
Weierstraÿ-Institutfür Angewandte Analysis und Stohastikim Forshungsverbund Berlin e.V.Preprint ISSN 0946 � 8633On the large sale behaviorof super�Brownian motion in three dimensionswith a single point soureKlaus Fleishmann1, Carl Mueller2, Pasal Vogt3submitted: July 21, 2006
1 Weierstrass Institute forApplied Analysis and StohastisMohrenstr. 3910117 BerlinGermanyE-Mail: �eishm�wias-berlin.de

2 Department od MathematisUniversity of RohesterRohester, NY 14627USAE-Mail: mlr�math.rohester.edu
3 IFB AGNeumarkt-Galerie50667 KölnGermanyE-Mail: Pasal.Vogt�ifbAG.omNo. 1154Berlin 2006

W I A S2000 Mathematis Subjet Classi�ation. 60J80, 60K35.Key words and phrases. Super-Brownian motion with singular mass reation, expeted mass,Shrödinger equation with one-point-potential .



Edited byWeierstraÿ-Institut für Angewandte Analysis und Stohastik (WIAS)Mohrenstraÿe 3910117 BerlinGermanyFax: + 49 30 2044975E-Mail: preprint�wias-berlin.deWorld Wide Web: http://www.wias-berlin.de/



SINGLE POINT SOURCE SBM 1

Abstract. In a recent work, Fleischmann and Mueller (2004) showed the existence of a
super-Brownian motion in R

d, d = 2, 3, with extra birth at the origin. Their construction
made use of an analytical approach based on the fundamental solution of the heat equation
with a one point potential worked out by Albeverio et al. (1995). The present note
addresses two properties of this measure-valued process in the three-dimensional case,
namely the scaling of the process and the large scale behavior of its mean.

1. Introduction

A super-Brownian motion in R with a single point source δ0 was constructed in Engländer & Fleischmann
[EF00]. It was shown that its expected mass grows exponentially in time, and is in the mass-rescaled limit
distributed in space as x 7→ e−|x|. In Engländer & Turaev [ET02] it is even proved that the random
measures themselves grow in law exponentially as time increases, and are otherwise in the mass-rescaled
limit spatially situated with the same shape except an overall random factor. The probabilistic effect
behind the non-trivial existence of the model is the fact that a Brownian particle in R hits the origin with
certainty and that it has there a non-degenerate local time, serving as an additional birth rate for the
random creation of mass.

In higher dimensions, a Brownian particle fails to hit the origin, and a local time would degenerate.
Nevertheless, Fleischmann & Mueller [FM04] succeeded in constructing a super-Brownian motion in R

d,
d = 2, 3, with a single point source. They heavily used well-known analytical facts from mathematical
physics concerning Laplace operators with one-point-potentials. Heuristically, some additional rescaling
enters the regularization of the delta function (serving as single point source). Properties of this new
super-Brownian motion are not known so far. The purpose of the present note is to get some progress by
studying its scaling and the large scale behavior of its expectation in the three-dimensional case.

1.1. The heat equation with one-point-potential. The Schrödinger equation with a one-point-poten-
tial is studied in quantum theory to describe singular electromagnetic effects on quantum particles, see e.g.
the monograph Albeverio et al. [AGHKH88, Part I]. By analytic continuation, solutions to the Schrödinger
equation can be (at least formally) obtained via solutions of the heat equation.

Formally, the heat equation with a one-point-potential is given by

(1) ∂tu = ∆u + δ
(α)
0 u =: ∆(α)u,

where ∂t denotes the derivative with respect to time, ∆ is the d–dimensional Laplacian, and u : (0,∞) ×

Ṙ
d → R+ is a time-space field, where Ṙ

d := R
d \ {0} with the Euclidean metric is locally compact. If we

denote by Bε(y) an open ball around y ∈ R
d of radius ε > 0, then having in mind that ε−d

1Bε(0) ≈ δ0 ,

the operator ∆(α) := ∆ + δ
(α)
0 is heuristically the limit as ε ↓ 0 of the operator

