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PRINCIPLE OF LINEARIZED STABILITY AND SMOOTH
CENTER MANIFOLD THEOREM FOR SEMILINEAR
HYPERBOLIC SYSTEMS

MARK LICHTNER

ABsTrACT. In this paper principle of linearized stability and smooth cen-
ter manifold theorem are proven for a general class of semilinear hyperbolic
systems (SH) in one space dimension. They are of the following form: For
O<z<landt>0

2 (58 2) +K(z) 2 (Z((: 3) + H(z, ult, z), v(t, 2)) = 0,

(SH) % [v(t,1) — Du(t,1)] = F(u(t, ), v(t,-)),

u(t,0) = Ev(t,0),

u(0,x) = ug(z), v(0,x) = vo(z),
where u(t,z) € R, v(t,z) € R"2, K(z) = diag (ki());<;<,, is a diagonal
matrix of functions k; € C! ([0,1],R), k;(z) > 0fori=1,...,n1 and k;(z) <0
fori=n1+1,...,n =n1 4+ n2, and D,E are matrices.

First we prove that weak solutions to (SH) define a smooth semiflow in

a Banach space X of continuous functions under natural conditions on the
nonlinearities H and F. Then we show a spectral gap mapping theorem for
linearizations of (SH) in the complexification of X, which implies that growth
and spectral bound coincide. Consequently we obtain principle of linearized
stability for (SH). Moreover, the spectral gap mapping theorem characterizes
exponential dichotomy in terms of a spectral gap of the infinitesimal generator
for linearized hyperbolic systems. This resolves a key problem in applying
invariant manifold theory to prove smooth center manifold theorem for (SH).

1. INTRODUCTION

The behaviour of an evolution equation near some stationary state can be deter-
mined by a decomposition into invariant (stable, unstable and center) manifolds.
The stable and unstable manifolds are described by exponential decay and growth
estimates, respectively. Of particular interest are center manifolds which completely
determine the local dynamics and bifurcations near a stationary state.

This strategy has a long tradition for analysing the local dynamics of ordinary
differential equations and in the last few decades significant progress has been made
to extend the theory to infinite dimensional evolutionary equations, see for example
[2, 3, 4, 29].
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2 MARK LICHTNER

For partial differential equations the relation between the linearization and the
full nonlinear problem is more delicate. For a proof on existence and smoothness
of invariant manifolds one usually assumes smoothness of the nonlinear Nemytskij
operator or of the solution map [3, 4, 29] and exponential rates estimates (expo-
nential dichotomy) for the spectral decompositions. As is well known the latter is
equivalent to a spectral gap condition on the linearized semigroup (Theorem 4.3).

However, almost always one only has knowledge on the location of the spectrum
of the infinitesimal generator, that is the equations and not the semigroup. Relating
the spectrum of the infinitesimal generator to that of the semigroup is a spectral
mapping problem which is often nontrivial [7, 13, 16].

For differentiablity of the nonlinear Nemytskij operator some regularity is re-
quired. Hence we seek to solve the spectral mapping problem in a suitable small
function space. To have a natural description for the local dynamics of (SH) we work
in a “small” Banach space of continuous functions X equipped with the supremum
norm (not L? in contrast to [7, 16]). In X the equations (SH) generate a smooth
semiflow (Theorem 2.5). For linearizations of (SH) we prove that an “open spectral
gap mapping property holds” in the complexification X© of the small Banach space
X (Theorem 2.12). This implies that growth and spectral bound coincide in X® and
yields principle of linearized stability for (SH) (Theorem 2.8 and Theorem 2.16).
Moreover, the spectral gap mapping theorem implies existence of dichotomic pro-
jections in X under the presence of a spectral gap for the infinitesimal generator
of the linearization (Theorem 2.17). Thus we resolve a key problem in applying
invariant manifold theory [3, 4] to prove existence of a smooth center manifold
(Theorem 2.11) for the general class (SH). To prove the spectral gap mapping
theorem in X®, according to theory of Kaashoek, Lunel and Latushkin [12, 14],
we additionally estimate Fourier transforms of matrix elements of the resolvent on
lines parallel to the imaginary axis. For this we use precise resolvent estimates, see
Lemma 4.6 and [16].

The motivation of our work originated from applications in laser dynamics, where
traveling wave models are used to describe the longitudinal dynamics of semicon-
ductor lasers, see for example [5, 24, 31]. They belong to the class (SH) of semilin-
ear hyperbolic systems. To understand and control the dynamics of these models
has been of practical interest since the corresponding lasers are of technological
importance for high speed signal generation and clock recovery in optoelectronic
networks. For this a numerical bifurcation analysis of a center manifold reduced
set of equations has been implemented, see for example [1, 5, 21, 24, 25, 26].

Yet, the theory of invariant manifolds has been mainly developed for semilinear
parabolic PDEs or functional differential equations. There were no results for hy-
perbolic systems of PDEs belonging to the general class (SH). Moreover, due to
this it has been unknown whether the stability analysis, performed in [9, 10] and
[11] for Turing models with correlated random walk within a purely linear context
only, implies stability and the occurrence of bifurcations on center manifolds near
the homogeneous steady state of the nonlinear problem.

In this paper this situation is resolved for a large class of semilinear hyperbolic
systems (SH) (including functional differential equations) in one space dimension
which often appear in applications, see for example [10, 11, 15, 19, 20, 23].
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2. RESULTS

We consider the following class of semilinear hyperbolic systems
9 (ult,z) 0 (u(t,x) B
ot <v(t,x)> " K(w)% (v(t,m) + H(z,u(t,z), v(t,2)) =0,

% [v(t,1) — Du(t,1)] = F(u(t,-),v(t,-)),
u(t,0) = Eu(t,0),

(SH)

for x €]0,![ and ¢t > 0 with the following assumptions:

(SHI) K(z) = diag (ki(x)),—,__, is a diagonal n x n matrix of functions k; €
C' ([0,1], R) which satisfy k;(z) > 0 for i = 1,...,n; and k;(z) < 0 for
i=n1+1,....,n=n1+n2 (x €[0,1]).

(SHII) The map H :]0,{[ x R® - R", H = H(x,z), z € 0,1, z = (u,v) € R",
satisfies a C* Carathéodory condition, k > 1:

e For a.a. z € ]0,1[ H(z,-) € C*(R") and H(-,z) is measurable for all
z € R"™.

e For all compact K C R" there exists a constant M > 0 such that
H%ﬁ”) < Mfor0<i<kalzeK and a.a. z €]0,1[.

e For all compact K C R™ and € > 0 there exists a 6 > 0 such that for

all z1 € K, zo € R™ with ||z1 — 22| < ¢ and a.a. z € ]0,![ we have
H o* S( w z1 akS(w,zz)
5% < €.

(SHIII) F : CO( [0 l] R") — R" is C* and has bounded and uniformly contin-
uous derivatives on bounded sets: for each b > 0 and ¢ > 0 there ex-
ists § > 0 so that ||0"F(uy,v1) — 0"F(uz,v2)|| < € for (ug,v1), (ug,v2) €
C([0,1], R™F72) with |[(ug,v1) — (u2,v2)|| < 6 and |[(u1,v1)| < b.

