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1 Introdu
tionRate-independent models for material behavior are useful in many 
ontexts. Elasto-plasti
ity is the most prominent appli
ation, but re
ently also damage, fra
ture,hystereti
 behavior in magneti
, magnetostri
tive and ferroele
tri
 materials, andphase transformations in shape-memory alloys have been des
ribed via su
h mod-els, see [Mie05℄ and the referen
es there.Here, we want to 
ontribute to the abstra
t mathemati
al foundations for su
hmodels. While a quite �exible existen
e theory has been developed over the last years(
f. [MTL02, MT04, MM05, Mie05, FM06℄), there is still a need to develop a theoryfor parameter dependen
e and for numeri
al approximation properties. The �rstpart of this work will address these questions in the framework of Γ-
onvergen
e. Inthe se
ond part, we are 
on
erned with the question of relaxation of rate-independentevolutionary systems. This topi
 is important for the understanding of evolution ofmi
rostru
tures in materials, see [ORS00, BCHH04, Mie04, KMR05, CT05, MO06℄.While the stati
 questions of Γ-
onvergen
e or relaxation are well studied, the relatedquestions for evolutionary systems are treated less systemati
ally, see e.g., [Ott98,Bre99, Bre00℄. Only re
ently, a systemati
 study for gradient �ows was initializedin [SS04, Ort05b, Ort05a, Ste06℄.To present our main ideas we introdu
e the main notions. The state spa
e of oursystem is denoted by Q and the stored-energy fun
tional E : [0, T ]×Q → R∞ :=

R ∪ {∞} is assumed to depend on the (pro
ess) time through a time-dependentloading. Additionally, there is given a dissipation distan
e D : Q×Q → [0,∞],whi
h is assumed to satisfy the triangle inequality but may be unsymmetri
. Here,
D(q0, q1) measures the minimal amount of energy that is dissipated when the state is
hanged from q0 into q1. In rate-independent systems the dissipation depends onlyon the path but not on the velo
ity.A pro
ess q : [0, T ] → Q is 
alled an energeti
 solution of the rate-independentpro
ess asso
iated with the fun
tionals E and D, if it satis�es the stability 
ondition(S) and the energy balan
e (E) for all t ∈ [0, T ]:

(S) ∀q̃ ∈ Q : E(t, q(t)) ≤ E(t, q̃) + D(q(t), q̃),

(E) E(t, q(t)) + DissD(q; [0, t]) = E(0, q(0)) +
∫ t

0
∂sE(s, q(s))ds.

(1.1)Here, the dissipation DissD(q; [r, s]) along a part of the 
urve is de�ned as a totalvariation with respe
t to the �metri
� D. In this 
ase, we also say that q solves the1



energeti
 formulation (S)&(E). If E and D are repla
ed by Ek and Dk, we 
all thisthe energeti
 formulation (S)k&(E)k.Under the assumption that Q is a Bana
h spa
e, that D is translation invariant, i.e.
D(q0, q1) = R(q1−q0), and that E(t, ·) is 
onvex, the energeti
 formulation (S)&(E)is equivalent to the doubly nonlinear di�erential in
lusion

0 ∈ ∂R(q̇(t)) + ∂E(t, q(t)) ⊂ Q∗ (dual spa
e),
f. [MT04, Mie05℄. The advantage of the energeti
 formulation (S)&(E) is that itis totally derivative free and hen
e 
an be formulated on an abstra
t topologi
alspa
e Q, see [MM05℄. The stability is a purely stati
 
on
ept and the evolutionary
on
ept is brought into hearing solely by the s
alar energy balan
e.In Se
tions 2 and 3 we study the situation that a sequen
e of pairs (Ek,Dk) is givenas well as limit fun
tionals (E∞,D∞). Assume that qk : [0, T ] → Q is an energeti
solution asso
iated with Ek and Dk. We study the question in what sense (Ek,Dk)has to 
onverge to (E∞,D∞) su
h that a limit pro
ess q(t) = lim
k→∞

qk(t) solves theenergeti
 formulation (S)∞&(E)∞. It turns out that the right notion of 
onvergen
eis related to Γ-
onvergen
e. However, it is easy to see that
E∞ = Γ�lim

k→∞
Ek and D∞ = Γ�lim

k→∞
Dk (1.2)is not su�
ient. See (2.14) for the de�nition of Γ-
onvergen
e and Example 3.2 fora simple system where (1.2) is not su�
ient for 
onvergen
e of solutions. Note also,that the Γ-limit D∞ may no longer satisfy the triangle inequality, so this will be anextra assumption.Central obje
ts are the set of stable states and stable sequen
es. The sets of stablestates Sk(t) depend on t ∈ [0, T ] and k ∈ N∞ := N ∪ {∞} and are de�ned via

Sk(t) := { q ∈ Q ; Ek(t, q) <∞, ∀q̃ ∈ Q : Ek(t, q) ≤ Ek(t, q̃) + Dk(q, q̃) }. (1.3)A sequen
e (tl, qkl
)l∈N is 
alled a stable sequen
e if

qkl
∈ Skl

(tl) and sup
l∈N

Ekl
(tl, qkl

) <∞. (1.4)Here we always assume that (kl)l∈N denotes a subsequen
e, i.e., kl < kl+1 → ∞.The 
ru
ial 
onditions for the desired 
onvergen
e result are now(a) E∞(t, q) ≤ inf{ lim inf
l→∞

Ekl
(tl, qkl

) ; (tl, qkl
) is stable and (tl, qkl

)
[0,T ]×Q

→ (t, q) },(b) D∞(q, q̃) ≤ inf{ lim inf
l→∞

Dkl
(qkl

, q̃kl
) ; (tl, qkl

), (t̃l, q̃kl
) are stable,

(tl, qkl
)

[0,T ]×Q

→ (t, q), (t̃l, q̃kl
)

[0,T ]×Q

→ (t̃, q̃) },(
) ∀ stable sequen
es (tl, qkl
)l∈N : (tl, qkl

)
[0,T ]×Q

→ (t, q) =⇒ q ∈ S∞(t).2



While the 
onditions (a) and (b) are usually satis�ed by assuming (1.2), the 
on-dition (
) is genuinely new and 
on
erns the interplay between the two sequen
es
(Ek)k∈N and (Dk)k∈N. In Se
tion 2 we provide several su�
ient 
onditions for theimpli
ation (
), whi
h 
an be understood as 
onditioned upper semi-
ontinuity ofthe stable sets. The strongest of these 
onditions is that E∞ = Γ�lim

k→∞
Ek and that Dk
ontinuously 
onverges to D∞. Note that (a) and (b) only ask for a lower estimate,however our theorems will prove that, along the approximate solutions, the lowerlimits E∞ and D∞ are attained, see assertions (i) and (ii) in the Theorems 3.1, 3.3,and 4.1.Having in mind numeri
al approximation we also 
ombine this result with timedis
retizations. The most e�e
tive way to study energeti
 formulations is based onthe in
remental minimization problems

(IP)k qk
j ∈ Arg min{ Ek(t

k
j , q̃) + Dk(q

k
j−1, q̃) ; q̃ ∈ Q },where Πk =

{
0 = tk0 < tk1 < · · · < tkNk

= T
} is an arbitrary partition of [0, T ]. Us-ing the same 
onditions as for the above 
onvergen
e result together with suit-able uniform 
ompa
tness results, we show that the pie
ewise 
onstant interpolants

qk : [0, T ] → Q asso
iated with solutions of (IP)k 
ontain a subsequen
e that 
on-verges to a solution of (S)∞&(E)∞, see Theorem 3.3.In Se
tion 4 we 
onsider the situation that the sequen
es (Ek)k∈N and (Dk)k∈N are
onstant, i.e. Ek = E1 and Dk = D1. However, we do not assume that E1 and
D1 are lower semi-
ontinuous. Hen
e, (IP)k may not be solvable and we repla
e itby an approximate in
remental problem (AIP)k where we only need to rea
h thein�mum up to an a

ura
y εk(t

k
j − tkj−1). Of 
ourse, (AIP)k is solvable and we studythe sequen
e qk : [0, T ] → Q of pie
ewise 
onstant interpolants. Using a slightlystrengthened version of the upper semi-
ontinuity of the stable sets we show thatthe sequen
e (qk)k∈N again 
ontains a 
onvergent subsequen
e the limit of whi
hsolves (S)∞&(E)∞. The 
onstru
tion of subsequen
es relies on an abstra
t versionof Helly's sele
tion prin
iple that is due to [MM05℄ and that we prove in a slightlymore general form in Appendix A.In the �nal Se
tion 5 we illustrate the two main results by three relatively simpleexamples. In Se
tion 5.1 we deal with a quadrati
 energy fun
tional E∞ on a Hilbertspa
e H = Q and a weakly 
ontinuous and translationally invariant dissipation dis-tan
e D∞. De�ning a sequen
e Hk of �nite-dimensional subspa
es ofH with ∪∞

k=1Hkdense in H , we de�ne Ek equal to E∞ on Hk and +∞ else. Letting Dk = D∞ it iseasy to 
he
k the abstra
t 
onditions and, thus, a 
onvergen
e result for spa
e-timedis
retizations is established. The idea of using Γ-
onvergen
e for treating numeri
alapproximations was �rst investigated in [KMR05℄. As a parti
ular appli
ation, thisprovides the 
onvergen
e result in elastoplasti
ity derived �rst in [HR99a℄. Furtherappli
ations that use the full strength of the theory developed here, are found in[MR06a℄. Stronger 
onvergen
e results of numeri
al methods, also giving spe
i�

onvergen
e rates are dis
ussed in [HR99b, AMS06℄.3



In Se
tion 5.2 we address the question of the 
ontinuity of the play and the stopoperator with respe
t to the yield or 
hara
teristi
 set Ck. This question was studiedin [Kre99, Thm. 3.12℄ and [Ste06, Cor. 4.6℄ and we show that our abstra
t resultre
overs the known results.The example in Se
tion 5.3 deals with Q = H1((0, 1)) equipped with the weaktopology, with the dissipation Dk(q, q̃) = ‖q̃−q‖L1 and with the energy fun
tional
Ek(t, q) =

∫ 1

0

W (q′(x)) + q(x)2 − f(t, x)q(x)dx,where W : R → R is a 
oer
ive, non
onvex double-well potential. The Γ-limits inthe weak topology of H1((0, 1)) of the 
onstant sequen
es Dk = D1 and Ek = E1 are
D∞ = D1 and E∞ = convE1, whi
h has the same form as Ek but W is repla
ed byits 
onvexi�
ation W ∗∗. Using the results of Se
tion 4 we show that the solutions of(AIP)k, whi
h develop mi
rostru
ture, 
onverge weakly to an energeti
 solution as-so
iated with the relaxed fun
tionals E∞ and D∞. The question of relaxations of thistype was already addressed in [MTL02, Mie04, MO06℄. However, rigorous resultswere only obtained in [The02, CT05℄. The analogous is obtained by regularizing E1in the form Ek(t, z) = E1(t, z) + 1

k

∫ 1

0
(z′′(x))2 dx.Another appli
ation of the theory presented here is given in [GP06℄, where the Γ-
onvergen
e of families of 
ra
k problems is studied. There the notion of �stabilityof the unilateral minimality property� is used for what we 
all upper semi-
ontinuityof the stable sets.2 Assumptions and preliminary resultsThroughout this work we assume that the state spa
e Q is a produ
t Q = F×Z,where ea
h of the fa
tors is a Hausdor� topologi
al spa
e. All our notions 
on-
erning (lower semi−) 
ontinuity, 
losedness and 
ompa
tness are in fa
t meant�sequentially�. (The typi
al appli
ations we have in mind are the weak topologies ina separable, re�exive Bana
h spa
es, possibly restri
ted to a weakly 
losed subset.)We will denote the 
onvergen
e in these spa
es by Q

→, F
→, and Z

→ respe
tively. Forsequen
es (tk, qk)k∈N we write (tk, qk)
[0,T ]×Q

→ (t, q) if tk → t in R and qk Q
→ q.On the state spa
eQ a sequen
e of time-dependent energy fun
tionals Ek : [0, T ]×Q →

R∞ as well as a limit E∞ : [0, T ]×Q → R∞ are given. Moreover, we have a sequen
eof dissipation distan
es Dk : Z×Z → [0,∞] and a limit D∞ : Z×Z → [0,∞]. Notethat our dissipation distan
es are not assumed to be symmetri
, i.e. Dk(z1, z2) 6=
Dk(z2, z1) is possible. Moreover, we allow for the value +∞, whi
h is often needed in
ontinuum me
hani
al models. We use the notation N∞ := N ∪ {∞} whi
h enablesus to address the sequen
e as well as the limits together.Throughout we will swit
h between the two equivalent notations q ∈ Q and (ϕ, z) ∈4



F×Z as it is most appropriate in the given 
ontext. In parti
ular, we also 
onsider
Dk, k ∈ N∞, as fun
tions on Q×Q and write Dk(q1, q2) instead of Dk(z1, z2), where
qj = (ϕj, zj) ∈ F×Z = Q is taken for granted.To formulate our assumptions we re
all the de�nition of the stable sets Sk(t) from(1.3) and 
all a sequen
e (tl, qkl

)l∈N a stable sequen
e (abbreviated as �stab.seq.�further on), if
qkl

∈ Skl
(tl) for all l ∈ N and sup

l∈N

Ekl
(tl, qkl

) <∞. (2.1)Note that (qkl
)l∈N denotes a subsequen
e to indi
ate the index kl for whi
h we havestability. We now state our assumptions in one list and 
omment on it afterwards.Pseudo distan
e: ∀ k ∈ N∞ ∀ z1, z2, z3 ∈ Z :

Dk(z1, z1) = 0 and Dk(z1, z3) ≤ Dk(z1, z2) + Dk(z2, z3).
(2.2)Lower semi-
ontinuity of Dk:

∀ k ∈ N∞ : Dk : Z×Z → [0,∞] is lower semi-
ontinuous. (2.3)Positivity of D∞: For all 
ompa
t K ⊂ Z :If zk ∈ K and min {D∞(zk, z),D∞(z, zk)} → 0, then zk
Z
→ z.