(2) ∆(α)
ε := ∆ + h(d, α, ε) ε−d

1Bε(0),

where h(d, α, ε) is some additional rescaling factor which depends on a parameter α at least. Restricting
to d = 3, the function h can be chosen as

(3) h(3, α, ε) := π2

4 ε − 8π2αε2, α ∈ R, ε > 0,

(cf. [AGHKH88, (H.74)]).
Physically, α in the case α < 0 is related to the scattering length slα := −(4πα)−1 of the free Laplace

operator ∆ with respect to the interaction Laplacian ∆(α). Roughly speaking, the scattering length de-
scribes the average distance a free particle manages to go before any interaction takes place. So, if α ↓ −∞
the scattering length slα ↓ 0 becomes smaller and we expect more interaction. For α ≥ 0 there is no proper
physical interpretation of slα as the point spectrum of ∆(α) is empty (see [AGHKH88, Theorem I.1.4]).

The fundamental solution pα to the equation

(4) ∂tu = ∆(α)u on (0,∞) × Ṙ
d, d = 2, 3,

which provides the basis for the analytical construction of the superprocess in [FM04], have been computed
in Albeverio et al. [ABD95]. In d = 3 (the two-dimensional case is analytically more delicate, which is the
reason we restrict to d = 3), the one-point-interaction heat kernel pα is given by

(5) pα
t (x, y) = pt(x, y) +

2t

|x||y|
pt

(

|x| + |y|
)

−
8παt

|x||y|

∫ ∞

0

du e−4παu pt

(

u + |x| + |y|
)

,
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t > 0, x, y 6= 0, where p is the usual free heat kernel defined by,

(6) pt(x, y) := (4πt)−d/2 exp
(

− |y − x|2/4t
)

,

and with a slight abuse of notation,

(7) pt(r) := (4πt)−d/2 exp(−r2/4t), t > 0, r ≥ 0.

Also recall the scaling of the free heat kernel, i.e. for all k, t > 0 and x, y ∈ R
d,

(8) pt(x, y) = kd/2pkt(k
1/2x, k1/2y).

Note, that the last term in (5) is always finite and disappears for α = 0. Moreover, α 7→ pα is pointwise
continuous and decreasing, and we have the (pointwise) convergences pα ↑ +∞ as α ↓ −∞ (i.e. the
fundamental solution explodes which can be interpreted as immediate interaction), whereas pα ↓ p as
α ↑ +∞ leads the free case (i.e. the interaction disappears).

Rigorously, the family {∆(α) : α ∈ R} of operators are defined as all self-adjoint extensions on the

Hilbert space L2(Ṙd, dx) of the Laplacian ∆ acting on C∞
com(Ṙd), the space of unboundedly differentiable

functions on Ṙ
d = R

d \ {0} with compact support (see e.g. [AGHKH88, Chapters I.1 and I.5]). Hence,
although the pα differ from the free heat kernel p, they solve the heat equation

(9) ∂tp
α
t (x, y) = ∆pα

t (x, y) on (0,∞) × Ṙ
d,

with the Laplacian ∆ acting either on the variable x or y. In particular, (t, x, y) 7→ pα
t (x, y) is jointly

continuous on (0,∞) × Ṙ
d × Ṙ

d. Let us denote by Sα the semigroup associated with the kernel pα, i.e.

(10) Sα
t ϕ(x) :=

∫

Ṙd

dy ϕ(y) pα
t (x, y).

Note that Sα is not a contraction semigroup and so there is no stochastic process generated by this flow.
The following Lemma shows that the kernel pα has a similar scaling behavior as the free heat kernel p.

Lemma 1 (Scaling of the pα). We have, for all k, t > 0, x, y ∈ Ṙ
3, and α ∈ R,

(11) pα
t (x, y) = k3/2 pk−1/2α

kt (k1/2x, k1/2y).

