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Controllability near Takens-Bogdanov points 

Gerhard Hackl~. 
Institut fiir Mathematik, 

Universitat Augsburg, 
Universitatsstra:Be 2, 
D-86159 Augsburg 

1 Introduction 

Klaus R. Schneider! 
Weierstra:B-Ins ti tut 

fiir Angewandte Analysis 
und Stochastik, 

Mohrenstra:Be 39, 
·D-10117 Berlin 

Control systems modelling real life processes depend on some parameters. We con-
sider control systems of the form 

dx 
dt = f(x, >.., u) (1.1) 

under the following assumptions: 

(A1 ). f E Cr(JRn x Ax U, lRn) where A and U are bounded open subsets in JRP and 
]Rk respectively, and r is sufficiently large . 

(A2 ). ( /o, Ao) is a bifurcation element of the uncontrolled system 

dx 
dt = fo(x, >..) := f(x, >.., 0) (1.2) 

that is, to given any small neighborhood N"Yo of the trajectory /o of (1.2) 
for ).. = Ao and to given any small neighborhood N;..0 of Ao the topological 
structure of (1.2) in N'Yo is not the same for all ).. in N;..0 • 

Under some additional conditions hypotheses (A2 ) implies that t}:lere is a trajectory 
/>. of (1.2) bifurcating from /o when A crosses A0 • Well-known examples are Hopf-
bifurcation and homoclinic bifurcation. With respect to the supposed bifurcation we 
may ask the following questions: 

*e-mail: Haeckl@Uni-Augsburg.de 
t e-mail: Schneider@IAAS-Berlin.d400.de 
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( Q1). Is it possible to control the stability of the bifurcating family of trajectories 
. I>.? 

( Q2). How does a bifurcation in the uncontrolled system (1.2) influence the control-
lability of (1.1)? 

Problem (Q1) has been treated by H. Abed and J.-H. Fu in the codimension one 
cases of Hopf bifurcation [1] and of stationary bifurcation [2]. They proved that 
under some conditions and by applying an affine feedback control the bifurcating 
trajectory can be made stable. 

An answer to question (Q2 ) has been given by F. Colonius et al. In [9] they studied 
the influence of a Hopf bifurcation in the uncontrolled system on the control sets (the 
regions of complete controllability) of an n-dimensional affine control system. By 
means of an additional parameter characterizing the control range it could be shown 
that in case of a sufficiently small control range the occurence of Hopf bifurcation 
in the uncontrolled system implies a branching of control sets. 

In this paper we shall study an affine control system whose uncontrolled system 
coincides with a universal unfolding of a Takens-Bogdanov singularity [6, 24, 25]. It 
is well-known that such a singularity represents the simplest case of a codimension 
two bifurcation, and that the corresponding unfolding shows the following bifurca-
tions: 1. Stationary bifurcation 2. Hopf bifurcation 3. Homoclinic bifurcation. The 
corresponding bifurcation diagram can be found in section 2. 

Our main interest is devoted to the dependence of the control sets on the unfolding 
parameters and on an additional parameter characterizing the control range. The 
obtained results can be summarized as follows: Each limit set of the uncontrolled 
system is contained in a control set. Stable limit sets correspond to invariant co~trol 
sets and unstable limit sets correspond to variant control sets. If there is no limit 
set for constant control functions, we get no control set at all. For sufficiently small 
control range, there are bifurcation curves in the unfolding parameter plane, which 
are connected with a change of the number of the control sets or of their topolog-
ical structure. The bifurcation curves for the control sets approach the bifurcation 
curves of the uncontrolled system as the control range tends to zero. Moreover, the 
qualitative behavior of the control systems can be different to the behavior of the 
system with constant control function. Especially we find parameter regions and 
control ranges, such that for constant control there is no homoclinic orbit, whereas 
there exists a "controlled homoclinic orbit" belonging to the interior of a control set. 

2 The bifurcation diagram of the uncontrolled 
Takens - Bogdanov unfolding system 

Let G be a neighborhood of the origin in JR.2. In G we consider the two-dimensional 
autonomous differential system 
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under the conditions 

dz - = <p(z) dt 

(A1). <p E Cr( G, JR-2), r sui!iciently large. 

(2.1) 

(A3 ). The Jacobian A of <pat z = 0 has zero as algebraically double and geometrically 
simple eigenvalue. 

Under these assumptions, the equilibrium z = 0 is called a Takens-Bogdanov sin-
gularity [24, 6]. Thus (2.1) can be represented as 

where the matrix A has the form 

dz · - = Az + 1/;(z) dt 

1jJ belongs to cr(G,JR2 ) and satisfies ¢(0) = 0, 1/;1(0) = 0. 