(2.4)Lower Γ-limit for Dk:
∀ stab.seq. (tl, qkl

), (t̃l, q̃kl
) with (tl, qkl

)
[0,T ]×Q

→ (t, q), (t̃l, q̃kl
)

[0,T ]×Q

→ (t̃, q̃) :

D∞(q, q̃) ≤ lim inf
l→∞

Dkl
(qkl

, q̃kl
).

(2.5)Compa
tness of energy sublevels:For all t ∈ [0, T ] and all E ∈ R we have
(i) ∀ k ∈ N∞ : { q ∈ Q ; Ek(t, q) ≤ E } is 
ompa
t;
(ii)

⋃∞
k=1{ q ∈ Q ; Ek(t, q) ≤ E } is relatively 
ompa
t. (2.6)Here (with our agreement about �sequential� notions) relative 
ompa
tness of A ⊂ Qmeans that every sequen
e in A has a 
onvergent subsequen
e.Uniform 
ontrol of the power ∂tE∞:

∃ cE0 ∈ R ∃ cE1 > 0 ∀ k ∈ N∞ ∀ t ∈ [0, T ] ∀ q ∈ Q :If Ek(t, q) <∞, then Ek(·, q) ∈ C1([0, T ]) and
|∂tEk(s, q)| ≤ cE1 (cE0 +Ek(s, q)) for all s ∈ [0, T ].

(2.7)Uniform time-
ontinuity of the power ∂tE∞:
∀ ε > 0 ∀E ∈ R ∃ δ > 0 :

E∞(0, q) ≤ E and |t1−t2| < δ =⇒ |∂tE∞(t1, q)−∂tE∞(t2, q)| < ε.

(2.8)5



Conditioned 
ontinuous 
onvergen
e of the power:
∀ stab.seq. (tl, qkl

)
[0,T ]×Q

→ (t, q) : ∂tEkl
(tl, qkl

) → ∂tE∞(t, q)
(2.9)Lower Γ-limit for Ek:

∀ stab.seq. (tl, qkl
) with (tl, qkl

)
[0,T ]×Q

→ (t, q) : E∞(t, q) ≤ lim inf
l→∞

Ekl
(tl, qkl

).
(2.10)Conditioned upper semi-
ontinuity of stable sets:

∀ stab.seq. (tl, qkl
)

[0,T ]×Q

→ (t, q) : q ∈ S∞(t).
(2.11)Assumptions (2.2)�(2.5) mainly 
on
ern the dissipation distan
es, whereas assump-tions (2.6)�(2.10) are mainly on the stored-energy fun
tionals. Conditions (2.5),(2.9)�(2.11) are based on the stable sets, whi
h involve the interplay of Ek and Dk.For a given fun
tion z : [0, T ] → Z (de�ned everywhere!) we de�ne the dissipationasso
iated with Dk, k ∈ N∞, on the subinterval [r, s], via

Dissk(z; [r, s]) = sup
{ N∑

j=1

Dk(z(tj−1), z(tj)) ; N ∈ N, r ≤ t0 < t1 < · · · < tN ≤ s
}
.The lower Γ-limit 
ondition (2.5) for Dk implies that, if zk : [0, T ] → Z 
onvergespointwise to z : [0, T ] → Z and if (t, qk(t)) is stable for all t ∈ [0, T ], then

Diss∞(z; [r, s]) ≤ lim inf
k→∞

Dissk(zk; [r, s]). (2.12)The positivity 
ondition (2.4) forD∞ implies that a fun
tion z withDiss∞(z; [0, T ]) <

∞ is 
ontinuous on [0, T ] ex
ept for at most 
ountably many points, namely the jumppoints of t 7→ Diss∞(z; [0, t]).The major 
ompa
tness result is a generalization of Helly's sele
tion prin
iple, whi
his proved in Appendix A. Using (2.2), (2.4) and (2.5) it is shown that every sequen
eof fun
tions zk : [0, T ] → Z for whi
h Dissk(zk; [0, T ]) is bounded has a pointwise
onvergent subsequen
e.The 
ompa
tness 
ondition (2.6) on the energy fun
tionals implies lower semi-
ontinuity of ea
h Ek(t, ·) : Q → R∞ and is essential for 
onstru
ting solutionsfor in
remental minimization problems.For a given q ∈ Q the mapping t 7→ Ek(t, q) maps [0, T ] into R∞. Hen
e the partialderivative ∂tE(t, q) makes sense even though Q does not have a manifold stru
ture.Moreover, it has the physi
al dimension of a power, namely energy divided by time.In [MR03℄ ∫ t

0
∂sE(s, q(s))ds is 
alled the redu
ed work of the external for
es, sin
e itrelates to the �work of the external for
es�, as used in the me
hani
s literature. In thesimple 
ase E(t, ϕ, z) = U(ϕ, z)−〈ℓ(t), ϕ〉 the former has the form −

∫ t

0
〈ℓ̇(s), ϕ(s)〉dswhile the latter one reads ∫ t

0
〈ℓ(s), ∂sϕ(s)〉ds. From our energy balan
e (E) in (1.1)it is 
lear that ∂tE(t, q(t)) is the power asso
iated with the 
hanging external for
es.For simpli
ity, we 
ontinue to 
all this term simply power.6



Condition (2.7) gives a uniform energeti
 
ontrol on the power ∂tEk(t, q). Using asimple Gronwall argument yields the estimate
Ek(t1, q) + cE0 ≤ ecE

1 |t1−t2|
(
Ek(t2, q)+c

E
0

)
, (2.13)whi
h provides simple a priori estimates for the energy and the dissipation alongsolutions, see Step 1 in the proof of Theorem 3.3.The 
ontinuity 
ondition (2.9) for the power ∂tEk is weaker than the so-
alled 
on-tinuous 
onvergen
e of ∂tEk to ∂tE∞, viz., (tl, qkl

)
[0,T ]×Q

→ (t, q) =⇒ ∂tEkl
(tl, qkl

) →
∂tE∞(t, q). In fa
t, we only need to know the 
onvergen
e of the power along 
on-verging stable sequen
es. We will see that, under some additional assumptions, the
onvergen
e of stable sequen
es leads to improved 
onvergen
e, e.g., to 
onvergen
eof the energies Ekl

(tl, qkl
) → E∞(t, q), see Proposition 2.2(A) below. In the Bana
hspa
e 
ontext this may be used to 
onvert a weak 
onvergen
e into a strong one.Moreover, the abstra
t Proposition 3.3 in [FM06℄ shows that this energy 
onver-gen
e together with the lower semi-
ontinuity (2.10) of (Ek)k∈N∞

and (2.8) impliesthe 
onditioned 
ontinuous 
onvergen
e (2.9) of the power.The two 
onditions (2.5) and (2.10) on the lower Γ-limits of Dk and Ek, respe
tively,are formulated in a general setting involving the stable sequen
es. However, inall the appli
ations in this paper we will use the major results under the strongerassumption that D∞ and E∞ are the Γ-limits in the usual sense:
I∞ = Γ�lim

k→∞
Ik

def
⇐⇒






(i) qk
Q
→ q =⇒ I∞(q) ≤ lim infk→∞ Ik(qk),(ii) ∀ q ∈ Q ∃ (q̂k)k∈N with q̂k Q

→ q :

I∞(q) ≥ lim supk→∞ Ik(q̂k).

(2.14)Here the sequen
e (q̂k)k∈N is 
alled a re
overy sequen
e for the limit q. Clearly(i) and (ii) gives Ik(q̂k) → I∞(q). Our weaker assumptions (2.5) and (2.10) 
anbe useful in 
ertain more involved appli
ations sin
e the additional stability andenergy boundedness for the 
onverging sequen
es might be helpful in establishingthe desired lower bound. However, our main results in Se
tions 3 and 4 imply thatalong our solution sequen
es qk we will have 
onvergen
e of the energies, see thestatements (i) in the Theorems 3.1, 3.3, and 4.1.The major 
ondition that makes the whole theory working is (2.11). This 
ondition
ouples the potentials Ek and Dk and provides a kind of upper Γ-limit estimatefor Ek and Dk simultaneously. In [GP06℄ a similar 
ondition is derived to studythe Γ-
onvergen
e of the solutions in families of 
ra
k problems. There our notionof stability is 
alled �unilateral minimality property� and our notion of upper semi-
ontinuity of the stable sets is 
alled �stability of the unilateral minimality property�.In that paper the Theorems 7.2 and 8.3 provide what we 
all 
ondition (2.11).7



Lemma 2.1 The upper semi-
ontinuity 
ondition (2.11) is equivalent to
∀ stab.seq. (tl, qkl

)
[0,T ]×Q

→ (t, q) ∀ q̃ ∈ Q ∃ (q̃kl
)l∈N :

lim sup
l→∞

(
Ekl

(tl, q̃kl
)+Dkl

(qkl
, q̃kl

)−Ekl
(tl, qkl

)
)
≤ E∞(t, q̃)+D∞(q, q̃)−E∞(t, q).(2.15)Proof: For abbreviation we set Hk(t, q, q̃) = Ek(t, q̃) + Dk(q, q̃) − Ek(t, q). Then,

q ∈ Sk(t) is equivalent to Hk(t, q, q̃) ≥ 0 for all q̃ ∈ Q.The impli
ation (2.11) ⇒ (2.15) follows immediately by taking the sequen
e q̃kl
=

qkl
. Then, (2.15) holds, sin
e Hkl

(tl, qkl
, q̃kl

) = 0 and (2.11) implies H∞(t, q, q̃) ≥ 0.The opposite impli
ation (2.15)⇒ (2.11) is seen as follows. For arbitrary q̃ we 
hoosea sequen
e (q̃kl
)l∈N a

ording to (2.15). Using qkl

∈ Skl
(tl) we have Hkl

(tl, qkl
, q̃kl

) ≥
0. Taking the lim supl→∞ and employing (2.15) we 
on
lude H∞(t, q, q̃) ≥ 0. Sin
e
q̃ ∈ Q was arbitrary, this gives q ∈ S∞(t).Note that 
ondition (2.15) does not ask for q̃kl

Q
→ q̃, hen
e (q̃kl

)l∈N is not a re
overysequen
e in the sense of (2.14). In fa
t, the inequality in (2.15) has the propertythat the right-hand side depends on q̃ but not on (q̃kl
)l∈N, while the left-hand sideis independent of q̃. Nevertheless, the 
ondition is useful when 
hoosing a suit-able sequen
e (q̃kl

)l∈N with q̃kl

Q
→ q̃ su
h that Ekl

(tl, q̃kl
)+Dkl

(qkl
, q̃kl

)−Ekl
(tl, qkl

) →
E∞(t, q̃)+D∞(q, q̃)−E∞(t, q). For later use we display this slight strengthening of(2.15) for �nding a joint re
overy sequen
e (q̃kl

)l∈N:
∀ stab.seq. (tl, qkl

)
[0,T ]×Q

→ (t, q) ∀ q̃ ∈ Q ∃ q̃kl

Q
→ q̃ :

lim sup
l→∞

(
Ekl

(tl, q̃kl
)+Dkl

(qkl
, q̃kl

)−Ekl
(tl, qkl

)
)
≤ E∞(t, q̃)+D∞(q, q̃)−E∞(t, q).(2.16)We provide two more 
onditions whi
h are stronger than (2.16) and, hen
e, 
an beused to establish the 
ru
ial upper semi-
ontinuity (2.11) of the stable sets. Theweaker of these two 
onditions is based on the existen
e of a joint re
overy sequen
eand reads

∀ stab.seq. (tl, qkl
)

[0,T ]×Q

→ (t, q) ∀ q̃ ∈ Q ∃ q̃kl

Q
→ q̃ :

lim sup
l→∞

(
Ekl

(tl, q̃kl
)+Dkl

(qkl
, q̃kl

)
)
≤ E∞(t, q̃)+D∞(q, q̃).