Proof. That follows immediately from the definition (5) of the pα and the scaling (8) of the free heat kernel
p. �

1.2. The flow associated with the one-point-interaction heat kernel. This section is devoted to
introduce a space of functions Φ on which the flow Sα acts as a strongly continuous linear semigroup (see
[FM04, Section 2] for details). Let φ denote the weight and reference function

(12) φ(x) := |x|−1, x ∈ Ṙ
3 = R

3 \ {0}.

For fixed ̺ ∈ (1, 2), let H = H̺ denote the space of measurable functions ϕ on Ṙ
3 for which

(13) ‖ϕ‖H :=
(

∫

Ṙ3

dxφ(x) |ϕ(x)|̺
)1/̺

< ∞.

Then
(

H, ‖ · ‖H
)

is a Banach space, where as usual we do not distinguish between equivalence classes and

their representatives. Now, let Φ = Φ̺ denote the set of all continuous functions ϕ : Ṙ
3 → R such that

ϕ ∈ H and

(14) 0 ≤ ϕ ≤ C φ for some constant C = Cϕ > 0.

We endow Φ with the topology inherited from H. Note that the set C+
com = C+

com(Ṙ3) of all non-negative,

continuous functions on Ṙ
3 with compact support is contained in Φ. We remark that ϕ ∈ Φ might have a

singularity at x = 0 of order |x|−ξ with 0 < ξ < 1 . The linear semigroup Sα introduced in (10) is strongly
continuous on the cone Φ = Φ̺, cf. Corollary 2.12 in [FM04].
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1.3. Super-Brownian motion with a single point source. Denote by M = M(Ṙ3) the set of all

(Radon) measures µ on Ṙ
3 such that 〈µ, ϕ〉 < ∞ for all ϕ ∈ Φ. Recalling that C+

com ⊂ Φ, endow M with
the vague topology.

Fix a constant η > 0 (branching rate). Suppose 0 < β < 1 (the finite variance branching case β = 1 has
been excluded in [FM04] for d = 3 for technical reasons). Then for each α ∈ R, there is a non-degenerate
M–valued (time-homogeneous) Markov process Xα such that for (deterministic) starting measures µ ∈
M and for ϕ ∈ Φ,

(15) − log Eµ exp〈Xα
t ,−ϕ〉 =

〈

µ, v(t, ·)
〉

, t > 0,

where
{

v(t, x) : t ≥ 0, x ∈ Ṙ
3
}

is the unique non-negative solution of the integral equation related to the
Φ-valued evolution equation

(16)

{

∂tv = ∆(α)v − η v1+β on (0,∞),

v(0+, · ) = ϕ

(see [FM04, Theorem 4.4]). That is,

(17) v(t, x) =

∫

Ṙ3

dy pα
t (x, y)ϕ(y) − η

∫ t

0

ds

∫

Ṙ3

dy pα
t−s(x, y) v1+β(s, y),

t > 0, x ∈ Ṙ
3. Clearly, the first moments of Xα are determined by the Sα flow to be

(18) Eµ〈X
α
t , ϕ〉 = 〈µ, Sα

t ϕ〉,

for all starting measures µ ∈ M, t ≥ 0, and ϕ ∈ Φ.

2. Large scale behavior

2.1. A scaling property.

Proposition 2 (A scaling property). Let t, k > 0, µ ∈ M, and α, λk ∈ R. Then

(19)
{

k−1/βXλkα
kt (k1/2 · )

∣

∣ Xλkα
0 = k1/βµ(k−1/2 · )

}

L
=

{

Xk1/2λkα
t

∣

∣Xk1/2λkα
0 = µ

}

.

Of course, the cases λk = k−1/2 or even α = 0 are particularly nice.

Proof. For ϕ ∈ Φ fixed,

(20)
〈

k−1/βXλkα
kt (k1/2 dy), ϕ

〉

=
〈

Xλkα
kt , k−1/βϕ(k−1/2 · )

〉

,

hence, by (15) and (17),

− log Ek1/βµ(k−1/2 · ) exp
〈

k−1/βXλkα
kt (k1/2 dy), ϕ

〉

= − log Ek1/βµ(k−1/2 · ) exp
〈

Xλkα
kt , k−1/βϕ(k−1/2 · )

〉

=
〈

k1/βµ(k−1/2 · ), v(kt, · )
〉

=
〈

µ, k1/βv(kt, k1/2 · )
〉

(21)

where
{

v(t′, x′) : t′ ≥ 0, x′ ∈ Ṙ
3
}

is the non-negative solution of the integral equation related to the
function-valued evolution equation

(22)

{

∂tv = ∆(λkα)v − η v1+β on (0,∞),

v(0+, · ) = k−1/βϕ(k−1/2 · ).

