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Abstract

We study a discrete time spatial branching system on Zd with logistic-type local
regulation at each deme depending on a weighted average of the population in neigh-
bouring demes. We show that the system survives for all time with positive probability
if the competition term is small enough. For a restricted set of parameter values, we
also obtain uniqueness of the non-trivial equilibrium and complete convergence, as
well as long-term coexistence in a related two-type model.

1 Introduction and main results

An interesting problem from the field of mathematical ecological modelling is to find plau-
sible stochastic models on the level of individuals for the time evolution of a ‘population’,
say of animals or plants, which live, move – in the case of plants, we think rather of the
dispersal of seeds – and reproduce in a 2-dimensional space, subject to individual random
fluctuations. The mathematically simplest class of stochastic models one might come up
with, namely branching random walk and its relatives in which individuals do not inter-
act, are not adequate because in dimension 2, they virtually never exhibit stable long-time
behaviour: it is well known that they will die out locally if the branching is (sub-)critical,
and grow locally beyond all bounds if it is supercritical.

To describe an ‘old’ population, which corresponds mathematically to a non-trivial equilib-
rium situation, one has to introduce some interaction among individuals, which is of course
also natural from the modelling perspective. A very drastic solution, that is frequently
used in the context of population genetics models, is to force the population size, or the
population size per deme in a spatially extended scenario, to be constant, i.e. each birth
is exactly matched by a death in the population. More natural ecological models allow
variable population sizes or densities, and introduce a self-regulation mechanism which,
for example, makes individual reproduction super-critical in presently sparsely populated
regions and subcritical in crowded areas – accounting for stress or competition for re-
sources. Such models with explicit space have been studied in the ecological literature, see
e.g. (Bolker & Pacala 1999, Law & Dieckmann 2002), mostly using computer simulations
and heuristic arguments. Recently, some variants of models of locally regulated popula-
tions have been studied in the mathematics literature (Etheridge 2004, Blath, Etheridge
& Meredith 2005, Fournier & Méléard 2004), and the possibility of long-time survival in
certain parts of the parameter space has been rigorously proved for a continuous mass
model.

We add to this literature a variant where particles live in discrete demes (arranged on Zd)
in non-overlapping generations, which looks as follows: In the absence of competition, an
individual has on average m > 1 offspring. Due to competition, e.g. for local resources,
the average reproductive success of an individual at position x is reduced by an amount of
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λxy ≥ 0 by each individual at position y. Here λxy is a finite range kernel on Zd. Thus, an
individual at x in generation n will have a random number of offspring with mean given
by (

m−
∑
y∈Zd

λxyξn(y)
)+

, (1)

where ξn(y) denotes the number of individuals at spatial position y in generation n. In
particular, if the occupancy of neighbouring sites is so high that the term in brackets
is negative, no offspring are generated at site x in this generation. For definiteness and
simplicity, we assume that the actual number of offspring, given the present configuration,
is Poisson-distributed with the above mean, and independent for different individuals.
Once created, offspring take an independent random walk step from the location of their
mother. In this way, our model incorporates individual-based random fluctuations in the
number and spatial dispersal of offspring.

A formal specification of the model is given as follows: We assume that the motion/dispersal
kernel p = (pxy)x,y∈Zd and the competition kernel λ = (λxy)x,y∈Zd satisfy the following
conditions.

(A1) The kernel (pxy)x,y∈Zd = (py−x)x,y∈Zd is a zero mean aperiodic stochastic kernel
with finite range Rp ≥ 1, i.e. for all x, y ∈ Zd: pxy = 0 for ‖x− y‖∞ > Rp.

(A2) 0 ≤ λxy = λ0,y−x, λ0 := λ00 > 0 and λxy = 0 for ‖y − x‖∞ > Rλ, where
1 ≤ Rλ < ∞.

For a configuration η ∈ RZd

+ and x ∈ Zd define

f(x; η) := η(x)
(
m− λ0η(x)−

∑
z 6=x

λxzη(z)
)+ (2)

and

F (x; η) :=
∑
y∈Zd

f(y; η)pyx, (3)

i.e. F (x; η) is the expected number of individuals at x in the daughter generation if the
present configuration is η. Let N (x,n), (x, n) ∈ Zd ×Z+ be independent standard Poisson
processes on R+. Given ξn, the configuration of the n-th generation, ξn+1 arises as

ξn+1(x) = N (x,n)
(
F (x; ξn)

)
, x ∈ Zd. (4)

By well known properties of the Poisson distribution this definition is consistent with
the intuitive description given above. Note that technically, this model is a ‘probabilistic
cellular automaton’ with countably infinitely many possible states at each site.

As for all η ∈ RZd

+ we have fκ(x; η) ≤ mη(x), for m ≤ 1 one can easily construct a coupling
of (ξn) with a subcritical branching random walk. In that case (ξn) becomes extinct in
finite time with probability 1 starting from any finite initial condition. Our first result
roughly states in the case m ∈ (1, 4) that if the competition kernel is small enough, the
population, starting from any non-trivial initial condition, will survive for all time with
positive probability.
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Theorem 1. For each m ∈ (1, 4) and p satisfying (A1) there are choices of positive
numbers λ∗0 = λ∗0(m, p) and κ∗ = κ∗(m, p) such that if λ0 ≤ λ∗0 and

∑
x 6=0 λ0x ≤ κ∗λ0 then

the population survives with positive probability, i.e.

Pξ0

[
∀n ∈ N,∃x ∈ Zd : ξn(x) > 0

]
> 0

for all ξ0 with f(x; ξ0) > 0 for some x ∈ Zd. Furthermore, conditioned on non-extinction

lim inf
N→∞

1
N

N∑
n=1

1{ξn(0)>0} > 0 a.s.,

in particular the origin (and in fact any site x ∈ Zd) will be occupied at arbitrarily large
times.

Note that this result as well as Theorem 3 and Corollary 4 below work in any dimension
d ≥ 1 (with threshold values λ∗0, κ

∗ depending on d), in particular it establishes the
possibility of long-term survival in d = 2.

The small competition coefficients mean that the system will typically be able to maintain
a high number of particles per site. In this sense, our result concerns a ‘high density
regime’. Technically, we follow the natural path of comparison with oriented percolation,
that might be paraphrased as ‘life plus good randomness leads to more life, so show
that bad randomness has small probability’. We call a space-time point occupied if there
are enough particles there and not too many in the neighbourhood (see Definition 6 for
details). The definition is such that in the corresponding deterministic model (which is a
‘coupled map lattice’ in dynamical systems jargon)

ζn+1(x) = F (x; ζn), x ∈ Zd, n = 0, 1, . . . (5)

in which the Poisson variables are replaced by their means, an occupied site would after
finitely many steps ‘colonise’ its neighbours, i.e. make them occupied as well. Then we
control the probability that this remains the case under stochastic perturbation. Choosing
small competition coefficients we increase the ‘typical number of particles’ per site in the
deterministic model. Then we use the fact that the relative deviation of a Poisson random
variable from its mean is typically small if the parameter is large. Finally, the finite range
of competition and motion kernels allows to compare the set of occupied space-time sites
with finite-range dependent oriented percolation on a suitable sub-grid of the space-time
lattice.

The method can be adapted to a situation of two competing species to show that if in
addition to the conditions of Theorem 1 the interspecific competition is weak enough then
long term coexistence is possible (see Proposition 8).

The logistic map φ(x) = x(m − λx)+ and especially the one dimensional deterministic
dynamical system

xn+1 = φ(xn) (6)

play an important role throughout the paper. For example, in Theorem 1 the restriction
to m < 4 comes from the fact that otherwise the function φ would not map the set
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{x ∈ R : φ(x) > 0} into itself. The function φ has two fixed points, namely 0 and
(m− 1)/λ. For m ∈ (1, 3) it is well known that 0 is repelling and (m− 1)/λ is attracting,
i.e. if x1 6= 0 then the sequence (xn) converges to (m− 1)/λ, whereas for m ≥ 3, there are
no stable fixed points. The former fact can be generalised to the coupled map lattice (5)
which is a spatially extended version of (6). It can be easily seen that η ≡ (m−1)/

∑
x λ0x

is a fixed point of F . Of course, one cannot expect that ζn converges uniformly to η for
any initial condition, but, as the following proposition shows it converges at least locally.

Proposition 2. Let m ∈ (1, 3), p, λ satisfying (A1) and (A2) be given. Then there exists
a positive number κ∗ = κ∗(m, p) such that if

∑
x 6=0 λ0x ≤ κ∗λ0 and f(x; ζ0) > 0 for some

x ∈ Zd, then (ζn) converges locally (i.e. pointwise w.r.t. z ∈ Zd) to (m− 1)/
∑

x λ0x.

Note that under the assumptions of Proposition 2, we obtain a complete classification
of the equilibria of (5) and their domains of attraction: if (ζn) does not hit the all zero
configuration 0 ∈ ZZd

+ after the first step, it is attracted by η ≡ (m− 1)/
∑

x λ0x.