(2.17)The stronger of these two 
onditions 
onsists on two separate 
onvergen
e resultsfor the energy fun
tionals and for the dissipation distan
es: E∞ is the Γ-limit of Ek,i.e., (2.10) holds and ∀ t ∈ [0, T ] ∀ q̂ ∈ Q

∃ (q̂k)k∈N with q̂k Q
→ q̂ : E∞(t, q̂) ≥ lim sup

k→∞
Ek(t, q̂k),

(2.18)8



and Dk 
ontinuously 
onverges to D∞ 
onditioned by bounded energy, i.e.,
qk

Q
→ q and q̃k Q

→ q̃

sup
k∈N

(
Ek(t, qk)+Ek(t, q̃k)

)
<∞



 =⇒ Dk(qk, q̃k) → D∞(q, q̃). (2.19)Proposition 2.2 Assume that (2.10) holds.(A) If for ea
h stable sequen
e (tl, qkl
) that 
onverges to (t, q) there exists a sequen
e

(q̃l)l∈N su
h that lim supl→∞ Ekl
(tl, q̃l)+Dkl

(qkl
, q̃l) ≤ E∞(t, q), then the energy 
on-verges along the stable sequen
es, i.e.,

∀ stab.seq. (tl, qkl
)

[0,T ]×Q

→ (t, q) : Ekl
(tl, qkl

) → E∞(t, q). (2.20)In parti
ular, we have (2.17) =⇒ (2.20).(B) We have the following impli
ations:
( (2.18)& (2.19) ) =⇒ (2.17) =⇒ (2.16) =⇒ (2.15) ⇐⇒ (2.11).Proof: ad (A). By (2.10) we have E∞(t, q) ≤ lim inf l→∞ Ekl

(tl, qkl
). UsingDkl

(qkl
, q̃l) ≥

0 we immediately obtain lim supl→∞ Ekl
(tl, qkl

) ≤ E∞(t, q). This proves (2.20). Sin
e(2.17) in
ludes the assumption by spe
ifying q̃ = q, the �nal impli
ation holds.ad (B). For the �rst impli
ation we start from a 
onverging stable sequen
e (tl, qkl
) →

(t, q) and from a general q̃. We 
hoose q̃l via the re
overy sequen
e q̂k from (2.18),namely q̃l = q̂kl
. Employing (2.19) we then obtain lim supl→∞ Ekl

(tl, q̃l)+Dkl
(qkl

, q̃l) ≤
E∞(t, q̃)+D∞(q, q̃), whi
h is the desired result (2.17).For �(2.17)⇒ (2.16)� note that (2.10) implies lim supl→∞

(
−Ekl

(tl, qkl
)
)
≤ −E∞(t, q),whenever (tl, qkl

)
[0,T ]×Q

→ (t, q). Adding this to (2.17) we easily �nd the desired result(2.16).The next impli
ation follows dire
tly from the de�nition as the requirement q̃kl

Q
→ q̃is dropped. The �nal equivalen
e is the 
ontent of Lemma 2.1.The following examples show that the above impli
ations 
annot be reversed. Itis easy to provide su
h examples taking E∞ and D∞ stri
tly lower than the 
orre-sponding Γ-limits. Our examples below are 
hosen su
h that equality between E∞and D∞ and the 
orresponding Γ-limits hold. In parti
ular, this means that (2.10)and (2.18) hold. For simpli
ity, we drop the dependen
e on the time t ∈ [0, T ],as the main emphasis of 
ondition (2.11) is on the 
onvergen
e of qk. Using theassumptions (2.7)�(2.9) it is then easy to obtain the more general version in
luding

tk → t.Example 2.3(I) �(2.16) 6⇒ (2.17)�. Consider Q = L2(Ω) equipped with its weak topology. The se-quen
es Ek andDk are assumed to be 
onstant, namely Ek(t, q) =
∫
Ω

1
2
q(x)2−f(t, x)q(x)dx9



with f ∈ C1([0, T ],L2(Ω)) and Dk(q0, q1) = ‖q1−q0‖L1 . Obviously, we have Sk(t) =

{ q ∈ L2(Ω) ; ‖q−f(t, ·)‖L∞ ≤ 1 } and it is easy to see that (2.11) holds. However,even without this knowledge, we may establish (2.16) dire
tly. We 
hoose the re
ov-ery sequen
e q̃kl
= q̃ − q + qkl

, hen
e q̃kl
⇀ q̃. Moreover, Dkl

(qkl
, q̃kl

) = ‖q̃−q‖L1 =

D∞(q, q̃) and
Ekl

(tl, q̃kl
) − Ekl

(tl, qkl
) =

〈
1
2
(q̃−q) + qkl

− f(tl, ·), q̃−q
〉
L2

→
〈

1
2
(q̃+q) − f(tl, ·), q̃−q

〉
L2 = E∞(t, q̃) − E∞(t, q),whi
h proves (2.16) with equality.To show that (2.17) does not hold we 
onsider tl = 0 and the stable sequen
e ql with

|ql−f(0, ·)| ≡ 1 but ql ⇀ q = f(0, ·). Moreover, let q̃ = q, su
h that the right-handside in (2.17) takes the value −1
2
‖q‖2

L2. Writing the joint re
overy sequen
e q̃l in theform q̃l = ql + wl we must have wl ⇀ 0 and the left-hand side in (2.17) gives
E(0, q̃l) + D(ql, q̃l) =

∫
Ω

1
2

(
ql+wl−q

)2
− 1

2
|q|2 + |wl|dx

≥
∫
Ω

1
2
− 1

2
|q|2 dx > −1

2
‖q‖2

L2 = E(0, q)+D(q, q),where we used |ql−q| ≡ 1 and minimized with respe
t to wl. Thus, we have shownthat (2.17) 
annot hold.This example is relevant to the 
lassi
al linearized elastoplasti
ity with hardening.An appli
ation of (2.16) in the framework of two-s
ale homogenization is given in[MT06℄.(II) �(2.16) 6⇒ (2.17) 6⇒ (2.19)�. We 
onsiderQ = R, Ek(q) = 1
2
(kαq)2, andDk(q, q̃) =

kβ|q̃−q|. Here, α, β ≥ 0 are parameters. The 
orresponding stable sets are Sk =

[−kβ−α, kβ−α]. The Γ-limits are easily obtained, namely E∞ = E1 if α = 0 and
E∞ = I{0} else and D∞(q, q̃) = |q̃−q| if β = 0 and D∞(q, q̃) = I{0}(q̃−q) else.The di�erent 
onditions 
an be 
he
ked easily. In parti
ular, (2.19) holds if and onlyif α > β ≥ 0 or if α = β = 0. Condition (2.17) holds if and only if α > β ≥ 0 or if
α = 0, whi
h is a stri
tly bigger set. Note that for 0 < α ≤ β the property (2.20)does not hold and hen
e, by Proposition 2.2(A), 
ondition (2.17) must be violated.Finally, 
ondition (2.16) holds in all 
ases by 
hoosing q̃kl

= qkl
+q̃−q.(III) �(2.11)⇔ (2.15) 6⇒ (2.16)�. We let Ek(q) = E(q) = 1

2
q2 for k ∈ N∞ and 
hoose

Dk via Dk(q, q̃) =
∣∣ ∫ q

eq
mk(p) dp

∣∣ with mk(p) = 1 for p ≥ 0 and k otherwise. The
Γ-limit D∞ reads D∞(q, q̃) = |q̃−q| for q, q̃ ≥ 0, D∞(q, q̃) = 0 for q̃ = q < 0, and
+∞ otherwise. Some 
omputations give Sk = [−k, 1] and S∞ = (−∞, 1], and thus(2.11) holds. The sequen
e qk = −1/k is a stable sequen
e 
onverging to q = 0. For
q̃ = 1, any sequen
e (q̃k)k∈N with q̃k → q̃ = 1 satis�es Dk(qk, q̃k) → 2 < D∞(q, q̃) =

D∞(0, 1) = 1. Hen
e, sin
e E is 
ontinuous, (2.16) 
annot hold.The next result states that the stability 
ondition (S) in (1.1) implies a lower energyestimate. This observation was �rst done in [MTL02℄ and is proved more generallyin [Mie05, Prop. 5.7℄. 10



Proposition 2.4 Let the 
ondition (2.7) for k = ∞ and (2.8) hold. If q : [0, T ] →
Q satis�es (S)∞, if E∞(·, q(·)) ∈ BV([0, T ]) and if ∂tE∞(·, q(·)) ∈ L1([0,T]), then forall r, s ∈ [0, T ] with r < s we have the lower energy estimate

E∞(s, q(s)) + Diss∞(q; [r, s]) ≥ E∞(r, q(r)) +
∫ s

r
∂tE∞(t, q(t))dt.Proof: Take an arbitrary partition r = τ0 < τ1 < · · · < τN = s of [r, s]. Testingstability of q(τj−1) with q(τj) we �nd

E∞(τj−1, q(τj−1)) ≤ E∞(τj−1, q(τj)) + D∞(q(τj−1), q(τj))

= E∞(τj , q(τj)) −
∫ τj

τj−1
∂sE∞(s, q(τj))ds + D∞(q(τj−1), q(τj)).Rearranging this inequality and summation over j = 1, . . . , N gives

E∞(s, q(s)) + Diss∞(q; [r, s]) ≥ E∞(s, q(s)) +
∑N

j=1 D∞(q(τj−1), q(τj))

≥ E∞(r, q(r)) +
∑N

j=1

∫ τj

τj−1
∂tE∞(t, q(τj))dt

= E∞(r, q(r)) +
∫ s

r
∂tE∞(t, q(t))dt (2.21a)

+
∑N

j=1 ∂sE∞(τj , q(τj))(τj−τj−1) −
∫ s

r
∂tE∞(t, q(t))dt (2.21b)

+
∑N

j=1

∫ τj

τj−1

(
∂tE∞(t, q(τj)) − ∂tE∞(τj, q(τj))

)
dt (2.21
)Here (2.21a) 
ontains the desired estimate, the term in (2.21b) tends to 0, if we
hoose a suitable sequen
e of partitions su
h that the Riemann sums 
onverge tothe the L1-integral, see [FM06℄. The term in (2.21
) tends to 0 be
ause of (2.8).Remark 2.5 In fa
t, the notion of stable sequen
es 
ould be strengthened slightlyby asking also that the dissipation distan
e remains bounded as well. For this onehas to �x a sequen
e of initial 
onditions (qk

∗)k∈N su
h that the initial 
onditions qk
0to be imposed later for the solutions satisfy D∗ = supk∈N

Dk(q
k
∗ , q

k
0) < ∞. By theuniform 
ontrol of power it is shown that all solutions (in
remental or 
ontinuous)satisfy the a priori bound

Dk(q
k
∗ , q

k(t)) + Ek(t, q
k(t)) ≤ D∗ + 2ecE

1 T
(
cE0 + sup Ek(0, q

k
0)
)
,see (3.10) and (3.11). Hen
e, we 
ould use the additional 
ondition

sup
l∈N

Dk(q
kl
∗ , qkl

) <∞ (2.22)in the de�nition (2.1) of stable sequen
es, whi
h will weaken the 
ru
ial 
ondition(2.11) as well as some of the other. Sin
e this does not lead to any substantial im-provement in the present analysis, we refrained from using the weakening 
ondition(2.22) in the de�nition of stable sequen
es and, thus, keep our text easier readable.11



3 Γ-
onvergen
eOur �rst result 
on
erns the 
onvergen
e of the solutions qk : [0, T ] → Q of theenergeti
 formulations (S)k&(E)k asso
iated with the fun
tionals Ek and Dk:
(S)k ∀ t ∈ [0, T ] : qk(t) ∈ Sk(t),

(E)k ∀ t ∈ [0, T ] : Ek(t, qk(t)) + Dissk(qk; [0, t])

= Ek(0, qk(0)) +
∫ t

0
∂sEk(s, qk(s))ds.

(3.1)Theorem 3.1 Let assumptions (2.5), (2.7)�(2.11) hold and let qk : [0, T ] → Q besolutions of (3.1). If for all t ∈ [0, T ] we have qk(t) Q
→ q(t) for k → ∞ and if

Ek(0, qk(0)) → E∞(0, q(0)), then q : [0, T ] → Q is a solution of (S)∞&(E)∞, i.e., forall t ∈ [0, T ] we have
(S)∞ q(t) ∈ S∞(t)

(E)∞ E∞(t, q(t)) + Diss∞(q; [0, t]) = E∞(0, q(0)) +
∫ t

0
∂sE∞(s, q(s))ds.

(3.2)Moreover, for all t ∈ [0, T ] we have
(i) Ek(t, qk(t)) → E∞(t, q(t)),

(ii) Dissk(qk; [0, t]) → Diss∞(t, q(t)),

(iii) ∂tEk(t, qk(t)) → ∂tE∞(t, q(t)).