More precisely,

k1/βv(kt, k1/2x) = k1/β

∫

Ṙ3

dy pλkα
kt (k1/2x, y) k−1/βϕ(k−1/2y)(23)

− k1/βη

∫ kt

0

ds

∫

Ṙ3

dy pλkα
kt−s(k

1/2x, y) v1+β(s, y).

By a change of variable,

k1/βv(kt, k1/2x) =

∫

Ṙ3

dy k3/2pλkα
kt (k1/2x, k1/2y)ϕ(y)(24)

− k1/βη

∫ t

0

ds k

∫

Ṙ3

dy k3/2pλkα
kt−ks(k

1/2x, k1/2y) v1+β(ks, k1/2y).
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Hence, by Lemma 1,

k1/βv(kt, k1/2x) =

∫

Ṙ3

dy pk1/2λkα
t (x, y)ϕ(y) − k1/βη

∫ t

0

ds k

∫

Ṙ3

dy pk1/2λkα
t−s (x, y) v1+β(ks, k1/2y).

Since 1/β + 1 − (1/β)(1 + β) = 0 we see that k1/βv(kt, k1/2x) =: wk(t, x) satisfies the equation

(25) wk(t′, x′) =

∫

Ṙ3

dy pk1/2λkα
t′ (x′, y)ϕ(y) − η

∫ t′

0

ds

∫

Ṙ3

dy pk1/2λkα
t′−s (x′, y)w1+β

k (s, y),

t′ > 0, x′ ∈ Ṙ
3. By uniqueness of solutions of the log-Laplace equation (17) and by (15), claim (19)

follows. �

2.2. Expectation of the scaled Xα. Before we can state the result, we have to introduce some notation.
The limiting measure will be expressed by means of the kernel

(26) ϑα
t (x, y) :=

2t

|x| |y|
pt

(

|y|
)

−
8παt

|x| |y|

∫ ∞

0

du e−4παu pt

(

u + |y|
)

,

for α ∈ R, t > 0, and x, y ∈ Ṙ
3. Note that the integral is always finite, hence for α = 0 the second term

disappears. Moreover, the kernel ϑα is always non-negative. This holds trivially whenever α < 0, and to
see this for α > 0, use the estimate

(27) pt

(

u + |y|
)

≤ pt

(

|y|
)

.

We extend the definition of ϑα by setting

(28) ϑα
t (x, y) :≡

{

0, if α = +∞,
+∞, if α = −∞.

The so defined kernels ϑα turn out to be pointwise continuous in α ∈ [−∞, +∞] (which follows from the
arguments of the proof of Theorem 3 below).

Theorem 3 (Large scale behavior of the mean). For t > 0, α, λk ∈ R, and all starting measures

Xα
0 = µ ∈ M satisfying 〈µ, φ〉 < ∞, we have the convergence in M,

(29) lim
k↑∞

k−1/2
Eµ

[

Xλkα
kt (k1/2 dy)

]

=
〈

µ, ϑα∗

t ( · , y)
〉

dy,

provided that α∗ := limk↑∞ k1/2λkα ∈ [−∞, +∞].

Proof. Fix ϕ ∈ C+
com(Ṙ3). Using formula (18) for the first moment of Xα and substitution, we obtain

k−1/2
Eµ

〈

Xλkα
kt , ϕ(k−1/2 · )

〉

= k−1/2

∫

Ṙ3

µ(dx)

∫

Ṙ3

dy pλkα
kt (x, y)ϕ(k−1/2y)

= k−1/2

∫

Ṙ3

µ(dx)

∫

Ṙ3

dy k3/2 pλkα
kt (x, k1/2y)ϕ(y).(30)

By Lemma 1 this is equal to

(31) k−1/2

∫

Ṙ3

µ(dx)

∫

Ṙ3

dy pk1/2λkα
t (k−1/2x, y)ϕ(y).

