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Abstract. For solving linear ill-posed problems with noisy data regularization
methods are required. In the present paper regularized approximations in Hilbert
scales are obtained by a general regularization scheme. The analysis of such
schemes is based on new results for interpolation in Hilbert scales. Error bounds
are obtained under general smoothness conditions.

1. Introduction

Ill-posed problems arise in several contexts and have important applications in sci-
ence and engineering (see, e.g., [7, 11, 13, 30]). In this paper we consider ill-posed
problems

(1.1) Ax = y

with bounded linear operators A : X → Y mapping between in�nite dimensional
Hilbert spaces X and Y with norms ‖ · ‖. Throughout this paper we assume that
A is injective and that the range R(A) is not closed, such that (1.1) has a unique
solution x† ∈ X. If instead of the exact right hand side y we have only noisy data
yδ ∈ Y with

(1.2) ‖y − yδ‖ ≤ δ

and known noise level δ, then regularization methods are required in order to obtain
regularized approximations that depend continuously on the data. By Tikhonov
regularization in Hilbert scales, the regularized approximation xδα is obtained as the
solution of the minimization problem Jα(x) →MIN , of the function

(1.3) Jα(x) = ‖Ax− yδ‖2 + α‖Bsx‖2, x ∈ D(Bs),

where the mapping B : D(B) ⊆ X → X is some unbounded densely de�ned self-
adjoint strictly positive de�nite operator, s is in general some non-negative real
number and α > 0 is some regularization parameter to be chosen properly.

In many practical problems the constraint operator B which in�uences the properties
of the regularized approximation is chosen to be a di�erential operator in some
appropriate function space, e.g., L2-space. Natterer has shown in [25] that under
the assumptions

(1.4) ‖Bpx†‖ ≤ E and m‖B−ax‖ ≤ ‖Ax‖ ≤M‖B−ax‖

with some constants E, m and M , the Tikhonov regularized approximation xδα of
problem (1.3) guarantees order optimal error bounds

(1.5) ‖xδα − x†‖ = O(δp/(a+p)) for s ≥ (p− a)/2,

in case α is chosen a priori by α � δ2(a+s)/(a+p).

Since then regularization in Hilbert scales became attractive, see e.g., [22, 26], where
the method (1.3) has been studied with α chosen according to Morozov's discrepancy
principle, [23, 28] where this has been generalized to a general regularization scheme,
and [23, 25], where extensions to the case of in�nitely smoothing operators A have
been treated or �nally [7, 12, 27, 29], in which extensions to the nonlinear case may
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be found. We emphasize that interpolation inequalities are used to establish such
results and we refer to [7, Chapt. 8.4] for details.

The aim of this paper is to derive order optimal convergence rate results for a general
class of regularization methods under smoothness assumptions that are more general
than (1.4), thus extending the analysis from [7, Chapt. 8.4]. We �rst introduce the
setup and establish a lower bound as a benchmark. The basic ingredient is some new
result on interpolation of operators, which is established in � 3. The present analysis
accompanies the one from [3], where the special case s = 0 has been treated, and the
one from [20], as we regard the problem under the di�erent perspective of operator
theory, in particular using factorization and interpolation of operators. Section 4
deals with preliminary considerations, providing the tools which will enable us to
obtain error bounds in various norms in � 5. These results are �nally used to obtain
order optimal error bounds for the regularization schemes under consideration. In � 6
we study a posteriori rules for choosing the regularization parameter. We conclude
this study in � 7 with a brief discussion of the relevance of the underlying asumptions.

2. Setup, lower bound

Throughout we shall measure the smoothness of the unknown solution x† in terms of
some densely de�ned unbounded self-adjoint strictly positive operator B : D(B) ⊂
X → X. For technical reasons we shall work with its inverse G := B−1 which is
a bounded linear injective and self-adjoint operator with non-closed range R(G).
Given constants E <∞ and p > 0 we suppose throughout that x† ∈ Gp(E) with

(2.1) Gp,E = {x = Gpv, v ∈ X with ‖v‖ ≤ E} .

Remark 1. We mention that we could also require smoothness given in terms
of general smoothness conditions, as e.g., x† ∈ Gτ (E), where the proper index
function τ , introduced below, replaces t 7→ tp in (2.1). Under similar assumptions
on operator monotonicity the reader easily extends our results to this more general
setup, just by replacing powers of p by application of the function τ .

In the analysis the interplay between the operator G in which solution smoothness
is measured and the operator A governing the equation is crucial. As in [18] we call
a (continuous) function φ : [0, b] → R+ for some b > 0 an index function. It is called
proper, if it is increasing and obeys φ(0+) = 0. Consequently we have φ(t) > 0
provided t > 0.

The following set of assumptions extends the link assumption in (1.4) to the present
setup. Let % be a proper index function.

Assumption A.1. There exists some constant m > 0 such that

(2.2) m‖%(G)x‖ ≤ ‖Ax‖, x ∈ X.

Assumption A.2. There exists some constant M > 0 such that

(2.3) ‖Ax‖ ≤M‖%(G)x‖, x ∈ X.
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Note that necessarily m ≤M .

Before turning to the problem of regularized approximation to the ill-posed equa-
tion (1.1) based on data yδ as in (1.2), we state the following lower bound, which
serves as a benchmark for the accuracy, which can be achieved by any kind of reg-
ularization. Let R : Y → X be an arbitrary mapping and R(yδ) be an approximate
solution for x† based on yδ. The quantity

∆(Gp,E, R, δ) = sup
{
‖R(yδ)− x†‖, yδ ∈ Y, ‖y − yδ‖ ≤ δ, x† ∈ Gp,E

}
is called the worst case error for identifying x† ∈ Gp,E. This is related to the modulus
of continuity

(2.4) ω(Gp,E, δ) := sup {‖x‖, x ∈ Gp,E, ‖Ax‖ ≤ δ} , δ > 0.

It is well known that ∆(Gp,E, R, δ) ≥ ω(Gp,E, δ) for any R : Y → X, and we mention
the following result from [24, proof of Thm. 2.2]. For its formulation the functions,
de�ned on (0, b] for some b ≥ ‖G‖ as

(2.5) Ψs(t) := ts%(t), 0 < t ≤ b, s ∈ R,

turn out to be important.

Theorem 2.1. If δ/ME belongs to the spectrum of the operator Ψp(G) and if As-
sumption A.2 holds true then

(2.6) inf
R

∆(Gp,E, R, δ) ≥ ω(Gp,E, δ) ≥ E

[
Ψ−1
p

(
δ

ME

)]p
.

3. Interpolation in variable Hilbert scales

Since the initial study [25] of inverse problems in Hilbert scales it became evident
that interpolation properties are a main source for obtaining tight error bounds.
This is easily seen from the de�nition of the modulus of continuity in (2.4), which
can be understood as relating the norm ‖x‖ in the original space X to the stronger
norm ‖x‖p := ‖G−px‖ and the weaker ‖(A∗A)1/2x‖. This type of interpolation
inequalities was carried over to spaces given through general source conditions and
we recall the de�nition of such spaces. If G is a non-negative operator in X and ϕ is
any proper index function, then the set Bϕ = {x = ϕ(G)v, v ∈ X, ‖v‖ ≤ 1} ⊂ X
may be regarded as a unit ball in some Hilbert space XG

ϕ ⊂ X with norm ‖x‖ϕ :=

‖ϕ(G)−1x‖. In case of a power function ϕ(t) = tp we shall abbreviate ‖x‖p := ‖x‖tp .
The collection {

XG
ϕ , ϕ is an index function

}
constitutes a variable Hilbert scale, similar to the one introduced in [9, 10].

