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Abstract

A new type of stable dynamic bound state of dissipative localized structures
is found. It is characterized by chaotic oscillations of distance between the
localized structures, their phase difference, and the center of mass velocity.

Complex Ginzburg-Landau equation describes the onset of instability near a Hopf
bifurcation in spatially extended systems and, therefore, serves as a universal model
for various physical phenomena in hydrodynamics, superconductivity and optics.
In a certain parameter range this equation exhibits a spatially localized solution
— a dissipative soliton. In the classical setting with purely cubic nonlinearity, the
soliton is unstable. In order to describe stable dissipative solitons, the next or-
der nonlinear terms should be taken into account [1|. Thus, the quintic complex
Ginzburg-Landau equation (QCGLE) is widely used in nonlinear optics to describe
different phenomena related to pulse formation, such as mode-locking in lasers |2, 7|,
light propagation in nonlinear fibers [3]|, transverse pattern formation in nonlinear
optical systems |4]. In particular, in mode-locked fiber lasers dissipative solitons
appear as short optical pulses propagating along the cavity axis. Being well sepa-
rated from one another, the pulses interact via their exponentially decaying tails.
Interference between the tails can produce spatial intensity oscillations responsible
for the formation of bound states of the dissipative solitons (see e.g. experimen-
tal studies in Refs. [5, 6, 7]). Up to now, either stationary and uniformly moving
|8, 9, 10|, or uniformly rotating |11]| bound states were reported. Here we show that
slight breaking the phase-shift symmetry can produce a huge variety of dynamic
bound states, characterized by undamped oscillations, regular or chaotic ones, of
the solitons coordinates and phases.

It is typical of the weak interaction of dissipative solitons that the shape of the
solitons in the bound state is preserved, while their positions and certain internal
parameters, such as phases, evolve slowly with time. Gorshkov-Ostrovsky approach
|13, 14| allows one to derive a set of finite dimensional soliton interaction equations
(SIE) that govern the slow evolution of the soliton parameters. Being independent
of the specific details of a concrete model, the form of SIE is largely determined
by the asymptotical behavior of the soliton tails and by the symmetries of the
model. In particular, when the model admits only translational symmetry, SIE
have a gradient structure (see e.g. Ref. [14]), which implies a trivial dynamics for
the weakly interacting solitons (only stationary or uniformly moving bound states).
In the case of QCGLE, the additional phase-shift symmetry changes the structure
of SIE. However, the dynamics of the weak two-soliton interaction still remains
simple and the only attractors are bound states characterized by time independent
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distance and phase difference between the solitons [9, 10]. Thus, one might expect
that the breakdown of the phase-shift symmetry would make the dynamics only
simpler. On the contrary, as we show here, breaking the phase-shift symmetry
leads to the explosion of the complexity of the two-soliton interaction dynamics (the
gradient structure restores only at relatively large values of the symmetry breaking
parameter). Note that the localized in space and chaotic in time regimes which we
discover are very different from the earlier known ones, for whom the chaos was a
feature of the internal dynamics of a single soliton [12] or was related to a scattering
process with unbounded soliton trajectories [15]. In our case, chaos is associated
with a strange attractor that forms solely due to the weak soliton interaction.

We consider 1-+1 dimensional QCGLE in the form
QA= (B+i/2)0uxA+ A5+ (e +) AP+ (u+iv)|A]"] + nexp (i), (1)

with complex amplitude A(x,t). Equation (1) is symmetric with respect to spatial
translations, and it also possesses the phase-shift symmetry A — Aexp (iy) at n = 0.
The meaning of the parameters (all real) is the following: 5 > 0 is the diffusion
coefficient (the second order dispersion is scaled to 1/2), § > 0 describes linear
losses; e, u and v define the shape of nonlinearity. An important application concerns
with Kerr-lens mode-locked laser [7|. Then, A is a normalized electromagnetic field
envelope, and the symmetry breaking term 7 exp (i€2t) corresponds to a weak signal
injected into the laser.

