
Weierstra�-Institutf�ur Angewandte Analysis und Sto
hastikim Fors
hungsverbund Berlin e.V.Preprint ISSN 0946 { 8633Regression methods in pri
ing Ameri
an andBermudan options using 
onsumption pro
essesDenis Belomestny, 1 Grigori N. Milstein 2 and Vladimir Spokoiny 3submitted: 22nd June 20061 Weierstrass Institutefor Applied Analysis and Sto
hasti
s,Mohrenstr. 39, 10117Berlin, GermanyE-Mail: belomest�wias-berlin.de 2 Department of Mathemati
s,Ural State University,Lenin Str. 51, 620083Ekaterinburg, RussiaE-Mail: Grigori.Milstein�usu.ru3 Weierstrass Institutefor Applied Analysis and Sto
hasti
s,Mohrenstr. 39, 10117Berlin, GermanyE-Mail: spokoiny�wias-berlin.deNo. 1145Berlin 2006
W I A S2000 Mathemati
s Subje
t Classi�
ation. 60H30, 65C05, 91B28 .Key words and phrases. Ameri
an and Bermudan options, low and upper bounds, Monte Carlomethod, 
onsumption pro
ess, regression methods, optimal stopping times.



Edited byWeierstra�-Institut f�ur Angewandte Analysis und Sto
hastik (WIAS)Mohrenstra�e 3910117 BerlinGermanyFax: + 49 30 2044975E-Mail: preprint�wias-berlin.deWorld Wide Web: http://www.wias-berlin.de/



Abstra
t. Here we develop methods for eÆ
ient pri
ing multidimensional dis
rete-time Ameri
an and Bermudan options by using regression based algorithms to-gether with a new approa
h towards 
onstru
ting upper bounds for the pri
e ofthe option. Applying the sample spa
e with payo�s at the optimal stopping times,we propose sequential estimates for 
ontinuation values, values of the 
onsumptionpro
ess, and stopping times on the sample paths. The approa
h admits 
onstru
t-ing both low and upper bounds for the pri
e by Monte Carlo simulations. Themethods are illustrated by pri
ing Bermudan swaptions and snowballs in the Libormarket model. 1. Introdu
tionValuation of high-dimensional Ameri
an and Bermudan options is one of the mostdiÆ
ult numeri
al problems in �nan
ial engineering. Besides its pra
ti
al relevan
e,investigations in this �eld are of great theoreti
al importan
e be
ause pri
ing ofthe Ameri
an style options is an ar
hetype for high-dimensional optimal stoppingproblems. Several approa
hes have been proposed re
ently for pri
ing su
h optionsusing Monte Carlo simulation te
hnique (see, e.g. [1℄-[12℄, [14℄-[17℄, [21, 22, 24℄and referen
es therein). With simulation approa
hes it is often an open questionwhether or not an obtained numeri
al result is suÆ
iently a

urate. As a rule,during the realization of a numeri
al pro
edure there arise many errors of di�erentkind whi
h are diÆ
ult to take into a

ount. That is why in a number of works (see,e.g. [3, 4, 14, 15, 16, 17, 21, 22℄), di�erent pro
edures are proposed that are ableto produ
e lower and upper bounds for the true pri
e. The knowledge of lower andupper bounds makes possible to evaluate the a

ura
y of pri
e estimates. Our aimis to 
onstru
t e�e
tive numeri
al methods providing with both lower and upperbounds for the pri
e of Ameri
an and Bermudan options.In [3℄ we develop an approa
h for pri
ing Ameri
an options both in the 
ase ofdis
rete-time and 
ontinuous-time �nan
ial models. The approa
h is based on thefa
t that an Ameri
an option is equivalent to a European one with a 
onsumptionpro
ess involved (the so 
alled Earlier Exer
ise Premium representation). It allowsus, in prin
iple, to 
onstru
t iteratively a sequen
e v1; V 1; v2; V 2; v3; :::, wherev1; v2; v3; :::; is an in
reasing sequen
e of lower bounds and V 1; V 2; :::, is ade
reasing sequen
e of upper bounds. Unfortunately, the 
onstru
tion of the abovesequen
e of bounds requires very laborious 
al
ulations. Even V 2 is, as a rule,too expensive. In [4℄ we propose to use an in
reasing sequen
e of low boundsfor 
onstru
ting both upper bound and low bound at initial position (t0;X0). Itis assumed that the sequen
e is not too expensive from 
omputational point ofview. This 
an be a
hieved by using lo
al low bounds whi
h take into a

ounta small number of steps ahead. The method of [4℄ is suitable for getting roughestimates. However, for obtaining more a

urate results one needs rather expensive
al
ulations.Let us 
onsider a dis
rete-time �nan
ial model(Bti;Xti) = (Bti ;X1ti; :::;Xdti); i = 0; 1; :::;I;1



where Bti is pri
e of a s
alar riskless asset (we assume that Bti is deterministi
 andBt0 = 1) and Xti = (X1ti ; :::;Xdti) is pri
e ve
tor of risky assets. Along with indexti we shall use below the index i, writing (ti;Xi) instead of (ti;Xti). Let fi(x) bea payo� at time ti provided that Xti = Xi = x; x 2 X � Rd; where X is a statespa
e (e.g., X = Rd, X = Rd+).We assume that the modelling is based on the �ltered spa
e (
;F ; (Fi)0�i�I ; P ),where the probability measure P is the risk-neutral pri
ing measure for the prob-lem under 
onsideration, and Xi is a Markov 
hain with respe
t to the �ltration(Fi)0�i�I :With respe
t to the probability measure P the dis
ounted pro
ess Xi=Bi is a mar-tingale and the pri
e ui(Xi) of the Ameri
an option is given by(1.1) ui(x) = sup�2Ti;I BiE�f� (X ti;x� )B� � :In (1.1) X ti;xtj is the value of Markov 
hain at instant tj � ti starting at ti from x;Ti;I is set of stopping times � taking values in fi; i+ 1; :::;Ig:The value pro
ess ui (Snell envelope) 
an be determined by indu
tion as follows:uI(x) = fI(x);(1.2) ui(x) = max�fi(x); BiE �ui+1(Xi+1)Bi+1 jXi = x�� ; i = I � 1; :::; 0:We see that theoreti
ally the problem of evaluating u0(X0); the pri
e of the dis
rete-time Ameri
an option at the initial position (t0;X0), is easily solved using iterationpro
edure (1.2). However, if X is high dimensional and I is large, the iterationpro
edure is not pra
ti
al.In order to use regression methods for sequential evaluation of ui, one 
an 
onsiderthe (d+ 1)-dimensional sample(1.3) (mXi; BiBi+1ui+1(mXi+1)); m = 1; :::;M; i = 0; :::;I � 1;from (Xi; ui+1(Xi+1)); where (ti; mXi) are M independent traje
tories all startingfrom the point (t0;X0) (see, e.g., [24℄ and [12℄).The samples using optimal stopping times � ti;x = � i;x were �rst introdu
ed in [19℄(see [9℄ and [12℄ as well). They are from (Xi; f�(X ti+1;Xi+1� )) = (Xi; f� (X ti;Xi� ));with � = � ti+1;Xi+1 and have the form(1.4)(mXi; BiB� f� (mX ti+1 ; mXi+1� )) = (mXi; BiB� f� (mX ti ; mXi� )); � = � ti+1; mXi+1 ; m = 1; :::;M:Applying (1.3), we use some estimate ûi+1(Xi+1) instead of ui+1(Xi+1) while ap-plying (1.4), we 
an employ an estimate �̂ = �̂ ti+1; Xi+1 for � ti+1; Xi+1 . This makespossible to 
onstru
t a low bound for 
ontinuation value (low 
ontinuation value)and an upper bound for 
onsumption pro
ess (upper 
onsumption pro
ess). If the2