Obviously 0 ∈ ZZd

+ is an absorbing state for (ξn), so the Dirac measure in this state is
an invariant distribution for (ξn). In view of Theorem 1 it is natural to ask if there exist
non-trivial stationary distributions, and one might expect that if the process does not
go extinct, its distribution converges to some unique invariant distribution. A powerful
method to address this problem is coupling. Let (ξ(1)

n ) and (ξ(2)
n ) be versions of the process

(ξn) introduced in (4). Let N
(x,n)
0 , N

(x,n)
+ and N

(x,n)
− , (x, n) ∈ Zd × Z+ be independent

standard Poisson processes. We define the coupling of (ξ(1)
n ) and (ξ(2)

n ) as follows:

ξ
(1)
n+1(x) = N

(x,n+1)
0

(
F (x; ξ(1)

n ) ∧ F (x; ξ(2)
n )

)
+ N

(x,n+1)
+

(
F (x; ξ(1)

n )− F (x; ξ(1)
n ) ∧ F (x; ξ(2)

n )
)

ξ
(2)
n+1(x) = N

(x,n+1)
0

(
F (x; ξ(1)

n ) ∧ F (x; ξ(2)
n )

)
+ N

(x,n+1)
−

(
F (x; ξ(2)

n )− F (x; ξ(1)
n ) ∧ F (x; ξ(2)

n )
)
.

(7)

Theorem 3. Let m ∈ (1, 3), and p, λ as in (A1), (A2) be given. There are λ∗∗0 =
λ∗∗0 (m, p) > 0 and κ∗∗ = κ∗∗(m, p) > 0 such that if λ0 ≤ λ∗∗0 and

∑
x 6=0 λ0x ≤ κ∗∗λ0,

then, conditioned on non-extinction of both populations, the coupling of (ξ(1)
n ) and (ξ(2)

n )
is successful in the sense that for each finite Λ ⊂ Zd there is a random time T , such that

ξ(1)
n (x) = ξ(2)

n (x) for all x ∈ Λ and n ≥ T .

Obviously we have λ∗∗0 ≤ λ∗0, κ∗∗ ≤ κ∗. We do not know if in the case m ∈ (1, 3) the
inequalities are strict (but certainly the bounds obtained in in the proof of Thm. 3 are
much smaller than those obtained in the proof of Thm. 1).

Corollary 4. Under the conditions of Theorem 3 the process (ξn) has two extremal in-
variant distributions. These distributions are translation invariant. Conditioned on non-
extinction, (ξn) converges in distribution in the vague topology to a random measure dis-
tributed according to the non-trivial extremal invariant distribution, i.e. we have complete
convergence.

Remark 5. 1. To our knowledge, we present here the first rigorous result showing
the possibility of long-time survival in a locally regulated population in d = 2 for
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a particle-based model allowing multiple occupancy (but for particular cases in a
continuous-time version cf. Fournier & Méléard (2004), Proposition 6.4, where the
competition acts strictly within-deme, and Proposition 7.9, where competition and
dispersal kernel must be identical). As the mathematically rigorous investigation of
spatial stochastic systems with local regulation terms is still in its infancy, we think
it is justified to study the phenomenon in several mathematical guises. Furthermore,
many species do live in discrete generations, and it is well known that discrete time
dynamics can have a much richer behaviour than their continuous time analogues.
This shows up in our model as well, see point 4 below.

Being honest one has to admit that the results of this paper, as well as those in
Fournier & Méléard (2004), Blath et al. (2005), are still too weak to capture many
ecologically interesting phenomena. Up to now, all the rigorous results are more of a
conceptual nature, showing that survival resp. coexistence of several types is possible
if the interaction terms are weak enough, but giving little clues about what realistic
sizes of threshold values enabling/excluding survival or coexistence might be. This
stems from the fact that in order to apply comparison with finite-range dependent
directed percolation, one usually has to keep far away from the true critical values.
For example, we have little rigorous information about properties of the non-trivial
equilibrium guaranteed by Corollary 4 apart from the fact that its mean is close to
the deterministic prediction (m− 1)/

∑
x λ0x when the competition terms are small.

One would suspect that correlations decay exponentially, but we have no rigorous
proof.

Thus, the contribution of these mathematical investigations to the question how a
population or several populations arrange themselves in space in order to survive in
a (ecologically very interesting) situation of scarce resources and hence appreciable
competition is at present rather limited. It appears that more powerful mathematical
tools need to be invented in order to make rigorous progress in this direction.

2. The Poisson offspring distribution in our model is a somewhat artificial choice, which
helps to streamline calculations, but is not essential for the result. To formulate a
more general form of the model, one would need a one-parameter family of probabil-
ity distributions (say, indexed by their mean) which includes sub- and supercritical
distributions. A natural way would be to start with a fixed supercritical offspring
distribution and then superimpose a ‘thinning’ according to the local weighted den-
sity. A nice feature of the Poisson distribution is that we can in fact think of it in
this way. Another feature of the Poisson distribution is that the variance of the total
number of offspring produced at some site x (given the present configuration) and
its mean are the same. While it is natural for a ‘branching model’ to assume that
conditional variance and mean of the size of the new generation are of the same or-
der, a general class of offspring distributions would allow for different proportionality
factors.

3. Our results require that λ0, the on-site competition coefficient, is (substantially)
larger than the total competition with neighbouring sites. Thus they apply to a sit-
uation where most of the competition is felt by individuals within the same ‘colony’.
One can think e.g. of colonies arranged on Zd and λ0 governing a rather strong
population regulation inside each colony, whereas the competition λ0x, x 6= 0, with
surrounding colonies is of a lower order.

5



This is certainly a technical condition which is not necessary for survival, but which
intuitively helps quite a bit because it prevents the occupancy of a site from becoming
so big that it would ‘eradicate’ its neighbourhood in the next step. It is in part owed
to the discreteness of time in our model: no such condition is necessary for the
continuous-time continuous-mass result in Thm. 1.5, 2 b) in Etheridge (2004) (on
the other hand, unlike Etheridge (2004), we do not need the requirement that the
range of λ must not exceed that of p).

Simulations suggest that the system may survive also when λ0 and λ0x, 0 < ||x|| ≤
Rλ are the same or similar (but sufficiently small), but occupancy numbers will
fluctuate much more wildly than in the scenario treated in Theorem 1. On the other
hand, with a highly asymmetric competition kernel one observes in simulations the
appearance of ‘fronts’ of occupied sites moving in in the direction of smaller λ. This
might indicate local extinction despite global survival when starting from a finite
initial population in such a case.

4. As the model is in some sense a stochastic version of a spatial system of coupled
logistic maps, the restrictions on m in our results are inherited from the behaviour
of (6): When m > 4, (6) would ‘live’ only on a Cantor-like set, and the technique
employed in the proof of Theorem 1 would fail. On the other hand, simulations
suggest that even in the case m > 4, the random fluctuations can ‘smooth out’ the
trajectories so that (4) might survive from initial conditions which would drive (5) to
extinction in finitely many steps. The restriction to m ∈ (1, 3) in Theorem 3 stems
of course from the fact that this guarantees a unique stable fixed point of the logistic
map. It is unclear if Corollary 4 would hold in a situation where (6) has periodic
orbits: Then, one can see in simulations large regions of space which are ‘oscillating
out of phase’, it might be the case that there are several non-trivial equilibria.

5. We note that the ‘stepping stone version of the Bolker-Pacala model’ introduced in
Definition 1.3 of Etheridge (2004) can be obtained as a scaling limit of a sequence of
models considered above: Assume that the parameters of the N -th model are given
by

m(N) = 1 +
αM

N
, p(N)

xy =
1
N

mxy +
(
1− 1

N

∑
x

m0x

)
δxy, λ(N)

xy =
ακλxy

N2
,

where α, M, mxy, λxy are as in (Etheridge 2004, p.191). Let ξ
(N)
0 (x) = [Nµ(x)],

where µ is some finite measure on Zd, and define X
(N)
t (x) := 1

N ξ
(N)
[Nt](x). Then X(N)

converges in distribution on D[0,∞)(Mf (Zd)) to X, the solution of (5) on page 191
of Etheridge (2004), i.e. the stepping stone version of the Bolker-Pacala model, with
γ = 1.

6. Hutzenthaler & Wakolbinger (2005) have shown that (at least in the case of within-
site competition only) the stepping stone version of the Bolker-Pacala model from
Etheridge (2004) dies out in any dimension if the carrying capacity, which would
correspond to (m − 1)/

∑
x λ0x in our model, is too small. Similarly, one would

expect that our model, even when m ∈ (1, 3), will die out when λxy are too large.
Simulations suggest that this is indeed the case, but we have no rigorous proof.
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The rest of this paper is organised as follows: in Section 2, we provide a basic lemma
showing how ‘occupancy’ spreads through space and prove Theorem 1, in Section 3, we
briefly discuss how the results can be transferred to a two-species scenario with (weak)
interspecific competition. Section 4 provides results about the deterministic system (5)
and proves Proposition 2. These results will be required in Section 5, where we prove
Theorem 3 and Corollary 4.

To simplify the notation in the proofs we will use in the sequel a transformed version of
the kernel λ,

λxy = κγxy, x 6= y (8)

where we assume that
∑

y 6=x γxy = 1. That is, we separate the non-diagonal part of
λ into κ :=

∑
x 6=0 λ0x, the total ‘non-diagonal’ competition and the normalised kernel

γ0x = λ0x/κ (γxx := 0). For η ∈ RZd

+ , x ∈ Zd and κ ≥ 0 we write

fκ(x; η) := η(x)
(
m− λ0η(x)− κ

∑
z 6=x

γxzη(z)
)+ (9)

and

F (x; η) :=
∑
y∈Zd

fκ(y; η)pyx. (10)

Note that this is just (2) and (3) in the new parametrisation.

