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Abstract

We have detected a fundamental pulse-compression limit for high-nonlinear
fibers in the normal dispersion regime near the zero-dispersion wavelength.
The desired generation of a broadband continuum by self-phase modulation
is limited by already small amounts of third-order dispersion, which results in
pulse splitting above a critical pulse power. We investigate the critical fiber
length in dependence on pulse- and fiber parameters.

1 Introduction

For typical semiconductor laser based pulse sources are still limited to approximately
1 ps in duration, an external compression scheme must be employed to generate
femtosecond optical pulse trains with GHz repetition rate [1]. An effective method
for pulse compression is the pulse evolution in a high-nonlinear fiber with normal
group-velocity dispersion (GVD) followed by an anomalous dispersive medium [2].
The key step in this technique is to take advantage of the wider bandwidth generated
by self-phase modulation (SPM) which enables support for shorter pulses. This
bandwidth can be much enhanced close to the zero-dispersion wavelength (ZDW),
where (3, is small, but with the drawback, that in particular third-order dispersion
(TOD) gains influence. We show that even a small amount of TOD can lead to a
pulse break-up above a certain pulse power, which represents a fundamental limit
to this compression technique.

2 Numerical modeling

We have simulated the pulse compression by numerically solving the generalized
nonlinear Schrédinger equation (GNLSE) for the slowly varying complex envelope
A(z,T) of a pulse:
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The linear terms on the right-hand side represent the GVD, namely second-order
(SOD), and third-order (TOD) dispersion, and the attenuation due to the fiber loss
«. The nonlinear term represents the SPM. For the numerical solution of Eq. (1) we
use a standard de-aliased pseudo-spectral method. The integration is performed by
an eighth-order Runge-Kutta integration scheme using adaptive stepsize control [3].
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3 Pulse compression

According to the compression scheme in [4], a pulse with an initial envelope

A(0,2) = \/ Pysech(t/Ty) (2)

propagates through a high-nonlinear fiber (HNLF) near the ZDW in the normal
dispersion regime (8 small, but positive) and gets spectrally broadened and chirped.
Afterwards, the chirped pulse is launched into a standard single mode fiber (SMF)
for a subsequent recombination of its frequency components which leads to the
desired compression.

The efficiency of the compression scheme is determined by the input pulse parame-
ters and by the propagation through the HNLF. At the leading edge of the pulse, the
SPM causes a red shift. The trailing edge of the pulse experiences a corresponding
blue shift. The GVD tends to decrease the spectral width and in turn increases the
temporal width of the pulse. The condition for optimum pulse compression was de-
termined theoretically in [2]. There, the two important fiber parameters determining
the performance of a fiber compressor are the nonlinear length Ly, = 1/(vF,) and
the dispersion length Lp = T2/|B2|.- The optimum compression factor F, = Tg/T.,
where T, is the width of the compressed pulse, was found to be [2]

Lp vF
Fc:O.GBN/—:O.63T1/—. 3
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According to (3) high compression factors can be reached by using a high nonlin-
earity 7P, and small ||, i.e. by operating near the ZDW. However, in practice this

250

Intensity [W]
@
(=]

@
=]

T § T

_8

Compressed pulse (SMF z= 50 m) |

Intensity [W]

W
8

N
3

N
8

—Comprewed pulsex 16 (SMF z= 3ﬂ m)

Compressed pulse (SMF z= 63 m) |

Output pulse x 16 (HNLF)

Figure 1: Pulse shapes after the HNLF (dashed) and in the dispersion compensating
SMF (full lines). a) above crtitical power for optical wave-breaking, which is visible
by the oscillations at the steep edges of the pulse. b) moderate power, no optical
wave-breaking occurs.

compression scheme is limited by the optical wave-breaking which occurs for high



input powers and long propagation distances, and which we illustrate in Fig. 1a)
for an overcritical pulse power. Due to the dominating SPM increasingly frequency
components are generated, which cause the rectangular shape of the pulse after the
HNLF. In turn, the steep edges at the leading and trailing part of the pulse lead
to optical wave breaking, which then reduces the spectral broadening. After the
onset of optical wavebreaking the pulses can still be compressed, see Fig. 1a), but
the generation of even shorter pulses is prevented. Other effects will occur, which
are not of interest here.

We will from now restrict to powers below the critical value for optical wavebreaking,
where pulse compression should work properly as drawn in Fig. 1b). However, in
this regime the first relevant higher-order effect is TOD, especially evocated for small
|Ba], which in turn can also degrade the optimal compression ratio, as we will show
now.