3.1. Interpolation inequality for elements. Here we recall the variant as out-
lined in [17].
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Theorem 3.1. Let ϕ, ψ be proper index functions. If t 7→ ϕ2
(
(ψ2)

−1
(t)
)
is concave,

then for any index function θ and any 0 6= v ∈ XG
θ we have

(3.1) ϕ−1

(
‖v‖θ/ϕ
‖v‖θ

)
≤ ψ−1

(
‖v‖θ/ψ
‖v‖θ

)
.

As an immediate application we mention the following upper bound for the modu-
lus of continuity from (2.4), which indicates that in general the lower bound from
Theorem 2.1 is tight.

Corollary 3.1. Let Assumption A.1 hold true. If the function t 7→
[
(Ψ2

p)
−1(t)

]2p
is

concave then

(3.2) ω(Gp,E, δ) ≤ E
[
(Ψ−1

p (δ/mE)
]p
.

Proof. By using the link assumption A.1 we can bound

ω(Gp,E, δ) ≤ sup
{
‖x‖, ‖x‖p ≤ E, ‖x‖1/% ≤ δ/m

}
.

Thus, we let θ(t) = ϕ(t) = tp and ψ(t) := Ψp(t) and apply inequality (3.1), which
gives (3.2). �

The interpolation inequality (3.1) can be used in various other cases, see e.g. [17].
However, its application is limited to bounding norms of individual elements in
Hilbert space; the application to bounding norms of operators is limited, but this
also has been explored in [17, Appendix A].

3.2. Interpolation inequality for operators. Interpolation of linear operators
acting between Hilbert spaces will be a main tool in our subsequent analysis and we
shall establish a variant, which perfectly �ts our applications, but it may be of inde-
pendent interest. It has its origin in the seminal paper [4], related to Theorem 3.3,
below.

Interpolation of operators between Hilbert scales is based on the following partial
ordering for self-adjoint operators. Let G and H be self-adjoint operators in some
Hilbert spaces X. We say that G ≤ H if for all x ∈ D(H) the inequality 〈Gx, x〉 ≤
〈Hx, x〉 holds true.

De�nition 1. Let f : [0, a] → R+ be a continuous function.

(i) It is called operator monotone if for any pair G,H ≥ 0 of self-adjoint oper-
ators with spectra in [0, a] the ordering G ≤ H implies f(G) ≤ f(H).

(ii) It is called operator concave if for any pair G,H ≥ 0 of self-adjoint operators
with spectra in [0, a] we have

(3.3) f(
G+H

2
) ≥ f(G) + f(H)

2
.

Remark 2. A detailed analysis of operator monotone, operator concave functions
can be found in [5], or the more recent [2]. In particular we mention that any non-
negative operator concave function on some interval is necessarily operator mono-
tone ([2, Proof of Thm. V.2.5]). Also, any non-negative function, which is operator
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monotone on [0,∞) is operator concave. Moreover, if f, g are a pair of non-negative
operator concave functions for which the composition t 7→ f(g(t)) is de�ned, then
this composition is also non-negative operator concave.

We shall use the following characterization.

Theorem 3.2 ([2, Thm. V.2.3] and [8]). A function f from above is operator concave
if and only if for every contraction K the inequality

(3.4) K∗f(G)K ≤ f(K∗GK) holds true.

Example 1. Of special importance are the functions t 7→ tθ, 0 < θ ≤ 1, which are
known to be both, operator monotone and concave on [0,∞).

In the context of ill-posed problems the functions t 7→ log−p(1/t), 0 < t < 1 gained
importance. These functions are operator concave provided 0 < p ≤ 1.

Finally we mention that the function t → −1/t is operator monotone, hence any
estimate ‖Ax‖ ≤ ‖Bx‖ implies ‖B−1x‖ ≤ ‖A−1x‖, x ∈ D(A−1).

The following result is basic for further considerations. In a similar form this was
established in [4]. A further historical account is given there. The proof which is
given below is based on Theorem 3.2.

Theorem 3.3. Let f 2 : [0, a] → R+ be an operator concave proper index function
and S : X → Y be a bounded operator. For every pair G,H of operators, for
which max {‖G∗G‖, ‖H∗H‖} ≤ a the following assertion holds true: If there are
constants C1, C2 <∞ such that

‖Sx‖ ≤ C1‖x‖, x ∈ X,(3.5)

and

‖GSx‖ ≤ C2‖Hx‖, x ∈ X,(3.6)

then

‖f(G∗G)Sx‖ ≤ max {C1, C2} ‖f(H∗H)x‖, x ∈ X.(3.7)

Proof. We rewrite the assumptions (3.5) and (3.6) as

S∗S

C2
1

≤ I and
S∗G∗GS

C2
2

≤ H∗H

and distinguish two cases. If C2 ≤ C1 then

S∗G∗GS

C2
1

≤ S∗G∗GS

C2
2

≤ H∗H.

Theorem 3.2 and operator concavity imply

S∗

C1

f 2(G∗G)
S

C1

≤ f 2(
S∗G∗GS

C2
1

) ≤ f 2(H∗H),

hence (3.7).
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Otherwise C1 ≤ C2 and we rewrite

S∗G∗GS

C2
2

=
S∗

C1

(
C2

1

C2
2

G∗G

)
S

C1

.

Now we use the fact, see Lemma 3.1 below, that for concave proper index functions
f 2 and for κ > 1 we have f 2(κt) ≤ κf2(t), whenever 0 < κt ≤ a, thus

(3.8)
S∗

C1

f 2(G∗G)
S

C1

=
S∗

C1

f 2(
C2

2

C2
1

C2
1

C2
2

G∗G)
S

C1

≤ C2
2

C2
1

S∗

C1

f 2(
C2

1

C2
2

G∗G)
S

C1

.

We arrive, using Theorem 3.2 again, at

S∗

C1

f 2(G∗G)
S

C1

≤ C2
2

C2
1

f 2(
S∗

C1

C2
1

C2
2

G∗G
S

C1

) ≤ C2
2

C2
1

f 2(H∗H),

from which (3.7) is easily obtained. �

Remark 3. It is worth discussing the case when the function f is of power type,
say f(t) := tθ/2, with 0 < θ ≤ 1 to have f 2 concave. In this case the estimate from
above re�nes the bound (3.7) to ‖f(G∗G)Sx‖ ≤ C1−θ

1 Cθ
2‖f(H∗H)x‖, x ∈ X.

The following result extends Theorem 3.3 to the present setup.

Theorem 3.4. Let G,H ≥ 0 be self-adjoint operators with spectra in [0, b] and [0, a],
respectively. Furthermore, let ϕ, ρ and r be proper index functions on intervals [0, b]
and [0, a], respectively, such that b ≥ ‖G‖ and ρ(b) ≥ r(a). Then the function

f(t) := ϕ((ρ−1)(r(t))), 0 < t ≤ a,

is well de�ned. The following assertion holds true: If t→ ϕ2((ρ2)−1(t)) is operator
concave on [0, ρ2(b)] 1, then

‖Sx‖ ≤ C1‖x‖, x ∈ X,(3.9)

and

‖ρ(G)Sx‖ ≤ C2‖r(H)x‖, x ∈ X,(3.10)

yield

‖ϕ(G)Sx‖ ≤ max {C1, C2} ‖f(H)x‖, x ∈ X.(3.11)

Proof. By de�nition of f we obtain

f 2((r2)−1(t)) = ϕ2((ρ2)−1(t)), 0 < t ≤ r2(a).