payo� at (ti; mXi) is less or equal to a low 
ontinuation value, then �rst, the posi-tion (ti; mXi) belongs to the 
ontinuation region (
onsequently, it is natural to take�̂ ti; mXi = �̂ ti+1; mXi+1) and se
ond the 
onsumption pro
ess at (ti; mXi) is equal tozero. Otherwise the position (ti; mXi) 
an belong either to the exer
ise region orto the 
ontinuation region. In the latter 
ase we 
ompute the upper 
onsumptionpro
ess at (ti; mXi) as a di�eren
e between the payo� and the low 
ontinuationvalue and set �̂ ti; mXi = ti. As a result all the positions (ti; mXi) are equipped withstopping times and 
onsumption pro
esses. Due to this it be
omes possible to �ndthe low and upper bounds for the pri
e of the option under 
onsideration at theinitial position (t0;X0).In Se
tion 2, we re
all the approa
h (see [3℄, [4℄) to pri
ing Ameri
an and Bermudanoptions using 
onsumption pro
esses in the form suitable for our purposes. Fur-thermore, we give here a 
omparison with the dual approa
h (see [21℄, [14℄) for the�rst time. In Se
tion 3, we propose a number of algorithms for subsequent esti-mating optimal stopping times and 
ontinuation values using di�erent regressionmethods. Spe
ial attention is paid to linear regression methods (see [19℄ and [9℄).In 
ontrast to other works using the regression approa
h in pri
ing Ameri
an andBermudan options, we 
onstru
t together with an estimate of 
ontinuation value anupper 
onsumption pro
ess. Se
tion 4 gives formulas for the Monte Carlo 
al
ula-tion of low and upper bound at the initial position (t0;X0). Se
tion 5 is devotedto simulations: the results of numeri
al experiments for Bermudan swaptions and
an
ellable snowballs in a full fa
tor Libor market model 
on�rm eÆ
ien
y of theproposed algorithms. Finally, in Appendix we show that using of pro
edure (1.2)and sample (1.3) for sequential evaluating ui(Xi) together with modern methods ofmultidimensional approximation (see e.g., [10℄, [25℄ and referen
es therein) 
an givee�e
tive algorithms for pri
ing high-dimensional Ameri
an and Bermudan options.2. The approa
h based on 
onsumption pro
essesTo be self-
ontained, let us brie
y re
all the approa
h to pri
ing Ameri
an andBermudan options using 
onsumption pro
esses [3℄.2.1. The 
ontinuation value, the 
ontinuation and exer
ise regions. For the
onsidered Ameri
an option, let us introdu
e the 
ontinuation value(2.1) Ci(x) = BiE�ui+1(Xi+1)Bi+1 jXi = x� ; i = 0; :::;I � 1; CI(x) = fI(x);the 
ontinuation region C and the exer
ise (stopping) region E :C = f(ti; x) : fi(x) < Ci(x)g ;(2.2) E = f(ti; x) : fi(x) � Ci(x)g :Clearly, (tI; x) 2 E for any x.Let X i;xj ; j = i; i+1; :::;I; be the Markov 
hain starting at the step i from the pointx : X i;xi = x; and mX i;xj ; m = 1; :::;M; be independent traje
tories of the Markov3




hain. The Monte Carlo estimator ûi(x) for ui(x) (in the 
ase when E is known) hasthe form(2.3) ûi(x) = 1M MXm=1 BiB� f(mX i;x� );where � is the �rst time at whi
h X i;xj gets into E (of 
ourse, � in (2.3) dependson i; x; and m : � =m � i;x). Thus, for estimating ui(x), it is suÆ
ient to examinesequentially the position (tj; mX i;xj ) for j = i; i+ 1; :::;I whether it belongs to E ornot.Let us give a simple suÆ
ient 
ondition for moving along the traje
tory using a lowbound v: Introdu
e the setCv = �(tk; x) : fk(x) < BkE�vk+1(Xk+1)Bk+1 jXk = x�� :Sin
e Cv � C, the suÆ
ient 
ondition 
onsists in ful�lment of the in
lusion (tj; mX i;xj ) 2Cv.Clearly, if v1i ; :::; vli are some lower bounds, then the fun
tion vi(x) = max1�k�l vki (x)is a lower bound as well. Besides, fi(x) is also a lower bound. Hen
eforth we 
onsiderlower bounds satisfying the inequality vi(x) � fi(x):2.2. Equivalen
e of Ameri
an options to European ones with 
onsumptionpro
esses involved. For 0 � i � I�1 equation (1.2) 
an be rewritten in the form(2.4) ui(x) = BiE �ui+1(Xi+1)Bi+1 jXi = x�+�fi(x)�BiE�ui+1(Xi+1)Bi+1 jXi = x��+ :Introdu
e the fun
tions(2.5) 
i(x) = �fi(x)�BiE �ui+1(Xi+1)Bi+1 jXi = x��+ ; i = I � 1; :::; 0:Due to (2.4), we haveuI�1(XI�1) = BI�1E �fI(XI)BI jFI�1�+ 
I�1(XI�1);uI�2(XI�2) = BI�2E�uI�1(XI�1)BI�1 jFI�2�+ 
I�2(XI�2)= BI�2E �fI(XI)BI jFI�2�+BI�2E �
I�1(XI�1)BI�1 jFI�2�+ 
I�2(XI�2):Doing in just the same way further, we getui(Xi) = BiE�fI(XI)BI jFi�+Bi I�(i+1)Xk=1 E�
I�k(XI�k)BI�k jFi�(2.6) +
i(Xi); i = 0; :::;I � 1:4



Putting X0 = x and re
alling that B0 = 1; we obtain(2.7) u0(x) = E�fI(XI)BI �+ 
0(x) + I�1Xi=1 E�
i(Xi)Bi � :Formula (2.7) gives the value of the European option with the payo� fun
tion fi(x)and with the 
onsumption pro
ess 
i de�ned by (2.5).2.3. Upper and low bounds using 
onsumption pro
esses. The obtained re-sult about equivalen
e of the dis
rete-time Ameri
an option to the European optionwith the 
onsumption pro
ess 
annot be used dire
tly be
ause ui(x) and 
onse-quently 
i(x) are unknown. We take advantage of the dis
overed 
onne
tion in thefollowing way (see [3℄).Let vi(x) be a lower bound on the true option pri
e ui(x):We introdu
e the fun
tion(upper 
onsumption pro
ess)(2.8) 
i;v(x) = �fi(x)�BiE�vi+1(Xi+1)Bi+1 jXi = x��+ ; i = 0; :::;I � 1:Clearly, 
i;v(x) � 
i(x):Hen
e the pri
e Vi(x) of the European option with the payo� fun
tion fi(x) andwith the upper 
onsumption pro
ess 
i;v(x) is an upper bound: Vi(x) � ui(x):Conversely, if Vi(x) is an upper bound on the true option pri
e ui(x) and(2.9) 
i;V (x) = �fi(x)�BiE �Vi+1(Xi+1)Bi+1 jXi = x��+ ; i = 0; :::;I � 1;then 
i;V (x) � 
i(x):and the pri
e vi(x) of the European option with the low 
onsumption pro
ess 
i;V (x)is a lower bound: vi(x) � ui(x):Thus, starting from a lower bound v1i (x); one 
an 
onstru
t the upper bound V 1i (x)as the European option with the 
onsumption pro
ess 
i;v1(x) and so on. Thispro
edure gives us the sequen
es v1i (x) � v2i (x) � v3i (x) � ::: � ui(x); and V 1i (x) �V 2i (x) � ::: � ui(x). All the bounds vk and V k 
an in prin
iple be evaluated bythe Monte Carlo simulations. However ea
h further step of the pro
edure requireslabor-
onsuming 
al
ulations and in pra
ti
e it is possible to realize only a few stepsof this pro
edure. In this 
onne
tion, mu
h attention is given to varian
e redu
tionte
hnique and some 
onstru
tive methods redu
ing statisti
al errors are proposed(see [3℄).2.4. Comparison with the dual approa
h. Without loss of generality we assumein this se
tion that Bi � 1. The dual approa
h, developed in [21℄ and [14℄ is based5



on the following observation. For any 0 � i � I and any supermartingale (Sj)i�j�Iwith Si = 0 we have thatui(Xi) = sup�2Ti;I E (f� (X� )jFi) � sup�2Ti;I E (f� (X� )� S� jFi)(2.10) � E �maxi�j�I (fj(Xj)� Sj) jFi� ;hen
e the right-hand side provides an upper bound for ui(Xi). It 
an be shownthat the equality in (2.10) is attained at the martingale part of the Doob-Meyerde
omposition of the pri
e pro
ess ui:Mi = 0; Mj = jXl=i+1 (ul(Xl)� E (ul(Xl)jFl�1)) ; i < j � I:The duality representation provides a simple way to estimate the Snell envelope fromabove, using a lower approximation pro
ess fvi(Xi)g. Let Mv be the martingaleMv0 = 0;(2.11) Mvj =Mvj�1 + vj(Xj)� E (vj(Xj)jFj�1)= jXl=1 vl(Xl)� jXl=1 E (vl(Xl)jFl�1) ; 1 � j � I:Then, for any 0 � i � I the pro
ess fMij = Mvj �Mvi ; j = i; : : : ;I, is a martingalewith fMii = 0 and a

