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Abstrat. Here we develop methods for eÆient priing multidimensional disrete-time Amerian and Bermudan options by using regression based algorithms to-gether with a new approah towards onstruting upper bounds for the prie ofthe option. Applying the sample spae with payo�s at the optimal stopping times,we propose sequential estimates for ontinuation values, values of the onsumptionproess, and stopping times on the sample paths. The approah admits onstrut-ing both low and upper bounds for the prie by Monte Carlo simulations. Themethods are illustrated by priing Bermudan swaptions and snowballs in the Libormarket model. 1. IntrodutionValuation of high-dimensional Amerian and Bermudan options is one of the mostdiÆult numerial problems in �nanial engineering. Besides its pratial relevane,investigations in this �eld are of great theoretial importane beause priing ofthe Amerian style options is an arhetype for high-dimensional optimal stoppingproblems. Several approahes have been proposed reently for priing suh optionsusing Monte Carlo simulation tehnique (see, e.g. [1℄-[12℄, [14℄-[17℄, [21, 22, 24℄and referenes therein). With simulation approahes it is often an open questionwhether or not an obtained numerial result is suÆiently aurate. As a rule,during the realization of a numerial proedure there arise many errors of di�erentkind whih are diÆult to take into aount. That is why in a number of works (see,e.g. [3, 4, 14, 15, 16, 17, 21, 22℄), di�erent proedures are proposed that are ableto produe lower and upper bounds for the true prie. The knowledge of lower andupper bounds makes possible to evaluate the auray of prie estimates. Our aimis to onstrut e�etive numerial methods providing with both lower and upperbounds for the prie of Amerian and Bermudan options.In [3℄ we develop an approah for priing Amerian options both in the ase ofdisrete-time and ontinuous-time �nanial models. The approah is based on thefat that an Amerian option is equivalent to a European one with a onsumptionproess involved (the so alled Earlier Exerise Premium representation). It allowsus, in priniple, to onstrut iteratively a sequene v1; V 1; v2; V 2; v3; :::, wherev1; v2; v3; :::; is an inreasing sequene of lower bounds and V 1; V 2; :::, is adereasing sequene of upper bounds. Unfortunately, the onstrution of the abovesequene of bounds requires very laborious alulations. Even V 2 is, as a rule,too expensive. In [4℄ we propose to use an inreasing sequene of low boundsfor onstruting both upper bound and low bound at initial position (t0;X0). Itis assumed that the sequene is not too expensive from omputational point ofview. This an be ahieved by using loal low bounds whih take into aounta small number of steps ahead. The method of [4℄ is suitable for getting roughestimates. However, for obtaining more aurate results one needs rather expensivealulations.Let us onsider a disrete-time �nanial model(Bti;Xti) = (Bti ;X1ti; :::;Xdti); i = 0; 1; :::;I;1



where Bti is prie of a salar riskless asset (we assume that Bti is deterministi andBt0 = 1) and Xti = (X1ti ; :::;Xdti) is prie vetor of risky assets. Along with indexti we shall use below the index i, writing (ti;Xi) instead of (ti;Xti). Let fi(x) bea payo� at time ti provided that Xti = Xi = x; x 2 X � Rd; where X is a statespae (e.g., X = Rd, X = Rd+).We assume that the modelling is based on the �ltered spae (
;F ; (Fi)0�i�I ; P ),where the probability measure P is the risk-neutral priing measure for the prob-lem under onsideration, and Xi is a Markov hain with respet to the �ltration(Fi)0�i�I :With respet to the probability measure P the disounted proess Xi=Bi is a mar-tingale and the prie ui(Xi) of the Amerian option is given by(1.1) ui(x) = sup�2Ti;I BiE�f� (X ti;x� )B� � :In (1.1) X ti;xtj is the value of Markov hain at instant tj � ti starting at ti from x;Ti;I is set of stopping times � taking values in fi; i+ 1; :::;Ig:The value proess ui (Snell envelope) an be determined by indution as follows:uI(x) = fI(x);(1.2) ui(x) = max�fi(x); BiE �ui+1(Xi+1)Bi+1 jXi = x�� ; i = I � 1; :::; 0:We see that theoretially the problem of evaluating u0(X0); the prie of the disrete-time Amerian option at the initial position (t0;X0), is easily solved using iterationproedure (1.2). However, if X is high dimensional and I is large, the iterationproedure is not pratial.In order to use regression methods for sequential evaluation of ui, one an onsiderthe (d+ 1)-dimensional sample(1.3) (mXi; BiBi+1ui+1(mXi+1)); m = 1; :::;M; i = 0; :::;I � 1;from (Xi; ui+1(Xi+1)); where (ti; mXi) are M independent trajetories all startingfrom the point (t0;X0) (see, e.g., [24℄ and [12℄).The samples using optimal stopping times � ti;x = � i;x were �rst introdued in [19℄(see [9℄ and [12℄ as well). They are from (Xi; f�(X ti+1;Xi+1� )) = (Xi; f� (X ti;Xi� ));with � = � ti+1;Xi+1 and have the form(1.4)(mXi; BiB� f� (mX ti+1 ; mXi+1� )) = (mXi; BiB� f� (mX ti ; mXi� )); � = � ti+1; mXi+1 ; m = 1; :::;M:Applying (1.3), we use some estimate ûi+1(Xi+1) instead of ui+1(Xi+1) while ap-plying (1.4), we an employ an estimate �̂ = �̂ ti+1; Xi+1 for � ti+1; Xi+1 . This makespossible to onstrut a low bound for ontinuation value (low ontinuation value)and an upper bound for onsumption proess (upper onsumption proess). If the2



