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AbstratA new type of stable dynami bound state of dissipative loalized struturesis found. It is haraterized by haoti osillations of distane between theloalized strutures, their phase di�erene, and the enter of mass veloity.Complex Ginzburg-Landau equation desribes the onset of instability near a Hopfbifuration in spatially extended systems and, therefore, serves as a universal modelfor various physial phenomena in hydrodynamis, superondutivity and optis.In a ertain parameter range this equation exhibits a spatially loalized solution� a dissipative soliton. In the lassial setting with purely ubi nonlinearity, thesoliton is unstable. In order to desribe stable dissipative solitons, the next or-der nonlinear terms should be taken into aount [1℄. Thus, the quinti omplexGinzburg-Landau equation (QCGLE) is widely used in nonlinear optis to desribedi�erent phenomena related to pulse formation, suh as mode-loking in lasers [2, 7℄,light propagation in nonlinear �bers [3℄, transverse pattern formation in nonlinearoptial systems [4℄. In partiular, in mode-loked �ber lasers dissipative solitonsappear as short optial pulses propagating along the avity axis. Being well sepa-rated from one another, the pulses interat via their exponentially deaying tails.Interferene between the tails an produe spatial intensity osillations responsiblefor the formation of bound states of the dissipative solitons (see e.g. experimen-tal studies in Refs. [5, 6, 7℄). Up to now, either stationary and uniformly moving[8, 9, 10℄, or uniformly rotating [11℄ bound states were reported. Here we show thatslight breaking the phase-shift symmetry an produe a huge variety of dynamibound states, haraterized by undamped osillations, regular or haoti ones, ofthe solitons oordinates and phases.It is typial of the weak interation of dissipative solitons that the shape of thesolitons in the bound state is preserved, while their positions and ertain internalparameters, suh as phases, evolve slowly with time. Gorshkov-Ostrovsky approah[13, 14℄ allows one to derive a set of �nite dimensional soliton interation equations(SIE) that govern the slow evolution of the soliton parameters. Being independentof the spei� details of a onrete model, the form of SIE is largely determinedby the asymptotial behavior of the soliton tails and by the symmetries of themodel. In partiular, when the model admits only translational symmetry, SIEhave a gradient struture (see e.g. Ref. [14℄), whih implies a trivial dynamis forthe weakly interating solitons (only stationary or uniformly moving bound states).In the ase of QCGLE, the additional phase-shift symmetry hanges the strutureof SIE. However, the dynamis of the weak two-soliton interation still remainssimple and the only attrators are bound states haraterized by time independent1



distane and phase di�erene between the solitons [9, 10℄. Thus, one might expetthat the breakdown of the phase-shift symmetry would make the dynamis onlysimpler. On the ontrary, as we show here, breaking the phase-shift symmetryleads to the explosion of the omplexity of the two-soliton interation dynamis (thegradient struture restores only at relatively large values of the symmetry breakingparameter). Note that the loalized in spae and haoti in time regimes whih wedisover are very di�erent from the earlier known ones, for whom the haos was afeature of the internal dynamis of a single soliton [12℄ or was related to a satteringproess with unbounded soliton trajetories [15℄. In our ase, haos is assoiatedwith a strange attrator that forms solely due to the weak soliton interation.We onsider 1+1 dimensional QCGLE in the form
∂tA = (β + i/2)∂xxA + A

[

δ + (ε + i)|A|2 + (µ + iν)|A|4
]