(2.2) 

(2.3) 

The 1-jet normal form of (2.2) under the condition (2.3) can be written in either of 
two ways [14]: 

dx l 

- y + L ajxi + O(ll(x, y)!i1+1) 
dt j=2 

dy l 

L bjxi +.O(ll(x, y)ll1+1), 
dt -

j=2 

dx 
dt - Y + O(ll(x, Y)ll 1+i) 

dy 
dt 

l 

L(ajxi + bjxi-1
) + O(ll(x, y)ll1+1). 

j=2 

Bogdanov proved in 1971 that the two-parameter differential system 
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dx 
dt 
dy 
dt 

y 

is an universal unfolding of any smooth two-dimensional autonomous vector field 
near a Takens-Bogdanov singularity, that means, system (2.6±) shows all possible 
topological structures of the trajectories of any smooth vector field near ·a Takens-
Bogdanov singularity~ This result was reported first in Arnold's paper [3] in 1972. 
Bogdanov published his results 1975 [4] without proofs, and 1976 [5, 6] with proofs. 
F. Takens studied the same type of singularity by using the normal form (2.4), he 
published his results in 1974 [25, 26]. 

A Takens-Bogdanov point is the simplest example of a codimension-two singularity. 
A qualitative study of (2.6±) [14, 8, 22, 24] shows that in a two-parameter family 
of vector fields a Takens-Bogdanov point arises naturally as the common endpoint 
(or start point) of a Hopf-bifurcation curve and a homoclinic bifurcation curve 
( separatrix loop). Hence, there are a lot of processes in nature and technology whose 
modelling leads to dynamical systems with Takens-Bogdanov points: motion of a 
thin panel_in a flow [16, 17, 18] shock waves, [21, 20], population dynamics [7], solar 
gravity [23]. 

In what follows we describe the phase picture of (2.6+) near the origin in dependence 
on A for small A. 

Let Kr be the disk in the phase plane defined by Kr :== {( x, y) E JR.2 : x 2 + y2 < r 2 }, 

analogously let Es be the open disk with radius s in the parameter plane centered 
at the origin. We denote a curve k in Es as bifurcation curve with respect to the 
qualitative behavior of system (2.6+) in Kr if it consists of bifurcation points. A 
point p E Es is called a bifurcation point if in each neighborhood Nf of pin Es there 
are A1 and A2 such that the corresponding systems (2.6+) have different topological 
structures of their trajectories in Kr. The following theorem describes the set of 
bifurcation curves of system (2.6+) in Es (see Fig. 2). 

Theorem 2.1 [5} There are sufficiently small positive constants r ands such that 
in E:s there exist exactly three bifurcation curves kE, kH, ks of system (2.6+) with 
respect to K:;:. All bifurcation curves contain the origin as limit point: 

(i) The bifurcation curve kE := {A E E:s: A1 = !AD separates regions in E:s with 
different numbers of equilibria in K:;:. We denote by So the region in E:s bounded 
by kE and containing the positive At -axis. We decompose kE into the curves 
k~ (A2 > 0) and k"E (A2 < 0) by dropping the origin. 

(ii) The bifurcation curve kH := {A E E:s: At == 0, A2 < O} is connected with the 
generation of a limit cycle from an equilibrium (Hopf bifurcation). We denote 
by B the region· in E8 bounded by kH and k"E. 
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Figure 1: Bifurcation diagram to system (2.6+) in the A-plane 

{iii) The bifurcation curve ks is connected with the bifurcation of a limit cycle from 
a separatrix loop {homoclinic bifurcation). Near the origin in the parameter 
plane, ks can be described as ks:= {A E E5 : .\1 = -;5 ,\~ + o(.\~), ,\2 < 0 }. 
The region in Es- bounded by ks and kH is denoted by C, the region bounded 
by ks and k"t; is denoted, by S2 • 

The next theorem describes the qualitative behavior of system (2.6+) m Kr: for 
,\ E Es. 

Theorem 2.2 [5} Let "f ands as in Theorem 2.1 Then we have: 

{i) For,\ E S0 , system (2.6+) has no equilibrium in Kr:, the corresponding flow is 
parallelizable {see fig. 2{i) ). 

(ii} For A E k"E, system (2.6+) has exactly one equilibrium E in'!<;:-. E has three 
separatrices, one of them tends to E as t tends to +oo {stable separatrix), two 
are y,nstable separatrices (tend to E as t ---> -oo) {see fig. 2{ii} ). 

(iii) For .X E B, system (2.6+) has exactly two equilibria, one saddle point Es and 
one unstable antisaddle point EA, it has no periodic solution {see fig. 2{iii)). 