2 Survival

The value fκ(x; η) is the mean number of offspring at site x if the present configuration is η.
The maximal (mean) number of offspring at one site in one generation will be denoted by
m∗

λ0
:= max

η∈RZd
+

fκ(0; η) = m2/(4λ0). If the number of particles at some site x exceeds

Mλ0 := m/λ0 then, as the term in the parenthesis in (2) resp. (9) is negative, no offspring
is produced at this site. Furthermore let us introduce

m̄(λ0, κ) :=
m− 1
λ0 + κ

and m̄λ0 := m̄(λ0, 0), (11)

the deterministic equilibrium values when the non-diagonal regulation term is κ resp. 0.
Note that for η ≡ m̄(λ0, κ) we have fκ(x; η) = m̄(λ0, κ) and therefore η(x) = F (x; η) for
all x ∈ Zd.

Definition 6. Let η ∈ RZd

+ . For a pair of positive numbers (ε1, ε2) we will say that a site
x is (ε1, ε2)-occupied with respect to η if

η(x) ∈ [ε1m̄λ0 , (1− ε2)Mλ0 ], and η(y) ≤ (1− ε2)Mλ0 , ‖x− y‖∞ ≤ Rλ.

We will often say that η(x) is (ε1, ε2)-occupied, or just occupied if there is no risk of
confusion, meaning that x is (ε1, ε2)-occupied with respect to η.

To prove Theorem 1 we compare the process (ξn) with oriented percolation on Zd × Z+.
The main thing in doing that is to show that if a site is (ε1, ε2)-occupied with respect to
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some ξn then in a while its neighbours will be also (ε1, ε2)-occupied with high probability.
To this end we consider a perturbed coupled map lattice

ζn+1(x) = F (x; ζn) + δn(x), (12)

where the perturbation δn is assumed to satisfy δn(x) ≥ −F (x; ζn), such that (ζn) is
nonnegative. We will show that under certain additional conditions on the perturbation
term the system (ζn) has the desired property. Then the original process (ξn) can be seen
as a perturbed dynamical system and we will see that the conditions mentioned above are
satisfied with high probability if the competition is weak enough.

Let us now introduce and explain some notation which will be used in the sequel. We
denote by pn

xy the n-step transition probability of a random walk with kernel p. As
mentioned above, our goal is to show that an occupied site colonises its neighbours in a
couple of steps and remains itself occupied. In the first step the offspring are distributed
according to the kernel p. Thus, there is in general no reason why an occupied site should
remain occupied after one step. Let us fix some m̃ ∈ (1,m). By the Local Central Limit
Theorem the number

n∗ = min
{
j ∈ N : pj

0xm̃j ≥ 1 for all x with ‖x‖∞ ≤ 1
}

(13)

is finite. We set

I =
{
(y, j) ∈ Zd × Z+ : pj

0y > 0, 0 ≤ j ≤ n∗
}
⊂

{
(y, j) : ‖y‖∞ ≤ jRp, 0 ≤ j ≤ n∗

}
.

Suppose that the site 0 is (ε1, ε2)-occupied with respect to ζ0 and that there is no mass at
the other sites. Let us also assume for the moment that the perturbation term vanishes
and that the competition between individuals at different sites is zero, i.e. κ = 0. We set
f̃(z) = z(m− λ0z)+. If for some positive a we have z ∈ [aε1m̄λ0 , (1− ε2)Mλ0 ] then

f̃(z) ≥

{
f̃(ε2Mλ0) = ε2Mλ0m(1− ε2) : aε1m̄λ0 ≥ ε2Mλ0

f̃(aε1m̄λ0) = aε1m̄λ0m(1− aε1 + 1
m) : aε1m̄λ0 < ε2Mλ0

. (14)

This means that the number of offspring at site 0 is at least m̃ε1m̄λ0 if ε1 is sufficiently
small. Then the offspring are distributed in the neighbourhood according to the kernel p.
In this neighbourhood the mass is again multiplied by at least m̃ and then distributed ac-
cording to p. Hence after k steps the mass at a site y is larger than or equal to pk

0ym̃
kε1m̄λ0 .

The living space of the whole population at this time is the k-th timeslice of I which is
contained in the ball of radius kRp. By the definition of n∗, after n∗ steps the mass in 0
and in points with norm one reaches or maybe exceeds the level ε1m̄λ0 . Thus these sites
are occupied at that time if the mass there and in the Rλ-neighbourhood does not exceed
(1− ε2)Mλ0 .

We need some additional conditions on the perturbation term. Let X = {(y, n) ∈ Zd×Z+ :
n < n∗, ‖y‖∞ ≤ n(Rp + Rλ)}.

(B1)ε2 For all (y, n) ∈ X : F (y; ζn) + δn(y) ≤ (1− ε2)Mλ0 .

(B2)δ,K For all (y, n) ∈ X : F (y; ζn) ≥ K implies |δn(y)| ≤ δF (y; ζn).
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Lemma 7. Assume that m and p are as in Theorem 1. For each K > 0 and δ satisfying
m(1 − δ) > m̃ > 1 there are choices of positive numbers ε1, ε2, λ∗0 and κ∗ such that
whenever

λ0 ≤ λ∗0 and κ ≤ κ∗λ0 (15)

the following holds:

ζ0(0) is (ε1, ε2)-occupied, (B1)ε2, (B2)δ,K are satisfied
=⇒ ζn∗(x) are (ε1, ε2)-occupied for all x with ‖x‖∞ ≤ 1.

Proof. Let K > 0 be given. We choose ε2 > 0 such that

m(1− δ)(1− ε2
m

m− 1
) ≥ m̃ and m∗

λ0
≤ (1− 2ε2)Mλ0 . (16)

For the second inequality we need m < 4. Then we choose ε1 > 0 satisfying

pn
0ym̃

nε1 ≤ ε2
m + 1

m
≤ ε2

m

m− 1
for all (n, y) ∈ I. (17)

Note that this choice guarantees

pn
0ym̃

nε1m̄λ0 ≤ ε2
m + 1

m
m̄λ0 ≤ ε2Mλ0 for all (n, y) ∈ I. (18)

By construction of I, the number Imin = min
{
m̃npn

0y : (n, y) ∈ I
}

is positive. Therefore
we may choose λ∗0 such that for λ0 ≤ λ∗0

ε1m̄λ0Imin ≥ K.

Finally, we choose κ∗ such that for some α satisfying m̃ < m− α

(1− ε2)Mλ0κ
∗λ∗0 ≤ α.

Let us first consider the case κ = 0. We have to show that

ζn∗(x) ∈ [ε1m̄λ0 , (1− ε2)Mλ0 ], ‖x‖∞ ≤ 1.

By (B1)ε2 we have

ζn+1(x) = F (x; ζn) + δn(x) ≤ (1− ε2)Mλ0 for all (x, n) ∈ X . (19)

This means in particular ζn∗(x) ≤ (1 − ε2)Mλ0 for ‖x‖∞ ≤ 1. To complete the proof for
that case we show by induction on n that

ζn(y) ∈ [pn
0ym̃

nε1m̄λ0 , (1− ε2)Mλ0 ], 0 ≤ n ≤ n∗ and (y, n) ∈ I.

By definition of n∗, the assertion of the lemma then follows. For n = 0 the claim holds by
assumption. If it holds for some n < n∗ then, first using (18) and (14), then (17) and the
first part of (16), we obtain

(1− δ)f(y; ζn) ≥ (1− δ)f̃
(
pn
0ym̃

nε1m̄λ0

)
≥ (1− δ)pn

0ym̃
nε1m̄λ0 ·m

(
1− pn

0ym̃
nε1 +

1
m

)
≥ pn

0ym̃
n+1ε1m̄λ0 .

9



Hence

(1− δ)F (y; ζn) =
∑
z∈Zd

(1− δ)f(z; ζn)pzy

≥
∑
z∈Zd

pn
0zm̃

n+1ε1m̄λ0pzy = ε1m̄λ0m̃
n+1pn+1

0y , (y, n) ∈ I.

In particular we have F (y; ζn) ≥ ε1m̄λ0m̃
n+1pn+1

0y ≥ K for λ0 ≤ λ∗0. Therefore (B2)δ,K

applies and from the last display we obtain

ζn+1(y) ≥ (1− δ)F (y; ζn) ≥ ε1m̄λ0m̃
n+1pn+1

0y .

This concludes the proof of the induction and proves the Lemma in the special case κ = 0.

Now let us turn to the case κ > 0. Assumption (B1)ε2
, (15) and the choice of κ∗ imply

that

0 ≤ κ
∑
y 6=x

γxyζn(y) ≤ κ∗λ0(1− ε2)Mλ0 ≤ α, ‖x‖∞ ≤ n(Rλ + Rp)−Rλ, n < n∗,

where α > 0 satisfies m− α > m̃. We obtain

fl(x; ζn) := ζn(x)(m− α− λ0ζn(x))+ ≤ fκ(x; ζn(x))
≤ ζn(x)(m− λ0ζn(x))+ =: fu(x; ζn).

So we can use the same induction as in the diagonal case. For the lower bound estimates
we use fl and for the upper bound estimates we use fu.

We set ζ0 = ξ0 and assume that (ζn) is the solution of (12) with the perturbation term

δn(x) = N (n,x)
(
F (x; ξn)

)
− F (x; ξn).

Thus, (ξn) with ξn = ζn can be considered as a perturbed coupled map lattice.

Proof. (Theorem 1) For (x, n) ∈ Zd × Z+ we define

X(x, n) =
{
N (y,j) : (y, j) ∈ (x, n) + X

}
.

