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Abstra
tA new type of stable dynami
 bound state of dissipative lo
alized stru
turesis found. It is 
hara
terized by 
haoti
 os
illations of distan
e between thelo
alized stru
tures, their phase di�eren
e, and the 
enter of mass velo
ity.Complex Ginzburg-Landau equation des
ribes the onset of instability near a Hopfbifur
ation in spatially extended systems and, therefore, serves as a universal modelfor various physi
al phenomena in hydrodynami
s, super
ondu
tivity and opti
s.In a 
ertain parameter range this equation exhibits a spatially lo
alized solution� a dissipative soliton. In the 
lassi
al setting with purely 
ubi
 nonlinearity, thesoliton is unstable. In order to des
ribe stable dissipative solitons, the next or-der nonlinear terms should be taken into a

ount [1℄. Thus, the quinti
 
omplexGinzburg-Landau equation (QCGLE) is widely used in nonlinear opti
s to des
ribedi�erent phenomena related to pulse formation, su
h as mode-lo
king in lasers [2, 7℄,light propagation in nonlinear �bers [3℄, transverse pattern formation in nonlinearopti
al systems [4℄. In parti
ular, in mode-lo
ked �ber lasers dissipative solitonsappear as short opti
al pulses propagating along the 
avity axis. Being well sepa-rated from one another, the pulses intera
t via their exponentially de
aying tails.Interferen
e between the tails 
an produ
e spatial intensity os
illations responsiblefor the formation of bound states of the dissipative solitons (see e.g. experimen-tal studies in Refs. [5, 6, 7℄). Up to now, either stationary and uniformly moving[8, 9, 10℄, or uniformly rotating [11℄ bound states were reported. Here we show thatslight breaking the phase-shift symmetry 
an produ
e a huge variety of dynami
bound states, 
hara
terized by undamped os
illations, regular or 
haoti
 ones, ofthe solitons 
oordinates and phases.It is typi
al of the weak intera
tion of dissipative solitons that the shape of thesolitons in the bound state is preserved, while their positions and 
ertain internalparameters, su
h as phases, evolve slowly with time. Gorshkov-Ostrovsky approa
h[13, 14℄ allows one to derive a set of �nite dimensional soliton intera
tion equations(SIE) that govern the slow evolution of the soliton parameters. Being independentof the spe
i�
 details of a 
on
rete model, the form of SIE is largely determinedby the asymptoti
al behavior of the soliton tails and by the symmetries of themodel. In parti
ular, when the model admits only translational symmetry, SIEhave a gradient stru
ture (see e.g. Ref. [14℄), whi
h implies a trivial dynami
s forthe weakly intera
ting solitons (only stationary or uniformly moving bound states).In the 
ase of QCGLE, the additional phase-shift symmetry 
hanges the stru
tureof SIE. However, the dynami
s of the weak two-soliton intera
tion still remainssimple and the only attra
tors are bound states 
hara
terized by time independent1



distan
e and phase di�eren
e between the solitons [9, 10℄. Thus, one might expe
tthat the breakdown of the phase-shift symmetry would make the dynami
s onlysimpler. On the 
ontrary, as we show here, breaking the phase-shift symmetryleads to the explosion of the 
omplexity of the two-soliton intera
tion dynami
s (thegradient stru
ture restores only at relatively large values of the symmetry breakingparameter). Note that the lo
alized in spa
e and 
haoti
 in time regimes whi
h wedis
over are very di�erent from the earlier known ones, for whom the 
haos was afeature of the internal dynami
s of a single soliton [12℄ or was related to a s
atteringpro
ess with unbounded soliton traje
tories [15℄. In our 
ase, 
haos is asso
iatedwith a strange attra
tor that forms solely due to the weak soliton intera
tion.We 
onsider 1+1 dimensional QCGLE in the form
∂tA = (β + i/2)∂xxA + A

[

δ + (ε + i)|A|2 + (µ + iν)|A|4
]

+ η exp (iΩt) , (1)with 
omplex amplitude A(x, t). Equation (1) is symmetri
 with respe
t to spatialtranslations, and it also possesses the phase-shift symmetry A → A exp (iχ) at η = 0.The meaning of the parameters (all real) is the following: β > 0 is the di�usion
oe�
ient (the se
ond order dispersion is s
aled to 1/2), δ > 0 des
ribes linearlosses; ε, µ and ν de�ne the shape of nonlinearity. An important appli
ation 
on
ernswith Kerr-lens mode-lo
ked laser [7℄. Then, A is a normalized ele
tromagneti
 �eldenvelope, and the symmetry breaking term η exp (iΩt) 
orresponds to a weak signalinje
ted into the laser.Assume α to be the frequen
y shift of a single soliton solution at η = 0. Then thissolution takes the form A = A0 (x) exp (iαt). Away from the soliton 
ore, A0(x)de
ays exponentially:
A0(x) ∼ p exp [(−γ + iω)|x| ] as |x| → ∞. (2)The stability of the soliton is determined by the spe
trum of the operator L0 obtainedby the linearization of the right hand side of Eq. (1) on the soliton at η = 0. Notethat L0 has two neutral modes, Ψ (x) = iA0(x) and Σ (x) = ∂xA0(x), 
orresponding,respe
tively, to the phase-shift and translational symmetries of the unperturbedQCGLE. It follows that the adjoint operator L†