(SHIV) u(t,z) € R™, v(t,z) € R™

(SHV) D e R"*™, F e Rm*n

The function H generates a superposition operator via
H(u,v)(z) ;== H(z,u(z),v(r)) for almost all z € [0,1].

It follows that the map §) is C*-smooth from L°°(]0,1[; R") into itself [8].
For (SH) we use the phase space

X = {(u,v,d) € C([0,1]; R™) x R™ | u(0) = Fv(0), d = A(u,v)},

where X is equipped with the supremum norm ||(u, v, d)| y := ||(u,v)| ., + ||d|| and
A(u,v) :==v(l) — Du(l).
We denote the complexification of the real space X with
X€:={(u,v,d) € C([0,1); C") x C"* | u(0) = Ev(0), d = A(u,v)}.
Let T'(t) denote the semigroup to
i (1) =g (1e2) -0
7 [v(t,1) — Du(t,1)] =0,
u(t,0) = Ev(t,0).

(2.1)
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For T > 0 denote
(2.2) Xr = C([0,T], X).

Definition 2.1. Let 7' > 0. The triplet (u(-),v(:), A(u(-),v(:))) € Xr is called a
weak (or mild) solution of (SH) up to T for the initial data (uo, vo, A(ug,vg)) € X
if for all ¢ € [0, 7]

(u(t), v(t), Alu(t), v(t)) = G(u, v, Alu, v))(t),

where
w, v, A(u,v = :jo ' s H(u(s),v(s))
(23) Glu,v, Au,0)) (1) = T(1) s ) / T(t )< R (Ms)))

Theorem 2.2 (Local existence). For any (ug,vo, A(ug,v9)) € X there exists a
d > 0, depending only on ||(uo,vo, A(uo, v0))|| x, such that (SH) has a unique weak
solution up to 9.

Theorem 2.3 (Regularity). Let z = (u,v,A(u,v)) € X1 be a weak solution of
(SH) with initial data z(0) = (uo, vo, Aug, vo)) € X. Suppose
(ug,v0) € WH2(]0,1[, R™).
Then for all p € ]1, 00|
(u, v, A(u,v)) € C([0,T], WHP(10,1[,R") x R"?)
(2.4) N C* (0,77, LP(J0,1[,R™) x R™)

and (SH) holds in a classical sense.

Theorem 2.4. Let z € Xp be a weak solution of (SH) up to T. Then there exists
a neighborhood U of 2(0) in X such that for all yo € U there is a weak solution
y € X of (SH) up to T satisfying y(0) = yo.

There exists a constant ¢ > 0 such that for oll yo € U

12(2) = y(®llx < ¢l[2(0) — yol x -

Suppose there exists a weak solution z € X7 of (SH) up to 7. Then according
to Theorem 2.4 there exists an open neighborhood U of z(0) in X so that we can
define a solution map

(2.5) S U — X, S'(yo):=yl) (te][0,T]).

Theorem 2.5 (Smooth semiflow property). For eacht € [0,T] the map St : U — X
is C* smooth. The map (t,u) — S'u is continuous from [0,T] x U into X.

Definition 2.6. We call a € X a stationary or equilibrium solution of (SH) if the
constant function z(t) := a is a weak solution of (SH) in the sense of Definition 2.1.

Proposition 2.7. A state a = (ay, ay, Aay,a,)) € X is an equilibrium solution
if and only if there exists p € [1,00[ so that (a,,a,) € WHP([0,1],R***"2) and
both K9, (ay,a,)+ $H(ay,a,) = 0 and F(ay,a,) = 0 vanish. In this case (ay,a,) €
nlgp<oo Wl’p([ov l]v Rn1+n2)-
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Suppose a is an equilibrium. We formally linearize (SH) in a and obtain the

following;:
O (u(t )\ | e @ (ultn)
ot (v(t,x)) +K( )(9x <U(t,tx))
26 Doy o)) (14 ) =0,

% [v(t,1) — Du(t,1)] = OF (au, ay) (ZE? ))> )
'u,(t, 0) =F 1)(t, 0)

Let A, be the corresponding infinitesimal generator in the complexification X©

of X,
o 0 Y (KR G ) (3),

with domain
D(A,) = {(u,v,A(u,v)) € XC | Ay(u,v, Au,v)) € XC}.
Then A, generates a Cy semigroup on X°.

Theorem 2.8 (Principle of linearized stability). Ifsup {Re A | A € 0(44)} < 0 and
the conditions (HI)-(HIII) printed below hold true for (2.6), then a is exponentially
stable: There exists a neighborhood U of a in X and constants ¢ > 0, 8 > 0, such
that if z is a weak solution of (SH) with z(0) € U then z exists for all t > 0, lies in
U and

2(t) — all < ce " [l2(0) —ally for ©=0.

Next we formulate center manifold theorem for (SH): Suppose
0(Ae) C{ANEC|ReA<0} and E.:=ocNiR #0.

Assume that (HI) — (HIII) hold for (2.6). Moreover, suppose that E. is finite and
only contains eigenvalues of finite algebraic multiplicities [17] and that we have a
spectral gap: There exists a § > 0 so that

{AeC| -d<Rer<d}No=E..

Remark 2.9. Comparing with [16] this means that we have v, < 0 for A,, where v,
is defined as the supremum of the real part of the eigenvalues of a reduced diagonal
system (Hp) obtained from (2.6) by cancelling all non(block)diagonal entries in the
differential equation (see section 4). We have shown in [16] that the spectrum is
asymptotically close to the spectrum of the reduced system. It follows that for
each v > 74 there are only finitely many eigenvalues A with SRe A > ~. Here
the spectrum does not depend on the choice of the Banach space. Physically the
condition v < 0 means that the system is dissipative and may only possess a finite
number of critical modes, all others being (uniformly exponentially) damped.

Define the spectral projection

T ::/(,\Ian)*l d\, 7 :=1d — 7,
Y
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where v is a simple positive oriented loop in {A € C | —6 < Re A < §} around E..
Denote

X;D = Im 7, XS = Im 7.

The linear spaces X and X¥ decompose the complex space
X¢=x%apx?
into the direct sum of two closed linear subspaces which are invariant with respect
to the semigroup e“+* generated by A,. The spaces X* and X? are invariant under
complex conjugation. Hence
X.:=X’NX and X,:=X'nX
decompose the real space X
X=X, X,

into closed subspaces, which are invariant with respect to the a-linearized flow
0S4 a) = eé‘gt.

Moreover, we need that F' can be truncated in the following sense: Let

F(ay 4+ u,a, +v) = F(ay, ay) + OF (ay, ay) (u,v) + 75 (u,v)
with rp(u,v) = o(||(u, v)||,)- We suppose that for any truncation parameter 6 > 0
there exists a C* smooth map rrs : C([0,1], R™*"2) — R™ having the following
properties:
1) rps(u,v) = rp(u,v) for (u,v) € C([0,1], R™ ") with ||(u,v)||, <4
1) there exists a positive function § = §(d) with lims)o 6(5) = 0 so that
lrrs(u,v)|l, < 5(8)0 and || Orps(u,v)| < 6(5)

for all (u,v) € C([0,1], R"""2).
Example 2.10. Let x; € [0,]], 1
Suppose F' is of the form F(4,?) =
truncation property.
Indeed, we have rp(u,v) = >0" | ri(u(zy), v(zy)), where

re(w(@e), v(ze)) = Frlau(@r) + u(r), av(zr) + v(zr)) — Fir(au(zr), ay (o))

—0Fg(ay(zk), ap(zp)) (u(zg), v(zg)).