Consider the events

A(x, n) = {N (y,j)(m∗
λ0

) ≤ (1− ε2)Mλ0 , (y, j) ∈ (x, n) + X}

and

B(x, n) =
{

sup
(y,j)∈(x,n)+X

sup
t≥K

∣∣∣∣∣N (y,j)(t)
t

− 1

∣∣∣∣∣ ≤ δ

}
We say that X(x, n) is good if A(x, n) ∩ B(x, n) holds. First we want to show that the
probability of a good realization can be made arbitrarily large by choosing small λ0. It is
of course enough to consider the corresponding problem in the space-time point (0, 0). As

10



A(0, 0) implies (B1)ε2
and B(0, 0) implies (B2)δ,K on the event A(0, 0)∩B(0, 0) Lemma 7

yields

{ξ0(0) (ε1, ε2)-occupied} ∩ (A(0, 0) ∩B(0, 0)) ⊂ {ξn∗(y), ‖y‖∞ ≤ 1 (ε1, ε2)-occupied}.

By translation invariance the corresponding statement is also true for all (x, n) ∈ Zd×Z+.
Furthermore we point out that X(x, n) and X(x′, n′) are independent if ‖x − x′‖∞ ≥
2n(Rλ + Rp) or |n− n′| > n∗.

Let ∆ be the number of points in X and let
(
N(t)

)
t≥0

be a standard Poisson process.
Then we have

P[A(0, 0)] = (1− a(λ0))
∆ where a(λ0) = P

[
N(m∗

λ0
) > (1− ε2)Mλ0

]
.

According to (16) we have m∗
λ0
≤ (1− 2ε2)Mλ0 . Thus, for some c̃1 > 0 we have

a(λ0) = P
[
N(m∗

λ0
)

m∗
λ0

− 1 >
(1− ε2)Mλ0

m∗
λ0

− 1
]
≤ P

[
N(m∗

λ0
)

m∗
λ0

− 1 > ε2

]
≤ exp

(
− c̃1ε

2
2

λ0

)
.

Furthermore, by standard large deviation results for Poisson processes, we have for some
c̃2 > 0 and sufficiently large K we have W

P
[
B(0, 0)

]
= P

[
sup
t≥K

∣∣∣∣N(t)
t

− 1
∣∣∣∣ ≤ δ

]∆

=
(

1− P
[

sup
t≥K

∣∣∣∣N(t)
t

− 1
∣∣∣∣ > δ

])∆

≥
(
1− exp(−c̃2δ

2K)
)∆

.

From the proof of Lemma 7 one can see that making K large corresponds to making λ0

small. Hence

P[(A(0, 0) ∩B(0, 0))c] ≤ P[A(0, 0)c] + P[B(0, 0)c] ≤ θ(λ0), (20)

where θ(λ0) ≤ exp(−c/λ0) for some suitable positive constant c = c(p, m,Rλ). This
implies

P
[
X(0, 0) is good

]
≥ 1− θ(λ0) = 1−

(
1−

√
p(λ0)

)∆
,

where p(λ0) =
(
1 − θ(λ0)1/∆

)2. Since p(λ0) converges to one as λ0 goes to 0 we may
apply a result by Liggett, Schonmann and Stacey (see (Liggett 1999, Theorem 26)) to
show that for fixed n, the distribution of the random field 1{X(x,n) is good} dominates
the product measure νp(λ0) = ⊗ZdBer

(
p(λ0)

)
on {0, 1}Zd×Z+ Comparison of the process(

1{X(x,n) is good}
)
x∈Zd×n∗Z+

with independent oriented percolation concludes the proof.

3 A competing species model

In this section we consider two processes (ξ(1)
n ) and (ξ(2)

n ), modeling for example two
different species or genetic types living in the same habitat and competing for similar (or
the same) resources. In the absence of the other type each of them is a version of the basic
process described in the introduction, possibly with different parameters.
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Let (λ(ij)
xy )x,y∈Zd , i, j ∈ {1, 2} be translation invariant nonegative kernels on Zd with finite

range Rλ. These kernels will determine the intra- resp. interspecific competition: The
average reproductive success of an i-individual at x is reduced by each j-individual at y

by λ
(ij)
xy . The evolution of (ξ(1)

n , ξ
(2)
n ) may then be described as follows. Similar to the

single species model we define

f1

(
x; ξ(1)

n , ξ(2)
n

)
= ξ(1)

n (x)
(
m1 −

∑
y

λ(11)
xy ξ(1)

n (y)−
∑

y

λ(12)
xy ξ(2)

n (y)
)+

,

f2

(
x; ξ(1)

n , ξ(2)
n

)
= ξ(2)

n (x)
(
m2 −

∑
y

λ(22)
xy ξ(2)

n (y)−
∑

y

λ(21)
xy ξ(1)

n (y)
)+

,

F1

(
x; ξ(1)

n , ξ(2)
n

)
=

∑
y

f1(y; ξ(1)
n , ξ(2)

n )p(1)
yx ,

F2

(
x; ξ(1)

n , ξ(2)
n

)
=

∑
y

f2(y; ξ(1)
n , ξ(2)

n )p(2)
yx ,

where mi is the mean number of offspring of a type i individual in the absence of compe-
tition. If N

(x,n)
1 , N

(x,n)
2 , (x, n) ∈ Zd × Z+ are independent standard Poisson processes on

R+ then, given (ξ(1)
n , ξ

(2)
n ), the configuration of the next generation is given by

(ξ(1)
n+1, ξ

(2)
n+1) =

(
N

(x,n)
1

(
F1(x; ξ(1)

n , ξ(2)
n )

)
, N

(x,n)
2

(
F2(x; ξ(1)

n , ξ(2)
n )

))
.

We obtain the following about long-term coexistence if the competition terms are weak
enough:

Proposition 8. For given m1,m2 ∈ (1, 4), p(1) and p(2) satisfying (A1) there are positive
numbers λ∗1, λ∗2, κ∗1, κ∗2 and γ∗ such that if the conditions

(i) λ
(ii)
0 ≤ λ∗0,

∑
y 6=x λ

(ii)
xy ≤ λ

(ii)
0 κ∗i , i ∈ {1, 2};

(ii)
∑

y λ
(12)
xy ,

∑
y λ

(21)
xy ≤ γ∗min{λ(11)

0 , λ
(22)
0 };

are satisfied then both populations survive with positive probability provided that for some
x, y ∈ Z we have f1(x; ξ(1)

0 , ξ(2)(0)) > 0 and f2(y; ξ(11)
0 , ξ

(22)
0 ) > 0. Furthermore, condi-

tioned on survival of both populations

lim inf
N→∞

1
N

N∑
n=1

1{ξ(1)
n (0) ξ

(2)
n (0)>0} > 0 a.s.,

i.e. we have local coexistence.

To prove this proposition one can essentially use the same argument as we have used in
the proof of Lemma 7 to reduce the case κ > 0 to the case κ = 0.

4 Results for the deterministic system

In this section we will prove Proposition 2. For clarity of exposition, we start with the
‘diagonal case’ κ = 0. Let us consider more generally a coupled map lattice (ζn) on Zd,
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defined via

ζn+1(x) =
∑
y∈Zd

g
(
ζn(y)

)
pyx, x ∈ Zd, (21)

where (pyx)x,y∈Zd is a translation invariant stochastic kernel with finite range satisfying
(A1) and g : [0, G] → [0, G] is a continuously differentiable function. We think of the single
site function g as having 0 as a repelling fixed point and and another stable fixed point
ā ∈ (0, G] which attracts (0, G], i.e. for any x0 ∈ (0, G], the sequence (xn) defined through
xn+1 = g(xn) converges to ā. (Thus in particular g′(0) > 1, g(G) > 0.) Then obviously
ζ ≡ 0 and ζ ≡ ā are fixed points of (21), and one is strongly inclined to believe that in
this well-behaved scenario there are no others. We will say that a dynamical system (ηn)
on Zd converges locally to a ∈ R if for each finite Λ ⊂ Zd and each ε > 0 there exists N0

such that

|ηn(x)− a| ≤ ε for all x ∈ Λ and n ≥ N0.

Having been unable to find the result we need in the literature, we provide Lemma 9
below. Assume

(DS1) For each a > 0 there exist sequences (αn) and (βn) such that 0 < α0 ≤ a, β0 = G,
αn ↑ ā, βn ↓ ā and g([αn, βn]) ⊂ [αn+1, βn+1].

Note that this implies

(DS2) There exists a ∈ (0, ā) with the following property:

If ζ0(0) ∈ [a,G] then there is N0 ∈ N such that ζN0(x) ∈ [a,G], ‖x‖∞ ≤ 1.

A proof that (DS1) ⇒ (DS2) is basically a reformulation of the proof of Lemma 7.
Note that (DS1) holds true e.g. if we assume additionally that g is concave (see e.g. the
construction given in Lemma 12). We refrain from pursuing the most general conditions for
(DS1), but observe that this together with Lemma 9 already yields a proof of Proposition 2
in the diagonal case κ = 0.

Lemma 9. If ζ0(x) ∈ (0, G] for some x ∈ Zd and (DS1) holds then (ζn) converges locally
to ā.

In the following we will call the set Nk(A) := {x ∈ Z
d : infy∈A‖x − y‖∞ ≤ k} the

k-neighbourhood of A. If A = {x}, then we write Nk(x) for the k-neighbourhood of x.