(iv) For,,\ E kH, system (2.6+) has exactly two equilibria, one saddle point Es and 
one unstable week focus EF, that is, the corresponding characteristic roots of 
EF are purely imaginary {see fig. 2{iv)) .. 

(v) For .X E C, system (2.6+) has exactly two equilibria, one saddle point Es and 
one stable focus EF surrounded by exactly one limit cycle which is unstable 
(see fig. 2(v)). 

(vi) For A E ks, system (2.6+) has exactly two equilibria, one saddle point Es 
and one stable focus EF. Two separatrices of the saddle point form a closed 
separatrix loop surrounding the stable focus. There is no periodic solution 
(see fig. 2{vi)). 
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(vii) For .,\ E S2, system (2.6+) has exactly two equilibria, one saddle point Es and 
one stable focus EF but no periodic solution (see fig. 2(vii)). 

(viii) For.,\ E k~, system (2.6+) has exactly one equilibrium E in Kr-. E has three 
separatrices, one 'Unstable and two stable (see fig. 2(viii)). 

Fig. 2 (i) Fig. 2 (ii) 

Fig. 2 (iii) Fig. 2 (iv) 

Fig. 2 (v) Fig. 2 (vi) 
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Fig. 2 (vii) Fig. 2 (viii) 

3 Control flows and Control sets 

In this section we recall some basic definitions and results from control theory and 
from the theory of dynamical systems. 

Let us consider the affine control system 

dx m 
d~ == f(x) + ~ uigi(x) (3.F) 

under the hypotheses 

(H3 ). For all u E Ufl and for all x E JR" there exists a unique solution ef>(t, x, u) of 
(3.1") defined for all t E JR and satisfying <P(O, x, u) = x. 

We introduce the positive (t ~ 0) reachable sets of (3.F) as follows: 

o+·"(x, t) .-
0~1(x) .-

{y E JR" I there is au EU" such tha~ y = <P(t, x, u)} u o+,u( x, t) 
09~T 

o+,e(x) .- u o+,e(x, t). 
09 

Similarly, we define the negative reachable sets: 

o-·(}(x, t) := {y E JR" I there is au E uu such that ef>(t, y, u) = x} 
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O~:J(x) .- u o-,e(x, t) 
09~T 

o-,e(x) .- u o-·e(x, t). 
09 

In the sequel we need the property that the reachables sets O~:J ( x) have a nonempty 
interior for each T > 0. In order to formulate a condition for the control system (3.1 e) 
ensuring this property we denote by .CA the Lie-Algebra generated by the vector 
fields f, 91, ... , 9m. Let ~.cA( x) be the corresponding distribution. By a general result 
([19], pp.56-74), the validity of the assumption 

implies that the reachable sets O~:J(x) of the control system (3.le) have a nonempty 
interior. -

The following definition is basic for our investigations. 

Definition 3.1 A set De c 1Rn is called a control set of (3.1 e) with respect to ue 
if it has the following properties: 

(a): ne C Q+,e(x) for all x E De. 
(b): For all x E De there exists u E ue with ¢>(t, x, u) E De Vt 2 0. 

(c): ne is maximal (w.r.t. set inclusion) with these properties. 

A control set ne is called invariant if additionally: 

De = Q+,e(x) for all x E De. 

All other control sets are called variant. 

Note that control sets are always connected and pairwise disjoint. 

In the set of control sets an order relation -< can be introduced as follows: Let Di 
and D~ be control sets. We say the relation Di -< D~ is valid if there exists an 
x E Df such that o+,e(x) n D~ -/:- 0, that is D~ is reachable from a point x E Df. 
Concerning this order relation, invariant control sets are maximal elements and open 
control sets are minimal. 

In what follows our main interest is devoted to control sets with a nonempty interior. 
For such control sets, condition (b) in Definition 3.1 is redundant and due to a result 
in [11] we have 

intDe C o+,e(x) for all x E De 
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that is we have exact controllability in the interior of a control set. 

Let cp( t, x) be the solution of the uncontrolled system 

dx dt = f(x) (3.2) 

satisfying cp(O, x) = x. We recall the following definition from the theory of dynamical 
systems which gives a weak idea of recurrence. 

Definition 3.2 The point x E IRn is called chain recurrent if for every s > O and 
for every T > 0 there are points x = xo, xi, ... , Xn = x and times t0 , ... , tn-l > T 
such that lcp(ti-i, Xi-d - xii < c for i = 1, .. :, n. The set of all chain recuT'T'ent points 
of (3.2) is called the chain recurrent set CR of (3.2). We call a closed connected 
maximal subset of CR a component of CR. 

All limit points of bounded trajectories, e.g. equilibria, periodic and homoclinic 
orbits, are contained iri the set CR. 