ording to (2.10)V Di (Xi) := E �maxi�j�I �fj(Xj)� fMij� jFi� � ui(Xi):In parti
ular, for i = 0V D0 (X0) = v0(X0)+ E "max0�j�I fj(Xj)� vj(Xj) + j�1Xl=0 (E (vl+1(Xl+1)jFl)� vl(Xl))!# :(2.12)The upper bound V0(X0) obtained in se
tion 2.3 
an be transformed toV0(X0) = E (fI(XI )) + E I�1Xi=0 [fi(Xi)�E (vi+1(Xi+1)jFi)℄+= v0(X0) + E I�1Xi=0 (maxffi(Xi); E (vi+1(Xi+1)jFi)g � vi(Xi)) ;(2.13)where it is assumed thatfi(Xi) � vi(Xi); i = 0; : : : ;I � 1; vI(XI) = fI(XI):It is interesting to 
ompare V0 and V D0 starting from the same low bound vi. A 
om-prehensive 
omparison of V0(X0) and V D0 (X0) seems to be diÆ
ult and we restri
t6



ourselves to some examples. First, we 
onstru
t examples where V0(X0) � V D0 (X0).Let us de�ne � := minf0 � i � I � 1 : fi(Xi) � E (vi+1jFi)g ;and � = I if fi(Xi) < E (vi+1jFi) for all i. We see that if � = I orfi(Xi) � E (vi+1(Xi+1)jFi) ; i � �;with probability 1, thenV0(X0) = v0(X0) + E ��1Xi=0 (E (vi+1(Xi+1)jFi)� vi(Xi))+ E(f� (X� )� v�(X� )) + E I�1Xj=�+1 (fj(Xj)� vj(Xj)) � V D0 (X0):The stri
t inequality V0 < V D0 is a
hieved in the following simple example withI = 3. Due to (2.12), the dual pri
e at time 0 
an be 
omputed via the formulaV D0 = Emaxff0; f1 � v1 + Ev1;maxff2; E(u3jF2)g+ Ev1 + E(v2jF1)� v1 � v2g= Emaxff0; f1 � v1 + Ev1; E(v2jF1) + u2 � v2 � v1 + Ev1g= Emaxff0;maxff1; E(v2jF1) + u2 � v2g � v1 + Ev1g;(2.14)where we use the equality u2 = maxff2; E(u3jF2)g and the dependen
e of quanti-ties involved on the underlying pro
ess Xi is not shown expli
itly for the sake ofsimpli
ity. Formula (2.13) givesV0 = Emaxff0; Ev1g+ E(maxff1; E(v2jF1)g � v1)+ E(maxff2; E(v3jF2)g � v2):(2.15)Let us take 
onstant payo�s satisfyingf0 < f1 < f2 < f3; f1 + f2 < f0 + f3:Clearly, ui = f3; i = 0; : : : ; 3 and any low bound vi satis�esf0 � v0 � f3; f1 � v1 � f3; f2 � v2 � f3; v3 = f3:Formula (2.15) gives V0 = f3 and (2.14) impliesV D0 = Emaxff0; E(v2jF1) + f3 � v2 + Ev1 � v1g:Clearly, V D0 � E[E(v2jF1) + f3 � v2 + Ev1 � v1℄ = f3:If v1 and v2 are su
h that the inequalityE(v2jF1) + f3 � v2 + Ev1 � v1 � f0is ful�lled with probability 1, then V D0 = f3. However, if(2.16) E(v2jF1) + f3 � v2 + Ev1 � v1 < f0with positive probability, thenmaxff0; E(v2jF1) + f3 � v2 + Ev1 � v1g > E(v2jF1) + f3 � v2 + Ev1 � v17



with the same probability and 
onsequently V D0 > V0. The inequality (2.16) isa
hieved, for example, if Ev1 is 
lose to f1, E(v2jF1) is 
lose to f2 and v1 and v2 areequal to f3 with positive probability.At the same time it is possible to 
onstru
t examples when V D0 � V0. Indeed, let ustake vi(Xi) = fi(Xi) for all i = 0; : : : ;I � 1, then a

ording to (2.12)V D0 = f0 + E "max0�j�I j�1Xl=0 (E (fl+1jFl)� fl)#and due to (2.13) V0 = f0 + I�1Xi=0 (E (fi+1jFi)� fi)+ � V D0 :However, the method based on the representation (2.6) has some advantages overdual approa
h. First, V0(X0) depends on vi monotoni
ally that is if we have twolow bounds v and ~v su
h that vi(Xi) � ~vi(Xi) for all i, then V0(X0) � ~V0(X0). Thisimmediately follows from the �rst line in (2.13). For the dual method this is notalways the 
ase. Indeed, with three exer
ises (I = 2) formula (2.12) givesV D0 = Emaxff0; E(v1jF0) + u1 � v1g:Consider the 
ase when the probability of eventA := fEv1�u1�v1 � f0g is positiveand v1 < u1 � � with some 
onstant � > 0. Then taking ~v1 = v1 + �=2 on A and~v1 = v1 + � outside A we obtain~V D0 := Emaxff0; E(~v1jF0) + u1 � ~v1g > V D0 ;though ~v1 > v1. Se
ond, adaptive lo
al low bounds of the formvi(x) = max1�k�l vki (x); i = 0; : : : ;I � 1;where v1(x); : : : ; vl(x) are low bounds at x ordered a

ording to their 
omplexityand l may depend on x, 
an be used to 
onstru
t V0(X0) (see [4℄). Third, V0(X0) is
omputationally less expensive than V0(X0). It is also worthwhile mentioning thatour approa
h allows us to 
onstru
t low bounds using upper ones.2.5. Bermudan options. As before we 
onsider the dis
rete-time model(Bi;Xi) = (Bi;X1i ; :::;Xdi ); i = 0; 1; :::;I:However, now an investor 
an exer
ise his right only at time belonging to the set ofstopping times S = fs1; :::; slg within f0; 1; :::;Ig where sl = I. The pri
e ui(Xi) ofthe Bermudan option is given byui(Xi) = sup�2TS\[i;I℄BiE�f�(X� )B� jFi� ;where TS\[i;I℄ is the set of stopping times � taking values in fs1; :::; slg\fi; i+1; :::;Ig:8



The value pro
ess ui is determined as follows:uI(x) = fI(x);ui(x) =8>><>>: max�fi(x); BiE�ui+1(Xi+1)Bi+1 jXi = x�� ; i 2 S;BiE �ui+1(Xi+1)Bi+1 jXi = x� ; i =2 S:Thus, we obtain that the Bermudan option is equivalent to the European optionwith the payo� fun
tion fi(x) and with the 
onsumption pro
ess 
i de�ned by
i(x) = 8<: �fi(x)�BiE�ui+1(Xi+1)Bi+1 jXi = x��+ ; i 2 S;0; i =2 S:From here all the results for dis
rete-time Ameri
an options obtained in this se
tion
an be 
arried over to the Bermudan options. For example, if vi(x) is a lower boundof the true option pri
e ui(x), the pri
e Vi(x) of the European option with the payo�fun
tion fI(x) and with the 
onsumption pro
ess
i;v(x) = 8<: �fi(x)�BiE�vi+1(Xi+1)Bi+1 jXi = x��+ ; i 2 S;0; i =2 S;is an upper bound: Vi(x) � ui(x):3. Optimal stopping times and algorithms with low 
ontinuation valuesThe samples with optimal stopping times are introdu
ed �rst in [19℄ (see [9℄ as well).3.1. Basi
 relations for optimal stopping times. The optimal stopping time� i;x = � ti;x depends on the initial position (ti; x): It is de�ned re
urrently by thedynami
 programming prin
iple in the following way. We set� I;x = �T;x = T;(3.1) � i;x = ti�fCi(x)�fi(x)g + � i+1;Xi;xi+1�fCi(x)>fi(x)g= ti�fui(x)=fi(x)g + � i+1;Xi;xi+1�fui(x)>fi(x)g;i = I � 1; :::; 0:Thus, for any position (ti; x); the optimal stopping time � i;x is either equal to ti :� i;x = ti; or � i;x > ti: It is also 
lear that (ti; x) is a stopping point (i.e., � i;x = ti)i� (ti; x) 2 E (i.e., (ti; x) belongs to the exer
ise region). The instant � i;x is the �rstone at whi
h the traje
tory (tj;X i;xj ) either gets into E during i � j � I � 1 or� i;x = I: So, (� i;x;X i;x� i;x) 2 E (see (2.2). Let us give some re
urren
e relations for9



ui(x) and Ci(x) :ui(Xi) = maxffi(Xi); Ci(Xi)g; uI(x) = f(x);(3.2a) Ci(Xi) = BiBi+1E(ui+1(Xi+1)jXi); CI(x) = f(x);(3.2b) Ci(Xi) = BiBi+1E(maxffi+1(Xi+1); Ci+1(Xi+1)gjXi);(3.2
) ui(Xi) = maxffi(Xi); BiBi+1E(ui+1(Xi+1)jXi)g:(3.2d)We note that(3.3) ui+1(Xi+1) = Bi+1E f� (X ti+1 ;Xi+1� )B� jXi+1! ;E(ui+1(Xi+1)jXi) = E  Bi+1E  f� (X ti+1;Xi+1� )B� jFi+1! jFi!(3.4) = Bi+1E f� (X ti+1 ;Xi+1� )B� jXi! ;where � = � ti+1;Xi+1 :Hen
e due to (3.2b),(3.5) Ci(Xi) = BiE f� (X ti+1;Xi+1� )B� jXi! :We emphasize that for any stopping time ~� � ti+1 the fun
tion(3.6) vi+1(x) = Bi+1E f~� (X ti+1 ;x~� )B~� !is a low bound for ui+1(x).Sin
e(3.7) Ci(x) = sup�2Ti+1;I BiE f� (X ti+1 ;Xi+1� )B� jXi = x! = sup�2Ti+1;I BiE �f� (X ti;x� )B� � ;the fun
tion(3.8) 
i(x) = BiE �f~� (X ti;x~� )B~� �is a low 
ontinuation value for any stopping time ~� � ti+1.10