Then rps(u,v) = > oy re(ul(zy), v(zg))xs(u(zg), v(zg)) does it, where xs(-) =
X (6’1-) and y : R — R is a C* cut off function so that x(z) = 1 for
llz]] <1, x(z) =0 for ||z|| > 2 and 0 < x(z) <1 for x € R™ "=,

[

<k <m, and Fj, : Rt — R" be CF.
Sy Fp(a(zy), 9(xx)). Then F has the above

Theorem 2.11 (Center manifold theorem). Let k > 1. There exists an open
neighborhood Q of zero in X and a graph v € C*(Q N X,, X;) such that

1) 7(0) =0, 9v(0) = 0;
1) the manifold
W:={a+z.+v(z) | z. € AN X}
is locally invariant for (SH), i.e. for t >0 we have S'(W) N (a + Q) C W;
w) if z:]—00,0] — a + Q is a solution of (SH) then z(t) € W for t € |—0c0,0)].
w) For p € [1,00] we have
QN X.) C X, n (WH2(J0,1[,R™ ™) x R"2),

W cXn (W (o,I[,R™ ™) x R™).
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If 2 : [0,8] — W (§ > 0) is a solution of (SH) then
z € Ck([0,4], X).
The flow on W is given by the ordinary differential equation

d
Exc = Agzc + f(xc)a
where f: X, — X, is C* smooth, f(0) =0 and 0f(0) = 0.
To prove the main Theorems 2.8 and 2.11 we show a spectral gap mapping

theorem for A, in the space X°.
For this we consider the following class of linear hyperbolic systems (compare

with [16]):
0 (u(t, ) 0 (u(t,x) u(t,z)\
ot (U(t,l‘)) +K(x)8_x (v(t,x)) +C(@) (U(t,x)) o
7 [v(t, 1) — Du(t,1)] = Fu(t, ) + Gu(t, ),
u(t,0) = Ev(t,0).

(H)

The assumptions are:
(HI) K is a diagonal n x n matrix of the form

kilg, 0 0 0 0 0 0
0 kolg, O 0 0 0 0
0 0 0 0 0 0
K=1| o 0 0 kalg, 0 0 0 7
0 0 0 0 kat1la,,, O 0
0 0 0 0 0 0
0 0 0 0 0 0 katpla,,,

where d; € N, d; > 0, @ € N, B € N, "% di = n1, 27 dayi = na,
I, denotes the identity matrix in C%*% and k; € C* ([0,1],R) satisfy for
x € [0,]]

ki(z) > Ofori=1,...,a,

kij(z) < Oforj=a+1,...,a+p0.

(HII) C(z) = (Cij(@))1<; jcarps € C" with Cyj(x) € C4*4 and

Cy € L>=(J0,1[,C%*%), i=1,...,a+8,
Cy € BV([0,0],€%*%), i,j=1,...,a+3 withi#j.
(HIII) If i # j and k;(z) = k;() for some x € [0,!], then C;; vanishes completely
on [0,1].
(HIV) wu(t,z) = (u1(t, x), ..., un, (t,2)) € C"™ and v(t,z) = (v1(t, z),..., v, (¢, x)) €
(SHEN
(HV) DeQr>, Ee C"*™ and
F:C([0,]],C™) - C™, G:C([0,1],C"?) — C™

are linear continuous operators.
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Let
27) alv] o [K% <Z> -¢ (l“f)
d Fu+ Gu
denote the infinitesimal generator for (H) with domain
(2.8) D(A) := {(u,v,d) € X | A(u,v,d) € X°}.
Then A generates a Cy semigroup et on X©.

Theorem 2.12 (Spectral gap mapping theorem in Banach space X©). Consider A
and the Cy semigroup e\t in the complex Banach space XC. Let o < 3, o, 3 € R.
Then

(AeCla<Rer< B} Cp(A) ifand only if {Xe C|e™ < |\ <P} C pe?).
We recall the notion of growth, spectral bound and exponential dichotomy:

Definition 2.13 (Growth and spectral bound). The growth bound w(A), also
denoted w(eA?), is defined through

w(A) := inf {w € R | there exists a positive number M = M (w)
such that HeAtH < Me“tfort > 0}.

The spectral bound s(A) is defined via
s(A) :==sup{Re X | X € o(A)}.

Definition 2.14 (Exponential dichotomy). Suppose a < (3, then A has a (a, 3)
exponential dichotomy if there exists a projection 7 : X¢ — X so that me?? =
et and for Ti(t) = ¢/ xe) and T(t) := €{(j_y(xe, one has w(T1(t)) < a and
T5(t) extends to a group with w(Ta(—t)) < —p.

Remark 2.15. It follows that 7 is unique. One calls 7 the splitting projection.
The next two theorems are a consequence or reformulation of Theorem 2.12:

Theorem 2.16 (Spectrum determined growth). Growth and spectral bound coin-
cide:

w(A) = s(A).
Theorem 2.17 (Spectrum determined exponential dichotomy). Suppose o < (3
and {\ € C| a <ReA < B} Cp(A). Then A has a («, 3) exponential dichotomy.

Remark 2.18. Theorems 2.12, 2.16 and 2.17 also hold for the Banach space X;? =
LP([0,1],C™) x C"=.
3. PROOF OF THEOREMS 2.2-2.5

For 1 <p < oo let
X, = LP([0,1], R™) x R"=.
By integrating along characteristics we can write a formula for the semigroup T'(¢)
corresponding to (2.1). We do not require such a formula, we only need the following
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Proposition 3.1. The semigroup 7'(t) is strongly continuous on X, for 1 < p < oo
and X . For T > 0 there exists ¢ > 0 such that for (ug,vg) € L*([0,1], R™) and
do € R™ we have

HT(t)(U‘OvUOde)”XOO S CH(’U.(),U(),do)”XOO for 0 S t S T.

In particular Proposition 3.1 states that 7'(¢) is a semigroup of bounded operators
on Xo. It is not Cy (see also [18]), even not Bochner measurable according to the
following;:

Remark 3.2. The map

F(u(s), v(s))

is not Bochner-measurable into X.,. Hence the integral

o firo=o (RS

can not be interpreted as a Bochner integral in the space Xoo

Indeed, consider a real valued step function on [0,!] which has a jump (shock) at %
Then translation of this function is not measurable on a time interval with values into
the Banach space L>°([0,(], R), because the image is not separable with respect to the
strong L™ norm. Now the Nemytskij operator $ will not be compatible with boundary
conditions (even if the generating function is linear with constant coefficients, in general),
so that shocks will travel along the characteristics when the translation semigroup 7'(t —s)
is applied.