In the sequel the correspondence .between the components of the chain recurrent set 
CR and the control sets ne plays an important role. Concerning this correspondence 
we introduce an order relation -< between the components of the chain recurrent set 
CR. The relation C1 -< C2 means that there are points x0 , ... , Xn where x 0 E C1 
and Xn E C2 and orbits 11, ... , In connecting the points Xi-1 and Xi such that 
Xi-1 E o:(!i) and Xi E w(!i) for i = 1, ... , n (see [13]). 

The following definition is useful to formulate a result on the existence of a control 
set containing a component of the set CR. 

Definition 3.3 (Inner-Pair-Condition). A pair ( u, x) E ue x IRn is called an inner 
pair to the control system (3.le) if there exist T > 0 and S > 0 such that 

</>(T, x, u) E int O~:J+s( x ). (3.3) 

In order to formulate a suitable sufficient condition for a pair ( u, x) to satisfy the 
inner-pair-condition we introduce the notation 

where h,g E Cr(1Rn, IRn) and r is sufficiently large. According to Corollary 4.6 in 
[10] we have 

Lemma 3.4 Let u0 E ue be a constant control with ju0 1 < (! and let x E IRn such 
that <f>(t, x, u0 ) is bounded fort::; 0. Instead of (3.3) we assume the following stronger 

m 
condition: With h(x) := f(x) +I: u? gi(x) we have 

i=l 

span{ad~gi(z),i = l, ... ,m,k = 0,1,2, ... } = IRn 
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for each z E w(u0 , x). 

Then each element ( u0 , y) where y is an element of the w-limit set of</>( t, x, u0 ) is . . an inner pair. 

The next results providing first relationships between the components of the chain 
recurrent set en and the set of control sets are immediate consequences of Corollary 
5.3 in [10]. 

Theorem 3.5 Assume hypotheses (H1 ) - (H3 ) to be valid. Additionally we suppose 
that (0, x) is an inner pair to (3.1 e) for all x E en of (3.2) and 0 < g < Po· Then 
to any bounded isolated component M of the chain recurrent set en of (3.1 e) there 
is a decreasing sequence of control sets ne such that M c int( ne) for each e > 0 
and M = n ne. 

O<e<Po 

Vice versa we have 

Theorem 3.6 Assume hypotheses (Hi) - (H3 ) hold true. Further suppose the exis-
tence of a sequence of control sets DPk of (3.lPk) such that 

a) Pk --t 0 as k --t oo. 

b) The set L := {y E lRn : there is a sequence xk E DPk with xk --t y as k --t oo} 
is nonempty. 

Then L is a component of the chain recurrent set of (3.2). 

Let M and M be different components of the chain recurrent set en of (3.2), let 
ne and fJe be the associated families of control sets, that is, M = n ne' M = 

e>O n fJe. Colonius and Kliemann showed in [12] that the order of the chain recurrent 
e>O 
components of en is preserved by the associated family of control sets: 

Theorem 3. 7 Suppose the assumptions of Theorem 3.5 hold. Then M -< M implies 
ne -< fJe for all e > 0. 

Theorem 3.8 Assume the hypotheses of Theorem 3.6 to be valid. Further suppose 
that there is a Po > 0 such that ne -< fJe for 0 < e < PO· Then we have M -< M. 

Finally, we need a continuity property of control sets in parameter dependent control 
systems (see e.g. [27]) 

dx m 
dt = f(x, A)+?= Ui9i(x, A), 

i=l 

where A belongs to the open set A C JR k. 

We replace hypotheses (H1 ) and (H4 ) by 
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(H1). f,gi, ... ,gm E cr(lRn x A, 1Rn) where r is sufficiently large. 

(H4). dim .6..cA( x, ,\) = n for all ( x, ,\) E 1Rn x A. 

Lemma 3.9 Suppose hypotheses (H1), (H2), (H3 ), (H4 ) to be valid. Let D~~ be a 
control set of (3.4) with ,\ = Ao with nonempty interior. Let ]( be a compact subset 
of int D~~. Then there is a small number co > 0 such that for ,\ E Ao := { ,\ E A : 
I-\ - Ao I < co} D~0 has a nonempty interior and ]( C int D~0 

• 

4 Bifurcation of Control Sets near a Takens-
Bogdanov-singularity. 

Now we consider the control affine system 

dx 
dt y 

~~ - A1 + A2x + x 2 + xy + u(t) 
u E ue = {u E £ 00 (1R, JR) I ess sup lul < g, g > O}"' 

Obviously, hypotheses (H1 ) and (H2 ) are satisfied. Since we are interested in the 
behavior of the control sets of ( 4.1 e) near the origin we may modify the uncontrolled 
system 

dx 
- y dt 

dy 
dt 

(4.2) 

outside some neighborhood of the origin such that also hypothesis (H3 ) is valid. 
Hypothesis (H4 ) can be verified by a straightforward calculation. 