3.2. Subsequent estimating optimal stopping times. Considering Ci(x) as aregression fun
tion (see (3.5)), it is natural to introdu
e after [19℄ and [9℄ the sample(mXi; BiB� f�(mX ti+1 ; mXi+1� )) = (mXi; BiB� f� (mX ti ; mXi� ));(3.9) � = � ti+1; mXi+1 ; m = 1; :::;M;from (Xi; BiB� f� (X ti+1 ;Xi+1� )) = (Xi; BiB� f� (X ti;Xi� )); where � = � ti+1;Xi+1 :We are about to use (3.10) for subsequent 
onstru
ting an estimate �̂ ti; mXi foroptimal stopping time � ti; mXi: Clearly, � I; mXI = �̂ I; mXI = I: Let � ti+1; mXi+1; i =I � 1; :::; 1; (in reality �̂ ti+1; mXi+1) be known. Using the sample (3.10) at the stepti, we evaluate Ci(mXi) as a regression due to (3.5). Let Ĉi(mXi) be an estimateof Ci(mXi) (we re
all that knowledge of Ĉi(mXi) gives ûi(mXi) due to (3.2a)). Iffi(mXi) � Ĉi(mXi) then �̂ ti; mXi = ti, otherwise �̂ ti; mXi = �̂ ti+1 ; mXi+1 (see (3.1)).As a result we obtain the sample like (3.10) at the step ti�1:(mXi�1; Bi�1B� f� (mX ti ; mXi� )) = (mXi�1; Bi�1B� f�(mX ti�1; mXi�1� ));(3.10) � = � ti; mXi ; m = 1; :::;M:Coming to � t1; mX1; we 
an evaluate u0(X0): Indeed, sin
eX0 is a nonrandom ve
tor,we have (see (3.2d) and (3.4)(3.11)u0(X0) = maxff0(X0); 1B1E(u1(X t0;X01 )g = max�f0(X0); E�f� (X t1;X1� )B� �� ; � = � t1;X1 :So, our main problem is to evaluate the 
ontinuation value Ci(mXi) using sample(3.10). There are a lot of nonparametri
 regression methods to attain this obje
tive(see, e.g., [13℄). In the next subse
tion we propose some algorithms basing both onlo
al modelling and least squares estimation. In 
ontrast to other works using theregression approa
h in pri
ing Ameri
an options, we 
onstru
t together with theestimate Ĉi(mXi) an upper 
onsumption pro
ess.The most appropriate are methods for whi
h the estimate Ĉi(mXi) is a low 
ontin-uation value. Then we are able to 
onstru
t both a low and an upper bounds.3.3. Algorithms with the lo
al Monte Carlo approa
h. For every position(ti; mXi); m = 1; :::M; let us 
onstru
t N = Ni;m additional independent traje
to-ries on [ti; ti+1℄; i.e., the traje
tories with the length of one step. To the instant ti+1we obtain N + 1 points nX ti; mXiti+1 ; n = 0; 1; :::; N; where we put 0X ti; mXiti+1 =m Xi+1:Introdu
e the notation m;nXi+1 :=n X ti; mXiti+1 : Let �m;n := � ti+1; m;nXi+1 : Due to (3.5)and the Monte Carlo approa
h (let us note that �m;n = � ti+1; m;nXi+1 is equal to� ti; mXi provided � ti; mXi � ti+1; see also (3.7)) , we have(3.12)Ci(mXi) = BiE f�(X ti+1;Xi+1� )B� jXi =m Xi! ' BiN + 1 NXn=0 f�m;n(X ti+1 ; m;nXi+1�m;n )B�m;n :11



For every point m;nXi+1 =n X ti; mXiti+1 we �nd the nearest one among kXi+1; k =1; :::M; let it be k(m;n)Xi+1: For the position (ti+1; k(m;n)Xi+1), it is known theestimate �̂k(m;n) of the optimal stopping time � ti+1; k(m;n)Xi+1 : To avoid 
onfusion,let us emphasize that the points m;nXi+1 lie on the traje
tories starting from thesame position (ti; mXi) while the points k(m;n)Xi+1 lie on the traje
tories whi
hhave di�erent starting positions (ti; k(m;n)Xi): For any point Xi+1 = X ti; mXiti+1 one
an de�ne the stopping ~� = ~�(Xi+1) � ti+1 analogously to �̂k(m;n); i.e., �rst, you�nd the nearest point to Xi+1 among kXi+1; k = 1; :::M; say ~kXi+1; and se
ond, forthe position (ti+1; ~kXi+1) you know the estimate �̂~k of the optimal stopping time� ti+1; ~kXi+1 whi
h you take as ~� : ~� = ~� (Xi+1) = �̂~k: Clearly, for the points m;nXi+1this stopping time ~� = ~�(m;nXi+1) := ~�m;n 
oin
ides with �̂k(m;n): Introdu
e~Ci(x) = BiE f~�(X ti+1 ;Xi+1~� )B~� jXi = x! :From (3.7) and (3.8) it follows(3.13) Ci(x) = ~Ci(x) + ri(x);where ri(x) � 0; i.e. ~Ci(x) is a low 
ontinuation value at the position (ti; x):Analogously to (3.12) we have~Ci(mXi) = BiN + 1 NXn=0 f~�m;n(X ti+1 ; m;nXi+1~�m;n )B~�m;n + �i(mXi)(3.14) = BiN + 1 NXn=0 f�̂k(m;n)(X ti+1 ; m;nXi+1�̂k(m;n) )B�̂k(m;n) + �i(mXi);where �i(mXi) is the Monte Carlo error whi
h be
omes small with in
reasing N:Let us pay attention that in general the points X ti+1 ; m;nXi+1~�m;n do not belong to the
onsidered sample of M independent traje
tories all starting from the initial point(t0;X0): That is why the sum in (3.14) 
annot be taken as an estimate for the
ontinuation value Ci(mXi):For the 
ontinuation value, it is natural to introdu
e the estimate(3.15) Ĉi(mXi) = BiN + 1 NXn=0 f�̂k(m;n)(X ti+1 ; k(m;n)Xi+1�̂k(m;n) )B�̂k(m;n) :Let us note that in (3.15) and in (3.14) we 
onsider the traje
tories X ti+1 ; k(m;n)Xi+1sandX ti+1 ; m;nXi+1s starting from di�erent positions (ti+1; k(m;n)Xi+1) and (ti+1; m;nXi+1)but with the same sour
es of randomness. If M is large, the points m;nXi+1 andk(m;n)Xi+1 are at a short distan
e and we getĈi(mXi) = BiN + 1 NXn=0 f�̂k(m;n)(X ti+1 ; m;nXi+1�̂k(m;n) )B�̂k(m;n) � �i(mXi)(3.16) = ~Ci(mXi)� �i(mXi)� �i(mXi);where the approximation error �i is small.12