(3.3)Proof: First we use Ek(0, qk(0)) → E∞(0, q(0)) and 
ondition (2.7) to show that
Ek(t, qk(t)) is bounded uniformly in t ∈ [0, T ] and k ∈ N, see also (2.13). Now,
ondition (2.11) gives (S)∞ and 
ondition (2.9) implies the 
onvergen
e (iii) in (3.3).Passing to the limit k → ∞ in (E)k and using (2.12) and (2.10) we �nd the upperenergy estimate

E∞(t, q(t)) + Diss∞(q; [0, t]) ≤ e∗(t) + δ∗(t) = E∞(0, q(0)) +
∫ t

0
∂sE∞(s, q(s))ds,where e∗(t) = lim infk→∞ Ek(t, qk(t)) and δ∗(t) = lim infk→∞ Dissk(qk; [0, t]). Propo-sition 2.4 shows the opposite estimate and we obtain e∗(t) = E∞(t, q(t)) and δ∗(t) =

Diss∞(q; [0, t]). Sin
e the limits inferior e∗(t) and δ∗(t) are identi�ed a priori and donot depend on 
hoosing a subsequen
e, we 
on
lude that they are true limits su
hthat (i) and (ii) in (3.3) are shown.The following 
ounterexample shows that a joint 
ondition on the sequen
es (Ek)k∈Nand (Dk)k∈N is ne
essary to obtain the above 
onvergen
e result. In parti
ular, theabove result as well as the 
on
lusion of Theorem 3.3 below may be false if we havemerely the following two independent Γ-
onvergen
es
E∞ = Γ�lim

k→∞
Ek and D∞ = Γ�lim

k→∞
Dk. (3.4)12



Example 3.2 Take Q = R
2 and, for α > 0 and β ≥ 0 let

Ek(t, q) =
1

2
q2
1 +

kα

2

(
q2−

1

k
q1

)2

− tq1 and Dk(q, q̃) = |q1−q̃1| + kβ|q2−q̃2|.Under the initial 
ondition q(0) = 0, the expli
it solution 
an be obtained from thesubdi�erential equation
0 ∈ ∂Rk(q̇) + Akq − (t, 0)⊤, q(0) = 0,
f. [MT04, MR06b℄ for the equivalen
e to (S)k&(E)k in the 
onvex 
ase. Here

Ak =

(
1+kα−2 −kα−1

−kα−1 kα

)
, ∂Rk(v) = Sign(v1)×

(
kβSign(v2)

)
⊂ R

2,where Sign is the multi-valued signum fun
tion. With T (k) = 1 + kβ−1 + kβ+1−α wehave the solutions qk : [0,∞) → R
2 with

qk(t) =





(0, 0)⊤ for t ∈ [0, 1],(
t−1

kα−2+1
, 0
)⊤ for t ∈ [1, T (k)],(

t−1−kβ−1, t−T (k)
k

)⊤ for t ≥ T (k).For all 
hoi
es of α and β, the limit q(t) = limk→∞ qk(t) exists. For t ∈ [0, 1] wealways have q(t) = 0, and for t ≥ 1 we �nd
lim
k→∞

qk(t) =





(max{0, t−1}, 0)⊤ for β ∈ [0, 1) or α ∈ (0, 2),(
max{0, (t−1)/2, t−2}, 0

)⊤ for (α, β) = (2, 1),

(max{0, (t−1)/2}, 0)⊤ for α = 2 and β > 1,(
max{0, t−2}, 0

)⊤ for α > 2 and β = 1,

(0, 0)⊤ for α > 2 and β > 1.It is easy to see that we have
Ek(t, ·)

Γ
→ E∞(t, ·): q 7→

{
1
2
q2
1 − tq1 for q2 = 0,

∞ otherwise.For β = 0 we have D∞ = Dk and 
on
lude the 
ontinuous 
onvergen
e (2.19).Hen
e, (2.11) holds. For β > 0 we have
Dk

Γ
→ D∞ : (q, q̃) 7→

{
|q1−q̃1| for q2 = q̃2 = 0,

∞ otherwise.The unique energeti
 solution asso
iated with E∞ and D∞ is given by
q(t) = (max{0, t−1}, 0)⊤. Thus, we 
on
lude that 
onvergen
e of qk to the limitsolution holds if and only if α ∈ (0, 2) or β ∈ [0, 1).13



It is interesting to see that the 
ru
ial 
onditional upper semi-
ontinuity of (2.11)of the stable sets holds if and only if β ∈ [0, 1). To see this, note S∞(t) =

[t−1, t+1]×{0} and that Sk(t) is the parallelogram de�ned by the 
orners A−1
k (t +

σ1, σ2k
β)⊤ with σ1, σ2 ∈ {−1, 1}. Note that the restri
tion sup Ek(t, qk) < ∞ forstable sequen
es implies qk·(0, 1)⊤ → 0. In fa
t, the stronger 
ondition of un
ondi-tioned upper semi-
ontinuity of the stable sets (i.e., (2.11) without the boundednessof the energy in the de�nition of �stab.seq.�) holds if and only if 0 ≤ β < min{α, 1}.The major result of this se
tion is the 
onstru
tion of solutions of (S)∞&(E)∞ with-out �rst deriving solutions qk of (S)k&(E)k. Instead it is su�
ient to have solutionsof the time-in
remental minimization problems (IP)k.For this we 
hoose a sequen
e of partitions

Πk =
{
0 = τk

0 < τk
1 < · · · < τk

Nk−1 < τk
Nk

= T
}su
h that the �neness φ(Πk) = maxj=1,...,Nk

(
τk
j −τ

k
j−1

) satis�es φ(Πk) → 0. Thetime-in
remental problem reads as follows:(IP)k Given qk
0 ∈ Q, for j = 1, . . . , Nk �nd qk

j ∈ Arg Min
eq∈Q

(
Ek(τ

k
j , q̃)+Dk(q

k
j−1, q̃)

)
.This in
remental problem is fully impli
it and thus 
an be 
alled a ba
kward Euleror Rothe s
heme. We then de�ne the (ba
kward) pie
ewise 
onstant interpolants

qk : [0, T ] → Q via
qk(t) = qk

j−1 for t ∈ [τk
j−1, τ

k
j ) and qk(T ) = qk

Nk
. (3.5)Theorem 3.3 Let the 
onditions (2.2)�(2.11) hold. Let the sequen
e of partitions

Πk, k ∈ N, satisfy φ(Πk) → 0. Let qk
0 , k ∈ N, be a sequen
e of initial 
onditionssatisfying

qk
0 ∈ Sk(0), qk

0
Q
→ q0 and Ek(0, q

k
0) → E∞(0, q0). (3.6)Then, ea
h (IP)k has at least one solution qk = (ϕk, zk) : [0, T ] → Q = F×Z andthere exist a subsequen
e (qkj

)j∈N and a solution q = (ϕ, z) : [0, T ] → Q = F×Z of
(S)∞&(E)∞ su
h that (i)�(v) hold:

(i) ∀ t ∈ [0, T ] : Ekj
(t, qkj

(t)) → E∞(t, q(t)),

(ii) ∀ t ∈ [0, T ] : Disskj
(qkj

; [0, t]) → Diss∞(q; [0, t]),

(iii) ∀ t ∈ [0, T ] : zkj
(t)

Z
→ z(t),

(iv) ∂tEkj
(·, qkj

(·)) → ∂tE∞(·, q(·)) in L1([0,T]),

(v) ∀ t ∈ [0, T ] ∃ subsequen
e (Kt
n)n∈N of (kj)j∈N : ϕKt

n
(t)

F
→ ϕ(t).

(3.7)
Moreover, any q̃ : [0, T ] → Q obtained as su
h a limit is a solution of (S)∞&(E)∞.Finally, if the topology on Q restri
ted to 
ompa
t subsets is separable and metrizable,then the mapping ϕ : [0, T ] → F 
an be 
hosen measurable, i.e., for any open subset
A ⊂ F the pre-image ϕ−1(A) ⊂ [0, T ] is Lebesgue measurable.14



An alternative way of formulating the 
onvergen
e in (v) is based on 
onvergen
e ofnets, see Remark 3.4 below.Proof: We follow the six steps of the existen
e proof for rate-independent problemsgiven in [Mie05, FM06℄ and add Step 7 to prove the measurability.Step 1: A priori estimatesUsing assumptions (2.3) and (2.6) we immediately see that the solution (qk
j )j∈{1,...,Nk}exist by indu
tion on j. Thus, the interpolants qk : [0, T ] → Q are well de�ned.Moreover, we have qk

j ∈ Sk(τ
k
j ), sin
e for all q̃ ∈ Q we have

Ek(τ
k
j , q

k
j ) ≤(IP)k

Ek(τ
k
j , q̃) + Dk(q

k
j−1, q̃) −Dk(q

k
j−1, q

k
j )

≤(2.2) Ek(τ
k
j , q̃) + Dk(q

k
j , q̃).Letting ek

j = Ek(τ
k
j , q

k
j ) and δk

j = Dk(q
k
j−1, q

k
j ) and using the minimization propertyin (IP)k on
e again, we derive the upper energy estimate

ek
j + δk

j ≤(IP)k Ek(τ
k
j , q

k
j−1) = ek

j−1 +
∫ τj

τj−1
∂sEk(s, q

k
j−1)ds. (3.8)Inserting �rst (2.7) and then (2.13) into (3.8) we obtain

ek
j + δk

j ≤ ek
j−1 +

∫ τk
j

τk
j−1

cE1 (ek
j−1 + cE0 )ecE

1 (s−τk
j−1) ds

= ek
j−1 + (ek

j−1 + cE0 )(ecE
1 (τk

j −τk
j−1) − 1).

(3.9)Negle
ting δk
j ≥ 0 we obtain by indu
tion ek

j + cE0 ≤ (ek
0 + cE0 )ecE

1 τk
j and using (2.13)and the de�nition of qk we �nd, with E∗ = cE0 + supk∈N

Ek(0, q
k
0),

∀ t ∈ [0, T ] ∀ k ∈ N : Ek(t, qk(t)) + cE0 ≤ E∗e
cE
1 t. (3.10)Note that E∗ < ∞ by assumption (3.6). Summing (3.9) over j ∈ {1, . . . ,M} we�nd

∑M

j=1 δ
k
j ≤ ek

0 − ek
M +

∑M

j=1(e
k
j−1 + cE0 )(ecE

1 (τk
j −τk

j−1) − 1)

≤ (ek
0 + cE0 ) − (ek

M + cE0 ) + (ek
0 + cE0 )

∑M

j=1(e
cE
1 τk

j − ecE
1 τk

j−1)

≤ (ek
0 + cE0 )ecE

1 τk
M .Choosing M = Nk and using the de�nition of qk we �nd

Dissk(qk; [0, T ]) =
∑Nk

j=1 δ
k
j ≤ E∗e

cE
1 T . (3.11)Finally we want to show that the fun
tions ek : [0, T ] → R with ek(t) = Ek(t, qk(t))satisfy a BV bound independent of k. For this we test the stability of qk

j−1 ∈ Sk(τ
k
j−1)by q̃ = qk

j and obtain ek
j−1 ≤ Ek(τ

k
j−1, q

k
j ) + Dk(q

k
j−1, q

k
j ) ≤ ek

j + δk
j + C(τk

j −τ
k
j−1).Together with (3.9) we obtain

|ek
j + δk

j − ek
j−1| ≤ C1(τ

k
j −τ

k
j−1), (3.12)15



where C1 is independent of k and j. Moreover, for t ∈ [τk
j−1, τ

k
j ) we have ėk(t) =

∂tEk(t, q
k
j−1) and 
on
lude, using (2.7), that ∫ τk

j

τk
j−1

|ėk(t)|dt ≤ C2(τ
k
j −τ

k
j−1).Finally, using (3.12) we estimate the jumps

∆ek
j = limhց0

(
ek(τ

k
j ) − ek(τ

k
j −h)

)
= ek

j −
(
ek

j−1 +
∫ τk

j

τk
j−1

ėk(t)dt
)

≤ |ek
j − ek

j−1| + C2(τ
k
j −τ

k
j−1) ≤ δk

j + (C1+C2)(τ
k
j −τ

k
j−1).Combining everything we arrive at

Var(ek; [0, T ]) =
∑Nk

j=1

( ∫ τk
j

τk
j−1

|ėk(t)|dt+ ∆ek
j

)

≤
∑Nk

j=1

(
δk
j + (C1+2C2)(τ

k
j −τ

k
j−1)

)
≤ E∗e

cE
1 T + (C1+2C2)T.