In case of the two-dimensional system ( 4.2) the set of chain recurrent points coincides 
with the set £(,\) of limit points. According to Theorem 2.2 £(,\) has at most three 
components in I<:;: for ,\ E ~s· The number of these components changes when ,\ 
crosses a bifurcation curve in ~s, so we can apply the results of the previous section. 

In system ( 4.1 e) the inner-pair-condition is satisfied for all (0, x) E ue x £(,\), ,\ E 
~s· 

In what follows we consider the control sets D>-.,e of ( 4.1 e) in I<-:;: when,\ varies in ~s 
and study its dependence on the control range characterized by g. The approach is 
in the same spirit as in [9]. 
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Theorem 4.1 Consider the control system (4.ll') in I<:;:. 

1. To any given rt > 0 there is a positive number l* such that for all ,\ E E1· there 
exists a control set D>.,e* with nonempty interior such that L( ,\) C int D>.,e*. 

2. To given ,\ E 1:8 there is a e(.\) such that fore E (0, e(.\)) to each component 
Li(,\) of L( ,\) there exists a control set n;·e with nonempty interior containing 
Li(.\) where n;·e n n;·e = 0 for ii= j. 

Remark 4.2 As an example in [10} shows, we cannot exclude the existence of fur-
ther control sets with nonempty interior which do not contain any component of 
L(A). 

Proof. 
1. Let e* > 0 be any fixed number. By Theorem 2.2, L(,\) has at most three compo-
nents which depend continuously on,\ and converge to the equilibrium point 0 E 1R2 

as ,\ --+ 0. Thus, Theorem 3.5 yields a sequence of control sets D0·e which increase 
with e such that 

{O} C intD0 ·e and {O} = n D 0·e. 
e>O 

Since 0 = L(O) c int D 0 ,e for each e, we can set e = e* . Then to e* there is a lo > 0 
such that L( A) C intD0·e* for ,\ E ~lo. Hence we have 

LJ L(,\) C int D 0·e*. 
>.e:Ez0 

Now Lemma 3.9 guarantees the existence of l* E (0, 10 ), such that for each ,\ E E1· 

LJ L(,\) C int D>.,e*. 
>.e:El* 

Therefore, L(,\) C int(D>.,e*) for all ,\ E 1:1 •• 

2. Let ,\ E 1:8 be given. By Theorem 3.5, to each component Lk ( ,\) of L( ,\) there is 
a sequence of control sets n;,e with 

Lk(,\) c int D>.,e k 
D>.,e k c D>.,e k fore< e 

nn;,e Lk(.\) 
e>O 

Hence there iS a sufficiently small g( ,\) such that for 0 < g ~ g( ,\) n;·e is a control 
set with nonempty interior containing exactly one component of L(-\), namely Lk(,\) 
such that n;·e n n:·e = 0 for k i= l. 0 
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By using the notation introduced in section 2 (see also fig. 1) we get immediately 
from Theorem 4.1: 

Corollary 4.3 Consider the control system ( 4.1 e) in I<r. 

1. For,\ E kE there is a g( ,\) such that for 0 < g < g( ,\) system ( 4.1 e) has a con-
trol set w~ with nonempty interior where w~ contains the multiple equilibrium 
point E(,\). 

2. For ,\ E S2 J ,\ E B, and ,\ E kn there is a g(,\) such that for 0 < g < g(,\) 
system ( 4.1 t!) has two control sets IT~ and <I>~ with nonempty interior where 
II~ contains the saddle point Es(.\)J <I>~ contains the antisaddle point EA(,\) 
and is invariant for ,\ E S2 (see fig. 12}. 

3. For,\ E C there is a g(,\) such that for 0 < g < g(,\) system (4.le} has three 
control sets I'L II~ and <I>~ with nonempty interior and such that r~ contains 
the limit cycle />., II~ the saddle point Es(.\), and <I>~ the focus EF(.\). <I>~ 
is invariant (see fig. 4). Since EF( ,\) is lo'cated in the interior of th~ region 
bounded by />. the control set r~ is at least doubly connected. 

4. For ,\ E ks, there is a g(,\) such that for 0 < g < g(,\) system ( 4.1 e) has 
two control sets r~ and <I>i with nonempty interior where r~ contains the 
homoclinic curve />.s and the saddle point Es(,\) J <I>i contains the antisaddle 
point EA(,\) where <I>~ is invariant (see fig. 12). 

