfgl(tl,zl) < li{ninf(oq—l—é’l(tl,Z)+||Z—zl||L1) = Ex(t, 2)+]|Z — 2|11,

where we have used the weak H'-continuity of the L'-norm. Since Z was arbitrary,
this proves the assertion. [

Theorem 5.2 Assume 0 < g, — 0 and ¢(Ily) — 0 for a sequence of partitions.
Choose zy € §1(0) C Z and define the piecewise constant interpolantsZy, : [0,T] — Z
associated to some solution of the approrimate incremental problem (AIP), with
initial value 2§ = zy. Then, there exist a subsequence (kj)jen and a limit function
z2:[0,T] — Z such that for all t € [0,T] we have

2, (t) = 2(t) in HY((0,1)),  &i(t, 21, (1) — Elt, 2(2)),
Dissy (2x;; [0,t]) — Dissoo(2;[0,1]) = fg |12(t) ]| dt.
Moreover, z : [0,T] — Z is an energetic solution associated with Ey and Dy and

satisfies = € L([0, T], H'((0,1))) n CH»([0, 7], L2((0, 1))).

The only new part in this result is the time regularity of z, namely z € L°°([0, T, L2(2)).
This fact is a property of all solutions of (S)_&(E)_, since £ is uniformly convex
on L2((0,1)). The proof of this result follows the ideas in [MRO6b.

Proposition 5.3 Every solution z : [0,T] — Z of (S) &(E), lies in CV*([0,T], L2((0,1)))
and satisfies, for a.e. t € [0,T], the estimate ||2(t)||r2 < 2|/ f(¢)||L2-

Proof: Since z(s) minimizes the functional £, (s, -)+||-—z(s)||L:, which is uniformly
convex in the L?-norm, we have the obvious estimate

VZeZ: Eu(s,2(8) + 17— 2(5)|22 < Exo(5,2) + ||IZ — 2(5) |11

Here the left-hand side is a parabola supporting the graph of the functional, which
is the right-hand side, in the minimizer z(s). Let e(r) = E(r, z(r)) for r € [0,T]
and test the above inequality by z = z(t), then

e(s) + [l2(t) = 2(s)[I3 < (s, 2(1)) + [l2(t) — 2(s) |
= e(t) = (f(s)=f(1), 2(t)) + [|2(t) — 2(s)l[u1-

Assuming ¢ > s and using the energy balance (E)_ we have
12(8) = 2(s)|le < Diss(z; [s, 1]) = e(s) — e(t) = [J(f(7), 2(7)) dr.
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Combining these estimates we arrive at

12(8) = 2()13 < [ (f(7), 2()=2(r)) d7 < sup [|f(7)ll [ llz(r)==(t)]2dr-

re(s,t]

Now apply [MRO6b, Lem. 3.3] to obtain the desired result. m

So far we are not able to prove that solutions associated with microstructure really
occur as limits of solutions of (AIP),. In (S)_&(E)_ this simply means that solu-
tions satisfy |2/(¢,x)| < 1. However, it is easy to see that (S) &(E)_ has solutions
of this type. Consider the case f(t,z) = (1—t)x and zy(z) = x. Then, the function
z:10,3] — H'((0,1)) with

t.2) = T for x € [0,1/(142)],
’ H(1—t)x +1) forz e [1/(1+1),1].

is a solution. It would be sufficient to show that this solution is unique. Then, all
accumulation points of solutions of (AIP); would necessarily converge to this unique
solution.

Instead of solving the approximate incremental problem we may also treat a regu-
larized problem by using the energies

En(t,z) = /0 %(2,,@))2 + W ( () + 2(2)* — f(t,2)2(z)dz.