Now let H̃ := r(H) and G̃ := ρ(G). By assumption both operators have spectrum
in (0, ρ(b)], and moreover ‖G̃Sx‖ ≤ C2‖H̃x‖, such that Theorem 3.3 is applicable
and implies

‖ϕ((ρ2)−1(G̃∗G̃))Sx‖ ≤ max {C1, C2} ‖f((r2)−1(H̃∗H̃))x‖,
from which the proof can easily be completed. �

1This means that it has an operator concave extension from (0, ρ2(b)] to [0, ρ2(b)].
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G :XG
ρ

Jϕ,G
ρ,G−−−→ XG

ϕ

Jϕ,G−−−→ XyS yS yS
H :Y H

r

Jf,H
r,H−−−→ Y H

f

Jf,H−−−→ Y

Figure 1. Then setup of interpolation

The above results have an important translation to variable Hilbert scales and as-
sert that the pairs (X,X1/r) and (Y, Y1/ρ), and by duality (X,Xr) and (Y, Yρ), are
actually exact interpolation pairs, extending an analogous result from [4]. In these
terms Theorem 3.4 admits a di�erent, more suggestive interpretation.

Corollary 3.2. Let the scales
{
XG
ϕ

}
and

{
Y H
f

}
be variable Hilbert scales, generated

by non-negative operators G and H with a := ‖H‖. Let ϕ, ρ on (0, b] be proper index
functions such that b ≥ ‖G‖ and t 7→ ϕ2((ρ2)−1(t)) is operator concave on [0, ρ2(b)].
Given another proper index function r on (0, a] with r(a) ≤ ρ(b) we assign

f(t) := ϕ((ρ−1)(r(t))), 0 < t ≤ a.

If S : X → Y is bounded, both as S : X → Y and S : XG
ρ → Y H

r , then S acts

boundedly from XG
ϕ to Y H

f and

(3.12) ‖S : XG
ϕ → Y H

f ‖ ≤ max
{
‖S : X → Y ‖, ‖S : XG

ρ → Y H
r ‖
}
.

Proof. Let us denote T := S∗. The assumption ‖S : XG
ρ → Y H

r ‖ ≤ C2 is equivalent

to ‖T : Y H
1/r → XG

1/ρ‖ ≤ C2, which in turn translates to

‖ρ(G)Tv‖ ≤ C2‖r(H)v‖, v ∈ X.
Similarly, ‖T : Y → X‖ ≤ C1. By Theorem 3.4 we obtain

‖ϕ(G)Tv‖ ≤ max {C1, C2} ‖f(H)v‖, v ∈ X,
which implies ‖S : XG

ϕ → Y H
f ‖ ≤ max {C1, C2}. �

Remark 4. Again the power case f(t) = tθ/2 is worth mentioning. As discussed in
Remark 3, we are able to re�ne the bound from (3.12) to

(3.13) ‖S : XG
ϕ → Y H

f ‖ ≤ ‖S : X → Y ‖1−θ‖S : XG
ρ → Y H

r ‖θ.
Interpolation with such bound is said to be of type θ, see [1, Chapt. 2.4]. It is not
clear to the authors whether there is a sensible generalization for general operator
concave functions, or whether this is an artifact for power functions.

The situation as described in the theorem can be visualized as in Figure 1, with
Jϕ,Gρ,G , Jϕ,G and Jf,Hr,H , Jf,H describing the canonical embeddings. In our notation we
shall drop the involved operators G and H when this is clear from the context. The
position of XG

ϕ between XG
ρ and X on top is given by the function t→ ϕ((ρ)−1(t))

and f is determined in such a way that Y H
f has the appropriate position in the scale

on bottom.
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Remark 5. Note that the roles of G and H are completely interchangeable. Thus
if T is boundedly invertible, both between X and Y and between XG

ρ and Y H
r , then

so is T : XG
ϕ → Y H

f , with a corresponding norm bound.

3.3. Interpolation for embeddings. Interpolation in the form of Corollary 3.2
will be used only for operators S which are multiples of the identity mapping. For
such operators we can extend our analysis from operator concave to operator mono-
tone functions. To this end let us return to the context of Theorem 3.3. If there the
mapping S := C1 I and C2 ≤ C1 then C = max {C1, C2} = C1 and estimate (3.8)
implies (3.7). Otherwise we impose the following assumption on a non-negative
function f : (0, a] → R+.

Assumption A.3. There is a constant Df for which

f(t)/t ≤ Dff(u)/u, whenever 0 < u < t ≤ a.

This assumption holds true in many cases and we list two important ones.

Lemma 3.1. Assume that f is a concave proper index function on (0, a]. Then

(3.14) f(t)/t ≤ f(u)/u, whenever 0 < u ≤ t ≤ a,

Proof. Let 0 < u ≤ t ≤ a, hence we can convexly combine u = (u/t)t + (1 − u/t)0
with 0 < u/t ≤ 1. Since f is assumed to be a proper and concave index function we
conclude that

f(u) ≥ u

t
f(t) +

(
1− u

t

)
f(0) ≥ u

t
f(t),

from which the proof can be completed. �

Remark 6. We note that in this case we may let Df = 1. This holds true for the
classical context of powers t 7→ tθ, with 0 < θ ≤ 1, but also for logarithmic functions
t 7→ log−µ(1/t) with 0 < µ ≤ 1 as these are met for severely ill-posed problems.

Furthermore we recall the following result from [19, Lemma 3].

Lemma 3.2. Let f : [0, c′] be non-negative operator monotone and 0 < a < c′. There
is Df = Df (c

′ − a) ≥ 1 such that

f(t)/t ≤ Dff(u)/u, whenever 0 < u < t ≤ a.

We state the following consequence.

Corollary 3.3. Let X = Y and S = C1 I be a multiple of the identity. Under the
assumptions of Theorem 3.3 the following assertions hold true.

If C2 ≤ C1 and the function f 2 is operator monotone on (0, a] then the estimate (3.7)
holds true.

If C1 < C2 and f 2 is an operator monotone proper index function which obeys
Assumption A.3, then the estimate (3.7) holds true with the additional factor

√
Df2.
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Proof. The �rst assertion was already discussed. To prove the second one we start
with the following observation. For every c > 1 Assumption A.3 implies that

f 2(t) ≤ Df2 cf 2(t/c), 0 < t ≤ a,

by letting u := t/c. Spectral calculus allows to extend this to arbitrary self-adjoint
operators with spectra in (0, a], in particular we have

(3.15) f 2(G∗G) ≤ Df2 cf 2(G∗G/c).

Thus, if S = C1 I, then (3.6) yields G∗G ≤ C2
2/C

2
1H

∗H. If C2 ≤ C1 then operator
monotonicity yields f 2(G∗G) ≤ f 2(H∗H), which implies (3.7). Otherwise, if we let
c := C2

2/C
2
1 > 1, then estimate (3.15) implies

C2
1f

2(G∗G) ≤ C2
1Df2cf 2(G∗G/c) ≤ C2

1Df2cf 2(H∗H) = Df2C2
2f

2(H∗H),

which allows to complete the proof in this case. �

Analogously this can be extended to the situation in Corollary 3.2 and we state the
following analog.

Corollary 3.4. Let X = Y and S := I be the identity. Under the assumptions of
Corollary 3.2 the following assertions hold true.

If C2 ≤ 1 and the function f 2 is operator monotone on (0, a] then

(3.16) ‖Jf,Hϕ,G : XG
ϕ → XH

f ‖ ≤ 1.

If C2 > 1 and f 2 is an operator monotone proper index function which obeys As-
sumption A.3, then

(3.17) ‖Jf,Hϕ,G : XG
ϕ → XH

f ‖ ≤
√
Df2C2.

4. Linear inverse problems: Preliminary analysis

Let us consider a general regularization scheme, say yδ 7→ gα(T
∗T )T ∗yδ in Hilbert

spaces, related to some bounded operator T : X → Y . Of course, the choice of
operator T cannot be arbitrary and must be related to the underlying operator A
from equation (1.1). We introduce the related (pure) residual as

rα(t) := 1− tgα(t), t ∈ (0, ‖T‖2],

and recall the following de�nition from [18, Def. 2].