From the special structure of the second equation in ( 4.1 e) it follows that each result 
on the existence and the structure of a control set remains true if we replace ,\1 by X1 
and u( t) by u( t) + ,\1 - X1 . To indicate the special relation between the parameter ,\1 

and the set of control functions we introduce the following notation: ( 4.1~',6]) means 
that the set of control functions U[a,,6] is defined by U[a,,6] := { u E L 00 (R, R) : a :::; 
ess sup u :::; /3} and that .\1 takes the value X1 . It is easy to verify that the control 
systems (4.lt',6]) and (4.lb>.i+a,>.i+.6]) have identical control sets, the same is valid 
for (4.1~~,.Gl) and (4.le) withe= @;a and ,\1 = X1 +a~@. 

Using this property we may formulate conditions about the set of control functions 
such that the controlled system has the same control sets as system ( 4.1 e). The 
following theorem serves as prototyp. 

Lemma 4.4 Let (,\f, .\2) E ks, let 0 < (] < e(As) such that (4.le) has the control sets 
rt, and <I> t as described in Corollary 4.3( 4) . Then all control system ( 4.1 t~88'e-o]) 
where 8 is any real number have the same control sets. 

Now we study the behavior of control sets of ( 4.1 e) when Xis close to a bifurcation 
curve of system ( 4.2). First we consider the case of the bifurcation curve kE which 
is connected with a bifurcation of two equilibria from a multiple equilibrium E . 
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Theorem 4.5 Consider the control system ( 4.1 e) in Kr· To each AE E kE and 
(2 > 0 there is a K(AE, e) such that for all).. satisfying IA. - A.El < K(AE, e) -there is a 
control set n; with nonempty interior containing the point E. 

Proof. By Lemma 4.4, for ).. E kE system ( 4.2) has a unique multiple equilibrium 
E in I<:;:. Then, according to Theorem 3.5, to each f2 > 0 there is a control set 
w~E with nonempty interior such that E E w~E. Let ]{ be a compact subset of 
int w~E with E E I<. Then, by Lemma 3.9 there is a small number K(AE, e) such 
that ]{ c int w~ for IA. - A.El < K(AE, e). D 

If ).. belongs to So the following theorem provides a condition that no control set 
exists at all. To formulate this result we note that if ).. belongs to So then we can 
write A.1 = iA.~ + 8 with 8 > 0. 

Theorem 4.6 If).. E So and if A.1 - i )..~ = 8 > g then there is no control set of 
(4.F) at all. If g = A.1 - ~)..~ then D~ = E. 

Proof. Let V: R2 ~ R be the functional defined by V(x, y) = y- ~
2

• V(x, y) = c 
is a family of curves covering I<:;:. The derivative of V along the trajectories of ( 4.1 e) 
reads 

dV ( x' y) I - 2 . d = A.1 + A.2x + x + xy + u(t) - xy. 
t (4.lQ) 

Let A.1 = iA.~ + g + c, c;::: 0. Then we have 

dV(x, y) I = 
dt (4.lQ) 

1 
4A.~ + g + € + A. 2x + x2 + u(t) 

1 
- (2A.2 +x)2+g+E+u(t). 

For u(t) = uo with luol :::; Q we get 

dV~x,y) I 2': (~A2 + x)2 +I!+ uo 2': 0. 
t (4.lQ) -

Hence, for c > 0 we get that there is no control set at all in Kr.-
In case c = 0 and u = u0 the straightline x = -~ is no trajectorie of ( 4.1 e) except 
the equilibrium point x = -~, y = 0. Thus, the functional Vis increasing along each 
solution except the equilibrium point. Hence there is a unique control set consisting 
of the equilibrium point E. 

D 

Next we consider the pehavior of control sets of ( 4.F) when ).. is close to the bifur-
cation curve ks which is connected with the existence of a homoclinic curve /S· 
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Theorem 4. 7 Let As = (Ai, A2) be a point of the bifurcation curve ks. Then to each 
sufficiently small control range g there is v(e) > 0 such that for j.\1 -:: Ai I < v(e) the 
control system ( 4.1 e) has an at least doubly connected control set r~ containing the 
separatrix loop 1>.s in its interior. 

Proof.. According to Corollary 4.3,( 4) to As E ks belongs a es > 0 such that 
for Q < e < 2es the Control sy~tem ( 4.1 U) has a control set rt which is at least 
doubly connected and contains the homoclinic orbit 1>.s· Thus ( 4.l~"fes,es]) has a 
control set rt with the same property. Now we replace Ai by Ai - 7. Then, by 

[-2.es §.es] . . e . Lemma 4.4, ( 4.1 v~~ 4 
) has r >.s as control set. If we enlarge the control range the 

1 4 s 

corresponding control set becomes also larger. Hence, (4.1 ~~!~fes]) has a control 
1 4 

set ft which contains rt In order to prove that ft is at least doubly connected 
we replace Ai-7 by Ai. Therefore, (4.l~~tes,esJ) has rt as control set. By enlarging 

[ 3 3 ] 3 
the set of control functions we get that (4.l)..~ 2 es, 2 es) has the control set rres which 

1 s 
- 3 

contains rt. It follows from our assumptions above that r tes is at least doubly 
connected and contains the homoclinic orbit 1>.s. Thus, rt is also at least doubly 
connected. 