Assume « to be the frequency shift of a single soliton solution at n = 0. Then this
solution takes the form A = Ay (z)exp (iat). Away from the soliton core, Ay(z)
decays exponentially:

Ag(z) ~ pexp (=7 +iw)|z| ] as [z — oo. (2)

The stability of the soliton is determined by the spectrum of the operator Ly obtained
by the linearization of the right hand side of Eq. (1) on the soliton at n = 0. Note
that Lo has two neutral modes, ¥ (z) = iAg(z) and X (x) = 0, Ag(x), corresponding,
respectively, to the phase-shift and translational symmetries of the unperturbed
QCGLE. It follows that the adjoint operator L(T) has two neutral modes too, UT ()
and T (x). We fix their choice by the normalization conditions [*° UTWdz = 1 and
e Y¥dx = 1. Note that

Vi(z) ~ gexp[(=y +iw)|z| ], 3)
S(@) ~ sexp [(—y + iw)lz] ],
as |x| — oo, with certain complex constants ¢ and s.

Up to the leading order in exp (—~yr) (where r is the distance between the solitons),
a bound state of two weakly interacting solitons has the form

A = exp (iat) [Ao (z — 1) € + Ay (z — 29) ewz} : (4)

where the coordinates x;5 and phases ¢;2 of the individual solitons are slowly
varying functions of time ¢. By plugging this ansatz into Eq. (1) and projecting the
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resulting equations onto the tangent to the space of functions of type (4), we obtain
the following SIE:

Or = aexp (—yr)sin (wr + 01) cos ¢, (5)
)
Op = —bexp (—r)cos (wr + ) sin ¢ — cnsin g sin 3 (6)
)
P = bexp (—~yr)sin (wr + 0y) cos ¢ + cn cos g cos o + 2A, (7)
V = —aexp(—~r)cos(wr+ 6;)siny, (8)

where 7 = 9 — 21, @ = 3 — @1, D = 1 + 2 — 2¢, and V = Oy(x1 + x2)/2. The
parameter A =  — « describes the frequency detuning between the injected field

and the single soliton solution. The other parameters are defined by aexp (i) =

Apq [—(v — 2Bw) + i(w + 28], bexp (i02) = dps [(y — 2Bw) — i(w + 267], and cexp (i) =
4 [ Widx, where p, g, s are the coefficients of asymptotics (2) and (3).

For more details on the derivation of the SIE see Ref. [10]. Being obtained formally,
using a multiscale method, system (5)-(8) needs a justification. The strongest one
is given by the “invariant manifold theorem” of Ref. [16]. It is a general statement
which holds for all multisoliton weak interaction processes in a large class of PDE’s
under the condition of a non-zero diffusion. In our case, for § # 0, the theorem en-
sures the existence of a closed set of four ODE’s (“the true SIE”) which give an exact
description of the weak interaction of two solitons, valid uniformly on unbounded
time intervals. Moreover, it follows from the proof, that the formal scheme employed
in the derivation of Eqs. (5)-(8) yields an o [exp (—vr)]-approximation to the true
SIE. Note the importance of the non-zero diffusion. For example, for conservative
systems the long-time validity of SIE must be questioned.

First, we consider Egs. (5)-(8) with 7 = 0. The system then retains the phase-shift
symmetry, so Eq. (7) for the sum of the soliton phases ® decouples from the other
equations. Thus, in this case the dynamics of the soliton interaction is described by
the two-dimensional system

Oyr = aexp (—yr) sin (wr + 61) cos ¢,

Orp = —bexp (—r) cos (wr + 6) sin . (6)

This system is reversible, i.e. invariant under the transformation ¢t — —t, ¢ —
m—. As usual in dimension two, the reversibility implies integrability. The integral
is H = sin g exp [—br sin(6, — 6,)/a] | sin(wr + )| “=@~/%) " The trajectories
of (9) comprise the level lines of H, so the phase portrait of (9) can easily be
recovered. Two types of phase portraits are possible [10| depending on the sign
of p = abwcos (02 — 6;). Here we consider only the case p > 0 when the phase
trajectories are closed curves surrounding the neutrally stable equilibria Syir/o :
{o =+7/2, wr+ 6, =7 (k+1/2)}, see Fig. la. It follows from Eq. (8) that the
+7/2-out-of-phase equilibria correspond to uniformly moving bound soliton states.
Two other sets of equilibria, the saddle ones, correspond to stationary bound states,
in-phase Sio : {¢ = 0,wr + 0, = 27k} and anti-phase Sy, : {¢ = 7, wr + 0y =
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Figure 1: Phase portraits obtained by numerical solution of (a) the SIE (9) and (b) the
QCGLE (1) at n = 0. The parameters here and in the following Figures are: 3 = 0.5,
6 =002 ¢ =18, u = 0.05, v = 0.05. This corresponds to w = —2.149, v = 5.195,
a=0.118,b=755-10"% 6; = 6.82-107%, #y = 2.25 in the SIE.