De�nition 2. A family gα(t), α > 0, of piece-wise continuous functions is called
regularization, if there exist positive constants γ ≥ 1 and γ∗ such that

sup
0<t≤‖T‖2

t1/2 |gα(t)| ≤ γ∗/
√
α,(4.1)

and

sup
0<t≤‖T‖2

|rα(t)| ≤ γ.(4.2)

9



In particular there is a constant β <∞ for which

(4.3) sup
0<t≤‖T‖2

t |gα(t)| ≤ β.

Requirement (4.1) is the usual normalization, we shall dwell on it in more detail in
Section 4.4. Requirement (4.2) is necessary for convergence on exact data y = Ax† if
we let T := A. Furthermore we may always �nd β ≤ 1 + γ. For example, Tikhonov
regularization has γ = β = 1.

This is not enough and we assume the following quali�cation, as this was introduced
in [18].

De�nition 3. Let ϕ be a proper index function. The regularization gα is said to
have quali�cation ϕ with constant γ if

(4.4) sup
0<t≤‖T‖2

|rα(t)|ϕ(t) ≤ γϕ(α), 0 < α ≤ ‖T‖2.

This generalizes the notion of quali�cation as it was given in [32] to the case of
smoothness given in terms of general source conditions. The standard regularization
methods in Hilbert scales such as

(a) Tikhonov regularization with gα(t) = 1/(t+ α),
(b) Asymptotical regularization with gα(t) = 1

t
(1− e−t/α),

(c) Landweber iteration with gα(t) = 1
t

(
1− (1− t)1/α

)
or,

(d) Spectral method with gα(t) = 1/t for t ≥ α and gα(t) = 0 for t < α,

satisfy assumptions (4.1)� (4.3) with constants less than or equal to one.

4.1. Impact of Assumption A.3 on the quali�cation. Our analysis will use
the following su�cient condition for an index function to be a quali�cation of the
regularization gα.

Lemma 4.1. Suppose gα is a regularization with quali�cation ϕ and constant γ. If
ψ(t) is any proper index function such that for some D <∞ it holds true that

(4.5)
ψ(t)

ϕ(t)
≤ D

ψ(u)

ϕ(u)
, whenever 0 < u ≤ t ≤ a,

then gα has quali�cation ψ with constant Dγ.

Proof. To bound |rα(t)|ψ(t) we shall distinguish two cases. For 0 < t ≤ α the
required bound follows from monotonicity. Otherwise we conclude

|rα(t)|ψ(t) = |rα(t)|ϕ(t)
ψ(t)

ϕ(t)
≤ γϕ(α) sup

t≥α

ψ(t)

ϕ(t)
≤ γϕ(α)D

ψ(α)

ϕ(α)
,

from which the proof can be completed. �

We shall draw conclusions for the quali�cation under the following standing assump-
tion on the regularization.
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Assumption A.4. For γ as above we assume that

sup
0<t≤‖T‖2

|rα(t)| t1/2 ≤ γ
√
α,(A.4.1)

or the stronger

sup
0<t≤‖T‖2

|rα(t)| t ≤ γα.(A.4.2)

Remark 7. Assumption A.4.1 says that the quali�cation is at least t 7→
√
t, which

is a very weak requirement, and which is ful�lled for most regularization schemes, in
particular for the regularizations from (a)�(d) above. We stress that A.4.2 is stronger
than A.4.1, still this holds for most regularizations, in particular those from above.

Altogether, Lemmas 4.1 and 3.1 allow us to draw the following conclusions about
the quali�cation of gα.

Corollary 4.1. Suppose the proper index function g2 obeys A.3 on [0, ‖T 2‖].

(i) If the regularization gα obeys Assumption A.4.1 with constant γ then gα has
quali�cation g with constant

√
Dg2γ.

(ii) If the regularization gα obeys Assumption A.4.2 with constant γ then gα has
quali�cation g(t)

√
t with constant

√
Dg2γ.

4.2. Regularization with additional smoothing. In our analysis we shall deal
with regularization based on the operator T := AGs, in which the regularized ap-
proximations with exact and noisy data y and yδ, respectively, are de�ned by

(4.6) xα := Gsgα(T
∗T )T ∗y and xδα := Gsgα(T

∗T )T ∗yδ.

Here, gα is a regularization and the parameter s controls the smoothness which
is introduced into (or removed from) the regularization process. We refer to the
discussion in Remark 10. For deriving order optimal error bounds for ‖xδα − x†‖
with xδα de�ned by (4.6) the following error representations are useful and will be
exploited at di�erent places. We express the di�erent components of the error as

xδα − xα = Gsgα(T
∗T )T ∗(yδ − y),(4.7)

x† − xα = Gsrα(T
∗T )G−sx†.(4.8)

In our analysis below we shall use the convention that spaces XG
ϕ are generated by

the operator G, whereas the respective spaces XH
f generated by H := m−2T ∗T , with

m from A.1.

4.3. Impact of operator monotonicity on norm bounds. Our analysis will
use factorization of operators through di�erent spaces in Hilbert scales. Given a
parameter s, we recall Ψs(t) := ts%(t), 0 < t ≤ b from (2.5). We assume that s
is su�ciently large such that Ψs is a proper index function. The initial point is
Assumption A.1, which, using the present notation can be rewritten as ‖Ψs(G)x‖ ≤
‖H1/2x‖, or equivalently as

(4.9) ‖J1/2
Ψs

: XG
Ψs
→ XH

t1/2‖ ≤ 1.

11



G :XG
Ψs

Jp−s,G
Ψs,G−−−−→ XG

tp−s

Jp−s,G−−−−→ X
J1/Ψs,G

−−−−→ XG
1/ΨsyJ1/2,H

Ψs,G

yJg,H
p−s,G

yJ yJ−1/2,H
1/Ψs,G

H :XH√
t

Jg,H
1/2,H−−−−→ XH

g

Jg,H−−−→ X
J−1/2,H

−−−−→ XH
1/
√
t

Figure 2. Description of the setup

Analogously we replace Assumption A.2 by

(4.10) ‖J−1/2
1/Ψs

: XG
1/Ψs

→ XH
1/t1/2‖ ≤M/m.

We start with the consequences of the bounds (4.9) and (4.10) in the light of inter-
polation. To this end let us introduce the function

(4.11) g(t) :=
[
Ψ−1
s (
√
t)
]p−s

, 0 < t ≤ Ψ2
s(b),

with function Ψs from (2.5). Note that for s ≤ p the function g is non-decreasing,
whereas for s > p this is to hold true for 1/g, such that in our analysis we are to
distinguish these cases, called the high order and low order case, respectively. In
any case, the following result holds true.

Lemma 4.2. The function t 7→ g(t)
√
t, 0 < t ≤ Ψ2

s(b) is a proper index function.

Proof. Since % is supposed to be a proper index function, the function

u 7→
(
Ψ2
p

)−1
(u), 0 < u ≤ b

is increasing. Thus substituting u := (Ψ2
s)
−1

(t) we obtain

tg2(t) = Ψ2
s(u)u

2(p−s) = Ψ2
p(u), 0 < u ≤ b,

which is increasing, as mentioned above. This allows to complete the proof. �

Because we shall frequently use norm bounds as in (4.9) or (4.10), we make the
following assumption, covering what is needed to apply both Corollary 4.1 and
Proposition 4.1, below. For simplicity we shall con�ne our presentation to the case
when the constant Df in Assumption A.3 equals one. The general case is easily
obtained analogously.

Assumption A.5. Throughout we assume that the parameter s is chosen such that
Ψs is increasing. The function g is de�ned on some interval [0,Ψ2

s(b)] for some b
with Ψ2

s(b) ≥ a.

p ≤ s: The function t 7→ 1/g2(t) is operator monotone.
s < p: The function t 7→ g2(t) is operator monotone and obeys Assump-
tion A.3 with constant Dg2 = 1, hence the function t 7→ t/g2(t) is increasing.