Inserting according to definition (5) of pα, we get three terms, we will deal with separately.

1◦ (First term). The first term equals,

(32) k−1/2

∫

Ṙ3

µ(dx)

∫

Ṙ3

dy pt(k
−1/2x, y)ϕ(y).

This double integral is finite and vanishes as k ↑ ∞. To see this, let us restrict the outer integral first to
|x| > K where we specify K ≥ 1 later. We call this restricted integral IK . We use ϕ ≤ Cφ (since ϕ ∈ Φ)
and, with S denoting the free heat flow,

(33) Stφ ≤ Cφ, t ≥ 0,

with changed constant C (see [FM04, Lemma 2.1]) to arrive at

(34) IK ≤ Ck−1/2

∫

|k−1/2x|>K

µ(dx)φ(k−1/2x) = C

∫

|x|>k1/2K

µ(dx)φ(x)
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which can be made arbitrarily small uniformly in k by choosing K sufficiently large (by our assumption on
µ). It remains to deal with the case |x| ≤ K for fixed K. We split the internal integral in (32) as follows.
First, if |k−1/2x − y| ≥ |y|/2, then

(35) pt(k
−1/2x, y) ≤ pt

(

|y|/2
)

,

which leads to the bound

(36) k−1/2

∫

|x|≤K

µ(dx)

∫

Ṙ3

dy pt

(

|y|/2
)

ϕ(y) −→ 0 as k ↑ ∞,

the µ(dx)-integral is finite as 〈µ, φ〉 < ∞. On the other hand, if |k−1/2x−y| < |y|/2, then −k−1/2|x|+ |y| <
|y|/2 which implies |y| < 2k−1/2|x| ≤ 2K. Hence as pt(k

−1/2x, y) ≤ Ct−3/2 and ϕ ≤ Cφ, we get the upper
estimate

(37) Ct k−1/2

∫

|x|≤K

µ(dx)

∫

|y|< 2K

dy φ(y) −→ 0 as k ↑ ∞

(the dy-integral is finite, since we are in dimension three).

2◦ (Second term). The second term reads

(38)

∫

Ṙ3

µ(dx)

∫

Ṙ3

dy
2t

|x| |y|
pt

(

k−1/2|x| + |y|
)

ϕ(y) =: IIk .

Observe that,

(39) pt

(

k−1/2|x| + |y|
)

↑ pt

(

|y|
)

as k ↑ ∞.

We can apply the monotone convergence theorem to obtain the limit,

(40) lim
k↑∞

IIk =

∫

Ṙ3

µ(dx)
2t

|x|

∫

Ṙ3

dy
1

|y|
pt(y)ϕ(y),

where finiteness follows from 〈µ, φ〉 < ∞ and ϕ ≤ Cφ. Hence, this summand gives the first part of the

kernel ϑα∗

.

3◦ (Third term). It remains to insert the scaled third term from (5) into (31) which reads as

(41) k−1/2

∫

Ṙ3

µ(dx)

∫

Ṙ3

dy
−8πtk1/2λkα

k−1/2|x| |y|

∫ ∞

0

du e−4πk1/2λkαu pt

(

u + k−1/2|x| + |y|
)

ϕ(y).

We distinguish several cases: If λkα = 0 for all sufficiently large k, then the third term disappears and we
are done. From now on assume λkα 6= 0 for all k. Substituting u 7→ 4πk1/2|λkα|u into (41) yields,

(42)

∫

Ṙ3

µ(dx)

∫

Ṙ3

dy
−2t sign(λkα)

|x| |y|

∫ ∞

0

du e−sign(ρkα) u pt

( u

4πk1/2|λkα|
+ k−1/2|x| + |y|

)

ϕ(y).

