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Abstra
tWe have dete
ted a fundamental pulse-
ompression limit for high-nonlinear�bers in the normal dispersion regime near the zero-dispersion wavelength.The desired generation of a broadband 
ontinuum by self-phase modulationis limited by already small amounts of third-order dispersion, whi
h results inpulse splitting above a 
riti
al pulse power. We investigate the 
riti
al �berlength in dependen
e on pulse- and �ber parameters.1 Introdu
tionFor typi
al semi
ondu
tor laser based pulse sour
es are still limited to approximately1 ps in duration, an external 
ompression s
heme must be employed to generatefemtose
ond opti
al pulse trains with GHz repetition rate [1℄. An e�e
tive methodfor pulse 
ompression is the pulse evolution in a high-nonlinear �ber with normalgroup-velo
ity dispersion (GVD) followed by an anomalous dispersive medium [2℄.The key step in this te
hnique is to take advantage of the wider bandwidth generatedby self-phase modulation (SPM) whi
h enables support for shorter pulses. Thisbandwidth 
an be mu
h enhan
ed 
lose to the zero-dispersion wavelength (ZDW),where �2 is small, but with the drawba
k, that in parti
ular third-order dispersion(TOD) gains in
uen
e. We show that even a small amount of TOD 
an lead to apulse break-up above a 
ertain pulse power, whi
h represents a fundamental limitto this 
ompression te
hnique.2 Numeri
al modelingWe have simulated the pulse 
ompression by numeri
ally solving the generalizednonlinear S
hr�odinger equation (GNLSE) for the slowly varying 
omplex envelopeA(z; �) of a pulse:�A�z = � i2�2�2A�� 2 + 16�3�3A�� 3 � �2A+ i
jAj2A (1)The linear terms on the right-hand side represent the GVD, namely se
ond-order(SOD), and third-order (TOD) dispersion, and the attenuation due to the �ber loss�: The nonlinear term represents the SPM. For the numeri
al solution of Eq. (1) weuse a standard de-aliased pseudo-spe
tral method. The integration is performed byan eighth-order Runge-Kutta integration s
heme using adaptive stepsize 
ontrol [3℄.1



3 Pulse 
ompressionA

ording to the 
ompression s
heme in [4℄, a pulse with an initial envelopeA(0; t) = qP0se
h(t=T0) (2)propagates through a high-nonlinear �ber (HNLF) near the ZDW in the normaldispersion regime (�2 small, but positive) and gets spe
trally broadened and 
hirped.Afterwards, the 
hirped pulse is laun
hed into a standard single mode �ber (SMF)for a subsequent re
ombination of its frequen
y 
omponents whi
h leads to thedesired 
ompression.The eÆ
ien
y of the 
ompression s
heme is determined by the input pulse parame-ters and by the propagation through the HNLF. At the leading edge of the pulse, theSPM 
auses a red shift. The trailing edge of the pulse experien
es a 
orrespondingblue shift. The GVD tends to de
rease the spe
tral width and in turn in
reases thetemporal width of the pulse. The 
ondition for optimum pulse 
ompression was de-termined theoreti
ally in [2℄. There, the two important �ber parameters determiningthe performan
e of a �ber 
ompressor are the nonlinear length LNL = 1=(
P0) andthe dispersion length LD = T 20 =j�2j. The optimum 
ompression fa
tor F
 = T0=T
,where T
 is the width of the 
ompressed pulse, was found to be [2℄F
 = 0:63s LDLNL = 0:63T0s
P0j�2j : (3)A

ording to (3) high 
ompression fa
tors 
an be rea
hed by using a high nonlin-earity 
P0 and small j�2j, i.e. by operating near the ZDW. However, in pra
ti
e this
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Figure 1: Pulse shapes after the HNLF (dashed) and in the dispersion 
ompensatingSMF (full lines). a) above 
rtiti
al power for opti
al wave-breaking, whi
h is visibleby the os
illations at the steep edges of the pulse. b) moderate power, no opti
alwave-breaking o

urs.
ompression s
heme is limited by the opti
al wave-breaking whi
h o

urs for high2



input powers and long propagation distan
es, and whi
h we illustrate in Fig. 1a)for an over
riti
al pulse power. Due to the dominating SPM in
reasingly frequen
y
omponents are generated, whi
h 
ause the re
tangular shape of the pulse after theHNLF. In turn, the steep edges at the leading and trailing part of the pulse leadto opti
al wave breaking, whi
h then redu
es the spe
tral broadening. After theonset of opti
al wavebreaking the pulses 
an still be 
ompressed, see Fig. 1a), butthe generation of even shorter pulses is prevented. Other e�e
ts will o