Remark 8. By virtue of Assumption A.5, necessarily the inclusions XH√
t
⊆ XH

g ⊆
XH

1/
√
t
hold true. The latter can also be seen from Lemma 4.2. Figure 2 visualizes

the setup, where we exhibit the low order case (s < p).
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By (4.9) and (4.10), the assumptions A.1 and A.2 ensure the boundedness of the
embeddings on the left and right, respectively.

Further note that in the low order case this imposes restrictions on the (possible)
negativity of the parameter s.

Proposition 4.1. Let the function g obey Assumption A.5.

p ≤ s:
(i) Under A.2 we have ‖Jgp−s : XG

tp−s → XH
g ‖ ≤M/m,

(ii) Under A.1 we have ‖J1/g
s−p : X

G
1/tp−s → XH

1/g‖ ≤ 1.
s < p:

(i) Under A.1 we have ‖Jgp−s : XG
tp−s → XH

g ‖ ≤ 1,

(ii) Under A.2 we have ‖J1/g
s−p : X

G
1/tp−s → XH

1/g‖ ≤M/m.

Proof. We only prove the �rst assertion, the proofs of the other assertions are similar.
Under A.2 and by de�nition of H we derive from (4.10) that

‖(J−1/2
1/Ψs

)∗ : XH
t1/2 → XG

Ψs
‖ ≤ M

m
.

Thus we apply Corollary 3.4, in the light of Remark 5, with r(t) :=
√
t, ρ(t) := Ψs(t)

and ϕ(t) := 1/g(t). We can complete the proof since (1/g)2(t) = ϕ2((ρ2)−1(t)) is
supposed to be operator monotone. �

4.4. Controlling the noise in di�erent norms. In the traditional concept of
regularization in Hilbert scales the normalization (4.1) is used to bound the noise
ampli�cation in the target space X. In operator terms this may be rewritten as

(4.12) ‖gα(T ∗T ) : XH√
t
→ X‖ ≤ γ∗

m
√
α

(
=

γ∗
m2

1√
α/m2

)
,

because the scale is generated by H = T ∗T/m2. In our subsequent analysis we shall
have to control norm bounds in target spaces di�erent from X, in particular in XH

g .
Under the Assumption A.5 of operator monotonicity and as outlined in Remark 8,
the extremal cases obtained in this way are when g(t) =

√
t and g(t) = 1/

√
t.

The particular case g(t) = 1/
√
t is covered by property (4.3).

Lemma 4.3. For any regularization gα it holds true that

(4.13) ‖gα(T ∗T ) : XH√
t
→ XH

1/
√
t
‖ ≤ β

m2
.

Proof. Using (4.3) we obtain

‖gα(T ∗T ) : XH√
t
→ XH

1/
√
t
‖ = ‖ 1

m2
T ∗Tgα(T

∗T )‖ =
1

m2
sup

0<t≤a
|tgα(t)| ≤

β

m2
,

and the proof is complete. �
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We need to control the noise ampli�cation in the target space XH√
t
. Assumptions

which have to be made must be consistent with (4.1) and (4.13). This may be
viewed as an extrapolation problem and leads to the following requirement for a
regularization gα.

Assumption A.6. There is a constant γ∗ such that

(4.14) |gα(t)| ≤
γ∗

α

(
=

γ∗

m2

1

α/m2

)
.

This assumption is indeed consistent with (4.1) as shown in [32, Chapt. 2.3]. We
shall state the consequences of this normalization.

Proposition 4.2. Under the assumption that g obeys A.5 and that the regularization
obeys A.6 the following bounds hold true.

(4.15) ‖gα(T ∗T ) : XH√
t
→ XH

g ‖ ≤
max {β, γ∗}

m2

1√
α/m2g(α/m2)

.

Proof. We start as usual with the representation

‖gα(T ∗T ) : XH√
t
→ XH

g ‖ = sup
0<t≤a

|gα(t)|
√
t/m2

g(t/m2)
.

Under A.5, in the low order case 0 ≤ s < p, the function g2 is operator mono-
tone, in particular it is non-decreasing, such that

√
tg(t) is increasing. Moreover,

Assumption A.3 applies to g2 with constant one. Thus for 0 < t ≤ α we conclude
that

|gα(t)|
√
t/m2

g(t/m2)
≤ γ∗

α

√
t/m2

g(t/m2)
≤ γ∗

m2

1

α/m2

√
α/m2

g(α/m2)
=

γ∗

m2

1√
α/m2g(α/m2)

.

Otherwise t > α and we conclude, using that s 7→ 1/(
√
sg(s)) is decreasing,

|gα(t)|
√
t/m2

g(t/m2)
= |gα(t)| t

1

m2

1√
t/m2g(t/m2)

≤ β

m2

1√
α/m2g(α/m2)

,

which completes the proof in the low order case. In the high order case, a similar
reasoning allows to draw similar conclusions. �

4.5. Examples.

Finitely smoothing case. Let us assume that the operators A∗A and G are related
by

(4.16) A∗A = G2a

where a is some positive constant. In this case both assumptions A.1 and A.2 hold
true as equality with %(t) = ta, m = 1 and M = 1. We easily see that the function
% is a proper index function and that the function Ψs from (2.5) attains the form

14



Ψs(t) = ta+s. Since Ψ−1
s (
√
t) = t1/(2a+2s) we obtain that the function g as de�ned

in (4.11) possess the representation

g(t) = t
p−s

2(a+s) .

Since by [2, Thm. V.1.9] power functions tν are operator concave on [0,∞) for
0 ≤ ν ≤ 1, we conclude that under the natural constraints that p ≥ 0, a > 0 and
s > −a the following statements are true:

(i) g2 is an operator concave function for s ≤ p ≤ 2s+ a.
(ii) 1/g2 is an operator concave function for p ≤ s.

Thus Assumption A.5 is satis�ed, provided that s ≥ (p − a)/2, which limits the
negativity of the parameter s.

In�nitely smoothing case. Here A∗A and G are related by

A∗A = e−
1
2
G−µ

for some µ > 0.

This corresponds to regularization of certain severely ill-posed problems, in particular
the backward heat equation, where this holds true for G := (−∆)−1/2 and µ = 2. In
this special case both assumptions A.1 and A.2 hold true as equality with %(t) =

e−
1
4
t−µ

. Below we shall use results from [29]. The inverse function of %2(t) = e−
1
2
t−µ

is obtained as

(%2)−1(s) = 2−1/µ log−1/µ 1/s, 0 < s < 1.

Note that both the functions u 7→ −1/u and u 7→ log u are operator concave on
(0,∞) and so is their composition, such that the function u 7→ (%2)−1(u), 0 < u <
1 is operator concave for µ ≥ 1. Following [31, Lem. 2.4] the function Ψ2

s(t) =
t2s%2(t), t > 0, has an operator monotone inverse on [0,∞), whenever 0 ≤ s ≤ 1/2
and µ ≥ 1. In the light of Remark 2 it is thus operator concave, and this extends to
the composition with the non-negative operator concave function t 7→ tθ, (0 < θ ≤
1). Therefore, applying again [31, Lem. 2.4] the function

(i) g2 related to (4.11) is operator concave provided s ≤ p ≤ 2s,
(ii) 1/g2 is operator concave for 0 < p ≤ s.

Summarizing, the assumptions of operator concavity are ful�lled for 0 ≤ s ≤ 1/2
and µ ≥ 1. Therefore, if ‖T‖ < 1, then Assumption A.5 holds.

We emphasize that high order regularization with s > 1/2 for severely ill-posed
problems is not covered in the present approach. The case s = 0 was treated in [3,
Example 4.3].

5. Bounding the error in different norms

We turn to analyzing the error terms and start with the following observation, which
is easy to verify and we omit the proof. For any pair of index functions f and g and
operator T : X → X it holds true that

(5.1) ‖T : XH
f → XH

g ‖ = ‖(1/g)(H)Tf(H) : X → X‖.
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Below we shall analyze the error in di�erent norms. On the one hand this provides
insight into di�erent requirements to be imposed to achieve norm bounds but on the
other hand this will allow us to �nally bound the error ‖xδα − x†‖X in the original
norm.