Proof. Let Λ be a finite subset of Zd. We may assume that Λ is a ball with respect to
the sup norm. Let (αn) and (βn) be sequences from (DS1). Given ε > 0, we choose n0

such that βn − αn < ε holds for all n ≥ n0. According to (DS2) there exist a ∈ (0, ā) and
n1 ∈ N such that

ζn(x) ≥ a ⇒ ζn+n1(y) ≥ a for all y with ‖x− y‖∞ ≤ 1.

Since 0 and ā are the only fixed points of g, g′(0) > 1 and a ∈ (0, ā] we have g(a) ≥ a. It
follows that if for all y in the Rp-neighbourhood of some point x we have ζ0(y) ≥ a, then

ζ1(x) =
∑

y

g
(
ζ0(y)

)
pyx ≥ a.

13



We set
Λ′ := NRp(n0+n1)(Λ) and Λi = NRp(n0−i)(Λ), i ∈ {0, . . . , n0}.

Note that Λi = NRp(Λi+1) and Λn0 = Λ. By (DS2) there is some time point n2 ∈ N
such that ζn2(x) ≥ a for all x ∈ Λ′. We claim that ζn2+n(x) ≥ a for all x ∈ Λ0 and all
n ≥ 0. Indeed, during the next n1 − 1 steps from time n2 on, the mass in the points of
the Rp-neighbourhood of Λ0 remain bounded from below by a. According to (DS2) by
the time n2 + n1 each point in the 1-neighbourhood of Λ′ is bounded below by a. Hence
we are in particular again in the above situation.

For simplicity of notation we assume that ζ0(x) ≥ a for all x ∈ Λ′. We need to show
that ζn(x) ∈ [αn0 , βn0 ] for all x ∈ Λ and n ≥ n0. First, we check inductively that for
n = 0, 1, . . . , n0 we have

i) ζn(x) ∈ [αn, βn] for x ∈ Λn,

ii) ζk(x) ∈ [αk, βk] for x ∈ Λk \ Λk+1, k = 0, 1, . . . , n− 1.

(22)

For n = 0, i) is true by assumption, and ii) is void. Assume that i) and ii) hold true for
some n < n0, let k ∈ {0, 1 . . . , n + 1} and x ∈ Λk \ Λk−1, resp. x ∈ Λn+1 if k = n + 1. As
Λk−1 = NRp(Λk) we have

ζn+1(x) =
∑

y

g
(
ζn(y)

)
pyx =

∑
y∈Λk−1

g
(
ζn(y)

)
pyx ∈ [αk, βk]

by (DS1), proving i) and ii) for n + 1.

To conclude the proof note that by the argument above, the set of configurations ζ such
that

ζ(x) ≥ a for x ∈ Λ′, ζ(x) ∈ [αk, βk] for x ∈ Λk \ Λk+1, k = 0, 1, . . . , n0 − 1,

ζ(x) ∈ [αn0 , βn0 ] for x ∈ Λn0

is invariant under the dynamics (21), hence we have in particular for n ≥ n0

ζn(x) ∈ [αn0 , βn0 ] for x ∈ Λ
(

= Λn0

)
.

For the ‘non-diagonal’ case κ > 0 we need three more lemmas. Note that we only need to
consider the case λ0 = 1. Otherwise consider ζ̃ defined by ζ̃n(x) = λ0ζn(x), which solves
the iteration given by (9) and (10) with λ0 replaced by 1 and κ by κ/λ0. Until the end of
this section we write m̄1,κ = m̄(1, κ), m∗ = m∗

1 = m2/4 and m̄ = m̄1 = m− 1 (see (11)).

Lemma 10. There exist positive κ∗ and δ such that for κ ≤ κ∗ exist sequences (αn), (βn)
in [m̄1,0 − δ, m̄1,0 + δ] satisfying

1. an ↑ m̄1,κ, βn ↓ m̄1,κ;

2. If ζ(y) ∈ [αn, βn] for all y ∈ NRλ
(x), then fκ(x; ζ) ∈ [αn+1, βn+1].
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Proof. For fixed x ∈ Zd we may consider the mapping ζ 7→ fκ(x; ζ) as a function of the
restriction of ζ to the Rλ-neighbourhood of x (viewed as an element of Rk where k is the
number of points in NRλ

(x)). We denote by ~m1,κ the vector of length k with all entries
equal to m̄1,κ and by Bδ(~m1,κ) the δ-neighbourhood of ~m1,κ with respect to sup norm.

The gradient of ζ 7→ fκ(x; ζ) is given by (we assume that the positive part appearing in
(9) is not 0)

∂ζ(x)fκ(x; ζ) = m− 2ζ(x)− κ
∑
y 6=x

γxyζ(y)

∂ζ(y)fκ(x; ζ) = −κγxyζ(x) for y 6= x.

Choose positive ε, δ and κ∗ satisfying

(|m− 2|+ 2δ + κ∗(δ + m− 1))2 < 1− ε and κ∗ < min
{ δ

m− 1
,

√
ε√

2(2 + δ)

}
. (23)

For ζ ∈ Bδ(~m1,0) we have

∂ζ(x)fκ(x; ζ) ≤ m− 2(m̄1,0 − δ)− κ
∑
y 6=x

γxy(m̄1,0 − δ) = 2−m + 2δ − κ(m− 1) + κδ

and

∂ζ(x)fκ(x; ζ) ≥ m− 2(m̄1,0 + δ)− κ
∑
y 6=x

γxy(m̄1,0 + δ) = 2−m− 2δ − κ(m− 1)− κδ,

hence

|∂ζ(x)fκ(x; ζ)| ≤ |m− 2|+ (m− 1)κ + 2δ + κδ

and due to (23) we obtain for κ ≤ κ∗(
∂ζ(x)fκ(x; ζ)

)2
< 1− ε. (24)

For y 6= x we have

|∂ζ(y)fκ(y; ζ)| = κγxyζ(x) ≤ κγxy(m̄0 + δ)

≤ κγxy(m− 1) + δγxyκ < κγxy(2 + δ).

Consequently ∑
y 6=x

(
∂ζ(y)fκ(y; ζ)

)2
< (2 + δ)2κ2

∑
x 6=y

γ2
xy ≤ (2 + δ)2κ2 <

ε

2
, (25)

where the last inequality holds if (23) is satisfied.

Altogether, the above implies that for all ζ ∈ Bδ(~m1,κ) and κ ≤ κ∗ we have

‖∇fκ(x; ζ)‖22 < 1− ε

2
. (26)
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Due to the mean value theorem for all ζ, ζ ′ ∈ Bδ(~m1,0) exists ζ̃ ∈ Bδ(~m1,0) such that

|fκ(x; ζ)− fκ(x; ζ ′)| = |∇fκ(x; ζ̃)(ζ − ζ ′)|
≤ ‖∇fκ(x; ζ̃)‖2 · ‖ζ − ζ ′‖2 ≤ c‖ζ − ζ ′‖2,

where c =
√

1− ε/2 < 1. Thus, the claim of the lemma follows. We only need to note
that fκ

(
x; ~m1,κ

)
= m1,κ and that |m̄1,0 − m̄1,κ| < δ if κ < δ/(m − 1) which holds by

(23).

Lemma 11. For each δ > 0 exists κ∗ > 0 such that whenever κ ≤ κ∗ and fκ(x; ζ0) > 0
for some x ∈ Zd, the following holds: For each finite Λ ⊂ Zd there exists N ∈ N such that
ζn(x) ∈ [m̄1,0 − δ, m̄1,0 + δ] for all x ∈ Λ and all n ≥ N .

Proof. Recall our assumption λ0 = 1, which implies Mλ0 = m. For all x ∈ Zd, ζ ∈ [0,m]Z
d

and δ̃ > 0 we have

κ
∑
z 6=x

γxzζ(z) ≤ mκ.

That implies

fκ,l(ζ(x)) := ζ(x)(m−mκ− ζ(x)) ≤ fκ(x; ζ) ≤ ζ(x)(m− ζ(x)) =: fu(ζ(x)).

The non-zero fixed points of fκ,l and fu are respectively m̄l = m − mκ − 1 and m̄1,0.
Furthermore if mκ < δ then m̄1,0 − m̄l < δ.

According to Lemma 7 there is n1 ∈ N and a > 0 with the property

ζn(x) ≥ a ⇒ ζn+n1(y) ≥ a, ‖x− y‖∞ ≤ 1. (27)

Thus, for each finite Λ′ ⊂ Zd there is n2 ∈ N such that ζn2(x) ≥ a for all x ∈ Λ′.

According to Lemma 12 for each δ > 0 one can choose κ∗ and sequences (an) and (bn)
such that for all κ ≤ κ∗ the following holds

a0 ≤ a

fκ,l([an, bn]), fu([an, bn]) ⊂ [an+1, bn+1]
for some n0 ∈ N: an, bn ∈ [m̄0 − δ, m̄0 + δ] for all n ≥ n0.

A construction analogous to the proof of Lemma 9 concludes the proof.

The following lemma is a deterministic ingredient in our construction (see (DS1)), provid-
ing a shrinking sequence of intervals which the one-point iteration maps into themselves.
Having been unable to find a proof in the literature, we provide one here. The property
in question will hold for a concave f with 0 a repelling and another attracting fixed point
and does not depend on the particular functional form of f . On the other hand, as we also
need to consider a slightly perturbed version fδ (where in our case the perturbation is of a
particular functional form), we refrain from generality and stick to fδ, f : [0,m] → [0,m∗],

fδ(x) = x(m− δ − x)+, f(x) = x(m− x)+, (28)

where m∗ = m2/4 = max f = f(m/2). Recall that m̄ = m − 1, m̄δ = m − δ − 1 are the
(unique) attracting fixed points of f resp. fδ (we think of small δ).
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Lemma 12. Let m ∈ (1, 3), consider f, fδ as defined in (28). For each ε > 0 one
can choose positive γ and ε̃, a strictly increasing sequence (αn), and a strictly decreasing
sequence (βn) with the following properties:

(A) There exists N0 ∈ N s.t. αn, βn ∈ [m̄− ε, m̄ + ε] for all n ≥ N0.