We propose two possibilities for defining (3.1): We can consider (3.1) as a Bochner
integral in the Banach space X, for 1 < p < oco: Because T is a strongly continuous
semigroup on X, the integrand becomes Bochner measurable. Alternatively we can avoid
Bochner integration and consider (3.1) in the weak star sense of X since the semigroup
T is Xo weak star measurable. As is easily verified, we are allowed to estimate the X
norm of the integral (3.1): Let f : [0,7] — X be Bochner measurable and bounded.

Then we have
t t
[ re-9sas| <e [, @
0 Xoo 0

(3.2) ‘
We will need such L™ estimates several times.

5o Tt — 8) (—fn(u(s), v<s>,w<s>>)

Theorem 3.3. Weak solutions of (SH) are unique.
Proof. The proof is standard and uses Gronwall’s Lemma and (3.2): Let
21 = (u1,v1, Aug,v1)), 22 = (u2,v2, Aluz,v3)) € Xp

be solutions of (SH) with 21(0) = 23(0). By (SHII) § is locally Lipschitz on
> (]0,1[,R™). Hence, by Proposition 3.1, there exist constants ¢ > 0 and L > 0
so that for t € [0, 7]

: H(us(s), v1(s)) + Hlua(s). va(s)
lz1(t) — z2(t)]| y < ‘/OT(t—S)< Flui(s),v1(s)) - F(UQ(S),’UQ(S)>d8 .
Al Huals),v1(s)) — Hluz(s).va(s))
= / (F( 1(8).v1(8)) — F(ua(s), va(s)) me ds
< el / I21(5) = 22(5) | ds.
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Gronwall’s inequality yields
(21— 22)(llx =0 fort € [0,T).
O

0
on X,, 1 < p < oo, with domain

D(A,) = {(u,v,d) € W"P([0,1],R") x R™ | u(0) = Ev(0), d = A(u,v)}.

Let A, = be the infinitesimal generator of the Cp semigroup 7T'(t)

We will use the following well known Proposition (see for example [6, Proposi-
tion 4.1.6, p.51])

Proposition 3.4. Let f € W1(]0,77, X,) and

u(t) == /0 T(t—s)f(s)ds.

Then

v e O([0,T],D(AL) NC*([0,T], X,)
and Lu(t) = Av(t) + f(1).
Proposition 3.5. Suppose

p € C([0,T], L>=(0,I[,R") x R"?).
Then .
/ T(-—s)p(s)ds € C([0,T], X).

0

Proof. By mollification there exists a sequence p, € C1([0,7], Xo) such that py
converges uniformly to p in C([0,T], X )- Since p, € C*([0, T], X,,) Proposition 3.4
yields

/O' T(- — $)pu(s) ds € C([0,T], D(A.)) — C([0,T], X).
For ¢t € [0,T] by (3.2) and Proposition 3.1

[ 7= 90606) - s s

Hence we have

IN

T sup [T(s )HL(XOO) ||P—/)k||0([o,T],Xm)
Xoo s€[0,T]

< cllp- PkHc([o,T],Xoo) .

N

/.T(-fs) (s)ds € C([0,T], X).

0

Corollary 3.6.

o If (ug,vo, A(ug,v0)) € X and (u,v, A(u,v)) € Xr, then

" | $(u(s), v(s))
T v + | T(-—s) ds € C([0, T), X).
" Alug. ) / ( F(u (>,v<s)>)
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o If (u,v, A(u,v)) € Xr is a weak solution to (SH), then

d
2 A, 0)(t) = F(u(t), o(t)).
Proof of Theorem 2.3. Let h >0and 0 <t <t+ h <T. Then

2(t+h) — 2(t) =(T(h) — 1)T(t)2(0)

Lo [ 9w 0)(h+ 5)) + 9 ((w,0)(s) s
# L 09 (G h  F ey

+[fT@+h@(;§32g§)@.

By (SHII), (SHIII) and Proposition 3.1 there exists ¢ > 0 so that
[zt +h) = 2O x <I(T(h) = DHT()z(0)l[x, +ch

+o [ et ) = =)l ds

A(u,v) € C*([0,T],R™) and

Moreover,

h
(T(h) — DT (1)2(0) = /0 ()T (t)(Au2(0)) ds.

And because A,z(0) € X~ by assumption we have (the constant ¢ will differ from
each line)

(T(h) = DT(1)z(0)l x,, < ch.
Hence
() =20 S ehbe [ Lo +0) — 2l ds
Gronwall’s Lemma, yields i
(¢ + B) — 2l < he.
Hence z : [0,7] — X and

(v )Y g
(FM%WD>'MH Xoo € Xy

are Lipschitz continuous. Because X, is reflexive for 1 < p < oo we have

~5((,0,0)() _ e
< F(u(-),v(+)) ) ew ([O’TLXP)

and Proposition 3.4 yields the assertion. O

Proof of Theorem 2.2. By Corollary 3.6 G maps X into itself. Let 0 < § < 1.
Define the closed subspace of X5 (recall (2.2))

Bs ::{z = (v, A(u,v)) € Xy | for t € [0,0] ||2(t) — T(t)zo]ly < 1}.

By (SHII) and (SHIII) and (3.2) and Proposition 3.1 there exists L > 0, depending
(essentially) only on ||20]| y, such that if 21, 2o € Bs then

(3-3) 1G(z0)(1) = G(22)(B) | x < OL|[z1 = 22|, -



12 MARK LICHTNER

Moreover, since $ and F' are locally bounded it follows from the definition of B;s
that there exists a bound M > 0, depending only on ||z|| i, such that for z € Bs

B 1660 - Tl < | [ 10 () 4
< M for t € [0,0].

Therefore (3.3) and (3.4) imply that for sufficiently small 6 > 0 the operator G
maps By into itself and becomes a contraction. By Banachs contraction mapping
theorem G has a fixed point in Bs C Xj. O

X()O

For zp € X let w = w(zy) € ]0, 00| denote the maximal time up to which the
solution exists, i.e.

w(zp) := sup{t € R | there exists a weak solution up to ¢ with z(0) = zo}.
We have the following standard consequence of Theorem 2.2

Corollary 3.7. For any 2y € X either
1) w(zp) =
or
1) w(zo) < oo and limyyy (., [[2(t)]|x = oo, where z : [0,w(z0)[ — X denotes the
weak solution with z(0) = zp.
For a proof of Theorem 2.4 one can proceed as in [27, Theorem 11.15, p. 117].

Proof of Theorem 2.5. For z = (2, A%) € Xp and initial data zo = (20, A%) €
X the operator G(z) has been defined in formula (2.3) of Definition 2.1. To empha-
size the dependence on zp we write G(z, 29). Define

(F(z,20)) () == (G(z, 20)) (t) — 2(t).
By Corollary 3.6 G(-, zp) maps Xr into itself for each zo € X. Thus F: Xp x X —
Xr. For each zp € U the equation F(z,z9) = 0,z € Xr, has a unique solution

z=7(20)-
It follows from (SHIT), (SHIII) and definition of G that G is C* from X7 x X into

Xr and that we have for h; = (h;, Ahj) € Xp, 1 < j <k, t€[0,T]

’g _ [ 079 (5(5)) (hi(s))1<i<;
(3.5) (@(z,zo)hl...hj> (t) 7/0 T(t—s) (83F( () (h( Dics 53) ds.