+ η exp (iΩt) , (1)with omplex amplitude A(x, t). Equation (1) is symmetri with respet to spatialtranslations, and it also possesses the phase-shift symmetry A → A exp (iχ) at η = 0.The meaning of the parameters (all real) is the following: β > 0 is the di�usionoe�ient (the seond order dispersion is saled to 1/2), δ > 0 desribes linearlosses; ε, µ and ν de�ne the shape of nonlinearity. An important appliation onernswith Kerr-lens mode-loked laser [7℄. Then, A is a normalized eletromagneti �eldenvelope, and the symmetry breaking term η exp (iΩt) orresponds to a weak signalinjeted into the laser.Assume α to be the frequeny shift of a single soliton solution at η = 0. Then thissolution takes the form A = A0 (x) exp (iαt). Away from the soliton ore, A0(x)deays exponentially:
A0(x) ∼ p exp [(−γ + iω)|x| ] as |x| → ∞. (2)The stability of the soliton is determined by the spetrum of the operator L0 obtainedby the linearization of the right hand side of Eq. (1) on the soliton at η = 0. Notethat L0 has two neutral modes, Ψ (x) = iA0(x) and Σ (x) = ∂xA0(x), orresponding,respetively, to the phase-shift and translational symmetries of the unperturbedQCGLE. It follows that the adjoint operator L†

0 has two neutral modes too, Ψ† (x)and Σ† (x). We �x their hoie by the normalization onditions ∫ ∞
−∞ Ψ†Ψdx = 1 and

∫ ∞
−∞ Σ†Σdx = 1. Note that

Ψ†(x) ∼ q exp [(−γ + iω)|x| ] ,
Σ†(x) ∼ s exp [(−γ + iω)|x| ] ,

(3)as |x| → ∞, with ertain omplex onstants q and s.Up to the leading order in exp (−γr) (where r is the distane between the solitons),a bound state of two weakly interating solitons has the form
A = exp (iαt)

[

A0 (x − x1) eiϕ1 + A0 (x − x2) eiϕ2

]

, (4)where the oordinates x1,2 and phases ϕ1,2 of the individual solitons are slowlyvarying funtions of time t. By plugging this ansatz into Eq. (1) and projeting the2



resulting equations onto the tangent to the spae of funtions of type (4), we obtainthe following SIE:
∂tr = a exp (−γr) sin (ωr + θ1) cos ϕ, (5)
∂tϕ = −b exp (−γr) cos (ωr + θ2) sin ϕ − cη sin

ϕ

2
sin

Φ

2
, (6)

∂tΦ = b exp (−γr) sin (ωr + θ2) cos ϕ + cη cos
ϕ

2
cos

Φ

2
+ 2∆, (7)

V = −a exp (−γr) cos (ωr + θ1) sin ϕ, (8)where r = x2 − x1, ϕ = ϕ2 − ϕ1, Φ = ϕ1 + ϕ2 − 2ζ , and V = ∂t(x1 + x2)/2. Theparameter ∆ = Ω − α desribes the frequeny detuning between the injeted �eldand the single soliton solution. The other parameters are de�ned by a exp (iθ1) =
4pq [−(γ − 2βω) + i(ω + 2βγ], b exp (iθ2) = 4ps [(γ − 2βω) − i(ω + 2βγ], and c exp (iζ) =
4

∫∞
−∞ Ψ†dx, where p, q, s are the oe�ients of asymptotis (2) and (3).For more details on the derivation of the SIE see Ref. [10℄. Being obtained formally,using a multisale method, system (5)-(8) needs a justi�ation. The strongest oneis given by the �invariant manifold theorem� of Ref. [16℄. It is a general statementwhih holds for all multisoliton weak interation proesses in a large lass of PDE'sunder the ondition of a non-zero di�usion. In our ase, for β 6= 0, the theorem en-sures the existene of a losed set of four ODE's (�the true SIE�) whih give an exatdesription of the weak interation of two solitons, valid uniformly on unboundedtime intervals. Moreover, it follows from the proof, that the formal sheme employedin the derivation of Eqs. (5)-(8) yields an o [exp (−γr)]-approximation to the trueSIE. Note the importane of the non-zero di�usion. For example, for onservativesystems the long-time validity of SIE must be questioned.First, we onsider Eqs. (5)-(8) with η = 0. The system then retains the phase-shiftsymmetry, so Eq. (7) for the sum of the soliton phases Φ deouples from the otherequations. Thus, in this ase the dynamis of the soliton interation is desribed bythe two-dimensional system

∂tr = a exp (−γr) sin (ωr + θ1) cos ϕ,
∂tϕ = −b exp (−γr) cos (ωr + θ2) sin ϕ.