(B) For all n ≤ N0 and 0 ≤ δ ≤ γ: fδ([αn, βn]), f([αn, βn]) ⊂
[

αn+1

1−ε̃ , βn+1

1+ε̃

]
.

Furthermore α0 > 0 can be chosen arbitrarily small and β0 < m can be chosen arbitrarily
close to m.

Proof. We wish to construct the sequences (αn) and (βn) in such a way that

αn < αn+1 < m̄γ ≤ m̄ < βn+1 < βn and (29)
fγ([αn, βn]), f([αn, βn]) ⊂ (αn+1, βn+1) (30)

for all n. This together with

m̄− ε < lim
n→∞

αn ≤ lim
n→∞

βn < m̄ + ε (31)

will suffice to conclude, as fγ(x) ≤ fδ(x) ≤ f(x) for 0 ≤ δ ≤ γ and (30) implies (B) for
each finite N0 and sufficiently small ε̃. The construction is slightly different depending on
whether the slope of f at its attractive fixed point m̄ is ∈ (0, 1), = 0 or ∈ (−1, 0), thus we
consider the cases m ∈ (1, 2), m = 2 and m ∈ (2, 3) separately.

Let m ∈ (1, 2), choose γ ∈ (0, ε) s.t. m − γ ∈ (1, 2). Take arbitrary α0 ∈ (0, m̄ − γ) and
β0 > m/2 s.t. fγ(β0) ≥ fγ(α0). This guarantees f([α0, β0]), fγ([α0, β0]) ⊂ [fγ(α0),m∗].
Define

αn+1 =
αn + fγ(αn)

2
, n ≥ 0,

β1 =
m∗ + m

2

2
and βn+1 =

f(βn) + βn

2
, n ≥ 1.

Note that m∗ < m/2 in the case considered, so the choice of β1 ensures (30) for n = 0 and
that f, fγ are increasing on [α0, β1]. As fγ(x) > x on (0, m̄γ) and f ′γ(m̄γ) ≥ 0, we have
αn < αn+1 < fγ(αn) for n ≥ 1. Thus αn ↗ m̄γ . Similarly, observing that x > f(x) ≥ m̄
for x ∈ (m̄,m/2), we have βn > βn+1 > fγ(βn) for n ≥ 1, hence βn ↘ m̄. This proves
(29), (30) and (31) in this case.

Let m = 2. In this case f(m/2) = m∗, so the values of f(βn) cannot be decreasing, and
we modify the construction as follows: Choose 0 < γ < ε. Pick α0 ∈ (0, γ), define

αn+1 =
fδ(αn) + αn

2
, βn =

2− γ

2
+

√
(2− γ)2/4− fγ(αn), n = 0, 1, . . .

As above, we have αn ↗ m̄γ = 2 − γ. Note that βn is the larger root of fγ(x) = fγ(αn),
and that the solutions of fγ(x) = m̄γ are m̄γ = 1− γ and 1 in the case m = 2, so that so
that f(βn) ≥ fγ(βn) > αn+1 and βn ↘ 1. Hence (29), (30) and (31) are satisfied.

Finally, let m ∈ (2, 3). Here, as m̄ > m/2, we need to observe that f([αn, βn]) will contain
m∗ as long as αn ≤ m/2, so βn must not decrease too quickly. Furthermore, as f ′(m̄) < 0,
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once we come close to m̄, the roles of the lower and upper boundary are interchanged in
each step.

Choose γ > 0 s.t. m − γ ∈ (2, 3) and m̄γ > fγ(m∗) > m/2. Pick α0 ∈ (0, (m − γ)/2).
While (αn + fγ(αn))/2 ≤ m/2 we set

αn+1 =
αn + fγ(αn)

2
.

Let n0 be the smallest integer satisfying (αn0 + fγ(αn0))/2 > m/2. We set

αn0+1 =
αn0 + fγ(αn0)

2
∧ 1

2

(m

2
+ fγ(m∗)

)
.

Now we choose β0, . . . , βn0 s.t. m∗ < βi < βi−1 < m and fγ(βi) > αi+1, i = 1, . . . , n0.
Note that this is possible because fγ(m∗) > m/2. Put βn0+1 = (βn0 + m∗)/2.

Let us check (29) and (30) for n ≤ n0: as fγ(x) > x for x ∈ (0, m̄γ) and fγ(m∗) < m̄γ , the
sequence (αn)n∈{0,...,n0+1} is strictly increasing. (βn)n∈{0,...,n0+1} is strictly decreasing by
construction. By definition we have

fγ(αn) ≥ 2αn+1 − αn > αn+1.

Note that while αn ≤ m/2, i.e. n ≤ n0 we always have

fγ([αn, βn]), f([αn, βn]) ⊂ (αn+1,m
∗] ⊂ (αn+1, βn+1).

For n ≥ n0 + 1 define

αn+1 =
1
2
(fγ(βn) + αn), βn+1 =

1
2
(βn + f(αn)). (32)

In order to verify (29) and (30) for n ≥ n0 + 1, consider

a ∈ (
m

2
, m̄γ), b ∈ (m̄,m) satisfying f(a) < b, fγ(b) > a. (33)

Note that then

a′ =
1
2
(a + fγ(b)) and b′ =

1
2
(b + f(a))

fulfil

a′ ∈ (a, m̄γ), b′ ∈ (m̄, b) and f(a′) < b′, fγ(b′) > a′.

Indeed, by assumption we have fγ(b) > a, so a′ > a. On the other hand fγ(b) < m̄γ

because fγ is decreasing in [m̄γ ,m] and b > m̄γ = fγ(m̄γ). As f is decreasing in the
considered region, we have

f(a′) < f(a) <
1
2
(b + f(a)) = b′.

Similarly, b′ ∈ (m̄, b) and fγ(b′) > a′.

Obviously a = αn0+1 and b = βn0+1 satisfy the condition (33), hence (29) and (30) hold
true for n > n0 as well.

By the above construction, αn ↗ α ∈ (m/2, m̄γ ], βn ↘ β ∈ [m̄,m∗), where (α, β) solves
f(α) = β, fγ(β) = α. For γ = 0, the unique solution would be α = β = m̄, for γ
sufficiently small, we have (31).
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Proof. (Proposition 2) Let Λ be a finite ball in Zd and ε > 0. Let n1 ∈ N be such that
(27) is fulfilled. For the sequences (αn), (βn) from Lemma 10 choose n0 s.t. βn − αn ≤ ε
for all n ≥ n0. Define Λ′ and Λ0, . . . ,Λn0 through

Λ′ = N(n0+n1)(Rλ+Rp)(Λ) and Λi = N(n0−i)(Rλ+Rp)(Λ), i ∈ {0, . . . , n0}.

According to Lemma 11 there exists n2 ∈ N such that ζn(x) ∈ [m̄1,0 − δ, m̄1,0 + δ] for all
x ∈ Λ0 and n ≥ n2. Then, for simplicity of notation we may assume n2 = 0. Now the rest
of the proof is a reproduction of the arguments from the proof of Lemma 9.

5 Coupling

In this section we prove Proposition 3 and Corollary 4. Let us first describe the idea behind
the successful coupling. Recall in (7) the definition of the processes ξ(1) and ξ(2). Consider
three large (but finite) boxes B1 ⊂ B2 ⊂ B3 ⊂ Zd and assume that ξ(1) and ξ(2) agree on
B1 with values close to m̄λ0 , that they are close to m̄λ0 but do not necessarily agree on
B2, and that on B3 all sites are occupied in both systems. In view of Lemma 7 we expect
that the region of sites which are occupied in both systems grows. If the competition
is not too strong the random system ‘follows closely’ the deterministic one. Thus, in
view of Proposition 2 we can hope that the region where both systems are close to the
deterministic equilibrium m̄λ0 is growing as well. Finally there is a chance that Poisson
variables whose means are close to each other produce the same realization. Therefore
there is also hope that the region where both systems are the same grows too.

Thus, for suitably tuned parameters we expect that with high probability the above sit-
uation will reproduce itself after some time on larger Boxes B′

1 ⊂ B′
2 ⊂ B′

3. As before
this observation lends itself to a comparison with finite range dependent percolation on a
coarse grained space-time grid. A certain subtlety stems from the problem that the coarse
graining must be chosen depending on λ0 in such a way that the dependence range of the
percolation does not diverge when taking λ0 small.

For k, l ∈ N we set Ak = Nk(Rλ+Rp+1)(0) and Ak,l = Nk(Rλ+Rp+1)+l(0). Let X (y, n),
(y, n) ∈ Zd×Z+ be the event that for some N ∈ N, to be chosen later, the following holds

ξ(1)
n (x) = ξ(2)

n (x) ∈
[m− 1− δ

λ0
,
m− 1 + δ

λ0

]
=: I(m, δ, λ0) for all x ∈ y + AN

ξ(1)
n (x), ξ(2)

n (x) ∈ I(m, δ, λ0) for all x ∈ y + A4N \AN

ξ(1)
n (x), ξ(2)

n (x) ∈
[
ε1m̄λ0 , (1− ε2)Mλ0

]
=: J(m,λ0) for all x ∈ y + A7N \A4N .