Now let k1/2|λkα| → ∞. We may consider a monotone subsequence of k1/2λkα. Clearly,

(43) pt

( u

4πk1/2|λkα|
+ k−1/2|x| + |y|

)

↑ pt

(

|y|
)

as k ↑ ∞,

and by monotone convergence the expression (42) converges along the subsequence to

(44) −

∫

Ṙ3

µ(dx)
2t sign(α∗)

|x|

∫ ∞

0

du e−sign(α∗)u

∫

Ṙ3

dy
1

|y|
pt(y)ϕ(y),

which is independent of the choice of the subsequence. Note that

(45) sign(α∗)

∫ ∞

0

du e−sign(α∗) u =

{

1 if sign(α∗) = 1,

+∞ if sign(α∗) = −1.

In the first case the second and the third limiting terms cancel.
Next, let k1/2λkα → 0. Note, that

(46) pt

( u

4πk1/2|λkα|
+ k−1/2|x| + |y|

)

≤ pt

( u

4πk1/2|λkα|

)

e−|y|2/4t .

In this case the double integral (42) is in absolute value bounded by

(47)

∫

Ṙ3

µ(dx)

∫

Ṙ3

dy
2t

|x| |y|
e−|y|2/4t ϕ(y)

∫ ∞

0

du eu pt

( u

4π k1/2|λkα|

)

,



6 KLAUS FLEISCHMANN, CARL MUELLER, AND PASCAL VOGT

which tends to 0 as k ↑ ∞ as the µ(dx) and dy-integrals are finite and in the du-integral the pt-term
compensates the eu.

It remains to deal with the case k1/2λkα → α∗ ∈ Ṙ
1. Note, that we only have to justify to change

the limit and integration in (42), as substituting u 7→
(

4π|α∗|
)−1

u leads to the desired expression. To
justify the interchange, we estimate as in (46). The resulting µ(dx) and dy-integrals are independent of k
and finite, whereas to dominate in the second integral we use k1/2|λkα| ≤ |α∗|+ 1 for all sufficiently large
k. �

Remark 4 (Large scale total mass). Taking λk ≡ 1 and choosing formally ϕ = 1 as test function in
(29) yields

(48) lim
k↑∞

k−1/2
Eµ 〈Xα

kt, 1〉 =















0 if α > 0,

2t 〈µ, φ〉

∫

R3

dy
1

|y|
pt(y) if α = 0,

∞ if α < 0.

A rigorous argument can be given along the lines of the previous proof. 3

2.3. Discussion and open problems. Let us comment on the three cases α∗ = +∞, α∗ ∈ R, and
α∗ = −∞ in Theorem 3. In the first case, the limiting mass disappears, more precisely, the scaled expression
Eµ

[

Xλkα
kt (k1/2 dy)

]

is of order o(k1/2). Roughly speaking, if α∗ = +∞, then there are no interactions in the

scaling limit (free case). In the second case, α∗ ∈ R, the former expectation is about k1/2
〈

µ, ϑα∗

t ( · , y)
〉

dy.
Note that these measures are decreasing in α∗. Finally, if α∗ = −∞, we have immediate interaction in the
large scale limit leading to the explosion of the expected mass.

Clearly, to describe only the large scale behavior of the expected processes is unsatisfactory. It is desirable
to get something similar for the processes themselves. Recall that in the one-dimensional case the large
time behavior of the process itself is known from [ET02]. However, we stress the fact, that the process in
three dimensions is expected to have quite different features. For instance, if α = 0, then according to
Remark 4 the total mass grows with a power order, whereas in one dimension the growth is exponential.
Moreover, in the three-dimensional case one needs additionally to contract the normalized measures to get
a limit. For the measures themselves, scaled as in Theorem 3, there might be extinction in law despite
convergence of their expectations.

Another open problem is the large scale behavior of EXα in the two-dimensional case, in which the
fundamental solutions pα from [ABD95] are analytically more delicate, see e.g. [FM04, formula (2.30)]. In
particular, a scaling property as in Lemma 1 is not available.
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