(3.13)Step 2: Sele
tion of subsequen
esEstimates (3.10) and (3.11) provides bounds, whi
h are independent of k. Thedissipation estimate (3.11) together with the assumptions (2.2),(2.5) and (2.4) allowus to extra
t a subsequen
e (not renumbered) and limit fun
tions z : [0, T ] → Z,
e∞ : [0, T ] → R, and δ∞ : [0, T ] → R su
h that for all s, t ∈ [0, T ] with s ≤ t we have

Dissk(qk; [0, t]) → δ∞(t), ek(t) → e∞(t),

zk(t)
Z
→ z(t), Diss∞(z; [s, t]) ≤ δ∞(t) − δ∞(s).Moreover, the energy boundedness (3.10) together with assumption (2.7) shows thatthe sequen
e pk : [0, T ] → R, t 7→ ∂tEk(t, qk(t)) is bounded in L∞([0, T ]). Choosinga further subsequen
e (not renumbered) we may assume

pk
∗
⇀ p∞ in L∞([0, T ]).We also de�ne p∗ ∈ L∞([0, T ]) via

p∗(t) = lim sup
k→∞

pk(t).By Fatou's lemma we know p∞ ≤ p∗ a.e. on [0, T ].The 
onstru
tion of the limit fun
tion ϕ : [0, T ] → F is more involved. For ea
h
t ∈ [0, T ] we de�ne

A(t) = { ϕ̃ ∈ F ; ∂tE∞(t, ϕ̃, z(t)) = p∗(t), ∃ (kl)l∈N : ϕkl
(t)

F
→ ϕ̃ }.First, we show that A(t) is nonempty. We are now 
areful about subsequen
es,sin
e they now depend on t ∈ [0, T ]. First, 
hoose a subsequen
e (Kt

l )l∈N su
hthat pKt
l
(t) → p∗(t) for l → ∞. Next, we use the energy bound (3.10) and theuniform 
ompa
tness of sublevels postulated in (2.6), whi
h allows us to extra
ta subsequen
e (mt

n)n∈N from (Kt
l )l∈N su
h that qmt

n
(t)

Q
→ q(t) = (ϕ(t), z(t)) for16



n → ∞. Let tn = max{ τ ∈ Πmt
n

; τ ≤ t }, then qmt
n
(t) ∈ Smt

n
(tn). Hen
e,

(tn, qmt
n
(t)) forms a 
onverging, stable sequen
e and assumption (2.9) provides

∂tEmt
n
(tn, qmt

n
(t)) → ∂tE∞(t, q(t)) = p∗(t). (3.14)Thus, ϕ̃ = ϕ(t) from q(t) = (ϕ(t), z(t)) lies in A(t). Using the axiom of 
hoi
e we�nd a mapping ϕ : [0, T ] → F with ϕ(t) ∈ A(t).Step 3: Stability of the limit pro
essThe limit pro
ess q = (ϕ, z) : [0, T ] → F×Z = Q was de�ned for ea
h t ∈ [0, T ]su
h that qmt

n
(t) → q(t) and qmt

n
∈ Smt

n
(tn) with tn → t. As in Step 2 we have a
onverging, stable sequen
e and assumption (2.11) provides q(t) ∈ S∞(t).Step 4: Upper energy estimateRe
all ek(t) = Ek(t, qk(t)), δk(t) = Dissk(qk; [0, t]) and the �neness φk = φ(Πk) →

0. Using the energy bound (3.10) and (2.7) we have |ek(t)−ek
j−1| ≤ Cφk for t ∈[

τk
j−1, τ

k
j

). Moreover, summing (3.8) over j ∈ {1, ..., m} gives ek(τ
k
m) + δk(τ

k
m) ≤

ek(0) +
∫ τk

m

0
∂sEk(s, qk(s)) ds. Sin
e pk = ∂sEk(·, qk(·)) is uniformly bounded in

L∞([0, T ]) by Cp, we �nd
ek(t) + δk(t) ≤ Ek(0, q

k
0) +

∫ t

0
pk(s)ds+ (C + Cp)φk. (3.15)By (2.10) and (2.5) we have E∞(t, q(t)) ≤ e∞(t) = limk→∞ ek(t) and Diss∞(z; [0, t]) ≤

δ∞(t) = limk→∞ δk(t). Hen
e, passing to the limit k → ∞ in (3.15) and using theassumption (3.6), we 
on
lude
E∞(t, q(t)) + Diss∞(q; [0, t]) ≤ e∞(t) + δ∞(t)

≤ E∞(0, q0) +
∫ t

0
p∞(s)ds ≤ E∞(0, q0) +

∫ t

0
p∗(s)ds.

(3.16)Step 5: Lower energy estimateSin
e in Step 3 we have found q(t) ∈ S∞(t) and sin
e (3.14) provides ∂tE∞(t, q(t)) =

p∗(t) with p∗ ∈ L∞([0, T ]), we 
an employ Proposition 2.4, whi
h gives the lowerenergy estimate giving E∞(t, q(t)) + Diss∞(q; [0, t]) ≥ E∞(0, q0) +
∫ t

0
p∗(s)ds.Step 6: Improved 
onvergen
eCombining (3.16) and Step 5 we obtain E∞(t, q(t))+Diss∞(q; [0, t]) = e∞(t)+ δ∞(t)for all t ∈ [0, T ] and p∞ = p∗ a.e. in [0, T ]. Using E∞(t, q(t)) ≤ e∞(t) and

Diss∞(q; [0, t]) ≤ δ∞(t) yields E∞(t, q(t)) = e∞(t) and Diss∞(q; [0, t]) = δ∞(t) forall t ∈ [0, T ], whi
h establishes the assertions (i) and (ii) in (3.7). Finally, employ-ing Proposition A.2 from [FM06, Prop. A.2℄ together with p∞ = p∗ gives (iv) in(3.7).Step 7: Measurability of the limit pro
essIf the sublevels of E∞ are separable and metrizable, then it is shown in [Mai05,Se
t. 1.6℄ that t 7→ A(t) is a measurable set-valued map whi
h allows us to �nd ameasurable sele
tion ϕ : [0, T ] → F . For the 
onvenien
e of the reader we repeatthe main arguments. By Step 6 we have L1-
onvergen
e in (iv). Choosing a fur-ther subsequen
e (not relabeled) we may assume that for a.a. t ∈ [0, T ] we have17



∂tEkj
(t, qkj

(t)) → ∂tE∞(t, q(t)). We now de�ne
A0(t) = Limsup

j→∞
{ϕkj

} = { ϕ̃ ∈ F ; ∃ subseq. (j(n))n∈N : ϕkj(n)

F
→ ϕ̃ } ⊂ A(t),whi
h is a measurable set-valued mapping from [0, T ] intoF with has 
losed nonemptyvalues, see [AF90, Thm. 8.2.5℄. Filippov's theorem (
f. [AF90, Thm. 8.2.10℄) nowprovides a measurable sele
tion ϕ : [0, T ] → F with ϕ(t) ∈ A0(t).Remark 3.4 As in [MR03, MR06a℄, the pointwise 
onvergen
e in (3.7.v) 
an beformulated alternatively via 
onvergen
e on nets, whi
h is a standard tool of generaltopology. To do this, re
all that an index set Ξ is 
alled dire
ted by an ordering ���,if for any ξ1, ξ2 ∈ Ξ there exists ξ3 ∈ Ξ su
h that both, ξ1 � ξ3 and ξ2 � ξ3. Havinga dire
ted set (Ξ,�) and another set B, we say that {bξ}ξ∈Ξ is a net in B, if thereis a mapping Ξ → B : ξ 7→ bξ. If B is a topologi
al spa
e, we write b = limξ∈Ξ bξif, for any neighborhood N of b there is ξ0 ∈ Ξ su
h that bξ ∈ N whenever ξ0 � ξ,and then we say that the net {bξ}ξ∈Ξ 
onverges to b (in the so-
alled Moore-Smithsense).The notion �net� generalizes that of a �sequen
e�, where Ξ equals N with the standardordering. The term �subsequen
e� is generalized via the notion ��ner net�. A net

{x̃eξ
}eξ∈eΞ in X is 
alled �ner than the net {xξ}ξ∈Ξ, if there is a mapping j : Ξ̃ → Ξsu
h that x̃eξ

= x
j(eξ) for all ξ̃ ∈ Ξ̃ and that for any ξ ∈ Ξ there exists ξ̃0 ∈ Ξ̃ su
hthat j(ξ̃) � ξ for all ξ̃ with ξ̃ � ξ̃0. Obviously, a �ner net may have an index set Ξ̃of stri
tly greater 
ardinality than the index set Ξ of the original net.To reformulate (3.7.v) we use Ξ ⊂ N (ordered standardly) to denote the subsequen
e

(kj)j∈N and Ξ̃ ⊂ {�nite subsets of [0, T ]} to denote pointwise 
onvergen
e. Note that
Ξ̃ ordered by in
lusion is indeed a dire
ted set. Then Theorem 3.3 
an be reformu-lated in su
h a way that, instead of the mentioned subsequen
e {q̄kj

}j∈N, there existsa net {q̄kξ
}

ξ∈eΞ �ner than the subsequen
e {q̄k}k∈N and su
h that lim
ξ∈eΞ kξ = ∞, anda pro
ess q : [0, T ] → Q su
h that, instead of (3.7.v), we have limξ∈eΞ ϕkξ

(t)
F
→ ϕ(t)for any t ∈ [0, T ].4 RelaxationIn this se
tion we treat a question that is 
losely linked to the Γ-
onvergen
e 
on-sidered above. However, this time we 
onsider only one pair of fun
tionals E1 and

D1 su
h that the in
remental problem (IP) need not have any solution due to miss-ing lower semi-
ontinuity. We provide joint 
onditions on E1 and D1 and suitablerelaxations E∞ and D∞ su
h that approximate solutions of the in
remental problemfor E1 and D1 
onverge to energeti
 solutions asso
iated with E∞ and D∞. Our18



assumptions on the stored-energy fun
tionals Ej : [0, T ]×Q → R∞ and dissipationdistan
es Dj : Z×Z → R∞ need the new notion of the set of α-stable points Sα
j (t).For α ≥ 0 we let

Sα
j (t) = { q ∈ Q ; Ej(t, q) <∞, ∀ q̃ ∈ Q : Ej(t, q) ≤ α + Ej(t, q̃) + Dj(q, q̃) }.Note that now j only takes the two values 1 or ∞. Our 
onditions are the following:
∀ j ∈ {1,∞} ∀ z1, z2, z3 ∈ Z :

Dj(z1, z1) = 0, Dj(z1, z3) ≤ Dj(z1, z2)+Dj(z2, z3).
(4.1)

∀ qk ∈ Sαk

1 (tk), q̃k ∈ Sαk

1 (t̃k) with αk ց 0 and qk
Q
→ q, q̃k

Q
→ q̃ :

D∞(q, q̃) ≤ lim inf
k→∞

D1(qk, q̃k).
(4.2)

∀ 
ompa
t K ⊂ Z and zk ∈ K :

min {D∞(zk, z),D∞(z, zk)} → 0 =⇒ zk
Z
→ z.

(4.3)
∀ t ∈ [0, T ] ∀E ∈ R : { q ∈ Q ; E1(t, q) ≤ E } is relatively 
ompa
t. (4.4)
∃ cE0 ∈ R ∃ cE1 > 0 ∀ t ∈ [0, T ] ∀ j ∈ {1,∞} :If Ej(t, q) <∞, then Ej(·, q) ∈ C1([0, T ]) and
|∂sEj(s, q)| ≤ cE1 (Ej(s, q) + cE0 ) for all s ∈ [0, T ].

(4.5)
∀E ∈ R ∀ ε > 0 ∃ δ > 0 :

E∞(0, q) ≤ E and |t1−t2| < δ =⇒ |∂tE∞(t1, q)−∂tE∞(t2, q)| < ε.
(4.6)

(tk, qk)
Q
→ (t, q), supk∈N

E1(tk, qk) <∞, qk ∈ Sαk

1 (tk) with αk ց 0

=⇒ ∂tE1(tk, qk) → ∂tE∞(t, q).
(4.7)

qk
Q
→ q =⇒ E∞(t, q) ≤ lim inf

k→∞
E1(t, qk). (4.8)

qk ∈ Sαk

1 (tk) with αk ց 0, (tk, qk)
[0,T ]×Q

→ (t, q), supk∈N
E1(tk, qk) <∞

=⇒ q ∈ S∞(t).
(4.9)Like in Se
tion 2 the last 
ondition 
an be established via a hierar
hy of severalstronger 
onditions. We only state the simplest one, namely(i) D1 = D∞ and D1 : Z×Z → [0,∞) is 
ontinuous,(ii) E∞(t, ·) = Γ�lim

k→∞
E1(t, ·).