From (3.13) we obtain(3.17) Ĉi(mXi) = Ci(mXi) + �i(mXi)� ri(mXi);where �i = ��i � �i:We 
an 
laim that the estimate Ĉi(mXi) is a low 
ontinuation value at the position(ti; mXi) within the a

ura
y depending on N and M , be
ause �i be
omes smallwith in
reasing M and N and ri � 0: It should be noted that ri essentially dependson a pro
edure of subsequent estimating optimal stopping times and 
an be 
om-paratively large (i.e. ri � 0) if the pro
edure is unsu

essful. Thus the followingtheorem is justi�ed.Theorem 3.1. The estimate Ĉi(mXi) is a low 
ontinuation value within the a

u-ra
y depending on N (the a

ura
y determined by the Monte Carlo error) and M(the a

ura
y determined by the approximation error).Corollary 3.2. Consider the 
onsumption(3.18) 
̂i(mXi) = [fi(mXi)� Ĉi(mXi)℄+:Be
ause 
̂i(mXi) = [fi(mXi)� Ci(mXi) + ri(mXi) � �i(mXi)℄+, we have
i(mXi) � 
̂i(mXi); if ri � �i;(3.19) [
i(mXi)� �i(mXi) + ri(mXi)℄+ � 
̂i(mXi) � 
i(mXi); if �i > ri:We see that 
̂i(mXi) is an upper 
onsumption in the most typi
al 
ase ri � �i,otherwise it 
an be not an upper bound however in su
h a 
ase 
̂i(mXi) is insigni�-
antly distinguished from 
i(mXi), i.e., 
̂i(mXi) is an upper 
onsumption within thea

ura
y depending on M and N .3.4. Algorithms with the lo
al Monte Carlo approa
h, 
ontinuation. Forthe estimate (3.15) we use one nearest point k(m;n)Xi+1 among mXi+1; m = 1; :::;M;to every point m;nXi+1: Now let us for every point m;nXi+1 =n X ti; mXiti+1 �nd afew (say Km;n) nearest ones among mXi+1; m = 1; :::M: Let us denote them byk[m;n℄Xi+1; k = 1; :::;Km;n (in 
ontrast to k(m;n); the fun
tion k[m;n℄ is a multifun
-tion). The estimates �̂k[m;n℄ of the optimal stopping times �k[m;n℄ := � ti+1; k[m;n℄Xi+1are known. Then the following expression(3.20) vi+1(nX ti ; mXiti+1 ) = Bi+1Km;n Km;nXk=1 f(X ti+1 ; k[m;n℄Xi+1�̂k[m;n℄ )B�̂k[m;n℄is a low bound for ui+1(x) at the position (ti+1; nX ti; mXiti+1 ) (of 
ourse, within thea

ura
y of approximation).Clearly,(3.21)Ĉi(mXi) = BiBi+1 � 1N + 1 NXn=0 vi+1(nX ti; mXiti+1 ) = BiN + 1 NXn=0 1Km;n Km;nXk=1 f(X ti+1 ; k[m;n℄Xi+1�̂k[m;n℄ )B�̂k[m;n℄13



is a low 
ontinuation value at (ti; mXi) (of 
ourse, within the a

ura
y dependingon M and N):The estimate (3.15) is the parti
ular 
ase of (3.21) when Km;n = 1:Remark 3.3. For estimate (3.21), analogs of Theorem 3.1 and Corollary 3.2 aretrue as well.3.5. Algorithms with k-NN estimates. In the previous algorithms we 
onstru
tNi;m additional traje
tories for every point mXi; m = 1; :::M: Let us 
onsiderN = Ni;m nearest points m;1Xi; :::;m;NXi to the point mXi instead of 
onstru
t-ing the additional traje
tories. All the points m;1Xi; :::;m;NXi belong to the set fmXi; m = 1; :::Mg. We have m;nX(ti; m;nXi)i+1 =m;n Xi+1; n = 0; 1; :::; N; m;0Xi =mXi; m;0Xi+1 =m Xi+1; with known �̂m;n = �̂ ti+1; m;nXi+1 and f(X(ti+1; m;nXi+1)�̂ ti+1; m;nXi+1 ) (letus note that we use another notation in this subse
tion and, in parti
ular, we em-phasize that the points m;nXi+1 belong to the set f mXi+1; m = 1; :::Mg). Thenanalogously to (3.15), we evaluate:(3.22) Ĉi(mXi) = BiN + 1 NXn=0 f�̂m;n(X ti+1 ; m;nXi+1�̂m;n )B�̂m;n :This estimate is an analog of (3.15). To get an analog of (3.21) let us �nd for everypoint m;nXi+1 =m;n X(ti; m;nXi)i+1 a few (say Km;n) nearest ones among mXi+1; m =1; :::M: Denote them by m;n;kXi+1; k = 1; :::;Km;n: Then(3.23) Ĉi(mXi) = Bi � 1N + 1 NXn=0 1Km;n Km;nXk=1 f(X ti+1 ; m;n;kXi+1�̂m;n;k )B�̂m;n:k ;where �̂m;n;k are known estimates of the optimal stopping times �m;n;k := � ti+1; m;n;kXi+1 .We note that m;n;kXi+1 in (3.23) are distinguished from m;n;kXi+1 in (3.21).Remark 3.4. For estimate (3.23) analogs of Theorem 3.1 and Corollary 3.2 aretrue as well.Remark 3.5. k-NN estimates belong to the 
lass of lo
al averaging estimates (see[13℄). One 
an use other estimates of this 
lass, for example, kernel estimates andlo
al polynomial kernel estimates. Note, that the latter type of estimates 
an behelpful for estimating deltas (see (6.8) and (6.9)).3.6. Linear regression. Regression-based methods approximate the 
ontinuationvalue using a basis fun
tion expansion:Ci(x) � KXr=1 �ir r(x); i = 0; 1; : : : ;I � 1;where f r(x)gKr=1 is a set of basis fun
tions ea
h mapping X to R. In the notationsCi(x) � �>i  (x)14



with �>i = (�i1; : : : ; �iK);  (x) = ( 1(x); : : : ;  K(x))>:Ve
tor �i 
an be estimated using the sample(mXi; BiB�̂m f�̂m(mX ti+1 ; mXi+1�̂m )); �̂m = �̂ ti+1; mXi+1; m = 1; : : : ;M;as �̂i = Â�1 �̂ V :Here Â is the K �K matrix with qr entry1M MXm=1 q(mXi) r(mXi)and �̂ V is the K-ve
tor with rth entry1M MXm=1 r(mXi)Bif�̂m(X ti+1 ; mXi+1�̂m )B�̂m :The estimate �̂i then de�nes an estimateĈi(x) = �̂>i  (x)of the 
ontinuation value at an arbitrary point x in the state spa
e X. Now, iffi(mXi) � Ĉi(mXi) then �̂ ti; mXi = ti, otherwise �̂ ti; mXi = �̂ ti+1 ; mXi+1 (see (3.1)).As a result we obtain at the step ti�1 the sample :(mXi�1; Bi�1B�̂m f�̂m(mX ti ; mXi�̂m )) = (mXi�1; Bi�1B�̂m f�̂m(mX ti�1 ; mXi�1�̂m ));�̂m = �̂ ti; mXi; m = 1; :::;M:Theorem 3.6. The estimate(3.24) Ĉi(mXi) = Bi�̂>i  (mXi)is a low 
ontinuation value within the a

ura
y depending on K and M:Proof. Having Ĉj(x); x 2 X; j = 0; :::;I � 1; one 
an de�ne a stopping time ~� forevery traje
tory X ti; xtj ; j = i; :::;I; in the following way. If Ĉi(x) � fi(x); then weput �̂ ti; x = ti: If Ĉi(x) > fi(x); then we put �̂ ti; x > ti: Further, if Ĉi+1(X ti; xti+1 ) �fi+1(X ti; xti+1 ); then we put �̂ ti; x = ti+1; and so on. If Ĉj(X ti; xtj ) > fj(X ti; xtj ) for allj = i; :::;I�1; then we put �̂ ti; x = I: Clearly, ~� ti; mXi = �̂ ti; mXi; m = 1; :::;M; i.e.,~� is an extension of �̂ : Let us introdu
e the value(3.25) ~Ci(x) = BiE f~�(X ti+1 ;Xi+1~� )B~� jXi = x! ; ~� = ~� ti+1 ; Xi+1:Due to (3.7) and (3.8), ~Ci(x) is a low 
ontinuation value, i.e.,(3.26) ~Ci(x) = Ci(x)� ri(x);15



where ri(x) � 0: But for the 
onditional expe
tation (3.25), Ĉi(x) 
an be 
onsideredas an estimate by the linear regression method. Therefore(3.27) ~Ci(x) = Ĉi(x) + �i(x);where �i(x) is the regression error whi
h depends on K and M: From (3.26) and(3.27) we obtain(3.28) Ĉi(mXi) = Ci(mXi)� �i(mXi)� ri(mXi):Theorem 3.6 is proved.Remark 3.7. Formally, the theorem is true even if the error �i(x) is large. Butits signi�
an
e manifests itself when �i(x) is rather small (this 
an be rea
hed dueto su

essful 
hoi
e of  1(x); : : : ;  K(x) and suÆ
iently large M). Then Ĉi(mXi)is really (not only within the a