(9)This system is reversible, i.e. invariant under the transformation t → −t, ϕ →
π−ϕ. As usual in dimension two, the reversibility implies integrability. The integralis H = sin ϕ exp [−br sin(θ2 − θ1)/a] | sin(ωr + θ1)|b cos(θ2−θ1)/(aω). The trajetoriesof (9) omprise the level lines of H , so the phase portrait of (9) an easily bereovered. Two types of phase portraits are possible [10℄ depending on the signof ρ = abω cos (θ2 − θ1). Here we onsider only the ase ρ > 0 when the phasetrajetories are losed urves surrounding the neutrally stable equilibria Sk±π/2 :
{ϕ = ±π/2, ωr + θ2 = π (k + 1/2)}, see Fig. 1a. It follows from Eq. (8) that the
±π/2-out-of-phase equilibria orrespond to uniformly moving bound soliton states.Two other sets of equilibria, the saddle ones, orrespond to stationary bound states,in-phase Sk0 : {ϕ = 0, ωr + θ2 = 2πk} and anti-phase Skπ : {ϕ = π, ωr + θ2 =3
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Figure 1: Phase portraits obtained by numerial solution of (a) the SIE (9) and (b) theQCGLE (1) at η = 0. The parameters here and in the following Figures are: β = 0.5,
δ = 0.02, ε = 1.8, µ = 0.05, ν = 0.05. This orresponds to ω = −2.149, γ = 5.195,
a = 0.118, b = 7.55 · 10−4, θ1 = 6.82 · 10−4, θ2 = 2.25 in the SIE.
π(2k + 1)}. The separatries of the saddles divide the phase plane into ells, fromwhih the trajetories an never esape, see Fig. 1a.Reall that Eqs. (9) are an approximation of a ertain true SIE. In fat, the higherorder orretions destroy the reversibility, and hene the integrability, of the SIE.Indeed, it is seen from Fig. 1b where the results of a diret simulation of Eq.(1) are presented (f. Ref. [9℄), that rather than being losed, trajetories slowlyspiral towards the weakly stable ±π/2-out-of-phase equilibria. Furthermore, theells boundaries break: a trajetory an �ow from ell to ell until it is aptured toone of the ±π/2-out-of-phase bound states, or leaves the weak interation zone �then the two-soliton state ollapses to a single soliton.When η 6= 0, Eq. (7) ouples with Eqs. (5) and (6). The dynamis is then deter-mined by the ratios between η, ∆, and exp (−γr). Let us show that haos should beexpeted when ∆ ≫ η, exp (−γr). Indeed, as the sum of the soliton phases Φ rotateswith nonzero veloity in this ase, Φ an be taken as a new time variable. Thus,system (5)-(7) is, e�etively, a periodi perturbation of the onservative integrablesystem (9). Suh systems do exhibit a haoti behavior due to the destrution ofresonanes. So, near every resonane zone, i.e. in the viinity of those perioditrajetories of Eqs. (9) for whih the inrement of Φ during the period is ommen-surate with 4π, the soliton interation dynamis an be haoti. Sine the higherorder orretions introdue a weak dissipation into the SIE, most of the resonanesare, in fat, erased. However, as we will see below, the haoti dynamis produedby the strongest resonanes an survive.One more possibility for haos is the splitting of the ell boundaries. As the phase
Φ rotates, the in-phase and anti-phase equilibria of Eqs. (9) beome saddle peri-4
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Figure 2: Stable bound states with the phase di�erene φ = π/2 (a) and φ = 0 (b)between the solitons.odi orbits of Eqs. (5)-(7) at η 6= 0, and their stable and unstable manifolds mayinterset. Thus, zones of a �metastable� homolini haos an be formed. This typeof behavior is haraterized by large osillations in phase di�erene φ, i.e. we seehaoti transitions between the ells in the (r, φ)-plane (Fig. 5g).It is noteworthy that the spatial motion of haoti bound states is, e�etively, arandom walk at large time sales: as Eq. (8) shows, when the dynamis of r and
ϕ is haoti, the enter of mass veloity V is a random funtion of time (with aertain non-zero deay of orrelation time), so the spatial position of the haotibound state is an integral of a random signal.Another, nonrotational mehanism of haos reation in the SIE is related to multiplebifurations of equilibrium states. As we mentioned, the equilibria of Eqs. (9)orrespond, in general, to periodi orbits of Eqs. (5)-(7). However, at moderatevalues of ∆/η, due to a synhronization phenomenon, bound states with stationary
r, ϕ1, and ϕ2 an form (see Fig. 2). The stability domains for the ±π/2-out-of-phaseand in-phase equilibria of Eqs. (5)-(7) are shown in Figs. 3a and 3b, respetively.The birth of ±π/2-out-of-phase equilibriua is aompanied here by a simultaneousAndronov-Hopf bifuration, i.e. in addition to a zero harateristi eigenvalue theseequilibria have a pair of pure imaginary eigenvalues. Suh double bifuration isknown (see Ref. [17℄) to lead to a haoti behavior via a Shilnikov homolini loop.Another multiple instability, also leading to Shilnikov haos [18℄, orresponds toa triplet of zero harateristi eigenvalues of the ±π/2-out-of-phase equilibrium at
|∆| = c|η|/