(4.10)Here (i) in (4.10) 
orresponds to the 
ontinuous 
onvergen
e 
ondition (2.19). The
Γ-limit E∞(t, ·) of the 
onstant sequen
e (E1(t, ·))k∈N is exa
tly the lower semi-
ontinuous envelope of E1(t, ·), see [Dal93, Bra02℄. Like in Proposition 2.2 we easilyobtain that (4.10) implies (4.9). 19



The essential di�eren
e to the previous se
tion is that the in
remental problem (IP)for E1 and D1 may not be solvable. We repla
e it by an approximate in
rementalproblem (AIP). As before we 
hoose an arbitrary sequen
e (Πk)k∈N of partitionswith �neness φk := φ(Πk) → 0. Moreover, the sequen
e (εk)k∈N with 0 < εk → 0will be used to 
ontrol the a

ura
y in the energy minimization.(AIP)k 



Given qk
0 , for j = 1, . . . , Nk �nd iteratively qk

j ∈ Q su
h that
E1(τ

k
j , q

k
j ) + D1(q

k
j−1, q

k
j ) ≤ (τk

j −τ
k
j−1)εk + inf

eq∈Q

(
E1(τ

k
j , q̃)+D1(q

k
j−1, q̃)

)
.Clearly, (AIP)k has always at least one solution (qk

j )j=1,...,Nk
, whi
h leads to pie
ewise
onstant interpolants qk : [0, T ] → Q de�ned as in (3.5). Our main result is thatsuitably 
hosen subsequen
es 
onverge to a limit pro
ess q : [0, T ] → Q, whi
h is anenergeti
 solution asso
iated with E∞ and D∞.Theorem 4.1 Let (Πk)k∈N be a sequen
e of partitions of [0, T ] with φk = φ(Πk) → 0and let (εk)k∈N satisfy 0 < εk → 0. Let (qk

0)k∈N be a sequen
e of initial 
onditionssatisfying
qk
0

Q
→ q0, E1(0, q

k
0) → E∞(0, q0) and qk

0 ∈ Sεkφk

1 (0). (4.11)Then, for every sequen
e (qk)k∈N of pie
ewise 
onstant interpolants of solutions of(AIP)k with initial value qk
0 , there exist a subsequen
e (kl)l∈N and a solution q =

(ϕ, z) : [0, T ] → Q = F×Z of (S)∞&(E)∞ su
h that (i)�(v) hold:
(i) ∀ t ∈ [0, T ] : E1(t, qkl

(t)) → E∞(t, q(t)),

(ii) ∀ t ∈ [0, T ] : Diss1(qkl
; [0, t]) → Diss∞(q; [0, t]),

(iii) ∀ t ∈ [0, T ] : zkl
(t)

Z
→ z(t),

(iv) ∂tE1(·, qkl
(·)) → ∂tE∞(·, q(·)) in L1([0, T ]),

(v) ∀ t ∈ [0, T ] ∃ subsequen
e (Kt
n)n∈N of (kl)n∈N : ϕKt

n
(t)

F
→ ϕ(t).Moreover, any q̃ : [0, T ] → Q obtained as su
h a limit is a solution of (S)∞&(E)∞.Finally, if the topology on Q restri
ted 
ompa
t sets is separable and metrizable, thenthe mapping ϕ : [0, T ] → F 
an be 
hosen measurable.Proof: We follow the proof of Theorem 3.3 and point out the di�eren
es only.Step 1: A priori estimatesWith ek

j = E1(τ
k
j , q

k
j ) we obtain as in (3.9) the estimate

ek
j + δk

j ≤ ek
j−1 + εk(τ

k
j − τk

j−1) + (ek
j−1 + cE0 )(ecE

1 (τk
j −τk

j−1) − 1).Introdu
ing the auxiliary variable Ek
j = ek

j + cE0 + εk/c
E
1 and Ek

0 = ek
0 + cE0 we �nd

Ek
j + δk

j ≤ ecE
1 (τk

j −τk
j−1)Ek

j−1. (4.12)20



With E∗ = sup
k∈N

(
cE0 + E1(0, q

k
0)
)
< ∞ we �nd Ek

j ≤ ecE
1 τk

j E∗ and, hen
e, the k-independent a priory energy bound ek
j ≤ −cE0 +Ek

j ≤ −cE0 + ecE
1 TE∗. Adding (4.12)over j = 1, . . . , Nk we �nd

∑Nk

j=1 δ
k
j ≤ Ek

0 − Ek
Nk

+
∑Nk

j=1(e
cE
1 (τk

j −τk
j−1) − 1)Ek

j−1

≤ Ek
0 +

∑Nk

j=1

(
ecE

1 τk
j E∗ − ecE

1 τk
j−1E∗

)
≤ ecE

1 TE∗.Like in Se
tion 3 we de�ne, for the pie
ewise 
onstant interpolant qk, the real-valuedfun
tions
δk(t) = Diss1(qk, [0, t]), ek(t) = E1(t, qk(t)), pk(t) = ∂tE1(t, qk(t)).Like in Step 1 of the proof of Theorem 3.3 we have |δk(t) + ek(t) − δk(s) − ek(s)| ≤

C∗|t− s| and thus
Var(δk; [0, T ]) ≤ ecE

1 TE∗ and Var(ek; [0, T ]) ≤ ecE
1 TE∗ + C∗T.Step 2: Sele
tion of subsequen
esThis part is identi
al to that in Se
tion 3. We �nd one subsequen
e (kl) su
h that

δkl
(t) → δ∞(t), ekl

(t) → e∞(t), zkl
(t)

Z
→ z(t), pkl

∗
⇀ p∞ ≤ p∗.Moreover, for t-dependent subsequen
es we have ϕKt

n
(t)

F
→ ϕ(t).Step 3: Stability of the limit pro
essWith tk = min{ τ ∈ Πk ; τ ≤ t } and αk = εkφk ≥ εk(τ

k
j − τk

j−1) we �nd qk(t) ∈

Sαk

1 (tk). Clearly, (tk, qk(t))
[0,T ]×Q

→ (t, q(t)) and E1(tk, qk(t)) ≤ ecE
1 TE∗−cE0 . Hen
e,(4.9) implies the desired result q(t) ∈ S∞(t).Step 4: Upper energy estimateUsing the approximate minimization property of qk

j = qk(τ
k
j ) for j = 1, ..., m wehave, after summation, ek(τ

k
m) + δk(τ

k
m) ≤ ek(0) + εkτ

k
m +

∫ tk
k

0
pk(s)ds. As before weobtain the estimate ek(t) + δk(t) ≤ ek(0) + εkt+

∫ t

0
pk(s)ds+ Cφk for all t ∈ [0, T ].Using φk, εk → 0, pk

∗
⇀ p∞, ek(t) → e∞(t) and δk(t) → δ∞(t) we �nd

E∞(t, q(t))+Diss∞(q; [0, t]) ≤ e∞(t)+δ∞(t) ≤ E∞(0, q0)+
∫ t

0
p∞ds ≤ E∞(0, q0)+

∫ t

0
p∗ds.Step 5: Lower energy estimateApplying Proposition 2.4 to the stable limit pro
ess q : [0, T ] → Q for the limit fun
-tionals E∞ and D∞ results in E∞(t, q(t)) + Diss∞(q; [0, t]) ≥ E∞(0, q0) +

∫ t

0
p∗(s)ds.Step 6: Improved 
onvergen
eExa
tly as in Step 6 of the proof of Theorem 3.3 we 
on
lude Diss∞(q; [0, ·]) = δ∞,

E∞(·, q(·) = e∞, and p∞ = p∗.Step 7: Measurability works exa
tly as above.21



Remark 4.2 A 
losely related result 
on
erning relaxations of rate-independentpro
esses is dis
ussed in [MO06℄. There, the 
ase is studied that Q is a re�exiveBana
h spa
e and that D1 is given in the form D1(z, z̃) = R1(z̃−z). Besides of theusual te
hni
al assumptions, the 
ru
ial 
onvergen
e 
onditions of the fun
tionalsare (4.10), namely (
ontinuous) 
onvergen
e of R1 to R∞ and Γ-
onvergen
e of E1to E∞. The relaxation of the non-relaxed, in most 
ases unsolvable rate-independentsystem (S)1&(E)1 is obtained by 
onsidering the fun
tional
Im(q) =

∫ T

0
e−mt

(
R1(ż) +mE1(t, q(t))

)
dt.Choosing the minimizers (or suitable approximate minimizers) qm : [0, T ] → Qfor Im under the initial 
ondition qm(0) = q0 we ask the question how possiblea

umulation points q : [0, T ] → Q 
an be 
hara
terized.The following three features of Im strongly depend on the fa
t that we are dealingwith rate-independent systems, i.e., R1 is 1-homogeneous. First it is shown thatfor �xed m ∈ N the relaxation of Im : L1([0, T ],Q) → R∞ is given by the sameexpression but with R1 and E1 repla
ed by R∞ and E∞. A se
ond result statesthat every minimizer of Im (or of its relaxation) satis�es the energy balan
e (E)jfor j ∈ {1,∞}, i.e., Ej(t, q(t)) +

∫ t

0
Rj(dz) = Ej(0, q0) +

∫ t

0
∂sEj(s, q(s)) ds. This issurprising sin
e the fun
tional depends on m whereas the energy balan
e does not.Finally, it is shown that a

umulation points q of minimizers qm of Im are solutionsof the energeti
 formulation (S)∞&(E)∞.5 Some appli
ationsIn this se
tion we provide three examples to illustrate the theory developed above.In the �rst example we treat the numeri
al approximation of a standard evolutionaryvariational inequality with quadrati
 energy as an appli
ation of our Γ-limit theoryin Se
tion 3. The se
ond example 
on
erns the 
ontinuity of the so-
alled stop andplay operators. The third example 
onsiders a non
onvex fun
tional E1 that hasa nontrivial lower semi-
ontinuous envelope E∞ and thus provides an example ofrelaxation. For more realisti
 appli
ations we refer to [KMR05, MR06a℄, where wealso take full advantage of the abstra
t theory using the weaker 
onditions (2.15) or(2.17). In the present appli
ations we will rely on the more restri
tive assumptions(2.18) and (2.19) for the �rst appli
ation, whereas we exploit dire
tly (2.11) for these
ond and (4.10) for the third one.5.1 Approximation via �nite-dimensional subspa
esWe 
onsider the 
ase that F and Z are separable Hilbert spa
es HF and HZ , respe
-tively, and set H = HF×HZ . For the topology we 
hoose the weak topology su
h22



that bounded sets are relatively 
ompa
t. For the energy we assume a quadrati
form
E∞(t, q) =

1

2
〈Aq, q〉 − 〈ℓ(t), q〉,where A = A∗ ∈ L(H,H∗) is a bounded symmetri
 operator, whi
h is additionallypositive de�nite, i.e., there exists c > 0 su
h that 〈Aq, q〉 ≥ c‖q‖2 for all q ∈ H ,where ‖ · ‖ stands for the norm in H . The loading satis�es ℓ ∈ C1([0, T ], H∗).The dissipation distan
e is given via a 
onvex, 1-homogeneous fun
tional R : HZ →

[0,∞), i.e. R(γz) = γR(z) for all γ ≥ 0 and z ∈ HZ , whi
h satis�es
(i) zk ⇀ z =⇒ R(zk) → R(z),

(ii) z 6= 0 =⇒ R(z) > 0.
(5.1)Now we set D∞(z0, z1) = R(z1−z0).The sequen
e of fun
tionals Ek and Dk is now obtained by a 
hoosing a nestedsequen
e of �nite-dimensional subspa
es Hk

F and Hk
Z , k ∈ N su
h that

Hk
F ⊂ Hk+1

F and ⋃∞
k=1H

k
F is dense in HF ,

Hk
Z ⊂ Hk+1

Z and ⋃∞
k=1H

k
Z is dense in HZ .