D 

In what follows we sharpen the previous result in the following way: We prove that 
if the uncontrolled system is represented by a point .\1 E S2 sufficiently near to 
the bifurcation curve ks then there exists an at least doubly connected control set 
where all constant controlled systems belong to S2. That is the constant controlled 
systems have no homoclinic curve. Our approach to establish this result is based 
on the intersection of unstable and stable separatrices for different constant control 
functions . 

. First we introduce some notation. For A E S2 system ( 4.2) has two equilibria, we 
denote by Es(A) the saddle point and by EA(.\) the antisaddle point. For ,\* E ks 
two separatrices of Es( A*) form a loop. We denote these separatrices by s-( ,\ *) and 
s+(,\*) which have Es(A*) as w-limit set and a-limit set respectively (stable and 
unstable separatrices). Let P(A*) be their common intersection point with the x-
axis. Thus, there is a (small) "'> 0 such that 3-(8) := s-(Ai - 8, A2) and s+(8) := 
s+(Ai - 8, A2) intersect the x-axis near P(A*) for 0 < 8 < K. We denote their first 
intersection point by p-( 8) and p+ ( 8) respectively. It is obvious that p-(8) and 
P+(8) depend continuously on 8. It follows from (4.2) that the segment a-(8) of 
8-( 8) bounded by p-( 8) and Es( 8) := Es( Ai - 8, A2) is located in the upper half-
plane while the corresponding segment a+(8) of s+(8) lies in the lower half-plane. 
By Theorem 2.2, the antisaddle point EA(8) := EA(Ai - 8, A2) .is thew-limit set of 
3+ ( 8) for 8 > 0. Therefore, we have p-( 8) < p+ ( 8). 

The following lemma is basic in establishing our result. 
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Lemma 4.8 Let ,\ * = ( .\i, .\2) be an arbitrary point of the bifurcation curve ks. 
For any 8 > 0 small enough there is an c > 0 such that p-( 8) = p+ ( 8 - c). That 
is, the stable manifold s-( 8) and the unstable manifold s+( 8 - c) have a nonempty 
intersection. 

Proof. 

Let G(x,y,.\1 ,.\2) be the angle between the vector v(x,y,.\1 ,.\2) defined by (4.2) 
and the positive x-axis. If we consider E> as a function of .\1 we get from ( 4.2) 

y 
8,x1 (x, y, A1, .\2) = y2 + (.\1 + A2x + x2 + xy)2 (4.3) 

That means, the vector field v rotates clockwise in the half-plane y > 0 and anti-
clockwise in the half-plane y < 0 for increasing .\1 . 

An immediate consequence of this fact is, that p-(8) and p+(8) are increasing for 
increasing 8. 

From the qualitative results in Theorem 2.2 we get p-( 8) < p+ ( 8) for 8 > 0. 

Now fix 8 > 0. We have 

Since p+ is continuous on [O, K:], we have P+(o) < p-(8) and p+(8) > p-(8). The 
intermediate value theorem yields a e E (0, 8), such that p+(e) = p-(8). If we set 
c := 8 - e then we get the required settings. 0 

Let,\= (.\1 ,.\2 ) be such that (4.2) has a saddle point Es, let D~ be a control set 
of (4.le) containing Es. Then there are control functions u(t) = c1 and u(t) = c2 

where c1 and c2 are sufficiently small lc1 I ::; g, lc21 ::; g , c1 -=f c2 and such that for 
A1 + c1 and A2 + c2 system ( 4.2) has a saddle point E1 and E~ respectively which 
are located in intD~. 

Lemma 4.9 Assume that the unstable separatrix M'E2 of E~ intersects the stable 
s 

separatrix Mei of E1 in some point M. Then the segments of the separatices ME1 s s 
and M'E2 bounded by E} and M, and E~ and M respectively belong to intD~. 

s . 

Proof. To E}, E~ ED~ there are neighborhoods N1 and N 2 with N 1 C intD~ and 
N2 c intD~. Since M E M~2 n MEl we have 

s s 

lim ef>(t, M, c1) 
t-oo 

lim ¢>( -t, M.c2 ) 
t-oo 

Hence we get positive numbers T+ and r- such that 
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Since M1 and M2 belong to intD~ we found a trajectory of ( 4.1 e) connecting M1 
and M 2 • Thus this trajectory belongs to intDi. D 

The next theorem gives the most interesting statement of this section. It states 
the existence of an at.least doubly connected control set in a case, where the limit 
points for constant control functions are only fixed points. Hence we have a situation 
where the structure of the limit sets for constant control functions is different to the 
structure of the control sets. 