Indeed, for j = 1 we have

Gz + hu. 20)(t) — G(z 20)(t) /0 (- s) (6%?5;)”,7"11((5) ds
~[rea|-(; 8’??‘?3%;2?) ( é?‘?ﬁfiti‘ii)fﬁiii‘ii’)]ds
- flren [ TGO + (SR8 o)

(
Therefore by (3.2), Proposition 3.1 and the uniform continuity of the derivative
stated in conditions (SHIT) and (SHIIT) we have

6+ h) - 6 - [ 1) (IO 4,

111l L0
—

(123 0.
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By induction one obtains (3.5) for 1 < j < k.
A generalization of Banachs fixed point theorem yields that %—f is an isomorphism

from X onto itself: Indeed, assume w € X is given. Then for h = (iL, Aiz) e Xr
the equation %—f(z, z0)h = w is equivalent to Ph = h, where P : Xr — X,

. s
—%(Z(S))h(8)>
Ph) (t :/ T(t— ( N - ds — w(t).
PRy ®) = [ 1= (3 ptsn i ) &=
There exists a constant M > 0, depending only on T, §), F, z, so that for hy, he € Xp
[Pha(t) = Pha(t)l x < Mt|[h1 = hal|, -

Proceeding with P2 = PoP we get ||(P2h1)(t) — (P2ha)(t)]| ¢ < L2 ||y — ho|| .-
By induction '
MT)
O s — ol

Thus for i sufficiently large Pt is a contraction on Xp.

From the implicit function theorem it follows that v is a C* smooth map from U
into Xp. Hence St : U — X is C*.

1Pty =Phe|, <

O
Remark 3.8. Themap S : U — Xp,u — S uis C* smooth.

4. PROOF OF SPECTRAL GAP MAPPING THEOREM

In this section we prove Theorem 2.12 and the remaining consequences.

Let A denote the infinitesimal generator defined in (2.7) and (2.8).

First we need some general observations:

By Gelfand’s theorem for the spectral radius one has the following [28, Proposi-
tion 1.2.2.]

Proposition 4.1. For all t5 > 0
_ logr (eo) . log HeAtH.
to t—o0

Atg

w(A)

Here r (e%) denotes spectral radius of e

Remark 4.2. By Proposition 4.1 and the spectral inclusion Theorem e!*(4) C g (eAt)

one has
s(A) <w(A).
Theorem 4.3. The following assertions are equivalent:
1) A is (a, B) exponentially dichotomous.
1) For allt >0
(e e < ) < e’} cple).
w) There exists to > 0 so that
{Ae et < |A| < P} c p(elt).
If one of the conditions is true, then the splitting projection 7 is given by
1

T=— (z[ — 6At)71 dz,

21 |z|=r

where 1 € e, eP![.
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Proof. Compare with [13, Lemma 2.15].
1) = 1) By Proposition 4.1 we have r(T}) = sup{|z| | z € o(T})} = ™(T1) < et
and r(Ty ") = (13 which yields
1 —t
inf {|z] | z € 0(T})} = —— = e (T2 > ¢Ft,
{ ’ } r(157)
Because p(e?) = p(T¢) N
wm) = 1) Put P := %mf‘
I—P . Thenfort>0

L/ (zI — eAtO)71 eAdy = L eAt (ZI — 6‘4750)71 dz = e™P.
|z|=r

p(T¥) we have w).
(21 — e“‘to)f1 dz, where r € ]e® fo[ and Q :=

z|=r

Pett =
27 271

|z|=r

Thus X; := P(X®) and X, := Q(X®) are ¢! invariant and r(T}°) < e®% if
P # 0 and r((T5°)"1) < e P if Q # 0, where T} := eéﬁl and T} = ef}g.

t
logr(Ty?) o a and w((T;t)tzo) =

From Proposition 4.1 we get w((1})i>0) = n <

% < —B, if (T¥)i>0 extends to a Cy group on X»: For 6 € [0,1] we

put T, % = (Ty0) " 7009 Then T, Y01 = TT; % = I ie. TY™ is
invertible. Thus for each n € N and @ € [0, 1] the linear map T3 is invertible
which implies that T} extends to a group on Xs. O

Assume a < 8 and
(4.1) Cop={reCla<Rer<f}Cpl4).

For Theorem 2.12 we need to prove that {\ € C | e < |\| < €/} C p(e??). By
spectral inclusion Theorem the reverse statement is plain. In terms of Theorem 4.3
we will show that A has an (a, ) exponential dichotomy. For this we use the
following important characterization of («, 3) exponential dichotomy obtained by
Kaashoek, Lunel and Latushkin [12, 14]:

Theorem 4.4. A is (o, 3) exponentially dichotomous if and only if

2) p(A) D Ca g,
1) for all 6 >0 SUPACC. 5.5 IR(A, A)| < oo,
w) for each p € Ja, (3] there exists a constant K, > 0 such that for all z € X©,
z* € (X©)7, the function r(-, p,z,2*) : R — C, defined by

T(Va P T, ZE*) = Z*R(p + il/, A)T
satisfies ||3r (-, p, @, 37)|| poo < K ]| |27

The symbol § denotes Fourier transform in the sense of tempered distributions.

We will prove that conditions ¢) to u2) of Theorem 4.4 are satisfied for A defined
in (2.7) and (2.8).

For this we need to recall and refine some notions and results of [16]:

Corresponding to (H) we consider a reduced system (Hy).

Let Cyo be the block diagonal matrix containing the square matrices Cj;

Cyo := blockdiag (Cii)1§i§a+ﬁ'
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The reduced system is per definitionem
0 (u(t,z) 0 (u(t,z) u(t,z)\
ot (v(t,z) +K(I>% u(t, ) + Cro(@) v(t,z) ) 0,
(Hop) u(t,0) = Ev(t,0),

0
v(t, 1) = Du(t,l),
u(0,2) = up(x), v(0,2) = vo(x).

We denote the infinitesimal generator to (Ho)

() )l

D(Ag) 1= {(u,v) € Xo | A (Z) € Xo} :

where X := {(u,v) € C([0,1],C™) | u(0) = Ev(0), v(I) = Du(l)}. Then Ay gener-
ates a C semigroup on Xj.

with domain

Lemma 4.5. There exists an exponential polynomial hg and an entire functions h
with:

e 0(A) ={re C|h(}) =0},

e g(Ag) ={X e C|ho(N) =0}.