(34)

Our goal is to show that the process 1X (y,n) dominates oriented independent percolation
on a suitable sub-grid of Zd×Z+. The main part of the proof is carried out in Lemma 13
below. With this lemma one can use the Liggett, Schonmann and Stacey argument as we
have done in the proof of Theorem 1.

Let n∗ be as defined in (13) and note that this number only depends on m and on the
kernel p. As we will later choose N large, we will be able to choose it as a multiple of n∗.
In the sequel we will assume that N/n∗ is an integer.
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Lemma 13. For m ∈ (1, 3), p as in assumption (A1) and ε̃ > 0 there exist λ∗0, κ
∗ > 0

such that for each λ0 ≤ λ∗0, κ ≤ κ∗λ0 one can choose N such that

P
[
X (y, n + N) for all y with ‖x− y‖∞ ≤ N/n∗

∣∣X (x, n)
]
≥ 1− ε̃ (35)

holds for all x ∈ Zd.

Proof. Let m ∈ (1, 3) and ε̃ > 0 be given. Due to translation invariance and the Markov
property the left hand side in (35) does not depend on (x, n). Thus, it is enough to prove

P
[
X (y, N) for all y with ‖y‖∞ ≤ N/n∗

∣∣X (0, 0)
]
≥ 1− ε̃. (36)

Choose positive ε, δ and κ∗ satisfying

|m− 2|+ 2δ + κ∗(δ + m− 1) < 1− ε and κ∗ < min
{ δ

m− 1
,

ε

2(2 + δ)

}
. (37)

These constants also satisfy (23). Thus the properties of fκ (see (9)), proven in Lemma 10,
are preserved. Note that unlike the situation in Lemma 10 we do not set λ0 = 1 here.
Furthermore, similar to (24), (25) and (26) we obtain

‖∇fκ(x; ζ)‖1 ≤ 1− ε

2
, if ζ(y) ∈

[m− 1− δ

λ0
,
m− 1 + δ

λ0

]
for all y ∈ NRλ

(x). (38)

We choose k0 such that for all k ≥ k0 we have

|Ak+1|
|Ak|

(
1− ε

2

)
≤ |Ak0+1|

|Ak0 |

(
1− ε

2

)
=: c(ε) < 1. (39)

We will assume that N ≥ k0. We set X0 = X (0, 0) and XN = XN,1 ∩ XN,2 ∩ XN,3, where

XN,1 =
{
ξ
(1)
N (x) = ξ

(2)
N (x) ∈ I(m, δ, λ0) for all x ∈ A3N

}
XN,2 =

{
ξ
(1)
N (x), ξ(2)

N (x) ∈ I(m, δ, λ0) for all x ∈ A6N \A3N

}
XN,3 =

{
ξ
(1)
N (x), ξ(2)

N (x) ∈ J(m,λ0) for all x ∈ A7N,N/n∗ \A6N

}
.

Furthermore we define for each n ≤ N the event Ψn by

Ψn =
{
∀(x, k) ∈

n⋃
j=1

A4(N−j) × {j} : ξ
(1)
k (x), ξ(2)

k (x) ∈ I(m, δ, λ0)
}
.

As XN implies that X (y, N) holds for all y with ‖y‖∞ ≤ N/n∗, P
[
XN

∣∣X0

]
is a lower bound

for the left hand side of (36). Therefore it suffices to show P
[
X c

N

∣∣X0

]
≤ ε̃. Because

P
[
X c

N

∣∣X0

]
≤ P

[
X c

N,1 ∩ΨN

∣∣X0

]
+ P

[
X c

N,2 ∩ΨN

∣∣X0

]
+ P

[
X c

N,3

∣∣X0

]
+ P

[
Ψc

N

∣∣X0

]
, (40)

it suffices to estimate each of the summands. To do this we will repeatedly use large
deviation estimates for Poisson random variables. There are constants c1 and δ1 such that

P
[
Ψc

N

∣∣X0

]
≤ N |A4N | exp

(
−c1δ

2
1

λ0

)
. (41)

20



Now let us consider the first term on the right hand side of (40). We have

1
|A3N |

∑
x∈A3N

E[|ξ(1)
N (x)− ξ

(2)
N (x)|1ΨN

∣∣FN−1]

≤ 1ΨN−1

1
|A3N |

∑
x∈A3N

E[|ξ(1)
N (x)− ξ

(2)
N (x)|

∣∣FN−1]

≤ 1ΨN−1

1
|A3N |

∑
x∈A3N

∑
y∈NRp (x)

pyx

∑
z∈NRλ

(y)

|∇zfκ(y; ξ̃)||ξ(1)
N−1(z)− ξ

(2)
N−1(z)|

≤ 1ΨN−1

∑
z∈A3N+1

|ξ(1)
N−1(z)− ξ

(2)
N−1(z)| 1

|A3N |
∑

y∈NRλ
(z)

|∇zfκ(y; ξ̃)|
∑

x∈A3N

pxy

≤ 1ΨN−1

|A3N+1|
|A3N |

(
1− ε

2

) 1
|A3N+1|

∑
z∈A3N+1

|ξ(1)
N−1(z)− ξ

(2)
N−1(z)|

≤ 1ΨN−1
c(ε)

1
|A3N+1|

∑
z∈A3N+1

|ξ(1)
N−1(z)− ξ

(2)
N−1(z)|.

We can iterate the above argument to obtain on X0

1
|A3N |

∑
x∈A3N

E[|ξ(1)
N (x)− ξ

(2)
N (x)|1ΨN

∣∣F0] ≤ c(ε)N 1
|A4N |

∑
z∈A4N

|ξ(1)
0 (z)− ξ

(2)
0 (z)|

≤ c(ε)N 1
|A4N |

∑
z∈A4N\AN

2δm̄λ0 = c(ε)N |A4N \AN |
|A4N |

2δm̄λ0 ≤ c(ε)N2δm̄λ0

(42)

From this we obtain

P
[
X c

1,N ∩ΨN

∣∣X0

]
≤

∑
x∈A3N

E
[
|ξ(1)

N (x)− ξ
(2)
N (x)|1ΨN

]
≤ c(ε)N2m̄λ0δ|A3N |. (43)

Note that on X0 for all |x| ≤ Rλ + Rp we have ξ
(1)
n (x) = ξ

(2)
n (x) for all n ≤ N − 1.

To estimate the second term of the right hand side of (40) let (αn) and (βn) be sequences
from Lemma 12 satisfying α0 ≤ ε1(m−1) and β0 ≥ (1−ε2)m. Let κ∗ be small enough for
Theorem 1 and Proposition 2 to apply. Let N0 be the number from Lemma 12 such that
for all n ≥ N0 we have αn/((1 − δ̃)λ0), βn/((1 + δ̃)λ0) ∈ I(m,λ0, δ). Recall that in the
formulation of Lemma 12 we have chosen λ0 = 1 but it holds for general λ0. We assume
N0 ≤ N . If for all x ∈ NRλ+Rp(0) we have ξ0(x) ∈ [αn/λ0, βn/λ0], where ξ is a version
of the processes considered, then there exist positive constants c2 and δ2 such that for all
n ≤ N0 we have

P
[
ξ1(0) 6∈

[αn+1

λ0
,
βn+1

λ0

]]
= P

[
N (0,0)

(
F (0; ξ0)

)
6∈

[αn+1

λ0
,
βn+1

λ0

]]
≤ exp

(
−c2δ

2
2

λ0

)
,

because F (0; ξ0) ∈ [αn+1/((1− δ̃)λ0), βn+1/((1 + δ̃)λ0)]. It follows that

P
[
X c

N,2 ∩ΨN

∣∣X0

]
≤ N |A7N \A4N | exp

(
−c2δ

2
2

λ0

)
. (44)
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The upper bound for the third term on the right hand side of (40) is obtained as follows

P
[
X c

N,3

∣∣X0

]
= P

[
∃x ∈ A7N,N/n∗ : ξ

(1)
N (x), ξ(2)

N (x) 6∈ J(m,λ0)
∣∣X0

]
≤ P

[
∃k ∈ {1, . . . ,

N

n∗
− 1} ∃x ∈ A7N,k \A6N : ξ

(1)
kn∗(x) or ξ

(2)
kn∗(x) 6∈ J(m,λ0)

∣∣X0

]
≤

2N |A7N,N/n∗−1 \A6N |
n∗

θ(λ0), (45)

where θ(λ0) ≤ exp(−c3/λ0) for some positive c3 is defined in (20).

Let N be the smallest multiple of n∗ larger than 1/λ0. Using the above estimates one can
choose some positive c and r ∈ N such that

P
[
X c

N

∣∣X0

]
≤ exp

(
− c

λ0

)
N r.

The right hand side goes to zero as λ0 goes to zero. Thus, (36) follows.

Before we turn to the proof of Proposition 3 we need a result about oriented percolation.
Let θ ∈ (0, 1) be given and let A(x, n), (x, n) ∈ Zd×Z+ be i.i.d. Bernoulli random variables
with parameter θ. For k < n we say that (x, k) is connected to (y, n), this will be denoted
by (x, k) → (y, n), if there is a sequence x = x0, . . . , xn−k = y such that ‖xi − xi−1‖∞ ≤ 1
and A(xi, k + i) = 1 for i = 1, . . . , n− k. Let C0 = {(x, n) : (0, 0) → (x, n)} be the cluster
of the origin. We call a space time-point (y, n) C0-exposed if there exists a sequence
yn, . . . , y0 such that yn = y, ‖yk − yk−1‖∞ ≤ 1, and (yk, k) 6∈ C0, k = 1, . . . , n.