Theorem 4.10 For system (4.1~,,6]) there is a ~ (~1 , ~2 ) and a control range 
[a, /3] such that the systems corresponding to constant control Junctions u(t) = u E 
[a, /3] have only equilibrium points as limit sets, but there exists an at least doubly 
connected control set rx. 
Proof. For A E ks Corollary 4.3( 4) yields a control range [-g, g] such that the 
system ( 4.1~-e,e]) has two control sets r~ and <P~ with nonempty interior and />. C 
intr~ and EA(,\) E <P~. 

Since the equilibrium point EA (A) is located in the simply connected region bounded 
by the homoclinic orbit />. the control set r~s is at least doubly connected (see fig. 
8). 

From Lemma 4.8 we get a 8 E (0, g) and an c E (0, 8) with p-(8) == P+(8 - c:). So 
we get an intersection of an unstable and a stable manifold as we need in Lemma 
4.9. 

Now we r~strict the control range to [-g, - 8~e]. Obviously Es(8) and Es(8 - c) are 
contained in the interior of some control set. Since there is an intersection point of 
s+(8) and s-(8 - c) Lemma 4.9 yields a closed Jordan curve containing EA(,\) in its 
interior. 

Since we have restricted the control range, the control sets must be smaller and so 
the control set <Pi is not contained in r~. 

Hence, to some control range we have found a control set r~ which is at least doubly 
connected such that for constant control functions we have no doubly connected limit 
set. D 

5 Numerical Results 

In [15] an algorithm computing control sets has been introduced which is based on 
a solution method to solve ordinary differential equations using piecewise constant 
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Figure 3: Phase portrait for u _,_ 0 and ,\ E C 

We present some numerical results on the control sets of system ( 4.1) for three 
points in the parameter plane and for different control ranges. We have chosen the 
parameter values so that the corresponding uncontrolled systems ( 4.2) have different 
qualitative behavior. 

The point (,\1 = -0.1, ,\2 = -1) lies in region C of the bifurcation diagram in figure 
1. According to Theorem 2.2, the corresponding uncontrolled system ( 4.2) has as 
limit sets a saddle point Es, a stable focus EF and an unstable limit cycle (see fig. 
3) As stated in Corollary 4.3 we have three control sets if the control range is small 
enough (see fig. 4). With increasing control range the control sets merge (see fig. 5 
and 6). 

The point ( ,\1 = -0.213605, ,\2 = -1) corresponds approximately to a point on the 
bifurcation curve ks. For ,\ E ks system ( 4.2) has a stable focus and a homoclinic 
curve to a saddle point as limit sets (see fig. 7)~ By Corollary 4.3 and by Theorem 
4.1 for sufficiently small e there are two control sets containing these limit sets (see 
fig. 8). For increasing e the control sets merge (see fig. 9 and 10). 

The point ( A1 = -0.3, ,\2 = -1) is located in S2 where the system ( 4.2) has a saddle 
point and a stable antisaddle point as limit sets (see fig. 11). As long as the control 
range is small enough we obtain one control set to each limit set. (see fig. 12) If the 
control range exceeds a certain value p0 we get a global bifurcation of the control 
set containg the saddle point. As stated in Theorem 4-_ 10 we get a global control set 
around the saddle point although there is no homoclinic orbit for system ( 4.1) with 
constant control value (see fig. 13). With increasing control range the control sets 
merge (see fig. 13-15). 
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Figure 4: Control sets for,,\ EC and u(t) E (-0.014,0.014] 
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Figure 5: Control sets for ,,\ E C and u( t) E [-0.022, 0.022] 
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Figure 7: Phase portrait u = 0 and A E ks 
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Figure 8: Control sets for ,\ E ks and u( t) E [-0.01, 0.01] 
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Figure 9: Control sets for ,\ E ks and u( t) E [-0.05, 0.05] 
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Figure 10: Control sets for;\ E ks and u(t) E [-0.07, 0.07] 

Figure 11: Phase portrait for u = 0 and ;\ E S2 
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Figure 12: Control sets for A E S2 and u(t) E [-0.03, 0.03] 

Figure 13: Control sets for A E S2 and u(t) E [-0.05, 0.05] 
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Figure 14: Control sets for A E S2 and u(t) E [-0.09, 0.09] 

Figure 15: Control sets for A E S2 and u(t) E [-0.1, 0.1] 
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