A formula for hg is given below in (4.2). We need estimates for the resolvent
R(\, A) = (A — A)™" similar to [16] but more precise including first order A~ ap-
proximations (in [16] we only needed a zero order approximation for the resolvent):

Lemma 4.6 (Estimates for resolvent). Let U C p(A) so that supycy |Re A| < oo
and infxcy |ho(N\)| > 0. Then there exist constants c¢,d > 0 so that for A € U and
[JmA| >d

f
g
b

1 f

e R(\ Ag), Ri(MA), i=1,...,4, and E(\, A) are bounded by ¢
e R(X A) is bounded by ¢



16

MARK LICHTNER

e Ri(MA),i=1,...,4, and R(\, Ay) are given by the following formulas:

RO A0) (1) = 1.0 () By 0700+
[ e (100 ay

0 9(y)
where

!
Bo(N)(f,9) == (D, —I)/0 To(l,y, K (y)~* <f(y)) dy,

Ho(A) = (=D, I)Ty(L,0, ) (?3) ,
ho( ): detHo( )

To(z,y, \) —eXp( /K ) Y);

F = (blockdlagF)lglg,H@a

where F; is the solution to

9 py) =k (@) Cal@) Fiwy), Filyy) = L,

dx
and
m) (1) = o) () s mo).o)
10 (1) = ~1u,0.3) () Ho) B0 ) 560019,
R3(A) (

/(D)= [ meanrw= (1) a

l
Ot = b+ (0-1) | F1<z,y,A>K<y>1(
)
Y

)

g) =100 (7 ) Ho®) (790,
)
)

=06 [ Tk (1

where

Hy(\) = —(F, G)Ty(-,0, ) <]f> — (D8, —I8)Fi (-0, )) <]f> ,

and Fy is the matriz with the i-th blockdz’agonal element, 1 <i<a+ [,

(Fa(,y, N);s = —exp (<A k7 du) ()

> / wlz),, (2,y) dz,

1<v<a+p
v#£i
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where
C’lm(z) 1 5
ki(2) Kk MNz) — k' (2)
and with the i-th blockrow and j-th blockcolumn, 1 <i,j < a+ 0, i # j,
(Fi(z,y,\));; = — exp (—)\ f; kit (u du) pij(z)Fj(z,y)

+exp (—Afyx ky (u) du

pim(z) == €0, 1<im<a+p,1l#m,

x'l/pzy

) F
+exp (<A [Tk () du) Fia
/:exp<f A (kM) — kY (w)) du)

d% (Fi(y, 2)pij(2) Fj(2,y)) dz.

Now we are able to check conditions 2) to 22) of Theorem 4.4:

The first condition is assumption (4.1). It implies ho(A) # 0 for A € C, 5.
Indeed, if ho(Ag) = O for some Ao € C,, g, then there exist infinitely many zeros A
of ho with JRe X close to Re N\ (this can be proven by applying [16, Lemma 3.8],
for example). As in the proof of [16, Theorem 2.1] one deduces that there exists a
X € Cq,p with h(X) = 0, which yields a contradiction to (4.1). Hence ho(A) # 0 for
A € Cqo,5. Applying [16, Lemma 3.8] we get for § > 0

inf  |ho(M)] > 0.
AECn 5,55
Thus Lemma 4.6 yields #2). In the following we check the remaining condition ).
For this we need the precise approximation of the resolvent depicted in the formulas
of Lemma 4.6.

Moreover we will apply a Cesaro/Fejér Fourier inversion formula [30] and a well

known generalization of Wiener’s % theorem:

Theorem 4.7 (Cesaro/Fejér Fourier inversion formula). Let f € L*(R, C)NL*> (R, C)
and t € R be a point where both the limit from the right f(t+) and left f(t—) exist.
Let F ' f(w) = [*_e ™7 f(r)dr. Then

(f(tH) + f(t=)).

l\.’)l»—~

1 “iroe iwt ——1
(4.3) o et FT f(w) dw
The symbol lefooo denotes integration by Cesaro’s means of order 1, i.e.

cy n ¥
/ TF (W) dw == lim et Ff(w) (1 - —> dw.
PN R—oco J g R

We will need the following

Proposition 4.8. The limit in (4.3) has || f||;~ as a uniform majorant, i.e.

1ot
%/_Re“"t}'*lf(w) (1%) dw

<l e -
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Proof.
1 R iwt |LU| OO —ilwy £
Py 7Re <—E ‘/7006 f(y) dy dw
L/~ _ 1 " i) Y )
— - iw(t—y _ w(t—y .
| mmag e [ ) s
sin?((t — y)R/2)
= d
2 0 )
0o 2
o Ml = s,
T o U
= [Ifllpe
O
Let

{f R—-C| f(z Za e i|an|<oo}.
n=1

Theorem 4.9 (Wiener /Pitt % Theorem [22]). If f € A and infzer |f(2)] > 0, then
1
e

In Lemma 4.6 we required that |[Jm \| was sufficiently large, but we need an

estimate for the resolvent on the whole stripe C, g. Such is easily obtained: Let
—s < . Then for A € Co

N[
3] ()

1 -
+ WS(/\)(JC,.GJ)),

R(\, Ao), R1(N), R2(A), R3(N), Ry(X) are given by the formulas in Lemma 4.6 and
& is bounded for A € C, 5. Put

Ro ()\) = R()\, Ao)

Denote for (f,g,0) € X¢, 2* € (X®) ", a<p<B,veR

ot (1)) o= (3, (Rl i) (1) Coonsmato i) (1)),
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and for j =1,2,4
ri(v,p, (fyg),z") = p+s+w <x (Rj p+iv) ( > (=D, I)6iR;(p + iv) <§))>

f
T3(Vapa (fvgvb)am*) = p+s+zy <l‘ 7<R3 P‘i‘“/ g ;(_D71)6ZR3(p+iV) g )> .
b

Lemma 4.10. Suppose Co 3 C p(A) and p € Jo, B]. Then there exists k > 0 such
that for = = (f,9,b) € X©, 2* € (X®)", we have §[r;(-, p, (f,9),2*)] € L=(R,C)
and

(4.4) 18ri( p: (f:9)s 2%l e < £1I(f5950)l[ xe 127
fOTi = 07 ]-7 2747 and S[T3('a Ps (fgab)vx*)] € LOO(R) with
(4.5) [18rs (05 (595 0) 27 oo < w1I(F5 95 0)ll e 271

Proof. To prepare the proof recall that the dual space C* of C = C([0,],C")
is isometrically isomorphic to the space of countable additive C" valued Radon
measures on the Borel sigma algebra of [0,!] with the finite total variation norm.
That is for z* € C* there exists a Radon measure o = (a1, ..., ) : B — C" such
that for ¢ = (¢1,...,n) € C([0,1]; C™)

(x%, ) = Z/ @ da.
j=1710,1]

For ¢ = (¢ij)1<icn1<jem € C((0,1],€"™) let [;; ,pda denote the rowvector

pda = / Pij doz,—)
/[OJ] (; [0,]]

The dual of LP([0,];C") is LI([0,1];C"), where ¢ € ]1,00] satisfies ¢ + + = 1:
for * € (LP([0,1]; C™))* there exists a unique f € L9([0,[];C") such that for
» € LP(]0,1]; C™) we have

1<j<m

(") = /M (. )endA,

where )\ denotes Lebesque’s measure on R.
Corresponding to z* € X* there exist bounded C% valued Radon measures a;,
1<i<a+p,on[0,l] and z; € C%+i, 1 < i < 3 such that for k =0,1,2,4

a+p3 B
Tk(V:P: (fa g)ax*) = Z Tk'j(ya Ps (fa g):aj) + kaj(ya Py (fa g)axj)a
Jj=1 j=1
where for j =1,...,a+ 0
l .
(4.6) rij(v. . (£.9). ) = / B (p+iv)(f.g) da.

and for j=1,...,0
P (., (£,9),35) 1= (=D, DOiRi(p +iv)(£.9)), ;)

cdots’
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R,(j) € C([0,1],C%) denotes the j-th component, 1 < j < « + (3, of Ry, and
((—D,I)(Sle(p+i1/)(f,g))j € (%t denotes the j-th component, 1 < j < 3, of
the C"2 vector (—D, I)§ Ri(p + iv)(f, g)-

By Lemma 4.6

. P atf
R (p+iv)(f, 9)(y) =e~H) K Mdr () <Z Tim(p + il/)Im(u)>
m=1

v — 37 “Yr)dr —
(4.7) + / e E Lk O A p (g, 2 kg (2)hy (2) dz

where 7jm(p + iv) € €%*4m denotes the j-th row and m-th blockcolumn of the
matrix

E _ )
(ij)1§j7m§a+g = <I) H, l(p +iv)(D, 1),

l
In(v) = /0 o) [LRN A N (2) de.