7m(2k + 1)}. The separatrices of the saddles divide the phase plane into cells, from
which the trajectories can never escape, see Fig. la.

Recall that Egs. (9) are an approximation of a certain true SIE. In fact, the higher
order corrections destroy the reversibility, and hence the integrability, of the SIE.
Indeed, it is seen from Fig. 1b where the results of a direct simulation of Eq.
(1) are presented (cf. Ref. [9]), that rather than being closed, trajectories slowly
spiral towards the weakly stable 4 /2-out-of-phase equilibria. Furthermore, the
cells boundaries break: a trajectory can flow from cell to cell until it is captured to
one of the +m/2-out-of-phase bound states, or leaves the weak interaction zone —
then the two-soliton state collapses to a single soliton.

When n # 0, Eq. (7) couples with Eqs. (5) and (6). The dynamics is then deter-
mined by the ratios between 7, A, and exp (—vr). Let us show that chaos should be
expected when A > n, exp (—yr). Indeed, as the sum of the soliton phases ® rotates
with nonzero velocity in this case, ® can be taken as a new time variable. Thus,
system (5)-(7) is, effectively, a periodic perturbation of the conservative integrable
system (9). Such systems do exhibit a chaotic behavior due to the destruction of
resonances. So, near every resonance zone, i.e. in the vicinity of those periodic
trajectories of Egs. (9) for which the increment of ® during the period is commen-
surate with 47, the soliton interaction dynamics can be chaotic. Since the higher
order corrections introduce a weak dissipation into the SIE, most of the resonances
are, in fact, erased. However, as we will see below, the chaotic dynamics produced
by the strongest resonances can survive.

One more possibility for chaos is the splitting of the cell boundaries. As the phase
® rotates, the in-phase and anti-phase equilibria of Eqs. (9) become saddle peri-
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Figure 2: Stable bound states with the phase difference ¢ = 7/2 (a) and ¢ = 0 (b)
between the solitons.

odic orbits of Egs. (5)-(7) at n # 0, and their stable and unstable manifolds may
intersect. Thus, zones of a “metastable” homoclinic chaos can be formed. This type
of behavior is characterized by large oscillations in phase difference ¢, i.e. we see
chaotic transitions between the cells in the (r, ¢)-plane (Fig. 5g).

It is noteworthy that the spatial motion of chaotic bound states is, effectively, a
random walk at large time scales: as Eq. (8) shows, when the dynamics of r and
¢ is chaotic, the center of mass velocity V' is a random function of time (with a
certain non-zero decay of correlation time), so the spatial position of the chaotic
bound state is an integral of a random signal.