To this end let λ be any index function, such that XG
tp ⊂ XG

λ . Then the representa-
tions (4.7) and (4.8) together with the bias variance decomposition

(5.2) ‖xδα − x†‖λ ≤ ‖xδα − xα‖λ + ‖xα − x†‖λ,

yield, using (4.7), the estimate

‖xδα−xα‖λ = ‖(1/λ)(G)Gsgα(T
∗T )T ∗(yδ−y)‖ ≤ δm‖gα(T ∗T ) : XH√

t
→ XG

λ(t)t−s‖.

Similarly, (4.8) yields

‖x† − xα‖λ = ‖(1/λ)(G)Gsrα(T
∗T )Gp−sv‖ ≤ E‖rα(T ∗T ) : XG

tp−s → XG
λ(t)t−s‖.

We shall bound the right hand sides based on the following factorizations through
di�erent spaces. Given any functions φ and ψ, let Jψφ : XG

φ → XH
ψ denote the

canonical embeddings (possibly unbounded). With this notation we have, with the
function l yet to be determined,

(5.3) gα(T
∗T ) : XH√

t

gα(T ∗T )−−−−−→ XH
l

(J
1/l

1/λ(t)t−s )∗

−−−−−−−→ XG
λ(t)t−s ,

and

(5.4) rα(T
∗T ) : XG

tp−s

Jg
p−s−−−→ XH

g

rα(T ∗T )−−−−−→ XH
l

(J
1/l

1/λ(t)t−s )∗

−−−−−−−→ XG
λ(t)t−s

Note that norm bounds for the embeddings Jgp−s were given in Proposition 4.1.
Also we established results for bounding the noise term in Section 4.4 and tools for
determining the quali�cation of regularizations in Section 4.1, such that below we
may use previous results as a tool box.

It is remarkable to note that in all cases considered below, the parameter choice
which yields the order optimal error bound is independent of the underlying norm
and is obtained by

(5.5)

√
α∗
m2

g(
α∗
m2

) =
δ

mE
, 0 < δ ≤ mEbp−sΨs(b).

5.1. Bounding the error in ‖ ·‖s, s ≤ p. The error analysis is particularly simple
in case λ(t) := ts, where we have to restrict ourselves to s ≤ p, to make sure that
x† ∈ XG

ts . In this case the analysis is similar to the analysis for ordinary Tikhonov
regularization with s = 0. Indeed, if λ(t) := ts, then l(t) ≡ 1 and the corresponding
diagram from (5.3) and (5.4) reduces to

gα(T
∗T ) : XH√

t

gα(T ∗T )−−−−−→ X

rα(T
∗T ) : XG

tp−s

Jg
p−s−−−→ XH

g

rα(T ∗T )−−−−−→ X.

We state the following result.
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Proposition 5.1. Suppose s ≤ p. Under assumptions A.1, A.4.1 and A.5 we have

(5.6) ‖xδα − x†‖s ≤ γEg(α/m2) + γ∗
δ/m√
α/m2

.

If we let α∗ = α∗(δ) a priori be chosen according to (5.5) then

(5.7) ‖xδα − x†‖s ≤ (γ + γ∗)Eg(δ/mE).

Proof. The noise term ‖gα(T ∗T ) : XH√
t
→ X‖ was bounded in (4.12) and we need

to bound ‖rα(T ∗T ) : XH
g → X‖. Under assumptions A.4.1 and A.5 we deduce from

Corollary 4.1 that

‖rα(T ∗T ) : XH
g → X‖ = sup

0<t≤a
|rα(t)| g(t/m2) ≤ γg(α/m2).

The remaining assertion (5.7) follows from that. �

5.2. Bounding the error in ‖ · ‖1/%. As could be seen from the application of
the interpolation inequality in the proof of Corollary 3.1 as limiting cases we used
bounds in the norm ‖ · ‖1/% and ‖ · ‖p, the former is the weakest norm to analyze the
error. Here λ(t)t−s = 1/Ψs(t) and by duality, assumption (4.9) implies that we can
let l(t) := t−1/2 in the diagrams (5.3) and (5.4), which now speci�es to

gα(T
∗T ) : XH√

t

gα(T ∗T )−−−−−→ XH
1/
√
t

(J
1/2
Ψs(t)

)∗

−−−−−→ XG
1/Ψs(t)

,

rα(T
∗T ) : XG

tp−s

Jg
p−s−−−→ XH

g

rα(T ∗T )−−−−−→ XH
1/
√
t

(J
1/2
Ψs(t)

)∗

−−−−−→ XG
1/Ψs(t)

.

The embeddings can be bounded under Assumption A.5 and the corresponding A.1
and A.2. The noise ampli�cation was bounded in Lemma 4.3 and we are left with
bounding the pure residual.

Lemma 5.1.

p ≤ s: Under Assumption A.4.1 we have

(5.8) ‖rα(T ∗T ) : XH
g → XH

1/
√
t
‖ ≤ γ

√
α/m2g(α/m2).

s < p: If A.5 and the stronger Assumption A.4.2 hold true then

(5.9) ‖rα(T ∗T ) : XH
g → XH

1/
√
t
‖ ≤ γ

√
α/m2g(α/m2).

Proof. Plainly

‖rα(T ∗T ) : XH
g → XH

1/
√
t
‖ = sup

0<t≤a
|rα(t)| g(t/m2)

√
t/m2.

In the �rst case the function g(t)
√
t/
√
t = g(t) is decreasing. Since by Lemma 4.2

the function g(t)
√
t is a proper index function we can apply Lemma 4.1 with D = 1

to complete the proof.

In the second case, the function g2 obeys Assumption A.3, thus the second assertion
of Corollary 4.1 applies (with constant Dg2 = 1) and the proof is completed in this
case. �
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We can summarize the above bounds to state the �nal error estimate.

Proposition 5.2. Let assumptions A.1 and A.5 hold true.

p ≤ s: Under A.2 and if the regularization gα obeys A.4.1 then

‖xδα − x†‖1/% ≤ γ
M

m
E
√
α/m2g(α/m2) + β

δ

m
.

s ≤ p: If the regularization gα obeys A.4.2 then

‖xδα − x†‖1/% ≤ γE
√
α/m2g(α/m2) + β

δ

m
.

If we let α∗ = α∗(δ) a priori be chosen as in (5.5) then we obtain

p ≤ s: ‖xδα∗ − x†‖1/% ≤ (β + M
m
γ)δ/m.

s ≤ p: ‖xδα∗ − x†‖1/% ≤ (β + γ)δ/m.

Thus in this weak norm the rate of recovering the solution behaves as if the problem
were well-posed, because one cannot beat the intrinsic inaccuracy of level δ in the
data yδ.

5.3. Bounding the error in ‖·‖p. The other benchmark case is met for λ(t) := tp,
because this is the maximal norm at which we may analyze the error. In this case
we shall use the factorizations (5.3) and (5.4) with the function l(t) := g(t), i.e.,

(5.10)
gα(T

∗T ) : XH√
t

gα(T ∗T )−−−−−→ XH
g

(J
1/g
s−p)∗

−−−−→ XG
tp−s ,

rα(T
∗T ) : XG

tp−s

Jg
p−s−−−→ XH

g

rα(T ∗T )−−−−−→ XH
g

(J
1/g
s−p)∗

−−−−→ XG
tp−s .

Again, under Assumption A.5, in conjunction with the appropriate assumptions A.1
and A.2 we can bound the norms of the embeddings. The noise part was bounded
in Proposition 4.2. The residual bound is particularly simple, because

‖rα(T ∗T ) : XH
g → XH

g ‖ = sup
0<t≤a

|rα(t)| (1/g)(t/m2)g(t/m2) ≤ γ,

and we summarize the above analysis as follows.