We show that for this situation the ['-convergence result of Section 3 is applicable.
For this we still keep the underlying space Q@ = Z = H'((0, 1)) equipped with the
weak topology. Now each & has compact sublevels as they are closed and bounded
in H%((0, 1)), although not uniformly with respect to k, cf. condition (i) in (2.6). In
particular, choosing a smooth stable initial value z, the standard existence theory
for energetic solutions (cf. [MMO05, Mie05, FMO06]) provides for each k energetic
solutions z;, which are solutions of the differential inclusion

0 € Sign(d,2) + 108z — 0,(DW (0,2)) + 22 — f(t,z) for ae. (t,z) € [0,T]xQ,
2(0,-) = 20 € H*((0,1)),

with 2z, € L>([0, T], H*((0, 1))) N BV([0, T, L'((0,1))). In L>([0, 7], H*((0,1))) the
norm will tend to co with k, whereas in L>°([0, T], H*((0, 1))) there is a k-independent
bound.

Hence, we may pass to the limit for & — oo, since it is well-known that £, is the
[-limit of &, see |Dal93, Bra02|. Theorem 3.1 is applicable and we conclude that
convergent subsequences of (zx)ren exist and that their limit points are energetic
solutions associated with the relaxed functionals £, and D,,. Moreover, Theorem
3.3 can be employed to show that the solutions of suitable incremental problems
converge to solutions of (S) &(E)_ as well.
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An alternative relaxation is based on so-called Young measures and a continuous
extension of W. To be more specific, let

Q:={q=(zv)e H'((0,1))xY*(0,1)) ; [yav,(da) =2 (z) for a.a. x € (0,1) },
where
V?(0,1) := {1/ = (Vz)ze(0,1) 3 Vz is a probability measure on R,

Vi) € Co(R):  — [; ¢(a)vy(da) is measurable,

fml:o e @°ve(da)dz < oo}

is the set of the L?-Young measures. Then it is natural to define

&tz v) = { fo x))+z(x)?—f(t,x)z(x)de if v, = 8.y ace. in (0,1),

o0 else.

while

Evnlt,zov) = [ ([oen W(a)ve(da) + 2(x)?— f(t, 2)2(z)) dz.
The set Q can be considered as a convex subset of the linear space H*((0, 1)) x (C([0, 1))®
{a— ¢(a)+aa®; ¢ € Co(R),w € R})" under the natural embedding

(z,v) <z, (9® (P+aa®)) = [ g(a) [, (¥(a)+aa?)v,(da) d:c).

This space is standardly topologized by the weak* topology, which makes Eywy(¢, )
the I-limit of & (¢, -).

Again the theory of Section 4 is applicable. This shows that piecewise constant in-
terpolants of the solutions of the approximate incremental problem (AIP) associated

with & and D; have subsequences, which converge to energetic solutions associated
with gYM and Doo

In the vectorial, multidimensional case a more sophisticated Young measure re-
laxation in the rate-independent setting is given in [KMRO5|. Related evolution-
ary systems for Young measures, also in the rate-dependent case, are discussed in
[The98, Mie99, BFS01, MR03, Mie04, MOOG|.

A Generalization of Helly’s selection principle

The following result is an abstract version of Helly’s selection principle which is
again a generalization of [MMO05, Thm. 3.2|. Since we are concerned with a se-
quence (Dy)ren of dissipation distances rather than with a single one, we give a full
independent proof.

Vk €Ny V21, 20,23 € Z: Di(z1,21) =0, Dr(z1, 23) < Dr(z1, 22) + Dy(29, 23).
(A1)
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For all compact K C Z we have : (A.9)
If z;, € K and min {Dy(2k, 2), Do(2, 2x)} — 0, then z 2 -

(2 —zand 2y = 2) = Dul(z,2) < li;ninka(zk,Ek). (A.3)

Note that (A.1) and (A.2) are simply recalled from Section 2 while (A.3) is stronger
than the corresponding assumptions (2.5) and (4.2) (see below).

Additionally, we use that Z is a Hausdorff topological space, which implies that each
converging sequence has a unique limit. For a function z : [0,7] — Z and k € N,
we recall

Dissg(z; [s,t]) = sup{ Zjvzl Di(2(tj—1),2(t;)) s NeN, s<ty<t; <--- <ty <t}

Of course, we have Dy (z(s), z(t)) < Dissg(z; [s, t]).