4 Pulse Splitting

We study now the impact of TOD on our pulse compression scheme by a practi-
cal example. A sech-pulse with 75 = 2.1ps is launched into the HNLF with G, =
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Figure 2: Nearly ideal compression for a pulse with P,, = 20 dBm and 7y = 2.1 ps.
a) spectrum, mainly determined by SPM. b) temporal shape. Higher-order terms
are unimportant and the compression is close to the optimum (dashed).

0.13ps?/km, close to the zero dispersion wavelength (ZDW), centered at A = 1555
nm. The fiber is 789 m long and has a nonlinear coefficient of v = 10.5 W ~1km™1,
with a fiber loss of 0.84 dB/km. Figs. (2),(3) show the calculated pulse shapes and
spectra after the spectral broadening in the HNLF and the subsequent pulse com-
pression in the SMF. ! The pulses are compared with the ideal case, where TOD is
excluded. For moderate power (Fig. 2) the structure of the resultant spectrum is

!The length of the compensation SMF was numerically optimized.



mainly determined by SPM and shows the typical multi-peak structure characteris-
tics. The compression is close to optimum, but already a small asymmetry induced
by TOD can be observed, although unimportant. The contribution of TOD appears
with increasing bandwidth, achieved by a further increase of the power, c.f. Fig. 3.
The pulse shape then experiences an asymmetric temporal developement with an
enhanced transfer of power from the trailing portion of the pulse to the leading one.
Hence, a narrow peak forms at the front of the pulse which would grow with further
propagation through the HNLF. At a certain threshold (P;y = 23.75 dBm, Fig. 3),
the evolution of the pulse changes dramatically, because SPM is no longer dominant
for the characteristics of the spectrum. The transmitted pulse in the HNLF exhibits
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Figure 3: Pulse-breakup (P,, = 23.75 dBm). a) spectrum, with strong asymmetry to
the blue side and complicated non-SPM characteristics. b) temporal shape. Increase
of the peak intensity on the leading side and asymmetric splitting of the pulse. Full
lines: with TOD, dashed: without TOD.

an asymmetric splitting and the injection into the SMF leads not to the desired
compression behavior anymore, such that from here the compression scheme fails
completely. Further increase of power causes pulse shapes with multiple sub-pulse
signature. Thus, this splitting represents a fundamental limit for pulse compression
and suggests that operation below a critical power is necessary for optimal compres-
sion. We notice here that this pulse splitting has been verified also experimentally
in [4]. The HNLF used in the experiments exhibits a strong impact of TOD at the
ZDW and has normal dispersion below Ay = 1555 nm, but has anomalous dispersion
above this wavelength. To exclude the impact of possible anomalous dispersion on
the pulse splitting we have numerically checked similar constellations of fiber co-
efficients with completely normal dispersion over the whole spectral range, which
revealed the same compression limit behavior. Fig. 4 shows an example for pulse
splitting of a sech-pulse with Ty = 2.1ps and Py = 10W for normal dispersion over
the whole wavelength range, which we managed by switching on a small g,.

We have also investigated the dependence of the pulse splitting on the input param-
eters. The pulse splitting depends on Ly and on the ratio Lp/L,(= |Bs/B=|/Th),
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Figure 4: Simulated initial sech-pulse propagating down a HNLF with normal dis-
persion over the whole spectral range: 3> = 0.2ps*/km, B3 = 0.01ps®/km and
B4 = 1.7-10*ps*/km. Evolution of shape (left) and spectrum (right).

where L'p = T} /| 35| is the dispersion length associated with TOD. This dependence
is illustrated in Fig. 5. For fixed ratio Lp/L', the critical distance z.., where the
pulse splitting sets in, is proportional to Ly, as shown in Fig. 5a). In Fig. 5b) the
dependence of 2., on the ratio Lp /L', for fixed Ly, is shown. For example, for given
dispersion (8, and (3 a decrease of T leads to an increase of the ratio Lp/L’, and
hence reduces the critical length. In turn the critical peak power for pulse splitting
decreases with a decrease of the temporal width of the injected pulse.

5 Conclusion

We have analyzed the pulse-compression scheme for high-nonlinear fibers in the nor-
mal dispersion regime followed by anomalous dispersive single mode fibers. After
confining to optical nonlinearities below the onset of hindering optical wavebreaking
we detected another fundamental compression limit near the zero-dispersion wave-
length, which is caused by third order dispersion (TOD). The desired generation of a
broadband continuum by SPM is perturbated by already small TOD, which results
in pulse splitting above a critical pulse power and which can not be compensated
after its appearance. We showed, that the critical length decreases with increasing
pulse power and decreasing pulse width, and decreases with increasing ratio |33/0s]
as well.
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Figure 5: Critical distance z.,., where the pulse splitting sets in, in dependence of a)
the nonlinear length Ly for different fixed ratio Lp/L’, and b) in dependence of
Lp/L', for diffferent Lyr.
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