0 has two neutral modes too, Ψ† (x)and Σ† (x). We �x their 
hoi
e by the normalization 
onditions ∫ ∞
−∞ Ψ†Ψdx = 1 and

∫ ∞
−∞ Σ†Σdx = 1. Note that

Ψ†(x) ∼ q exp [(−γ + iω)|x| ] ,
Σ†(x) ∼ s exp [(−γ + iω)|x| ] ,

(3)as |x| → ∞, with 
ertain 
omplex 
onstants q and s.Up to the leading order in exp (−γr) (where r is the distan
e between the solitons),a bound state of two weakly intera
ting solitons has the form
A = exp (iαt)

[

A0 (x − x1) eiϕ1 + A0 (x − x2) eiϕ2

]

, (4)where the 
oordinates x1,2 and phases ϕ1,2 of the individual solitons are slowlyvarying fun
tions of time t. By plugging this ansatz into Eq. (1) and proje
ting the2



resulting equations onto the tangent to the spa
e of fun
tions of type (4), we obtainthe following SIE:
∂tr = a exp (−γr) sin (ωr + θ1) cos ϕ, (5)
∂tϕ = −b exp (−γr) cos (ωr + θ2) sin ϕ − cη sin

ϕ

2
sin

Φ

2
, (6)

∂tΦ = b exp (−γr) sin (ωr + θ2) cos ϕ + cη cos
ϕ

2
cos

Φ

2
+ 2∆, (7)

V = −a exp (−γr) cos (ωr + θ1) sin ϕ, (8)where r = x2 − x1, ϕ = ϕ2 − ϕ1, Φ = ϕ1 + ϕ2 − 2ζ , and V = ∂t(x1 + x2)/2. Theparameter ∆ = Ω − α des
ribes the frequen
y detuning between the inje
ted �eldand the single soliton solution. The other parameters are de�ned by a exp (iθ1) =
4pq [−(γ − 2βω) + i(ω + 2βγ], b exp (iθ2) = 4ps [(γ − 2βω) − i(ω + 2βγ], and c exp (iζ) =
4

∫∞
−∞ Ψ†dx, where p, q, s are the 
oe�
ients of asymptoti
s (2) and (3).For more details on the derivation of the SIE see Ref. [10℄. Being obtained formally,using a multis
ale method, system (5)-(8) needs a justi�
ation. The strongest oneis given by the �invariant manifold theorem� of Ref. [16℄. It is a general statementwhi
h holds for all multisoliton weak intera
tion pro
esses in a large 
lass of PDE'sunder the 
ondition of a non-zero di�usion. In our 
ase, for β 6= 0, the theorem en-sures the existen
e of a 
losed set of four ODE's (�the true SIE�) whi
h give an exa
tdes
ription of the weak intera
tion of two solitons, valid uniformly on unboundedtime intervals. Moreover, it follows from the proof, that the formal s
heme employedin the derivation of Eqs. (5)-(8) yields an o [exp (−γr)]-approximation to the trueSIE. Note the importan
e of the non-zero di�usion. For example, for 
onservativesystems the long-time validity of SIE must be questioned.First, we 
onsider Eqs. (5)-(8) with η = 0. The system then retains the phase-shiftsymmetry, so Eq. (7) for the sum of the soliton phases Φ de
ouples from the otherequations. Thus, in this 
ase the dynami
s of the soliton intera
tion is des
ribed bythe two-dimensional system

∂tr = a exp (−γr) sin (ωr + θ1) cos ϕ,
∂tϕ = −b exp (−γr) cos (ωr + θ2) sin ϕ.