Theorem A.1 Assume that the sequence (Dy)ren,, satisfies the conditions (A.1),
(A.2) and (A.3). Moreover, let K be a compact subset of Z and z, : [0,T] — Z, k €
N, a sequence satisfying

(i) Vte [0,T)Vk e N: z(t) e K (ii) sup Diss(zx; [0,T]) < 0. (A.4)
keN
Then there exist a subsequence (2, )ien and limit functions z = [0,T] — Z and ¢ :
[0,T] — [0, 00| with the following properties:

(a) Vtel0,T]: 6(t) = lli)rilo Dissy, (zx,; [0, t])

(b) Vte[0,T]: z,(t) S 2(t)
(c) Vs, te€[0,T] withs <t: Disss(2;]s,t]) <o(t) —d(s).

Proof: We define the functions dj, : [0,7] — [0, 00| with dy(t) = Dissg(z; [0, t])
which are nondecreasing by definition and uniformly bounded by (A.4.ii). Hence,
the classical Helly’s selection principle for real-valued functions provides a subse-
quence such that dj (t) — o6(t) for all ¢ € [0,T]. Hence, 6:[0,T] — [0, 00] is also
nondecreasing and bounded. This proves (a).

Denote by J C [0,7] the set of discontinuity points of §, then J is countable.
Hence, we may choose a countable, dense subset 7 of [0, 7] with J C 7. For each
t € T any subsequence of (27 (t))nen lies in the sequentially compact set I C Z and
thus contains a convergent subsequence. Hence, using Cantor’s diagonal scheme we
find a subsequence (2, )ien of (2 Jnen such that (a) remains true and additionally
we have

VteT: z,(t) 2 2(t) for | — 0.

This defines the limit function z : 7 — Z.
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To show convergence on [0,7]\7 we use the continuity of §. We fix t, € [0,T]\7,
then the sequence (zy, (t.))ien has a convergent subsequence 2; (%) 2 2,. Moreover,
there exists a sequence t, € 7 with t,, — t,. Below we will show z(¢,) A 2,. By the

Hausdorff property of Z we conclude that (zy,(t.))en has exactly one accumulation
point and we define z(t,) = z..

To show z(t,) 2, 2, we first assume ¢, < t,. Then, using (A.3) we have

Doo(2(tn), z)<Uminf Dy (2 (tn), 23, (t.))<liminf Diss; (25 5[t t.]) = 6(t)—=d(tn).
Similarly, for ¢, < t,, we obtain Dy (2, 2(t,)) < §(t,) — d(t«). Using the continuity

of ¢ in ¢, we conclude min{ Dy (2(tn), 24), Doo(24, 2(tn))} < [6(t)—0(t,)| — 0 for

n — oo. Employing (A.2) we find z(t,) 2, 2, as claimed above. Thus, assertion (b)

is proved.

The final estimate is obtained using (A.3) again. For any partition of [s, ] we have

S Dool2(tjmn), 2(t) < 3L, Lim inf D, (2, (tj-1), 2, (15))
< 1i{1_1)ci>£1f2;y:1 Dy (2, (tj-1), 21, (85)) < liminf Dissy, (25, [5,1]) = 0(t)—0(s).

Thus, Dissy(z; [s,t]) < d(t)—d(s) and (c) is proved. m

As mentioned above, the latter compactness lemma holds under assumption (A.3),
which is stronger than (2.5) and (4.2). In particular, Theorem A.1 is not directly
suited for the purposes of checking the compactness of approximating sequences
in the proof of Theorems 3.1, 3.3, and 4.1. On the other hand, we actually need
to prove compactness for stable sequences only. In particular, by assuming (2.5)
(analogously for (4.2)), the sequences z, : [0,7] — Z used in the above proofs are
such that the following holds:

Vs — sand t; — ¢ with s; < :

~ A6

(zkl(sl) Z 2 and 2k, (1) A z) = Dy(z,2) < lilrr_l)glkal(zkl(sl), 2k, (1)) (A.6)
It is easily seen that the proof of Theorem A.1 goes through by removing the as-
sumption (A.3) and assuming (A.6) instead. This slight modification of the result
is suited for proving the compactness of the sequence of approximating solutions of
Theorems 3.1 and 3.3, (and 4.1) under assumption (2.5) (assumption (4.2), resp.)
only.
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