Proposition 5.3. Under assumptions A.1, A.2, A.5 and A.6 the following bound
is valid in both cases 0 < p ≤ s and 0 ≤ s < p:

‖xδα − x†‖p ≤ γ
M

m
E + max {β, γ∗} δ/m√

α/m2g(α/m2)
.

Thus in either case, if α∗ is chosen according to (5.5), then

(5.11) ‖xδα∗ − x†‖p ≤
(
γ
M

m
+ max {β, γ∗}

)
E.

Here it is interesting to note that no rate of reconstruction can be deduced. Heuris-
tically this is clear, because in this strong norm the e�ective solution smoothness,
as this was introduced in [16] and generalized to variable Hilbert scales in [14], is
equal to zero.
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5.4. Bounding the error in ‖ · ‖X. Finally we turn to estimating the error in
the original Hilbert space X. This could be done similar to the analysis above.
However we feel it interesting to use the interpolation inequality as presented in
Theorem 3.1. We state the main result of our error analysis, and we use the function
Ψp(t) from (2.5).

Theorem 5.1. Let the assumptions A.1, A.2, A.5 and A.6 hold true. Assume

furthermore that t 7→
[(

Ψ2
p

)−1
(t)
]2p

is concave. Let α∗ = α∗(δ) a priori be chosen

as in (5.5). If

p ≤ s: either gα has quali�cation as in A.4.1,
s ≤ p: or gα has quali�cation as in A.4.2,

then

sup
x†∈Gp,E

‖xδα∗ − x†‖ ≤
(
γ
M

m
+ max {β, γ∗}

)
E

[
Ψ−1
p

(
δ

mE

)]p
.

In both cases the order of the bound from (2.6) is obtained.

Proof. We shall apply the interpolation inequality (3.1) with parameters θ(t) =
ϕ(t) = tp and ψ(t) = Ψp(t) to the element v := xδα∗ − x†. Under the concavity
assumption this implies

(5.12) ‖xδα∗ − x†‖ ≤ ‖xδα∗ − x†‖p
[
Ψ−1
p

(
‖xδα∗ − x†‖1/%

‖xδα∗ − x†‖p

)]p
.

In the high order case, let us temporarily denote by Cp := γM
m

+ max {β, γ∗} and

C1/% := (β + γM
m

) the constants in the bounds from Propositions 5.2 and 5.3, re-
spectively. Because C1/% ≤ Cp we use monotonicity to deduce from (5.12) that

(5.13) ‖xδα∗ − x†‖ ≤ CpE

[
Ψ−1
p

(
δ

mE

)]p
.

In the low order case, we have to replace C1/% by the corresponding C1/% := β + γ
and we obtain the corresponding bound. �

Remark 9. It is worth-wile to note, that in the high order case 0 < p ≤ s we
could have applied the interpolation inequality (3.1) with θ(t) = ts and then use
the bounds from Proposition 5.1. In this case the bounds from Theorem 5.1 can be
obtained, with di�erent constants, without using Assumption A.2.

In all cases covered by Theorem 5.1 the validity of Assumption A.5 is crucial, thus
either s > p and the function 1/g2 is operator monotone or s ≤ p and the function g2

is assumed to be operator monotone. In the context of Natterer's result as mentioned
in (1.4) and in the light of the discussion in Example 4.5 (�nitely smoothing case),
the latter corresponds to the restriction s ≥ (p− a)/2 as supposed to hold for (1.5).

If regularization is carried out with s = p then g(t) ≡ 1 and the theorem holds
without additional assumptions on operator monotonicity.

Remark 10. Let us discuss the Landweber iteration as introduced after De�nition 3
for the �nitely smoothing case of Example 4.5 in some detail. Since the number n of
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iterations and α are related by α = 1/n we obtain from the parameter choice (5.5)
that for

n = O
(
δ−

2(a+s)
a+p

)
order optimal error bounds can be guaranteed. We see that for smaller s-values the
number n of necessary iterations decreases. From the viewpoint of complexity the
aim consists therefore in working with s-values as small as possible. The constraints
that g2 is operator monotone and that g(t)/

√
t is decreasing imply that s0 := (p−

a)/2 is the smallest possible s-value leading to order optimal error bounds. This
s-value may be even negative in case p < a and requires only n0 = O (δ−1) iterations.
For order optimal convergence rate results in case of negative s-values, that require
even fewer iterations see [6].

6. A posteriori choice of the regularization parameter

If the constants m and E in the a priori parameter choice (5.5) are unknown, then
the parameter choice

(6.1) α =

(
δ

c2

)2 [
Ψ−1
p

(
δ

c1c2

)]2(s−p)

may be used where c1 and c2 are positive constants guessing m and E, respectively.
For the parameter choice (6.1), the results of the Theorem 5.1 still hold true where
the respective error bounds have to be replaced by the order optimal error bound

(6.2) ‖xδα − x†‖ ≤ cE

[
Ψ−1
p

(
δ

mE

)]p
with some c ≥ 1 .

If not only m and E, but also p and ψp are unknown, then a posteriori rules for
choosing the regularization parameter α have to be used.

6.1. Using the discrepancy principle. In Morozov's discrepancy principle (see
[21]) the regularization parameter α = αD is chosen as the solution of the nonlinear
equation

(6.3) d(α) := ‖Axδα − yδ‖ = Cδ

with some constant C > 1. Actually we shall need C to exceed the constant γ
from (4.2). We will assume without further mentioning that the nonlinear equa-
tion (6.3) possesses a unique solution. Conditions guaranteeing this may be found,
e.g., in [32]. We shall show that for α = αD the order optimal error bounds from
Theorem 5.1 still hold true under analogous assumptions. This result will be ob-
tained similarly to the previous analysis by using the interpolation inequality (3.1),
after bounding the errors on ‖ · ‖1/% and ‖ · ‖p, respectively. In a �rst auxiliary
proposition we provide some lower bound for the regularization parameter α = αD.

Proposition 6.1. Let xδα be the regularized approximation from (4.6) and let α = αD
be chosen by the discrepancy principle (6.3). There is a constant k̃ > 0 such that
under A.5 and the assumptions of Lemma 5.1 we have

(6.4) (C − γ)δ ≤ k̃E
√
αDg(αD/m

2).
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Proof. We �rst note that by (4.6) the discrepancy can be rewritten as

AxδαD
− yδ = AGsgαD

(T ∗T )T ∗yδ − yδ = rαD
(TT ∗)yδ.

Therefore we obtain for y := Ax† that

Cδ = ‖AxδαD
− yδ‖ = ‖rαD

(TT ∗)yδ‖ ≤ ‖rαD
(TT ∗)(y − yδ‖ + ‖rαD

(TT ∗)y‖,
hence (C − γ)δ ≤ ‖rαD

(TT ∗)y‖, and we need to upper bound ‖rαD
(TT ∗)y‖. As

indicated, we shall make use of Lemma 5.1 as follows. Let x† = Gpv.

‖rαD
(TT ∗)y‖ = ‖rαD

(TT ∗)TGp−sv‖
≤ E‖Jgp−s : XG

p−s → XH
g ‖‖rαD

(TT ∗)T : XH
g → X‖

= E‖Jgp−s : XG
p−s → XH

g ‖‖rαD
(T ∗T ) : XH

g → XH
1/
√
t
‖.

The norm of the embedding can be bounded under A.5 and the second norm was
bounded in Lemma 5.1, which completes the proof of the proposition. �

Corollary 6.1. Let xδα be the regularized approximation from (4.6) and let α = αD
be chosen by the discrepancy principle (6.3). There is a constant k > 0 such that
under the assumptions of Proposition 5.3 we have

(6.5) ‖xδαD
− x†‖p ≤ kE.