(9)This system is reversible, i.e. invariant under the transformation t → −t, ϕ →
π−ϕ. As usual in dimension two, the reversibility implies integrability. The integralis H = sin ϕ exp [−br sin(θ2 − θ1)/a] | sin(ωr + θ1)|b cos(θ2−θ1)/(aω). The traje
toriesof (9) 
omprise the level lines of H , so the phase portrait of (9) 
an easily bere
overed. Two types of phase portraits are possible [10℄ depending on the signof ρ = abω cos (θ2 − θ1). Here we 
onsider only the 
ase ρ > 0 when the phasetraje
tories are 
losed 
urves surrounding the neutrally stable equilibria Sk±π/2 :
{ϕ = ±π/2, ωr + θ2 = π (k + 1/2)}, see Fig. 1a. It follows from Eq. (8) that the
±π/2-out-of-phase equilibria 
orrespond to uniformly moving bound soliton states.Two other sets of equilibria, the saddle ones, 
orrespond to stationary bound states,in-phase Sk0 : {ϕ = 0, ωr + θ2 = 2πk} and anti-phase Skπ : {ϕ = π, ωr + θ2 =3
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Figure 1: Phase portraits obtained by numeri
al solution of (a) the SIE (9) and (b) theQCGLE (1) at η = 0. The parameters here and in the following Figures are: β = 0.5,
δ = 0.02, ε = 1.8, µ = 0.05, ν = 0.05. This 
orresponds to ω = −2.149, γ = 5.195,
a = 0.118, b = 7.55 · 10−4, θ1 = 6.82 · 10−4, θ2 = 2.25 in the SIE.
π(2k + 1)}. The separatri
es of the saddles divide the phase plane into 
ells, fromwhi
h the traje
tories 
an never es
ape, see Fig. 1a.Re
all that Eqs. (9) are an approximation of a 
ertain true SIE. In fa
t, the higherorder 
orre
tions destroy the reversibility, and hen
e the integrability, of the SIE.Indeed, it is seen from Fig. 1b where the results of a dire
t simulation of Eq.(1) are presented (
f. Ref. [9℄), that rather than being 
losed, traje
tories slowlyspiral towards the weakly stable ±π/2-out-of-phase equilibria. Furthermore, the
ells boundaries break: a traje
tory 
an �ow from 
ell to 
ell until it is 
aptured toone of the ±π/2-out-of-phase bound states, or leaves the weak intera
tion zone �then the two-soliton state 
ollapses to a single soliton.When η 6= 0, Eq. (7) 
ouples with Eqs. (5) and (6). The dynami
s is then deter-mined by the ratios between η, ∆, and exp (−γr). Let us show that 
haos should beexpe
ted when ∆ ≫ η, exp (−γr). Indeed, as the sum of the soliton phases Φ rotateswith nonzero velo
ity in this 
ase, Φ 
an be taken as a new time variable. Thus,system (5)-(7) is, e�e
tively, a periodi
 perturbation of the 
onservative integrablesystem (9). Su
h systems do exhibit a 
haoti
 behavior due to the destru
tion ofresonan
es. So, near every resonan
e zone, i.e. in the vi
inity of those periodi
traje
tories of Eqs. (9) for whi
h the in
rement of Φ during the period is 
ommen-surate with 4π, the soliton intera
tion dynami
s 
an be 
haoti
. Sin
e the higherorder 
orre
tions introdu
e a weak dissipation into the SIE, most of the resonan
esare, in fa
t, erased. However, as we will see below, the 
haoti
 dynami
s produ
edby the strongest resonan
es 
an survive.One more possibility for 
haos is the splitting of the 
ell boundaries. As the phase
Φ rotates, the in-phase and anti-phase equilibria of Eqs. (9) be
ome saddle peri-4
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Figure 2: Stable bound states with the phase di�eren
e φ = π/2 (a) and φ = 0 (b)between the solitons.odi
 orbits of Eqs. (5)-(7) at η 6= 0, and their stable and unstable manifolds mayinterse
t. Thus, zones of a �metastable� homo
lini
 
haos 
an be formed. This typeof behavior is 
hara
terized by large os
illations in phase di�eren
e φ, i.e. we see
haoti
 transitions between the 
ells in the (r, φ)-plane (Fig. 5g).It is noteworthy that the spatial motion of 
haoti
 bound states is, e�e
tively, arandom walk at large time s
ales: as Eq. (8) shows, when the dynami
s of r and
ϕ is 
haoti
, the 
enter of mass velo
ity V is a random fun
tion of time (with a
ertain non-zero de
ay of 
orrelation time), so the spatial position of the 
haoti
bound state is an integral of a random signal.Another, nonrotational me
hanism of 
haos 
reation in the SIE is related to multiplebifur
ations of equilibrium states. As we mentioned, the equilibria of Eqs. (9)
orrespond, in general, to periodi
 orbits of Eqs. (5)-(7). However, at moderatevalues of ∆/η, due to a syn
hronization phenomenon, bound states with stationary
r, ϕ1, and ϕ2 
an form (see Fig. 2). The stability domains for the ±π/2-out-of-phaseand in-phase equilibria of Eqs. (5)-(7) are shown in Figs. 3a and 3b, respe
tively.The birth of ±π/2-out-of-phase equilibriua is a

ompanied here by a simultaneousAndronov-Hopf bifur
ation, i.e. in addition to a zero 
hara
teristi
 eigenvalue theseequilibria have a pair of pure imaginary eigenvalues. Su
h double bifur
ation isknown (see Ref. [17℄) to lead to a 
haoti
 behavior via a Shilnikov homo
lini
 loop.Another multiple instability, also leading to Shilnikov 
haos [18℄, 
orresponds toa triplet of zero 
hara
teristi
 eigenvalues of the ±π/2-out-of-phase equilibrium at
|∆| = c|η|/