Another, nonrotational mechanism of chaos creation in the SIE is related to multiple
bifurcations of equilibrium states. As we mentioned, the equilibria of Eqs. (9)
correspond, in general, to periodic orbits of Eqs. (5)-(7). However, at moderate
values of A/n, due to a synchronization phenomenon, bound states with stationary
r, 1, and g can form (see Fig. 2). The stability domains for the +7/2-out-of-phase
and in-phase equilibria of Eqs. (5)-(7) are shown in Figs. 3a and 3b, respectively.
The birth of 4+ /2-out-of-phase equilibriua is accompanied here by a simultaneous
Andronov-Hopf bifurcation, i.e. in addition to a zero characteristic eigenvalue these
equilibria have a pair of pure imaginary eigenvalues. Such double bifurcation is
known (see Ref. [17]) to lead to a chaotic behavior via a Shilnikov homoclinic loop.
Another multiple instability, also leading to Shilnikov chaos [18|, corresponds to
a triplet of zero characteristic eigenvalues of the +7/2-out-of-phase equilibrium at
Al = c|n|/V8 = (y/p+b2/4+b/2) exp {— [r(k +1/2) — 6] /w}. Although higher
order corrections to SIE (5)-(7) cause a decrease in the multiplicity of the local
bifurcations, the chaos associated with them has to persist nevertheless.
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Figure 3: Stability domains (grey) of the m/2-out-of-phase and in-phase bound soliton
states on the (7, A) parameter plane.
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Figure 4: Simulation results for the QCGLE. (a) — bifurcation tree calculated for Q =
—22.2. (b) —period three, n = 0.065; (c) — chaotic, n = 0.06623; (d) — period two, n = 0.08;
and (e) period six, n = 0.083, soliton bound states.
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Figure 5: Phase portraits obtained by solving numerically the QCGLE (a)-(d) and SIE

(e)-(h). (a) n =0.02, Q@ = —22.3465, (b) n = 0.4, Q= —22.2, (c) n = 0.06, Q = —22.2, (d)
n =002 Q=-2225 (e) n=0.02, A=—0.0164, (f) n =0.02, A = 0.023, (g) n = 0.02,
A =0.11, (h) p=0.11, A = 0.41.

The above analysis is pretty much confirmed by the results of a direct simulation
of Eq. (1). Fig. 4(a) shows the evolution ( the “bifurcation tree”) for the 7/2 -out-
of-phase regime with the change of the injected signal amplitude n . Away from
the synchronization range, the regime undergoes a number of period-doubling and
period-tripling bifurcations (strong 1:2 and 1:3 resonances) leading, in particular, to
chaotic behavior | a “strange attractor”, see Fig. 4(b)|. Different other dynamical
regimes are shown in Fig. 5 where the phase portraits in the upper row are obtained
by numerical solution of Eq. (1), while those in the lower row correspond to Egs.
( 5)-(7). Figures 5(a) and 5(e) illustrate a desynchronization transition from the
stationary 7/2-out-of-phase bound state to a stable limit cycle via a homoclinic
bifurcation (cf. Ref. [19]). A stable limit cycle born from a homoclinic loop to
a saddle anti-phase state is shown in Figs. 5(b) and 5(f). Figure 5(c) shows a
metastable chaotic bound state which corresponds to a stable chaotic regime of
Egs. (5 )-(7) [see Fig. 5(g)]. Finally, Fig. 5(d) illustrates multistability between
different time-periodic bound states of Eq. (1). The corresponding quasiperiodic
solutions of Eqs. (5)-(7) are shown in Fig. 5(h). The comparison of the phase
portraits in the upper and lower rows in Fig. 5 reveals a substantial similarity
between the solutions of Eq. (1) and those of Egs. (5)-(7). There is no one-to-one
correspondence, however, because in Eqs. (5)-(7) we have neglected second and
higher order terms in exp (—+r) that are responsible for a weak dissipation. Though
these terms are small, they are not negligible in the first two elementary cells of the
phase space that are depicted in Fig. 1a. In the next cells that correspond to larger
soliton separations one should expect a similar behavior, though with much weaker
dissipation effects.

As we see, the weak interaction of two dissipative solitons can produce a very rich



dynamics. The mechanism of a creation of dynamic (e.g. chaotic) soliton bound
states is related to the breakdown of the phase-shift symmetry and has a universal,
model-independent nature. Therefore, it should be typical for every spatially ex-
tended system which undergoes a Hopf bifurcation. In particular, in laser systems,
violation of the phase-shift symmetry can be straightforwardly achieved by an injec-
tion of an external signal, so the effects described in this letter can be a subject of
experimental observations. The fact that the two-soliton state in the QCGLE is a
weakly damped nonlinear oscillator can be used to analyze the dynamics of soliton
bound states in other situations. Thus, a system of 4 interacting solitons can be
viewed as a pair of coupled, weakly damped oscillators, i.e. it has to produce a
rich dynamical behavior even without the phase-shift symmetry breaking. Similar
effects should be expected for the case of rotating soliton bound states in two space
dimensions.
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