Proof. The required bound is obtained, if we insert the lower bound from (6.4) into
the estimate from Proposition 5.3. �

We now establish an appropriate bound in ‖ · ‖1/%.

Proposition 6.2. Let α = αD be chosen by the discrepancy principle (6.3). Under
Assumption A.1 we have

(6.6) ‖xδαD
− x†‖1/% ≤

C + 1

m
δ.

Proof. This is immediate from

‖xδαD
− x†‖1/% = ‖ρ(G)(xδαD

− x†)‖ ≤ 1

m
‖AxδαD

− Ax†‖

≤ 1

m

(
‖AxδαD

− yδ‖+ ‖y − yδ‖
)
≤ (C + 1)δ

m
.

�

We can now use the interpolation inequality (3.1) in the same way as in the proof
of Theorem 5.1 to conclude the main error bound under the discrepancy principle.

Theorem 6.1. Let xδα be de�ned by the general regularization scheme (4.6) and
let α = αD be chosen by the discrepancy principle (6.3). Assume the solution

smoothness obeys ‖x†‖p ≤ E and that t 7→
[(

Ψ2
p

)−1
(t)
]2p

is concave. Under as-

sumptions A.1�A.6 there is a constant K <∞ such that

(6.7) ‖xδαD
− x†‖ ≤ KE

[
Ψ−1
p

(
δ

mE

)]p
.
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6.2. Using the Lepski�� principle. Here we recall the a posteriori choice according
to the Lepski��, or balancing principle, as e.g. outlined in [19, Appendix]. For a recent
account on this principle we refer to [15]. It is based on a valid bound on the noise
term in dependence of α. Typically such bound would depend on properties of the
link condition A.1, however the constants m and the link function % need not be
known to us and our goal is to use the Lepski�� principle without such knowledge. It
turns out that this can be done in the ‖x‖A := ‖Ax‖, x ∈ X, as can be seen from
estimate (6.8), below. Note, that by de�nition of the operator T ∗T it holds true
that ‖x‖A = m‖x‖XH√

t
, and the same arguments used for proving Proposition 5.2

apply. For the convenience of the reader we shall repeat the basic arguments.

First, using (4.7) and the de�nition of β from (4.3) we bound the noise term as

(6.8) ‖A(xδα − xα)‖ = ‖Tgα(T ∗T )T ∗(y − yδ)‖ ≤ βδ,

which provides us with a valid noise bound as βδ. It remains to bound the bias.

Lemma 6.1. Suppose x† ∈ Gp(E) and that assumptions A.1 and A.5 hold true.

p ≤ s: Under A.2 and if the regularization gα obeys A.4.1 then

‖A(xα − x†)‖ ≤ γ
M

m
E
√
αg(α/m2).

s ≤ p: If the regularization gα obeys A.4.2 then

‖A(xα − x†)‖ ≤ γE
√
αg(α/m2).

Sketch of the proof. Using representation (4.8) we can bound

‖A(xα − x†)‖ ≤ E‖Tgα(T ∗T )Gp−s‖
≤ E‖Tgα(T ∗T ) : XH

g → Y ‖‖Jgp−s : XG
tp−s → XH

g ‖.
Now we can continue using the same arguments as in the proof of Lemma 5.1. �

The choice of regularization parameter according to Lepski�� is as follows. Starting
from some small enough α1, typically α1 � δ2, and �xing some parameter q > 1 we
let

M := {αj, j = 1, 2, . . . , N} ,
where αj := α1q

j−1, and N is determined as smallest integer such that αN > 1. The
Lepski�� principle chooses the parameter, say αL, from this �nite set M . The Lepski��
index jL is determined as

jL := max
{
j, ‖A(xαδ

j
− xαδ

i
)‖ ≤ 4βδ for all i < j

}
.

We denote the corresponding regularization parameter

(6.9) αL := αjL .

The following remarkable properties of this choice of parameter are known from [19,
Appendix]. To this end we recall, and specify to the present context, that an index
function Φ(α) is called admissible for x† if there is a valid error bound as

(6.10) ‖A(xδα − x†)‖ ≤ Φ(α) + βδ, α ∈M,
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and Φ(α1) ≤ βδ, where the latter condition can be ensured by using α1 small enough.
Note that by Lemma 6.1 the function α→ γEM/m

√
αg(α/m2) is admissible under

the corresponding assumptions.

For discussing properties of the Lepski�� principle for choosing α we introduce some
auxiliary index

(6.11) j∗ := max {j, there is an admiss. Φ such that Φ(αj) ≤ βδ} .

With these preparations we can state the following two properties of the choice αL
as established in [19, Appendix, Lemma 4], precisely,

jL ≥ j∗(6.12)

and

‖A(xδαL
− x†)‖ ≤ 6βδ.(6.13)

We shall use the �rst property (6.12) to draw a conclusion similar to Proposition 6.1.

Proposition 6.3. Assume that x† ∈ Gp(E). Let xδα be the regularized approximation
from (4.6) and let α = αL be chosen by the Lepski�� principle (6.9). Under A.1� A.6

there is a constant k̃ > 0 such that

(6.14) δ ≤ k̃E
√
αL/m2g(αL/m

2).

Proof. Since qαL > αL property (6.12) implies that βδ ≤ Φ(qαL) for every admissible
function. Therefore Lemma 6.1 implies that

βδ ≤ γM/mE
√
qαLg(qαL/m

2).

Now we distinguish the high order and low order cases. In the high order case the
function g is decreasing and we obtain

βδ ≤ √
qγM/mE

√
αLg(αL/m

2).

In the low order case the function t 7→ g(t)/
√
t was decreasing and we obtain

βδ ≤ γM/mE(qαL)g(qαL/m
2)/
√
qαL ≤ qγM/mE

√
αLg(αL/m

2),

and the proof is complete with k̃ = qγM/(mβ). �

As in Section 6.1 we conclude

Corollary 6.2. Let xδα be the regularized approximation from (4.6) and let α = αL
be chosen by the Lepski�� principle (6.9). If x† ∈ Gp(E) and assumptions A.1� A.6
hold true then there is a constant k > 0 such that

(6.15) ‖xδαL
− x†‖p ≤ kE.

Together with the noise bound given in (6.13) we can �nally establish the order
optimality of the Lepski�� principle.
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Theorem 6.2. Let xδα be de�ned by the general regularization scheme (4.6) and let
α = αL be chosen by the Lepski�� principle (6.9). Assume the solution smoothness

obeys ‖x†‖p ≤ E and that t 7→
[(

Ψ2
p

)−1
(t)
]2p

is concave. Under assumptions A.1�

A.6 there is a constant K <∞ such that

(6.16) ‖xδαL
− x†‖ ≤ KE

[
Ψ−1
p

(
δ

mE

)]p
.

7. Discussion of the assumptions

As can be seen from the proofs, the assumptions A.1�A.6 have di�erent impact at
di�erent places and we �nd it worth-wile to discuss their relevance.

Clearly, assumptions A.1 and A.2 relate the smoothness of the underlying true so-
lution x† to the scale generated by H := A∗A/m. Without such linking conditions
the regularization theory is not applicable, and no rates can be obtained.

The Assumptions A.4 ensure a minimal quali�cation of the initial regularization as
given through the families gα(t), 0 < α <∞. This requirement is very weak and it
is provided by most regularization schemes.

The crucial geometric assumption is introduced by A.5, which in turn uses A.3. The
use of such geometric assumptions is the main goal of the present analysis.

Assumption A.6 is stronger than the corresponding normalization (4.1) in De�ni-
tion 2. As explained in � 4.4 this is necessary to bound the noise ampli�cation in the
strong norm of XH√

t
. If we would have available an upper bound for the smoothness

of x† then this might be relaxed. For instance, if we knew some p0 for which the
smoothness p ≤ p0 of x† is bounded from above, and if we would restrict ourselves
to high-order regularization with s ≥ p0, then A.6 can be omitted.
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