We show (4.4) for ro;, 1 < j < a + (, and omit the terms 7; because they
are even simpler. By (4.7) we can assume d; = 1, 1 < i < a + 8, without loss of
generality (otherwise we have linear combinations of such). Hence

a+p3
roj = (Z Tim (p + il/)Tij> =+ 70j0,

m=1

!
Tojm ::/ e PE TR AT By (y,0) day () - Tn (v),
0

and

! Y ) —1
7050 ::/ (/ e~ (ptiv) [V k; (T)der(y,z)kjl(z)hj(z) dz> doi (y).
0 0
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By Fubini’s Theorem, the inversion formula (4.3), Lebesgue’s dominated conver-
gence, Proposition 4.8 and the change of variables x = le k.1 (r) dr we have

101 oo

27

l _101 oo
. (2_ [ exp (i (0= 207 (1)) 1) dv)

) ke dr) Fy(9,0) doy (y)

Lf 1 Cipoe Jo bt (r)ydr
<— exp (iv (w— [} k;l(r) dr)) / e "
0

eiw”'rgjm (v)dv

l Ci poc o0 .
=sgn(k;) ; (%/ exp (iv (w— [y k;l(r) dr))/ e~ ((z) dwdu)

!
:/OC(W* o ki () exp (= fo' kj (r)pdr) Fy(y, 0) doy(y)

=
8

S~—
[

)

1 ifz €0, fol k,(r) fo k(1) drr, 0]
0 elsewhere

C(@) = x(@)exp ([l b (r)p dr) Fun(l, 2(2))m ((2)),
(@) =5 (dah) + &)

Since ¢ has compact support we have proven

(4.8) §rojm € L with compact support and (4.4) holds for 7.

Because Tj,, belongs to the Algebra 2 Theorem 4.9 yields that F7;m(p +4-) is a
measure of countable Dirac masses with finite total variation ||§7jm(p +i-)[|y,, <
0.

Hence for m=1,...,a+

S (rojm = Tim(p +i+)) = §rojm * § (Tjm(p +i+)) € L™
and  [|F (rojm - Tim (P + i)l e < NST0im lpoe 18Tim (0 + i)l 0 -

Instead of X consider XJ. Then h = (f,g) € L”([0,1];C"). Since C([0,1];C") is
dense in LP([0,{];C") (1 < p < o0) we can choose a sequence (h;)ien in C([0,]; C")
which converges in L” to h. Then the above calculation is valid for h; instead of h. The
integration with respect to the bounded measure do; is replaced with Lebesgue integration

with respect to some L? density, where ¢ € ]1,00], ¢~ + p~!

= 1, is the conjugated
exponent to p. By Holder’s inequality (4.8) holds uniformly in . Since rojm (hi) — 70jm (h)
in §* (even in L*°) we have §rojm (h) = lim;—co,s* Frojm(hs). Since Frojm(hi) is bounded

in L™, by weak-+* compactness of L, after possibly passing to a subsequence, we have
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that §rojm(h) € L and (4.8) holds for the limit also. This explains Remark 2.18. In the
following we will only consider the space X°

Using the change of variable x = — fo L(r) dr we have

J

1 Cl o0 .
% elwy’l"()jo(y)dl/
l l C1 oo . B
:/ exp (— fo (r)pdr) <%/ exp (iv(w — [ k; Y(r)dr))
0 —00

/Oy exp (iy foz kj—l(r) dr) exp (f(; kj_ r)p dr) i (y. Z)Zj Ez; dz dl/) da;(y)
l
:/0 exp( fo pdr)
Cy poo i~ .
(% [ exp (iu(w — foy k;l(r) dr)) [ e Wr(x,y) d dl/) do(y)

:/Olexp( fo pdT) (w—fo r)dr U) do(y),

where ((z,y) = (=1)*Dxy(2) exp (—pz) Fj(y, 2(2))h;(2(2)), 5(j) = 0if 1 < j <

a, s(j) = 1if a+1 < j < a + 8, xy is the characteristic set function to
0, 3 k5 M) drjul— [ k5 () dr, 0] and () = & (C(a+,9) + C(o—,p)). Thus
we have

Frojo € L with compact support and (4.4) holds for rgjo.
Hence (4.4) holds for i = 0.

By definition of R; and r1; (Lemma 4.6 and (4.6)) we have

1

"i = p—i—s—i—w

Z /Fl 0, p 4 i) jpTpq(p + iv) g (v) dov;.

q<a+p
Assuming d; = 1, 1 < i < a + 3, without loss of generality, we have

(4.9) 1 —¥< > Tiglp+ i)y p (f9)))

PHSTWN cicats

+ Z Zqu(P‘FiV)lepqr(V’p’ (f,g),ozj)>,

1<p,g<a+p r=1
P#j

where (see the formulas for F} in Lemma 4.6)

I
T1jjq i=— /0 exp (— (p+iv) [y k; () du) Fy(z,0)

> ” pm 2)Fj(2,0) dz day(x) - I, (v),
1<o<a+p
o#]
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and for p #£ j

l
Fijpat = — / exp (=(p -+ i) [ k(1) dus) pyp () Fyp (2, 0) dovs (z) - I, (»),

eXp( (p+iv) fo i )du) 5(2,0)p5p(0) devj(z) - 1,(v),

T1jpq2 ‘=

exp ((p + iv) Ji (k' (u) — by () dus)

/
T1jpq3 ::/Ol exp (—(p+iv) [y k, 1 (u) du) Fj(z,0)
/0

L (0,2)F(,0)) dz + F5(0,2) (=, 0)dpp(2) } oy () - 1,(0).

We calculate the Fourier transform of 71;,43. For z,z € [0,1] we have by the Fejér
Fourier inversion Theorem 4.7 and the change of variable w = f; kot (z)dz:

C1 oo
% | exp (iv (w— [y kp ) du+ [ (k; ' (u) =k, H(u) du)) I,(v) dv
1 Cq poo

=3 | exp (iu (W= 5 kptw)du+ [ (k' (u) — Kyt (u) du))

ke l
/0 e exp (— fy(w) pk(; (z )dz) (Ly(w))hg(y(w)) dw dv
C4 poo
:% e (iv(w— [ k' (u) du + I (k;l(u) —k, N(u)) du))
/00 e ¢ (w) dw dv

— 00

=C (w = fo Kyt (w)du+ [ (k; " (u) = Kyt (w)))
where

(:R—C,((w):= (CN(UH—) + 5(11&))

N =

is compactly supported,
s l
Cw) = (=1 @x(wexp (= [y, w25 d2) Fyll, y(w))hy(y(w)),

X is the characteristic function of the interval [0, fol k(= fo .y ' (2)dz,0] and
s(q):=0,if 1<g<aq,s(q):=1,iffa+1<¢g<a+p.