ur, whi
hare not of interest here.We will from now restri
t to powers below the 
riti
al value for opti
al wavebreaking,where pulse 
ompression should work properly as drawn in Fig. 1b). However, inthis regime the �rst relevant higher-order e�e
t is TOD, espe
ially evo
ated for smallj�2j, whi
h in turn 
an also degrade the optimal 
ompression ratio, as we will shownow.4 Pulse SplittingWe study now the impa
t of TOD on our pulse 
ompression s
heme by a pra
ti-
al example. A se
h-pulse with T0 = 2:1ps is laun
hed into the HNLF with �2 =
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Figure 2: Nearly ideal 
ompression for a pulse with Pav = 20 dBm and T0 = 2:1 ps.a) spe
trum, mainly determined by SPM. b) temporal shape. Higher-order termsare unimportant and the 
ompression is 
lose to the optimum (dashed).0:13ps2=km, 
lose to the zero dispersion wavelength (ZDW), 
entered at � = 1555nm. The �ber is 789 m long and has a nonlinear 
oeÆ
ient of 
 = 10:5W�1km�1,with a �ber loss of 0:84 dB=km. Figs. (2),(3) show the 
al
ulated pulse shapes andspe
tra after the spe
tral broadening in the HNLF and the subsequent pulse 
om-pression in the SMF. 1 The pulses are 
ompared with the ideal 
ase, where TOD isex
luded. For moderate power (Fig. 2) the stru
ture of the resultant spe
trum is1The length of the 
ompensation SMF was numeri
ally optimized.3



mainly determined by SPM and shows the typi
al multi-peak stru
ture 
hara
teris-ti
s. The 
ompression is 
lose to optimum, but already a small asymmetry indu
edby TOD 
an be observed, although unimportant. The 
ontribution of TOD appearswith in
reasing bandwidth, a
hieved by a further in
rease of the power, 
.f. Fig. 3.The pulse shape then experien
es an asymmetri
 temporal developement with anenhan
ed transfer of power from the trailing portion of the pulse to the leading one.Hen
e, a narrow peak forms at the front of the pulse whi
h would grow with furtherpropagation through the HNLF. At a 
ertain threshold (PIN = 23:75 dBm, Fig. 3),the evolution of the pulse 
hanges dramati
ally, be
ause SPM is no longer dominantfor the 
hara
teristi
s of the spe
trum. The transmitted pulse in the HNLF exhibits
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Figure 3: Pulse-breakup (Pav = 23:75 dBm). a) spe
trum, with strong asymmetry tothe blue side and 
ompli
ated non-SPM 
hara
teristi
s. b) temporal shape. In
reaseof the peak intensity on the leading side and asymmetri
 splitting of the pulse. Fulllines: with TOD, dashed: without TOD.an asymmetri
 splitting and the inje
tion into the SMF leads not to the desired
ompression behavior anymore, su
h that from here the 
ompression s
heme fails
ompletely. Further in
rease of power 
auses pulse shapes with multiple sub-pulsesignature. Thus, this splitting represents a fundamental limit for pulse 
ompressionand suggests that operation below a 
riti
al power is ne
essary for optimal 
ompres-sion. We noti
e here that this pulse splitting has been veri�ed also experimentallyin [4℄. The HNLF used in the experiments exhibits a strong impa
t of TOD at theZDW and has normal dispersion below �0 = 1555 nm, but has anomalous dispersionabove this wavelength. To ex
lude the impa
t of possible anomalous dispersion onthe pulse splitting we have numeri
ally 
he
ked similar 
onstellations of �ber 
o-eÆ
ients with 
ompletely normal dispersion over the whole spe
tral range, whi
hrevealed the same 
ompression limit behavior. Fig. 4 shows an example for pulsesplitting of a se
h-pulse with T0 = 2:1ps and P0 = 10W for normal dispersion overthe whole wavelength range, whi
h we managed by swit
hing on a small �4.We have also investigated the dependen
e of the pulse splitting on the input param-eters. The pulse splitting depends on LNL and on the ratio LD=L0D(= j�3=�2j=T0),4
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Figure 4: Simulated initial se
h-pulse propagating down a HNLF with normal dis-persion over the whole spe
tral range: �2 = 0:2ps2=km, �3 = 0:01ps3=km and�4 = 1:7 � 10�4ps4=km. Evolution of shape (left) and spe
trum (right).where L0D = T 30 =j�3j is the dispersion length asso
iated with TOD. This dependen
eis illustrated in Fig. 5. For �xed ratio LD=L0D the 
riti
al distan
e z
r, where thepulse splitting sets in, is proportional to LNL, as shown in Fig. 5a). In Fig. 5b) thedependen
e of z
r on the ratio LD=L0D for �xed LNL is shown. For example, for givendispersion �2 and �3 a de
rease of T0 leads to an in
rease of the ratio LD=L0D andhen
e redu
es the 
riti
al length. In turn the 
riti
al peak power for pulse splittingde
reases with a de
rease of the temporal width of the inje
ted pulse.5 Con
lusionWe have analyzed the pulse-
ompression s
heme for high-nonlinear �bers in the nor-mal dispersion regime followed by anomalous dispersive single mode �bers. After
on�ning to opti
al nonlinearities below the onset of hindering opti
al wavebreakingwe dete
ted another fundamental 
ompression limit near the zero-dispersion wave-length, whi
h is 
aused by third order dispersion (TOD). The desired generation of abroadband 
ontinuum by SPM is perturbated by already small TOD, whi
h resultsin pulse splitting above a 
riti
al pulse power and whi
h 
an not be 
ompensatedafter its appearan
e. We showed, that the 
riti
al length de
reases with in
reasingpulse power and de
reasing pulse width, and de
reases with in
reasing ratio j�3=�2jas well.
5
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Figure 5: Criti
al distan
e z
r, where the pulse splitting sets in, in dependen
e of a)the nonlinear length LNL for di�erent �xed ratio LD=L0D and b) in dependen
e ofLD=L0D for di�ferent LNL.Referen
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