ura
y depending on K and M) a low 
ontinuationvalue. 4. Global low and upper boundsAiming to estimate the pri
e of the Ameri
an option at a �xed position (t0; x0), wesimulate the independent traje
tories mXi; i = 1; :::;I; m = 1; :::;M; of the pro
essXi, starting at the instant t = t0 from x0 : X0 = x0:For 
onstru
ting the global low bound we use formula (3.11). Indeed (3.11) givesthe following estimate(4.1) û0(X0) = max(f0(X0); 1M MXm=1 f�̂m(X t1; mX1�̂m )B�̂m ) ; �̂m = �̂ t1; mX1 :We note that (4.1) always is a low bound for u0(X0) even if �̂m is not equal tooptimal stopping time � t1; mX1.To 
onstru
t the global upper bound we use Subse
tion 2.3. Let vi(x) be a lowbound and (ti; mXi) be the position on the m-th traje
tory at the time instant ti.We 
al
ulate the low 
ontinuation value(4.2) 
i;v(mXi) = BiE�vi+1(mXi+1)Bi+1 jFi�at the position (ti; mXi): If(4.3) fi(mXi) < 
i;v(mXi);then (ti; mXi) 2 C (see (2.2)) and we move one step ahead along the traje
tory tothe next position (ti+1; mXi+1): Otherwise if(4.4) fi(mXi) � 
i;v(mXi);then we 
annot say de�nitely whether the position (ti; mXi) belongs to C or to E.In spite of this fa
t we do one step ahead in this 
ase as well. Let us re
all that thetrue 
onsumption at (ti; x) is equal to(4.5) 
i (x) = [fi (x)�Ci (x)℄+16



(see (2.5) and (2.1)). Thus, it is natural to de�ne the upper 
onsumption 
i;v at anyposition (ti; mXi) by the formula(4.6) 
i;v(mXi) = [fi(mXi)� 
i;v(mXi)℄+:Obviously, 
i;v � Ci and hen
e 
i;v � 
i: Therefore, the pri
e Vi(x) of the Euro-pean option with payo� fun
tion fi(x) and upper 
onsumption pro
ess 
i;v is anupper bound on the pri
e ui(x) of the original Ameri
an option. In the 
ase (4.3)
i;v(mXi) = 
i(mXi) = 0 and we do not get any error. If (4.4) holds and besides
i;v(mXi) < Ci(mXi), we get an error. If 
i;v(mXi) is large, then it is in generalimpossible to estimate this error, but if 
i;v(mXi) is small, the error is small as well.Having found 
i;v, we 
an 
onstru
t an estimate V̂0(x0) of the upper bound V0(x0)for u0(x0) by the formula(4.7) V̂0(x0) = 1M MXm=1 fI(mXI)BI + 1M I�1Xi=0 MXm=1 
i;v(mXi)Bi :Note that for the 
onstru
tion of an upper bound V0 one 
an use di�erent lo
allow bounds depending on a position. This opens various opportunities for adaptivepro
edures (see [4℄). For instan
e, if 
i;v(mXi) is large, then it is reasonable to usea more powerful lo
al instrument at the position (ti; mXi):Instead of using a low bound for 
onstru
ting a global upper one, one 
an use low
ontinuation values, in parti
ular, those from Se
tion 3. So, let Ĉi(mXi) be a low
ontinuation value. Then (
ompare with (4.6))(4.8) 
̂i(mXi) = [fi(mXi)� Ĉi(mXi)℄+is an upper 
onsumption value and the 
orresponding global upper bound is givenby the formula(4.9) V̂0(x0) = 1M MXm=1 fI(mXI)BI + 1M I�1Xi=0 MXm=1 
̂i(mXi)Bi :Remark 4.1. In reality (see (3.19)) the global upper bound is equal to V̂0(x0) +�,where �! 0 when M;N !1: Therefore we have û0(X0) � u0(X0) � V̂0(x0) +�,i.e. the a

ura
y is evaluated by the di�eren
e V̂0(x0)+�� û0(X0) (not by V̂0(x0)�û0(X0)). In pra
ti
e, it may be happened that V̂0(x0) � û0(X0): Clearly, in su
h a
ase the a

ura
y is evaluated by �.5. Simulations5.1. Bermudan max 
alls on d assets. This is a ben
hmark example studied in[7℄, [14℄ and [21℄ among others. Spe
i�
ally, the model with d identi
al assets is
onsidered where ea
h underlying has dividend yield Æ. The risk-neutral dynami
 ofassets is given by dXktXkt = (r � Æ)dt+ �dW kt ; k = 1; :::; d;17



where W kt ; k = 1; :::; d, are independent one dimensional Brownian motions andr; Æ; � are 
onstants. At any time t 2 ft0; :::; tIg the holder of the option mayexer
ise it and re
eive the payo�f(Xt) = (max(X1t ; :::;Xdt )�K)+:We take ti = iT=I; i = 0; :::;I, with T = 3; I = 9 and apply the lo
al Monte Carlomethod des
ribed in the se
tion 3.3. The number of outer Monte Carlo simulationsM = 10000 and the number of inner Monte Carlo simulations N = 100. The resultsare presented in Table 5.1 in dependen
e on x0 with X0 = (X10 ; : : : ;Xd0 )T ,X10 = ::: =Xd0 = x0. Monte-Carlo error is 
omputed usingM outer traje
tories. The true valuesare quoted from [12℄. The good quality of low bound bu0(X0) 
omparatively to theTable 5.1. Bounds (with 95% 
on�den
e intervals) for Bermudanmax 
all with parameters K = 100; r = 0:05, � = 0:2, Æ = 0:1 anddi�erent d and x0d x0 Lower Bound Upper Bound True Valuebu0(X0) bV0(X0)90 7.965�0.239 8.417�0.082 8.082 100 13.644�0.300 14.493�0.113 13.90110 20.875�0.370 22.014�0.165 21.3490 16.795�0.315 19.0126�0.153 16.715 100 26.265�0.379 29.340�0.183 26.21110 36.790�0.437 40.630�0.208 36.84upper bound bV0(X0) 
an be attributed to the fa
t that bV0(X0) uses lo
al estimatesof 
ontinuation values in an additive form while bu0(X0) is based on suboptimalstopping family whi
h depends only on the sign of di�eren
e between the payo� and
ontinuation value. Also note, that values of upper bound lie outside 95% 
on�den
einterval around the true value. This is again due to the lo
al estimation error and
an be 
ured by in
reasing the number of inner simulations N .5.2. Bermudan swaptions in the Libor market model. Let us 
onsider theLibor market model with respe
t to a tenor stru
ture 0 = T0 < T1 < : : : < TI in thespot Libor measure P �. The dynami
s of the forward Libor Li(t); 0 � t � Ti; i =1; : : : ;I � 1, is governed by the SDE(5.1) dLi = iXj=�(t) ÆjLiLj
>i 
j1 + ÆjLj dt+ Li 
>i dW �; Li(0) = L0i ; t 2 [0; Ti℄;where Æj = Tj+1 � Tj are day 
ount fa
tors, t 7! 
i(t) = (
i;1(t); : : : ; 
i;d(t)) aredeterministi
 volatility ve
tor fun
tions de�ned in [0; Ti℄ (
alled fa
tor loadings),and �(t) := minfm : Tm > tg denotes the next reset date at time t. In (5.1)W �(t); 0 � t � TI�1; is a standard d-dimensional Wiener pro
ess under the measureP � with d; 1 � d < I, being the number of driving fa
tors. The spot Libor measure18