The next lemma follows from Durrett (1992). The idea behind the proof is as follows:
With the ‘usual’ percolation interpretation in mind, let us call a site (x, n) wet if there is
a backwards path (x, n) = (x0, n), (x1, n − 1), . . . , (xn, 0) with ‖xi − xi−1‖ ≤ 1 consisting
only of open sites, i.e. A(xi, n − i) = 1, i = 0, 1, . . . , n − 1. Otherwise, the site will be
called dry. Lemma 7 in Durrett (1992) shows, using a contour-counting argument, that if
θ is sufficiently close to 1, the dry sites do not percolate. In fact, this lemma even obtains
an exponential bound on the tail of the size of the cluster of dry sites containing a given
site. The next ingredient is complete convergence for oriented percolation (Durrett 1992,
Lemma 8): When θ is close enough to 1, there is a fixed c > 0 and a random N0 such
that on {|C0| = ∞}, {(x, n) : (x, n) wet and ‖x‖ ≤ cn} ⊂ C0 for all n ≥ N0. In
words, any wet site inside the ‘cone’ {(x, n) : ‖x‖ ≤ cn, n ≥ N0} is also connected to
(0, 0) by an open path. Fix c′ ∈ (0, c). Assume that {|C0| = ∞}, consider (y, n) with
‖y‖ ≤ c′n and n ≥ 2N0, say. If (y, n) is C0-exposed, there must be a backwards path
(y, n) = (y0, n), (y1, n − 1), . . . , (yn, 0) with (yi, n − i) 6∈ C0. By the above, at least the
initial n(c− c′)/2 of these sites must be dry (for otherwise, they would be in C0, as they
must satisfy ‖yi‖ ≤ c(n− i). Hence, there must be a cluster of dry sites containing a point
in {(x, n) : ‖x‖ ≤ c′n} of size at least n(c− c′)/2. By the exponential bound on the cluster
size distribution and the Borel-Cantelli Lemma, this does not occur for n sufficiently large.

Lemma 14. If θ is sufficiently close to 1 then there is a positive constant c such that
for large enough times n conditional on {|C0| = ∞} there are no C0-exposed sites in
{x ∈ Zd : ‖x‖∞ ≤ cn}.

Proof. (Proposition 3) Recall the definition of the event X (y, n) from (34). Theorem 1
implies that, conditioned on non-extinction of

(
ξ
(1)
n

)
and

(
ξ
(2)
n

)
, with probability one there
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exist some finite time N0 such that the event X (0, N0) holds. Therefore we may assume a
priori that X (0, 0) holds.

We set Ñ =
[
N/(2n∗)

]
, B = {(x, n) ∈ Z

d × Z+

∣∣‖x‖∞ ≤ N,n ≤ N}, L = ÑZd and
K = NZ+. Then we have

Z
d × Z+ =

⋃
(α,ν)∈L×K

(
(α, ν) + B

)
.

Let ‖·‖L be the norm on L defined by ‖α‖L = ‖α‖∞/Ñ . To prove the theorem it is enough
to show that for each x∗ ∈ Zd there is time T , such that ξ

(1)
n (x∗) = ξ

(2)
n (x∗) holds for all

n ≥ T . Let us fix an arbitrary x∗ ∈ Zd and let α∗ ∈ L be such that ‖α∗ − x∗‖∞ ≤ Ñ . We
define a process (ην) on the coarse-grained lattice L×K by

η0(α) = 1X (α,0) and ην(x) = 1X (α,ν−N), ν > 0.

Note that 1X (α,ν−N) = 1 for ν > 0 ensures that ξ
(1)
k (y) = ξ

(2)
k (y) holds for all (y, k) ∈

(α, ν −N) + B, because any backwards in time path starting in (y, k) will at time ν −N
be inside α+AN , where ξ(1) and ξ(2) are the same on the event X (α, ν−N). In particular
ην(α∗) = 1 implies ξ

(1)
k (x∗) = ξ

(2)
k (x∗) for all k ∈ {ν − N, . . . , ν}. We aim at showing

that for suitable choice of parameters the process (ην) dominates oriented percolation on
L×K. To this end we need to estimate

P
[
ην+N (β) = 1, ‖α− β‖L ≤ 1

∣∣ ην(α) = 1
]
,

whereas, due to translation invariance, it is enough to consider the corresponding prob-
ability for (α, ν) = (0, 0). By the construction of (ην) and Lemma 13 for each positive ε̃
one can choose λ0, κ and N such that

P
[
ηN (β) = 1, ‖β‖L ≤ 1

∣∣ η0(0) = 1
]
≥ P

[
X (z,N), ‖z‖∞ ≤ N

n∗

∣∣∣ X (0, 0)
]
≥ 1− ε̃.

From the proofs of Theorem 1 and Lemma 13 it can be seen that for x with ‖x‖∞ ≤
1 the event X (Ñx,N) is independent of the Poisson processes (which generate

(
ξ
(1)
n

)
and

(
ξ
(2)
n

)
) outside the box

{
(y, k) ∈ Zd × Z+ : k ≤ N, ‖y‖∞ ≤ (8N + 2)(Rλ + Rp)

}
.

Therefore, (ην) can be considered as M -dependent oriented percolation on L×K, where
M = 20n∗(Rλ + Rp) ≥ (8N + 2)(Rλ + Rp)/Ñ . Note that M does not depend on N and
λ0. Thus, the fact that we need to make λ0 small does not affect the comparison.

Let θ be close enough to 1 such that Lemma 14 holds. For ε̃ ∈
(
0, (1 −

√
θ)∆

)
, where

∆ = |{(α, ν) ∈ L×K : ν ∈ {0, N}, ‖α‖L ≤ M}|, we have

P
[
ηN (β) = 1, ‖β‖L ≤ 1

∣∣ η0(0) = 1
]
≥ 1− (1−

√
θ)∆.

As in the proof of Theorem 1, according to Theorem B26 in Liggett (1999), (ην) dominates
nearest neighbour oriented percolation build from the product measure νθ on {0, 1}L×K .
Thus we obtain P

[
|Cη| = ∞

]
> 0, where Cη ⊂ L×K is the cluster of the origin generated

by (ην). By Lemma 14, conditioned on {|Cη| = ∞}, there is a time T such that the points
(α∗, ν) ∈ L×K with ν ≥ T are not Cη-exposed.

We claim that for each n ≥ T , conditioned on {|Cη| = ∞}, we have ξ
(1)
n (x∗) = ξ

(2)
n (x∗). If

we assume the contrary then there must be a path (x∗, n) = (xn, n), (xn−1, n−1), . . . , (x0, 0)
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in Zd×Z+ such that ‖xi+1−xi‖∞ ≤ Rλ+Rp and ξ
(1)
i (xi) 6= ξ

(2)
i (xi) for all i ∈ {0, . . . , n−1}.

From this path we discard the points (xi, i) for which i is not a multiple of N , thus obtaining
for some integer k the path (xkN , kN), (x(k−1)N , (k−1)N), . . . , (x0, 0). To this path belongs
a path (α∗, (k + 1)N), (αkN , kN), . . . , (α0, 0) in L ×K where for j ∈ {1, . . . k} we choose
αjN such that (x(j−1)N , (j − 1)N) ∈ (αjN , jN) + B and α0 such that ‖α0 − x0‖∞ ≤ N .
The assumption means that ηiN (αiN ) = 0 for all i ∈ {0, . . . , k}. This contradicts the fact
that (α∗, (k + 1)N) is not Cη-exposed.

Proof. (Corollary 4) The sequence (ξn), seen as a sequence of random measures on Zd,
is relatively compact with respect to convergence in distribution in the vague topology
because the expectation of ξn(x) is bounded uniformly by m∗

λ0
.

It is clear that Dirac measure in 0 ∈ ZZd

+ is invariant. If there were two invariant distribu-
tions assigning probability 0 to the configuration 0, then Proposition 3 would imply that
they coincide on finite subsets of Zd and therefore they must be equal.

It remains to prove the existence of a limiting invariant distribution µ satisfying µ(0) =
0. Let the initial distribution µ0 be the product measure on Z

d such that ξ0(x) =
N (0,x)

(
m̄(λ0, κ)

)
for all x ∈ Z

d. Let µn be the distribution of ξn. Then the Cesaro
average 1/N

∑N
n=0 µn converges along some subsequence {Nk} to some measure µ̄. This

measure is invariant for (ξn) (see e.g. Liggett (1985, Proposition I.1.8)).

To show µ̄(0) = 0 it is enough to prove that the restriction of (ξn) to Z survives with
probability 1. At time 0 each site is occupied in the sense of Definition 6 with probability

P
[
N (0,0)(m̄(λ0, κ)) ∈ [ε1m̄λ0 , (1− ε2)Mλ0 ]

]
,

where ε1 and ε2 are as in the proof of Lemma 7. In particular at time 0 there are
infinitely many occupied sites. Again by comparison with oriented percolation we have
Pξ0 [ξn = 0 for some n] = 0 because supercritical percolation starting from infinitely many
wet sites does not die out (see e.g. Theorem B24 in Liggett (1999)).
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