Therefore by Fubini and Lebesgue’s dominated convergence using Proposition 4.8
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for passing to the limit we have

1 C1 o .
% ewwrlquii(yv P (f7 g)7aj) dv
—00

xT

{
:/0 exp( fo T (u du) i (z, O)/ exp () p(k;l(u) - k;l(u))du)
Clw=Jy Byt du+ f5 (k5 (u) = K, (w))
{pjp<z>d% (F5(0.2)Fy(2.0)) dz + F5(0. 2)Fy(z 0)dpsy(2) ydoy (o).

Because the measure dp;, is bounded this shows the existence of a constant x such
that

(4.10) §rijpgs € L with compact support and
187 15pa3 1l e < & Nl 1(f5 95 0) [l xe -

The Fourier transforms of the simpler expressions 714, 71pg1 and 71,42 are cal-
culated similarly.

To verify (4.4) for ry; it follows from (4.9), since §F(7jm(p + ¢-)) is a bounded

measure, that we only have to check that the Fourier transform of ﬁ is in
LY(R). For this let
(z) = e , 0<r<©
M= 0 , —oco<x<0
Then (S 17) f_ e~ () dx = o +w Hence Theorem 4.7 implies
101po0 1 e , <<
gy e® T dw = % , =0
TJ-co +w 0 , —oco<z<0

From this it follows easily that

1 Cqpoo 1 e*(p+s)w 5 0<z<o©

— e P — /R % , =0 )

27 J o prstw 0 , —oo<z<0

which is in L}(R).
Next we calculate the Fourier transform of r4. Recall that in [16] for the expansion

of the fundamental solution 7" we arrived in the first step to the matrix F; with
nondiagonal entries (i # j)

(Fl(x,y,)\))ij:—)\exp( )\f k; du) (7, y)

/y " exp (320 () — by () )

Cij(2)
ki (Z)

Fi(y, z) Fi(z,y)dz.



LINEARIZED STABILITY AND CENTER MANIFOLDS FOR HYPERBOLIC SYSTEMS 25

Therefore we have

. a+p
N
ra(v,p, (f,9),x") = sty Z Tamj (Vs p, (f,9), am)+
P m,j=1
m#j
1 a+p3
———— > s (fog)sag)+
p+s+w =

74 (v, p, (f.9), (x1)1<1<8)
where for 1 <m,j < a+ 8, m#j,

Fimj = — /O | /0 e (i) [ k! (w) du) Fru(a,m)

[ b (=0 i) [ @) =y (w) )

Fn(y, 2) i:”(iz))

Fj(z,y)dz k;l (y)h;(y) dy do, ()
and for j=1,...,a+ 0

rajj = — /Ol /Ox exp (=(p+ ) [ b (w) du) F (2, y)

a+3

> x ij?(f)) pui(2)Fj (2, ) d= k5 (0)h; (y) dy oy (z).
A

As for rgjo the transform of ry;; is in L*> with compact support and estimate
(4.10) holds. Using the change of variable r(z,y) := [” (k' (u) — k; ' (u)) du we
can write for m # j (recall the definition of p,,; in Lemma 4.6)

[y
i _ _ o T 5 -1 _ xT P
Tamj = ; /0 exp ( w [, ky'(u) du) exp ( ly 7w du) F(z,y)

—ivr h.? (U)
[m e " ((y,x,r)dr R ) dy doy,(x),

where

C(y,2,7m) == =" Fu(y, 2(r,9)) pmg (2(r, ) x (v, 2, 7)
and x(y,x,-) is the characteristic function of the interval

[f;’(k;bl(u) — k{l(u)) du, 0] U [0, fﬁ(k;l(u) — k;l(u)) du] .

(if z is not a unique function on y and r, then by condition (HIII) p,,; vanishes
completely on [0, 1]).
Therefore for m # j
1 C' poo

— eV rym;(v)dv =

27
/Oz /OI exp (_ f; — du) Fo(z,y)¢ (y,g:,w - f; koL (u)) hiy) dy e (),

k;(y)
where C(ya €T, T) = (g(ya T, T+) + E(ya €T, Tﬁ))/Q
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Hence
§ramj € L=  with compact support for 1 <m,j < a+ .

Considering the Fourier transform of r5 it follows from the formula for F} and H;
in Lemma 4.6 and the previous arguments that the transform of

S(p+iv):=— (?) Ho(p+iv) *Hy(p +iv)Ho(p +iv) *(D, 1)
is a bounded measure. Since

= ! l ; i : 1 (f(w)
7m/o To(x,O,p+w)S(p+w)/0 To(l,y, \) K (y) (g(y)) dy do(x)

one sees as above that there exists a constant « such that (4.4) is satisfied for i = 2.

)

Finally we check (4.5): Write

7“3(1/, P, (f,g, b),&?*) Zm (7"31(7/7 Ps (faga b)va) + T32(V7 Ps (f79)7 a))

+ 73(v, p, (f,9,0), (25)1<j<p),

where

S /Ol To(, 0, p + iv) (?) Holp+ iv) ™!
<b+(D,I) /Ol Fi(Ly, K (y) ™ (g((z))) dy> do(z),

!
. (E -
T32 ::/ To(z,0,p + iv) <[> Ho(p +iv)™*
0

#.6) [ T nr ) (1) dyaato)

and 73 is simpler than the preceding terms. One sees that r3; is composed of terms
similar to the ones we have already discussed above. The term rs, differs slightly
since it contains the no X n; matrix of measures (F,G). However, the previous
arguments still work (only an additional integral with a bounded measure from
(F,G) appears and one uses Fubini once more, the Cy-Fourier transform is taken
in the first inner integrals as we did above). Thus we have checked that

101 o0

e e“ras(v)dv € L™®

so that (4.5) is true. O

We have proved Theorems 2.12, 2.16 and 2.17. The remaining Theorems 2.8 and
2.11 are straightforward consequences:

Proof of Theorems 2.8 and 2.11. To prove Theorem 2.8 first one applies Theorem 2.16
to obtain that the linearized system is exponentially stable with respect to the space
X. Then the assertion follows by using Theorem 2.5 and a standard argument (see
for example [27, Theorem 11.22, p. 121]).

For Theorem 2.11 first one uses Theorem 2.12 or 2.17 to find that the linearized
system has an exponential dichotomy in X. Then one modifies the critical linear
flow at the boarder of an ellipsoid to obtain an overflowing starting linear center
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manifold. Finally one truncates the nonlinearity close to the equilibrium so that the
nonlinear problem can be regarded as a small smooth perturbation of the modified
linearized problem and then one applies [4] and Theorem 2.5. For the details see
[15]. O

The results are contained in the thesis [15] of the author supervised by L. Recke.

The author would like to thank L. Recke, A. Mielke, K. Lu and K. Schneider for
helpful comments and support.
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