P � is indu
ed by the numeraire(5.2) B�(t) := B�(t)(t) �(t)�1Yi=0 (1 + ÆiLi(Ti));where Bi(t); i = 0; : : : ;I; is the value of a zero 
oupon bond with fa
e value 1 at Ti:At a tenor date Ti; i = 1; :::; n� 1; we have (see [12℄)(5.3) Bn(Ti) = n�1Yj=i 11 + ÆjLj(Ti) ; n = 1; : : : ;I:Note, that in (5.2) and (5.3) we set by de�nition Qlk = 1 for k > l and L0(T0) = L00is a 
onstant. It is also worth mentioning that Bn(t); n = 1; : : : ;I � 1, are uniquelyde�ned by Libors on the tenor grid only (fortunately, we need values of B�(t) onlythere as well).A European swaption with maturity Ti and strike � gives the right to 
ontra
t atTi for paying a �xed 
oupon � and re
eiving 
oating Libor at the settlement datesTi+1; : : : ; TI. The 
orresponding payo� at maturity Ti is given byfi(Li(Ti); : : : ; LI�1(Ti)) :=  I�1Xj=i Bj+1(Ti)Æj(Lj(Ti)� �)!+ :Note, that by setting Lj(t) = Lj(Tj); t > Tj, for j = 0; : : : ;I � 1, we 
an de�ne fias a fun
tion of the whole Libors ve
tor (L0(Ti); : : : ; LI�1(Ti)).A Bermudan swaption issued at t = 0 gives the right to obtainfi(Li(Ti); : : : ; LI�1(Ti))at an exer
ise date i 2 fs1; : : : ; sl = I � 1g � f1; : : : ;I � 1g, to be de
ided by theoption holder. Its risk-neutral pri
e is given byu0(L0(0); : : : ; LI�1(0)) = sup�2TS E � f� (L� (T�); : : : ; LI�1(T�))B�(T�) ����F0� ;where TS is the set of stopping times � taking values in fs1; :::; slg.For our simulation study we use the Libor volatility stru
ture(5.4) 
i(t) = 
ig(Ti � t)ei; where g(s) = g1 + (1� g1 + as)e�bs;with ei being d-dimensional unit ve
tors, de
omposing an input 
orrelation matrixof rank d and g1 � 0; a � 0; b � 0; 
i > 0 being the 
onstants (see [22℄). Forgenerating Libor models with di�erent numbers of fa
tors d, we take as a basis a
orrelation stru
ture of the form�ij = exp(��ji� jj); i; j = 1; : : : ;I � 1;whi
h has full rank for � > 0, and then for a parti
ular 
hoi
e of d we dedu
e from� a rank-d 
orrelation matrix �(d) with de
omposition �(d)ij = e>i ej; 1 � i; j < I,by prin
ipal 
omponent analysis. We take as model parameters a 
at 10% initialLibor 
urve (i.e. L0i = 0:1 for i = 0; 1; : : : ;I � 1) over a 40 period quarterly tenorstru
ture, and the parametersI = 41; Æi = 0:25; 
i � 0:2; a = 1:5; b = 3:5; g1 = 0:5; � = 0:0413:19



We 
onsider Bermudan swaptions with yearly exer
ise opportunities, hen
e (Æi areequal to a quarter year) si = 4i; i = 1; : : : ; 10. For a pra
ti
ally exa
tnumeri
alintegration of the SDE, we used the log-Euler s
heme with �t = Æ=5.Now, we apply the regression method des
ribed in se
tion 3.5, where at ea
h exer
isedate Tsi the value of the European swaptionSi(Lsi(Tsi); : : : ; Ln�1(Tsi)) = B�(Tsi)E� fsi+1(Lsi+1(Tsi+1); : : : ; Ln�1(Tsi+1))B�(Tsi+1) ����Fsi�whi
h we 
an exer
ise at the next exer
ise date Tsi+1 is used as a basis fun
tiontogether with a powers up to se
ond order of the immediate payo� fsi. Although
losed form expressions for European swaptions do not exist in a Libor marketmodel,there do exist very a

urate (typi
ally better than 0:3% relative error) formulas (see[22℄) whi
h we use for the 
omputation of Si.The resulting low bound bu0 and upper bound bV0 are given in Table 5.2 for di�erentnumbers of fa
tors d and di�erent 
oupons �. True values (
omputed with less than1% relative error) are quoted from [16℄.d � bu0 bV0 True Value0.08 1094.8�1.2 1096.1�2.0 1096.140 0.10 338.2�1.0 341.2�1.3 339.30.12 96.4�0.5 100.0�0.6 97.20.08 1096.3�1.3 1096.6�2.0 1096.510 0.10 344.3�1.0 346.7�1.3 344.70.12 101.7�0.6 104.9�0.7 101.30.08 1108.1�1.5 1110.5�2.4 1109.21 0.10 381.7�1.2 384.7�1.6 382.10.12 121.2�0.7 123.1�0.8 121.3Table 5.2. Pri
es of bermudan swaptions �1045.3. Can
ellable Snowballs in the Libor market model. Let us 
onsider asnowball swap 
ontra
t. A

ording to this 
ontra
t one has to pay, instead of 
oatingLibor, so 
alled Snowball 
oupons whi
h follow the following term sheet. One payson a semi-annual base a 
onstant rate I over the �rst year and in the forth
omingyears (Previous Coupon+A-Libor)+, where A in
reases as spe
i�ed in the 
ontra
t.A 
an
ellable snowball swap is a snowball whi
h may be 
an
elled (exer
ised) afterthe �rst year. Here we 
onsider this 
an
ellable snowball produ
t in a Libor marketmodel (5.1). The snowballs 
oupons Ki, settled at Ti+1; i = 0; : : : ;I�1, are spe
i�edby Ki = I; i = 0; 1;Ki = (Ki�1 +Ai � Li(Ti))+; i = 2; : : : ;I � 1:20



We 
onsider the 
ontra
t where A in
reases on an annual base in su
h a way thatA2 = S Ai+1 = Ai + s (i mod 2);with S and s given in the 
ontra
t. The value u0 of the 
an
ellable snowball swapat T0 = 0 is given byu0(L0(0); : : : ; LI�1(0)) = sup�2TS E  �Xj=1 fj(L2(T2); : : : ; Lj�1(Tj�1)B�(Tj) �����F0! ;where TS is the set of stopping times � taking values in f2; : : : ;Ig andfj(L2(T2); : : : ; Lj�1(Tj�1)) = Æj�1(Lj�1(Tj�1)�Kj�1); j = 1; : : : ;I:Note, that predi
table 
ash
ows fj 
an take negative values. Sin
e we are goingto use linear regression method it is important to �nd a good basis fun
tions. Onepossible way would be to in
lude still alive Europeansmaxj<p�I E pXq=1 fq(L)B�(Tq)�����Fj!at Tj but unfortunately there is no analyti
al representation for them. However, anapproximation 
an be found (see [5℄) using the fa
t that for any j + 1 � p � IE pXq=j+1 fq(L)B�(Tq)�����Fj! = 1 �Bp(Tj)B�(Tj) � E  pXq=j+1 Kq�1Æq�1B�(Tq) �����Fj!= 1 �Bp(Tj)B�(Tj) � KjÆjB�(Tj+1) � E  pXq=j+2 Kq�1Æq�1B�(Tq) �����Fj! :Repla
ing in the last summand Kq�1 byeKq�1 = (�Kj +Aq�1 � Lq�1(Tq�1))+; j + 2 � q � p;where 0 < � < 1 is a 
onstant whi
h may depend on p and is to be found usingoptimization, we get a reasonable approximation quality. The value ofE  eKq�1Æq�1B�(Tq) �����Fj! = Bq(Tj)B�(Tj)EBq �(�Kj +Aq�1 � Lq�1(Tq�1))+Æq�1��Fj� ;where EBq denotes the expe
tation in respe
t to Tq forward measure, 
an be 
al-
ulated using the Bla
k's formula. Finally, the quadrati
 polynomials of the spotLibor Lj(Tj) 
omplete the set of basis fun
tion at Tj; j = 2; : : : ;I.As a numeri
al example let us 
onsider 6yr Snowball with Æi = 0:5yr (I = 12) andtake I = 0:079; S = 0:01. Further, the volatility stru
ture (5.4) with a = 0:976; b =2; g1 = 1:5 is employed and the 
orrelation matrix is given by�ij = exp � jj � ijI � 2 log �1� ; 1 � i; j � I � 1;with �1 = 0:663. The tenor stru
ture, initial Libor 
urve and fa
tor loadings 
i areshown in Table 5.3. The results in dependen
e on s are presented in Table 5.4.21



Tenors 0.0 0.5 1 1.5 2 2.5L0 0.023 0.025 0.027 0.027 0.031 0.031
i 0.153 0.143 0.14 0.140 0.139Tenors 3 3.5 4 4.5 5 5.5L0 0.033 0.034 0.036 0.036 0.038 0.039
i 0.138 0.137 0.136 0.135 0.134 0.132Table 5.3. Tenor stru
ture, initial Libor 
urve and fa
tor loadingss bu0 bV00.005 64.8�2.4 67.4�2.20.004 101.9�2.3 107.3�1.90.003 139.8�2.2 143.3�1.7Table 5.4. Pri
es of 
an
ellable snowballs �1046. Appendix: Dire
t Snell envelope by multidimensional approximationand regressionThe aim of this se
tion is to show that a modi�
ation of pro
edure (1.2) togetherwith some kind of interpolation 
an be su

essfully used in pra
ti
e. To this end weuse (d + 1)-dimensional sample (see (1.3))(6.1) (mXi; ui+1(mXi+1)); m = 1; :::;M; i = 0; :::; L� 1;from (Xi; ui+1(Xi+1)) for sequential evaluating ui(Xi); i = L � 1; :::; 0; uL(XL) =fL(Xl):6.1. Methods based on multivariate interpolation. Let us suppose that thevalues ui+1(mXi+1) of the fun
tion ui+1(x) be known. The 
ontinuation value Ci(Xi)
an be 
onsidered as the pri
e of the European option on [ti; ti+1℄ at the position(ti;Xi) with the payo� fun
tion ui+1(x). Hen
e, due to the Monte Carlo approa
h,(6.2) Ci(mXi) = BiBi+1E(ui+1(X(ti;Xi)i+1 )jXi =m Xi) ' BiBi+1 1N NXn=1 ui+1(nX(ti; mXi)i+1 ):In (6.2), all the points nX(ti; mXi)i+1 ; n = 1; :::; N; belong to traje
tories starting at theinstant ti from mXi and they are 
onditionally independent under known mXi. Thenumber N 
an be 
hosen depending on i and m : N = Ni;m: These points di�erfrom mXi+1 and therefore we need in an interpolation of ui+1(nX(ti; mXi)i+1 ) throughui+1(jXi+1); j = 1; :::;M . Let us note that at present there are new developmentsin the theory of multidimensional approximation (see e.g., [10℄, [25℄ and referen
estherein) and making use of the theory allows to realize the needed interpolation. Let~ui+1(nX(ti; mXi)i+1 ) be an approximation of ui+1(nX(ti; mXi)i+1 ) through ui+1(jXi+1); j =22