√
8 = (

√

ρ + b2/4 ± b/2) exp {−γ [π(k + 1/2) − θ2] /ω}. Although higherorder orretions to SIE (5)-(7) ause a derease in the multipliity of the loalbifurations, the haos assoiated with them has to persist nevertheless.5
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Figure 5: Phase portraits obtained by solving numerially the QCGLE (a)-(d) and SIE(e)-(h). (a) η = 0.02, Ω = −22.3465, (b) η = 0.4, Ω = −22.2, () η = 0.06, Ω = −22.2, (d)
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∆ = 0.11, (h) η = 0.11, ∆ = 0.41.The above analysis is pretty muh on�rmed by the results of a diret simulationof Eq. (1). Fig. 4(a) shows the evolution ( the �bifuration tree�) for the π/2 -out-of-phase regime with the hange of the injeted signal amplitude η . Away fromthe synhronization range, the regime undergoes a number of period-doubling andperiod-tripling bifurations (strong 1:2 and 1:3 resonanes) leading, in partiular, tohaoti behavior [ a �strange attrator�, see Fig. 4(b)℄. Di�erent other dynamialregimes are shown in Fig. 5 where the phase portraits in the upper row are obtainedby numerial solution of Eq. (1), while those in the lower row orrespond to Eqs.( 5)-(7). Figures 5(a) and 5(e) illustrate a desynhronization transition from thestationary π/2-out-of-phase bound state to a stable limit yle via a homolinibifuration (f. Ref. [19℄). A stable limit yle born from a homolini loop toa saddle anti-phase state is shown in Figs. 5(b) and 5(f). Figure 5() shows ametastable haoti bound state whih orresponds to a stable haoti regime ofEqs. (5 )-(7) [see Fig. 5(g)℄. Finally, Fig. 5(d) illustrates multistability betweendi�erent time-periodi bound states of Eq. (1). The orresponding quasiperiodisolutions of Eqs. (5)-(7) are shown in Fig. 5(h). The omparison of the phaseportraits in the upper and lower rows in Fig. 5 reveals a substantial similaritybetween the solutions of Eq. (1) and those of Eqs. (5)-(7). There is no one-to-oneorrespondene, however, beause in Eqs. (5)-(7) we have negleted seond andhigher order terms in exp (−γr) that are responsible for a weak dissipation. Thoughthese terms are small, they are not negligible in the �rst two elementary ells of thephase spae that are depited in Fig. 1a. In the next ells that orrespond to largersoliton separations one should expet a similar behavior, though with muh weakerdissipation e�ets.As we see, the weak interation of two dissipative solitons an produe a very rih7
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