√
8 = (

√

ρ + b2/4 ± b/2) exp {−γ [π(k + 1/2) − θ2] /ω}. Although higherorder 
orre
tions to SIE (5)-(7) 
ause a de
rease in the multipli
ity of the lo
albifur
ations, the 
haos asso
iated with them has to persist nevertheless.5
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Figure 4: Simulation results for the QCGLE. (a) � bifur
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al
ulated for Ω =

−22.2. (b) � period three, η = 0.065; (
) � 
haoti
, η = 0.06623; (d) � period two, η = 0.08;and (e) � period six, η = 0.083, soliton bound states.
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Figure 5: Phase portraits obtained by solving numeri
ally the QCGLE (a)-(d) and SIE(e)-(h). (a) η = 0.02, Ω = −22.3465, (b) η = 0.4, Ω = −22.2, (
) η = 0.06, Ω = −22.2, (d)
η = 0.02, Ω = −22.25, (e) η = 0.02, ∆ = −0.0164, (f) η = 0.02, ∆ = 0.023, (g) η = 0.02,
∆ = 0.11, (h) η = 0.11, ∆ = 0.41.The above analysis is pretty mu
h 
on�rmed by the results of a dire
t simulationof Eq. (1). Fig. 4(a) shows the evolution ( the �bifur
ation tree�) for the π/2 -out-of-phase regime with the 
hange of the inje
ted signal amplitude η . Away fromthe syn
hronization range, the regime undergoes a number of period-doubling andperiod-tripling bifur
ations (strong 1:2 and 1:3 resonan
es) leading, in parti
ular, to
haoti
 behavior [ a �strange attra
tor�, see Fig. 4(b)℄. Di�erent other dynami
alregimes are shown in Fig. 5 where the phase portraits in the upper row are obtainedby numeri
al solution of Eq. (1), while those in the lower row 
orrespond to Eqs.( 5)-(7). Figures 5(a) and 5(e) illustrate a desyn
hronization transition from thestationary π/2-out-of-phase bound state to a stable limit 
y
le via a homo
lini
bifur
ation (
f. Ref. [19℄). A stable limit 
y
le born from a homo
lini
 loop toa saddle anti-phase state is shown in Figs. 5(b) and 5(f). Figure 5(
) shows ametastable 
haoti
 bound state whi
h 
orresponds to a stable 
haoti
 regime ofEqs. (5 )-(7) [see Fig. 5(g)℄. Finally, Fig. 5(d) illustrates multistability betweendi�erent time-periodi
 bound states of Eq. (1). The 
orresponding quasiperiodi
solutions of Eqs. (5)-(7) are shown in Fig. 5(h). The 
omparison of the phaseportraits in the upper and lower rows in Fig. 5 reveals a substantial similaritybetween the solutions of Eq. (1) and those of Eqs. (5)-(7). There is no one-to-one
orresponden
e, however, be
ause in Eqs. (5)-(7) we have negle
ted se
ond andhigher order terms in exp (−γr) that are responsible for a weak dissipation. Thoughthese terms are small, they are not negligible in the �rst two elementary 
ells of thephase spa
e that are depi
ted in Fig. 1a. In the next 
ells that 
orrespond to largersoliton separations one should expe
t a similar behavior, though with mu
h weakerdissipation e�e
ts.As we see, the weak intera
tion of two dissipative solitons 
an produ
e a very ri
h7



dynami
s. The me
hanism of a 
reation of dynami
 (e.g. 
haoti
) soliton boundstates is related to the breakdown of the phase-shift symmetry and has a universal,model-independent nature. Therefore, it should be typi
al for every spatially ex-tended system whi
h undergoes a Hopf bifur
ation. In parti
ular, in laser systems,violation of the phase-shift symmetry 
an be straightforwardly a
hieved by an inje
-tion of an external signal, so the e�e
ts des
ribed in this letter 
an be a subje
t ofexperimental observations. The fa
t that the two-soliton state in the QCGLE is aweakly damped nonlinear os
illator 
an be used to analyze the dynami
s of solitonbound states in other situations. Thus, a system of 4 intera
ting solitons 
an beviewed as a pair of 
oupled, weakly damped os
illators, i.e. it has to produ
e ari
h dynami
al behavior even without the phase-shift symmetry breaking. Similare�e
ts should be expe
ted for the 
ase of rotating soliton bound states in two spa
edimensions.This work was supported by grants Terabit Opti
s Berlin 10017606 and ISF 926/04.Referen
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