1; :::;M . Let r1 be the error of interpolation after substituting ~ui+1(nX(ti; mXi)i+1 )instead of ui+1(nX(ti; mXi)i+1 ) in the right-hand side of (6.2). Clearly, r1 tends tozero if M goes to in�nity. Besides, the Monte Carlo error, say r2; is present in(6.2). Clearly, r2 tends to zero if N goes to in�nity. We have assumed above thatthe values ui+1(jXi+1) are known. However, in reality we know their estimatesûi+1(jXi+1) only. Interpolation of ui+1(nX(ti; mXi)i+1 ) through ûi+1(jXi+1) gives anadditional error whi
h in
reases with de
reasing i.So, we get the following algorithm for evaluating u0(x0). We haveûL(mXL) = uL(mXL) = fL(mXL):The values ûi(mXi); i = L�1; :::; 0; are found, if knowing ûi+1(mXi+1), in the follow-ing way. We simulate N = Ni;m traje
tories starting from the position (ti; mXi) onthe interval [ti; ti+1℄ and obtain the points nX(ti; mXi)i+1 ; n = 1; :::; N: Then we approx-imate ~ui+1(nX(ti; mXi)i+1 ) through ûi+1(mXi+1); m = 1; :::;M . We note that the pointmXi+1 is present among the points nX(ti; mXi)i+1 ; say 1X(ti; mXi)i+1 =m Xi+1: Clearly,~ui+1(1X(ti; mXi)i+1 ) = ~ui+1(mXi+1) = ûi+1(mXi+1): Getting ~ui+1(nX(ti; mXi)i+1 ); n =1; :::; N; we evaluate Ci(mXi) :(6.3) Ĉi(mXi) = BiBi+1 1N NXn=1 ~ui+1(nX(ti; mXi)i+1 ):Then we set(6.4) ûi(mXi) = maxnfi(mXi); Ĉi(mXi)o ; i = L � 1; :::; 1;and �nally(6.5) û0(X0) = max(f0(X0); 1B1 1M MXm=1 û1(mX1)) :The number N is 
hosen taking into a

ount the Monte Carlo error in (6.3) whi
his surely evaluated during numeri
al experiments. It is natural that if the one-steperrors r1 and r2 are suÆ
iently small, the global error will be small as well. It 
anbe 
ontrolled in a

ordan
e with the pra
ti
al rule: if the estimated values do notdi�er essentially after in
reasing N andM; then the obtained values are 
lose to thetrue ones.6.2. Using the nearest points. The previous algorithm is rather expensive be-
ause, knowing ûi+1(mXi+1) and aiming to evaluate ui(mXi); we 
onstru
t Ni;madditional traje
tories for every point mXi; m = 1; :::M; and then interpolate Ni;munknown values of the fun
tion ui+1(x). It turns out that in prin
iple it is possible toavoid both the 
onstru
tion of additional traje
tories and interpolation. To this endlet us 
onsider K = Ki;m nearest points m1Xi; :::;mKXi to the point mXi: We havemkX(ti; mkXi)i+1 =mk Xi+1 with known values ûi+1(mkXi+1); k = 1; :::;K: Be
ause mkXiare 
lose to mXi; one 
an approximately 
onsider all the points mkXi+1 as points on23



the traje
tories starting from the same point mXi at the instant ti: Therefore it isreasonable to introdu
e the following estimate of Ci(mXi) :(6.6) Ĉi(mXi) = BiBi+1 1K + 1 KXk=0 ûi+1(mkXi+1);where m0 is equal to m:Then we use (6.4)-(6.5). This pro
edure is not so expensive as the previous one.6.3. Estimation of Ci(mXi) as a regression fun
tion. Let us 
onsider a sample(Xm; Ym); m = 1; :::;M; from (X;Y ) and re
all the lo
al regression approa
h. Ofinterest is to estimate the regression fun
tion(6.7) 
(x) = E(Y jX = x)and the derivatives 
0(x); :::; 
(p)(x) at a point x = x0: For simpli
ity in writing wesuppose for a while that X and Y are one-dimensional. Assume that there existsthe (p + 1)-th derivative of 
(x) at the point x0: The unknown regression fun
tion
(x) 
an be lo
ally approximated by a polynomial of order p due to the weightedleast squares regression problem (see [13℄)(6.8) MXm=1Kh(Xm � x0) � "Ym � pXj=0 �j(Xm � x0)j#2 ! min�0;:::;�p;where h is a bandwidth, K is a kernel fun
tion. Denote by �̂j; j = 0; :::; p; thesolution to the problem (6.8). Then(6.9) 
̂(x0) = �̂0; :::; 
̂(j)(x0) = j!�̂j; j = 0; :::; p:One 
an apply the regression approa
h to the sample(6.10) (mXi; BiBi+1ui+1(mXi+1)); m = 1; :::;M; from (Xi; BiBi+1ui+1(Xi+1))and get the 
ontinuation value Ci(x) as the regression fun
tionCi(x) = BiBi+1E (ui+1(Xi+1)jXi = x) :This approa
h gives us Ĉi(mXi) as a fun
tion of mXi (m is �xed) and of all thevalues ui+1(kXi+1); k = 1; :::;M; (of 
ourse, in reality we have ûi+1(kXi+1) insteadof ui+1(kXi+1); k = 1; :::;M): Then we use (6.4)-(6.5).6.4. Dire
t Snell envelope in the 
ase of known transition probabilities forasserts. Let the transition probabilities(6.11) P (Xk 2 dxjXj = y) = pj;k(y; x)dx; j � k;be known. For example, they are known for the Bla
k-S
holes model(6.12) dX lt = (r � Æ)X ltdt+ �X ltdwlt; l = 1; :::; d:24



Let the values ui+1(mXi+1); m = 1; :::;M; be known (in reality ûi+1(mXi+1) areknown). We have(6.13) Ci(kXi) = BiBi+1E (ui+1(Xi+1)jkXi) = BiBi+1 Z ui+1(x)pi;i+1(kXi; x)dx:The known values mXi+1; m = 1; :::;M , are distributed as i.i.d. due to the law(6.14) p0;i+1(X0; x) := pi+1(X0; x):We get E (ui+1(Xi+1)jkXi) = Z ui+1(x)pi;i+1(kXi; x)dx(6.15)= Z ui+1(x)pi;i+1(kXi; x)pi+1(X0; x) pi+1(X0; x)dx = E�ui+1(Xi+1)pi;i+1(kXi;Xi+1)pi+1(X0;Xi+1) jkXi�' 1M MXm=1 ui+1(mXi+1)pi;i+1(kXi; mXi+1)pi+1(X0; mXi+1) :In (6.15) only one error is present, namely the Monte Carlo error. It will be a

umu-lated be
ause in reality instead of ui+1(mXi+1) we have the estimate ûi+1(mXi+1):As a result we obtain the following estimate for the 
ontinuation value(6.16) Ĉi(kXi) = BiBi+1 � 1M MXm=1 ûi+1(mXi+1)pi;i+1(kXi; mXi+1)pi+1(X0; mXi+1) :Then we use (6.4)-(6.5).We emphasize that in the 
ase 
onsidered we need not both in simulation of addi-tional traje
tories and in any interpolation. It is suitable for 
onstru
tion of testexamples. Let us note that this 
ase is 
onne
ted with the mesh method. To be
onvin
ed in this it suÆ
es to set(6.17) W ikm := pi;i+1(kXi; mXi+1)pi+1(X0; mXi+1) ;see details in [12℄. 7. A
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