(5.2)We now let Hk = Hk
F×H

k
Z and de�ne

Ek(t, q) =

{
E∞(t, q) for q ∈ Hk,

∞ otherwise, and Dk(z0, z1) =

{
R(z1−z0) for z0, z1 ∈ Hk

Z ,

∞ otherwise.We 
laim that the 
onditions (2.2)�(2.10) hold and that (2.11) 
an be dedu
ed viaProposition 2.2 from (2.18) and (2.19).The triangle inequality (2.2) follows fromR being 1-homogeneous and 
onvex, whi
hgives R(z0+z1) ≤ R(z0) + R(z1). By assumption (5.1)(i) the fun
tion R and hen
e
D∞ : HZ×HZ → [0,∞) are weakly 
ontinuous. The de�nition of Dk keeps 
onvexityand strong lower semi-
ontinuity. Thus, all Dk are weakly lower semi-
ontinuousand (2.3) is established. Using this and D∞ ≤ Dk+1 ≤ Dk we immediately obtainthe lower Γ-limit 
ondition (2.4). Finally, for sequen
es (zk)k∈N on bounded setsin HZ the 
ondition D∞(zk, z) = R(z − zk) → 0 implies zk ⇀ z, sin
e zk has a
onvergent subsequen
e, namely zkl

⇀ z∗ for some z∗ ∈ HZ . By (5.1)(i) we have
R(z− z∗) = lim

l→∞
R(z − zkl

) = 0 and (5.1)(ii) yields z∗ = z. Hen
e, the full sequen
emust 
onverge weakly to z. Thus, all 
onditions on Dk, k ∈ N, are satis�ed.For the 
onditions on Ek, we �rst 
onsider E∞, whi
h satis�es
E∞(t, q) ≥

c

2
‖q‖2 − Λ0‖q‖ with Λ0 = sup

t∈[0,T ]

‖ℓ(t)‖H∗ .Hen
e, the sublevels are bounded. By strong 
ontinuity and 
onvexity of E∞ thesublevels are weakly 
ompa
t. Sin
e the E-sublevel of Ek(t, ·) is the interse
tion of
Hk with the E-sublevel of E∞, the 
ondition (2.6) follows.23



With Λ1 = supt∈[0,T ] ‖ℓ̇(t)‖H∗ and ∂tE∞(t, q) = −〈ℓ̇(t), q〉 we obtain |∂tE∞(t, q)| ≤

Λ1‖q‖ ≤ Λ1

Λ0

(2Λ2
0

c
+ E∞(t, q)

)
. Sin
e Ek and E∞ 
oin
ide if Ek takes �nite values, thefun
tionals Ek satisfy the same estimate. Thus, (2.7) is established. Moreover, byuniform 
ontinuity of ℓ̇ : [0, T ] → H∗ we similarly obtain (2.8). Like for Dk, thelower Γ-limit 
ondition follows from E∞ ≤ Ek and the weak lower semi-
ontinuity of

E∞. The 
onvergen
e of the power is trivial, sin
e ∂tEk(t, q) = −〈ℓ̇(t), q〉 is linear in
q and independent of k.To prove the 
ru
ial upper semi-
ontinuity of the stable sets we use Proposition 2.2after establishing (2.17). Let (tl, qkl

) be a stable sequen
e with limit (t, q). For agiven test fun
tion q̃ ∈ H we 
hoose any sequen
e q̃l su
h that q̃l ∈ Hkl and q̃l → q̃.For instan
e, q̃l may be the orthogonal proje
tion of q̃ onto Hkl. Hen
e,
Ekl

(tl, q̃l) + Dkl
(qkl

, q̃l) = E∞(tl, q̃l) + R(q̃l − qkl
)

→ E∞(t, q̃) + R(q̃ − q) = E∞(t, q̃) + D∞(q, q̃),and (2.17) is established.As a 
on
lusion, we know that both theorems of Se
tion 3 are appli
able. In parti
-ular, taking �nite-dimensional subspa
es Hk and 
hoosing time partitions Πk we areleft with a �nite number of �nite-dimensional minimization problems. If φ(Πk) → 0and (Hk)k∈N exhausts H (i.e., (5.2) holds), then Theorem 3.3 guarantees that thereexists subsequen
es that 
onverge to an energeti
 solution asso
iated with E∞ and
D∞. In fa
t, here the solution of (S)∞&(E)∞ for a given initial value q0 ∈ S∞(0) isunique (
f. [Mie05℄). This proves that the whole sequen
e must 
onverge.We 
lose this subse
tion by relating our fun
tionals to 
ontinuum me
hani
s. Let
Ω ⊂ Rd be a bounded domain with Lips
hitz boundary. We let HF = (H1

0(Ω))d,whi
h is the spa
e for the displa
ements u(t, ·) : Ω → Rd. For some m ∈ N we let
HZ = (H1(Ω))m for the plasti
 variables, whi
h 
ontain the plasti
 strain εplast =

Bz as well as possible hardening variables. For the dissipation we 
hoose R(z) =∫
Ω
ρ(x, z(x))dx with ρ ∈ C0(Ω×Rm) su
h that r1|v| ≤ ρ(x, v) ≤ r2|v| for all (x, v) ∈

Ω×Rm with 0 < r1 ≤ r2 and ρ(x, ·) : Rm → [0,∞) is 1-homogeneous and 
onvex.Hen
e, R is equivalent to the L1-norm and (5.1) holds.The energy fun
tional E∞ is usually taken in the form
E∞(t, u, z) =

∫
Ω

1
2
(ε(u)−Bz):C(x):(ε(u)−Bz)+ 1

2
A(x)z ·z+ κ

2

∣∣∇z
∣∣2 dx−

∫
Ω

fext(t)·udx,where ε(u) = 1
2
(∇u+∇u⊤), κ > 0, and B ∈ Rd×d×m. Moreover, C ∈ L∞(Ω, Sym(Rd×d))and A ∈ L∞(Ω, Sym(Rm)) are assumed to be uniformly positive de�nite. Thus, all
onditions on E∞ are satis�ed, if we impose fext ∈ C1([0, T ],H−1(Ω)d).Suitable �nite-dimensional approximation spa
es are, for instan
e, �nite-elementspa
es with 
ontinuous pie
ewise a�ne fun
tions on a triangulation of the domain.24



The above result provides a simpli�ed and more straightforward 
onvergen
e prooffor elastoplasti
ity as given in [HR99a℄.Further appli
ations, whi
h use the full strength of the abstra
t theory developed inthe present paper, are found in [MR06a℄. Convergen
e results of numeri
al methodswith expli
it 
onvergen
e rates are dis
ussed in [HR99b, AMS06℄.5.2 Continuity of the ve
tor-valued stop and play operatorIn a Hilbert spa
e H with the s
alar produ
t 〈·, ·〉 the play operator and the stopoperator of rate-independent hysteresis are de�ned in terms of the 
hara
teristi
 oryield set C ⊂ H, whi
h is non-empty, 
onvex, and 
losed. The stop operator mapsa given input fun
tion ℓ ∈ CLip([0, T ],H) and an initial value σ0 ∈ C to the solution
σ ∈ CLip([0, T ],H) of the following evolutionary variational inequality:
σ(0) = σ0 and for a.a. t ∈ [0, T ]: σ(t) ∈ C and 〈σ(t)−σ̃, σ̇(t)−ℓ(t)〉 ≤ 0 for all σ̃ ∈ C.The play operator is simply de�ned via the mapping from (σ0, ℓ) to z = PC(σ0, ℓ) =

ℓ−σ ∈ CLip([0, T ],H). These operators 
an equivalently be de�ned by the ener-geti
 formulation used in this paper. For this we de�ne the quadrati
 energy fun
-tional E(t, z) = 1
2
〈z, z〉 − 〈ℓ(t), z〉. The dissipation distan
e is given as D(z0, z1) =

R(z1−z0), where the dissipation potential is the Legendre transform I∗C of the indi-
ator fun
tion IC of the yield set C:
R(v) = I∗C(v) = sup

σ∈H

(
〈σ, v〉−IC(σ)

)
= sup

σ∈C
〈σ, v〉.An important question is now the dependen
e of the play operator PC on the yieldsset C. Under the assumptions that all the sets Ck 
ontain 0, are 
losed and 
onvex,it is shown in [Kre99℄ that Hausdor� 
onvergen
e of Ck to C∞ implies that PCk

(0, ℓ)
onverges to PC∞(0, ℓ) in C0([0, T ], H). In [Ste06, Cor. 4.6℄ this result was generalizedto the weaker Mos
o 
onvergen
e:
Ck

M
−−→ C∞

def
⇐⇒

{ (i) C∞ ⊃ { z ∈ H ; zkl
⇀ z with zkl

∈ Ckl
},(ii) C∞ ⊂ { z ∈ H ; ∃ zk ∈ Ck : zk → z }.

(5.3)We may now apply our Γ-
onvergen
e result from Se
tion 3. Sin
e Ek does notdepend on k and is a simple quadrati
 energy, the sublevels are balls, whi
h are
ompa
t with respe
t to the weak topology. Moreover, the stable sets 
an be givenexpli
itly in the form
Sk(t) = { z ∈ H ; 0 ∈ ∂Rk(0) + z − ℓ(t) } = ℓ(t) − Ck.The 
onditioned upper semi-
ontinuity of the stable sets (2.11) now simply meansthat zkl

−ℓ(tl) ∈ Ckl
, tl → t and zkl

⇀ z imply z ∈ C∞. However, sin
e ℓ is25




ontinuous, we easily see that this 
ondition is equivalent to (5.3.i). The remaining
ondition is the lower Γ-limit (see (2.5)), whi
h now reads
vk ⇀ v in H =⇒ R∞(v) ≤ lim inf

k→∞
Rk(vk). (5.4)It is easily seen that this 
ondition is a 
onsequen
e of 
ondition (5.3.ii).In fa
t, 
ondition (5.3.ii) and (5.4) are a
tually equivalent in the present situation.Sin
e 0 ∈ Ck for all k, one 
an simply follow the �rst steps in the proof of [Att84,Thm. 3.11a, p. 282℄ in order to 
he
k that (5.4) yields

∀σ ∈ H : inf{ lim sup
k→∞

ICk
(σk) ; σk → σ } ≤ IC∞(σ),whi
h is 
learly equivalent to 
ondition (ii) in (5.3).Sin
e the limit problem has a unique solution, we additionally 
on
lude that thewhole sequen
e 
onverges and we have thus re
overed the result in [Ste06℄ thatMos
o 
onvergen
e of Ck to C∞ implies 
onvergen
e of the stop operator. In fa
t,the results in that paper address the more general situation of approximating thedata as well.5.3 An example for relaxation and regularizationThis example 
overs the theory of Se
tion 4, where only two pairs of fun
tionals are
onsidered. We 
hoose Q = Z = H1((0, 1)) equipped with the weak topology andde�ne the energy fun
tionals

E1(t, z) =
∫ 1

0
W (z′(x)) + z(x)2 − f(t, x)z(x) dx,

E∞(t, z) =
∫ 1

0
W ∗∗(z′(x)) + z(x)2 − f(t, x)z(x) dx,where f ∈ C1([0, T ],L2((0, 1))), W (a) = min {(a−1)2, (a+1)2} and W ∗∗ is the 
on-vexi�
ation of W , i.e., W ∗∗(a) = W (a) for |a| ≥ 1 and W ∗∗(a) = 0 for |a| ≤ 1. It isa well-known fa
t that E1 is not weakly lower semi-
ontinuous on Z and that E∞ isits relaxation on Z. Thus, all 
onditions on E1 and E∞ are easily proved to hold.For the dissipation we 
hoose

D1(z0, z1) = D∞(z0, z1) =
∫ 1

0
|z1(x) − z0(x)|dx = ‖z1 − z0‖L1 ,whi
h makes it easy to 
he
k all the assumptions on D1 and D∞.The 
ru
ial assumption is the upper semi-
ontinuity (4.9) of the stable sets.Lemma 5.1 Let 0 < αl → 0, tl → t, zl ⇀ z in Z, and zl ∈ Sαl(tl) ( i.e., ∀ l ∈

N ∀ z̃ ∈ Z : E1(tl, zl) ≤ αl+E1(tl, z̃)+D1(zl, z̃) ). Then, z ∈ S∞(t).26



Proof: Choose an arbitrary test fun
tion z̃ ∈ Z = H1((0, 1)). Sin
e E∞ is the Γ-limit of (E1)l∈N, there is a re
overy sequen
e (z̃l)l∈N su
h that z̃l ⇀ z̃ and E1(tl, z̃l) →
E∞(t, z). Now, we have
E∞(t, z) ≤ lim inf

l→∞
E1(tl, zl) ≤ lim inf

l→∞
(αl+E1(tl, z̃l)+‖z̃l−zl‖L1) = E∞(t, z̃)+‖z̃ − z‖L1 ,where we have used the weak H1-
ontinuity of the L1-norm. Sin
e z̃ was arbitrary,this proves the assertion.Theorem 5.2 Assume 0 < εk → 0 and φ(Πk) → 0 for a sequen
e of partitions.Choose z0 ∈ S1(0) ⊂ Z and de�ne the pie
ewise 
onstant interpolants zk : [0, T ] → Zasso
iated to some solution of the approximate in
remental problem (AIP)k withinitial value zk

0 = z0. Then, there exist a subsequen
e (kj)j∈N and a limit fun
tion
z : [0, T ] → Z su
h that for all t ∈ [0, T ] we have

zkj
(t) ⇀ z(t) in H1((0, 1)), E1(t, zkj

(t)) → E∞(t, z(t)),

Diss1(zkj
; [0, t]) → Diss∞(z; [0, t]) =

∫ t

0
‖ż(t)‖L1 dt.Moreover, z : [0, T ] → Z is an energeti
 solution asso
iated with E∞ and D∞ andsatis�es z ∈ L∞([0, T ],H1((0, 1))) ∩ CLip([0, T ],L2((0, 1))).The only new part in this result is the time regularity of z, namely ż ∈ L∞([0, T ],L2(Ω)).This fa
t is a property of all solutions of (S)∞&(E)∞, sin
e E∞ is uniformly 
onvexon L2((0, 1)). The proof of this result follows the ideas in [MR06b℄.Proposition 5.3 Every solution z : [0, T ] → Z of (S)∞&(E)∞ lies in CLip([0, T ],L2((0, 1)))and satis�es, for a.e. t ∈ [0, T ], the estimate ‖ż(t)‖L2 ≤ 2‖ḟ(t)‖L2.Proof: Sin
e z(s) minimizes the fun
tional E∞(s, ·)+‖·−z(s)‖L1, whi
h is uniformly
onvex in the L2-norm, we have the obvious estimate

∀ z̃ ∈ Z : E∞(s, z(s)) + ‖z̃ − z(s)‖2
L2 ≤ E∞(s, z̃) + ‖z̃ − z(s)‖L1 .Here the left-hand side is a parabola supporting the graph of the fun
tional, whi
his the right-hand side, in the minimizer z(s). Let e(r) = E∞(r, z(r)) for r ∈ [0, T ]and test the above inequality by z̃ = z(t), then

e(s) + ‖z(t) − z(s)‖2
2 ≤ E∞(s, z(t)) + ‖z(t) − z(s)‖L1

= e(t) − 〈f(s)−f(t), z(t)〉 + ‖z(t) − z(s)‖L1 .Assuming t > s and using the energy balan
e (E)∞ we have
‖z(t) − z(s)‖L1 ≤ Diss(z; [s, t]) = e(s) − e(t) −

∫ t

s
〈ḟ(τ), z(τ)〉dτ.27



Combining these estimates we arrive at
‖z(t) − z(s)‖2

2 ≤
∫ t

s
〈ḟ(τ), z(t)−z(τ)〉dτ ≤ sup

r∈[s,t]

‖ḟ(τ)‖2

∫ t

s
‖z(τ)−z(t)‖2 dτ.Now apply [MR06b, Lem. 3.3℄ to obtain the desired result.So far we are not able to prove that solutions asso
iated with mi
rostru
ture reallyo

ur as limits of solutions of (AIP)k. In (S)∞&(E)∞ this simply means that solu-tions satisfy |z′(t, x)| < 1. However, it is easy to see that (S)∞&(E)∞ has solutionsof this type. Consider the 
ase f(t, x) = (1−t)x and z0(x) = x. Then, the fun
tion

z : [0, 3] → H1((0, 1)) with
z(t, x) =

{
x for x ∈ [0, 1/(1+t)],

1
2

(
(1−t)x+ 1

) for x ∈ [1/(1+t), 1].is a solution. It would be su�
ient to show that this solution is unique. Then, alla

umulation points of solutions of (AIP)k would ne
essarily 
onverge to this uniquesolution.Instead of solving the approximate in
remental problem we may also treat a regu-larized problem by using the energies
Ek(t, z) =

∫ 1

0

1

k

(
z′′(x)

)2
+W (z′(x)) + z(x)2 − f(t, x)z(x)dx.We show that for this situation the Γ-
onvergen
e result of Se
tion 3 is appli
able.For this we still keep the underlying spa
e Q = Z = H1((0, 1)) equipped with theweak topology. Now ea
h Ek has 
ompa
t sublevels as they are 
losed and boundedin H2((0, 1)), although not uniformly with respe
t to k, 
f. 
ondition (i) in (2.6). Inparti
ular, 
hoosing a smooth stable initial value z0 the standard existen
e theoryfor energeti
 solutions (
f. [MM05, Mie05, FM06℄) provides for ea
h k energeti
solutions zk, whi
h are solutions of the di�erential in
lusion

0 ∈ Sign(∂tz) + 1
k
∂4

xz − ∂x

(
DW (∂xz)

)
+ 2z − f(t, x) for a.e. (t, x) ∈ [0, T ]×Ω,

z(0, ·) = z0 ∈ H2((0, 1)),with zk ∈ L∞([0, T ],H2((0, 1))) ∩ BV([0, T ],L1((0, 1))). In L∞([0, T ],H2((0, 1))) thenorm will tend to∞ with k, whereas in L∞([0, T ],H1((0, 1))) there is a k-independentbound.Hen
e, we may pass to the limit for k → ∞, sin
e it is well-known that E∞ is the
Γ-limit of Ek, see [Dal93, Bra02℄. Theorem 3.1 is appli
able and we 
on
lude that
onvergent subsequen
es of (zk)k∈N exist and that their limit points are energeti
solutions asso
iated with the relaxed fun
tionals E∞ and D∞. Moreover, Theorem3.3 
an be employed to show that the solutions of suitable in
remental problems
onverge to solutions of (S)∞&(E)∞ as well.28



An alternative relaxation is based on so-
alled Young measures and a 
ontinuousextension of W . To be more spe
i�
, let
Q := { q = (z, ν) ∈ H1((0, 1))×Y2((0, 1)) ;

∫
R
a νx(da) = z′(x) for a.a. x ∈ (0, 1) },where

Y2(0, 1) :=
{
ν = (νx)x∈(0,1) ; νx is a probability measure on R,

∀ψ ∈ C0(R): x 7→
∫

R
ψ(a)νx(da) is measurable,

∫ 1

x=0

∫
a∈R

a2νx(da)dx <∞
}is the set of the L2-Young measures. Then it is natural to de�ne

E1(t, z, ν) =

{ ∫ 1

0
W (z′(x))+z(x)2−f(t, x)z(x)dx if νx = δz′(x) a.e. in (0, 1),

∞ else.while
EYM(t, z, ν) =

∫ 1

x=0

( ∫
a∈R

W (a)νx(da) + z(x)2−f(t, x)z(x)
)
dx.The setQ 
an be 
onsidered as a 
onvex subset of the linear spa
e H1((0, 1))×

(
C([0, 1])⊗

{ a 7→ ψ(a)+αa2 ; ψ ∈ C0(R), α ∈ R }
)∗ under the natural embedding

(z, ν) 7→
(
z,
(
g ⊗ (ψ+αa2)

)
7→
∫ 1

0
g(x)

∫
R
(ψ(a)+αa2)νx(da)dx

)
.This spa
e is standardly topologized by the weak* topology, whi
h makes EYM(t, ·)the Γ-limit of E1(t, ·).Again the theory of Se
tion 4 is appli
able. This shows that pie
ewise 
onstant in-terpolants of the solutions of the approximate in
remental problem (AIP) asso
iatedwith E1 and D1 have subsequen
es, whi
h 
onverge to energeti
 solutions asso
iatedwith EYM and D∞.In the ve
torial, multidimensional 
ase a more sophisti
ated Young measure re-laxation in the rate-independent setting is given in [KMR05℄. Related evolution-ary systems for Young measures, also in the rate-dependent 
ase, are dis
ussed in[The98, Mie99, BFS01, MR03, Mie04, MO06℄.A Generalization of Helly's sele
tion prin
ipleThe following result is an abstra
t version of Helly's sele
tion prin
iple whi
h isagain a generalization of [MM05, Thm. 3.2℄. Sin
e we are 
on
erned with a se-quen
e (Dk)k∈N of dissipation distan
es rather than with a single one, we give a fullindependent proof.

∀ k ∈ N∞ ∀ z1, z2, z3 ∈ Z : Dk(z1, z1) = 0, Dk(z1, z3) ≤ Dk(z1, z2) + Dk(z2, z3).(A.1)29



For all 
ompa
t K ⊂ Z we have :If zk ∈ K and min {D∞(zk, z),D∞(z, zk)} → 0, then zk
Z
→ z.

(A.2)
(
zk → z and z̃k → z̃

)
=⇒ D∞(z, z̃) ≤ lim inf

k→∞
Dk(zk, z̃k). (A.3)Note that (A.1) and (A.2) are simply re
alled from Se
tion 2 while (A.3) is strongerthan the 
orresponding assumptions (2.5) and (4.2) (see below).Additionally, we use that Z is a Hausdor� topologi
al spa
e, whi
h implies that ea
h
onverging sequen
e has a unique limit. For a fun
tion z : [0, T ] → Z and k ∈ N∞we re
all

Dissk(z; [s, t]) = sup{
∑N

j=1 Dk(z(tj−1), z(tj)) ; N ∈ N, s ≤ t0 < t1 < · · · < tN ≤ t}.Of 
ourse, we have Dk(z(s), z(t)) ≤ Dissk(z; [s, t]).Theorem A.1 Assume that the sequen
e (Dk)k∈N∞
satis�es the 
onditions (A.1),(A.2) and (A.3). Moreover, let K be a 
ompa
t subset of Z and zk : [0, T ] → Z, k ∈

N, a sequen
e satisfying
(i) ∀ t ∈ [0, T ] ∀ k ∈ N : zk(t) ∈ K (ii) sup

k∈N

Dissk(zk; [0, T ]) <∞. (A.4)Then there exist a subsequen
e (zkl
)l∈N and limit fun
tions z : [0, T ] → Z and δ :

[0, T ] → [0,∞] with the following properties:
(a) ∀ t ∈ [0, T ] : δ(t) = lim

l→∞
Disskl

(zkl
; [0, t])

(b) ∀ t ∈ [0, T ] : zkl
(t)

Z
→ z(t)

(c) ∀ s, t ∈ [0, T ] with s < t : Diss∞(z; [s, t]) ≤ δ(t) − δ(s).Proof: We de�ne the fun
tions dk : [0, T ] → [0,∞] with dk(t) = Dissk(zk; [0, t])whi
h are nonde
reasing by de�nition and uniformly bounded by (A.4.ii). Hen
e,the 
lassi
al Helly's sele
tion prin
iple for real-valued fun
tions provides a subse-quen
e su
h that dekn
(t) → δ(t) for all t ∈ [0, T ]. Hen
e, δ : [0, T ] → [0,∞] is alsononde
reasing and bounded. This proves (a).Denote by J ⊂ [0, T ] the set of dis
ontinuity points of δ, then J is 
ountable.Hen
e, we may 
hoose a 
ountable, dense subset T of [0, T ] with J ⊂ T . For ea
h

t ∈ T any subsequen
e of (zekn
(t))n∈N lies in the sequentially 
ompa
t set K ⊂ Z andthus 
ontains a 
onvergent subsequen
e. Hen
e, using Cantor's diagonal s
heme we�nd a subsequen
e (zkl

)l∈N of (zekn
)n∈N su
h that (a) remains true and additionallywe have

∀ t ∈ T : zkl
(t)

Z
→ z(t) for l → ∞.This de�nes the limit fun
tion z : T → Z.30



To show 
onvergen
e on [0, T ]\T we use the 
ontinuity of δ. We �x t∗ ∈ [0, T ]\T ,then the sequen
e (zkl
(t∗))l∈N has a 
onvergent subsequen
e zbkm

(t∗)
Z
→ z∗. Moreover,there exists a sequen
e tn ∈ T with tn → t∗. Below we will show z(tn)

Z
→ z∗. By theHausdor� property of Z we 
on
lude that (zkl

(t∗))l∈N has exa
tly one a

umulationpoint and we de�ne z(t∗) = z∗.To show z(tn)
Z
→ z∗ we �rst assume tn < t∗. Then, using (A.3) we have

D∞(z(tn), z∗)≤ lim inf
m→∞

Dbkm
(zbkm

(tn), zbkm
(t∗))≤ lim inf

m→∞
Dissbkm

(zbkm
; [tn, t∗]) = δ(t∗)−δ(tn).Similarly, for t∗ < tn we obtain D∞(z∗, z(tn)) ≤ δ(tn) − δ(t∗). Using the 
ontinuityof δ in t∗ we 
on
lude min {D∞(z(tn), z∗),D∞(z∗, z(tn))} ≤ |δ(t∗)−δ(tn)| → 0 for

n→ ∞. Employing (A.2) we �nd z(tn)
Z
→ z∗ as 
laimed above. Thus, assertion (b)is proved.The �nal estimate is obtained using (A.3) again. For any partition of [s, t] we have

∑N

j=1 D∞(z(tj−1), z(tj)) ≤
∑N

j=1 lim inf
l→∞

Dkl
(zkl

(tj−1), zkl
(tj))

≤ lim inf
l→∞

∑N

j=1 Dkl
(zkl

(tj−1), zkl
(tj)) ≤ lim inf

l→∞
Disskl

(zkl
; [s, t]) = δ(t)−δ(s).(A.5)Thus, Diss∞(z; [s, t]) ≤ δ(t)−δ(s) and (
) is proved.As mentioned above, the latter 
ompa
tness lemma holds under assumption (A.3),whi
h is stronger than (2.5) and (4.2). In parti
ular, Theorem A.1 is not dire
tlysuited for the purposes of 
he
king the 
ompa
tness of approximating sequen
esin the proof of Theorems 3.1, 3.3, and 4.1. On the other hand, we a
tually needto prove 
ompa
tness for stable sequen
es only. In parti
ular, by assuming (2.5)(analogously for (4.2)), the sequen
es zk : [0, T ] → Z used in the above proofs aresu
h that the following holds:

∀ sl → s and tl → t with sl ≤ tl :
(
zkl

(sl)
Z
→ z and zkl

(tl)
Z
→ z̃

)
=⇒ D∞(z, z̃) ≤ lim inf

l→∞
Dkl

(zkl
(sl), zkl

(tl)).
(A.6)It is easily seen that the proof of Theorem A.1 goes through by removing the as-sumption (A.3) and assuming (A.6) instead. This slight modi�
ation of the resultis suited for proving the 
ompa
tness of the sequen
e of approximating solutions ofTheorems 3.1 and 3.3, (and 4.1) under assumption (2.5) (assumption (4.2), resp.)only.Referen
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