payo� at (ti; mXi) is less or equal to a low ontinuation value, then �rst, the posi-tion (ti; mXi) belongs to the ontinuation region (onsequently, it is natural to take�̂ ti; mXi = �̂ ti+1; mXi+1) and seond the onsumption proess at (ti; mXi) is equal tozero. Otherwise the position (ti; mXi) an belong either to the exerise region orto the ontinuation region. In the latter ase we ompute the upper onsumptionproess at (ti; mXi) as a di�erene between the payo� and the low ontinuationvalue and set �̂ ti; mXi = ti. As a result all the positions (ti; mXi) are equipped withstopping times and onsumption proesses. Due to this it beomes possible to �ndthe low and upper bounds for the prie of the option under onsideration at theinitial position (t0;X0).In Setion 2, we reall the approah (see [3℄, [4℄) to priing Amerian and Bermudanoptions using onsumption proesses in the form suitable for our purposes. Fur-thermore, we give here a omparison with the dual approah (see [21℄, [14℄) for the�rst time. In Setion 3, we propose a number of algorithms for subsequent esti-mating optimal stopping times and ontinuation values using di�erent regressionmethods. Speial attention is paid to linear regression methods (see [19℄ and [9℄).In ontrast to other works using the regression approah in priing Amerian andBermudan options, we onstrut together with an estimate of ontinuation value anupper onsumption proess. Setion 4 gives formulas for the Monte Carlo alula-tion of low and upper bound at the initial position (t0;X0). Setion 5 is devotedto simulations: the results of numerial experiments for Bermudan swaptions andanellable snowballs in a full fator Libor market model on�rm eÆieny of theproposed algorithms. Finally, in Appendix we show that using of proedure (1.2)and sample (1.3) for sequential evaluating ui(Xi) together with modern methods ofmultidimensional approximation (see e.g., [10℄, [25℄ and referenes therein) an givee�etive algorithms for priing high-dimensional Amerian and Bermudan options.2. The approah based on onsumption proessesTo be self-ontained, let us briey reall the approah to priing Amerian andBermudan options using onsumption proesses [3℄.2.1. The ontinuation value, the ontinuation and exerise regions. For theonsidered Amerian option, let us introdue the ontinuation value(2.1) Ci(x) = BiE�ui+1(Xi+1)Bi+1 jXi = x� ; i = 0; :::;I � 1; CI(x) = fI(x);the ontinuation region C and the exerise (stopping) region E :C = f(ti; x) : fi(x) < Ci(x)g ;(2.2) E = f(ti; x) : fi(x) � Ci(x)g :Clearly, (tI; x) 2 E for any x.Let X i;xj ; j = i; i+1; :::;I; be the Markov hain starting at the step i from the pointx : X i;xi = x; and mX i;xj ; m = 1; :::;M; be independent trajetories of the Markov3



hain. The Monte Carlo estimator ûi(x) for ui(x) (in the ase when E is known) hasthe form(2.3) ûi(x) = 1M MXm=1 BiB� f(mX i;x� );where � is the �rst time at whih X i;xj gets into E (of ourse, � in (2.3) dependson i; x; and m : � =m � i;x). Thus, for estimating ui(x), it is suÆient to examinesequentially the position (tj; mX i;xj ) for j = i; i+ 1; :::;I whether it belongs to E ornot.Let us give a simple suÆient ondition for moving along the trajetory using a lowbound v: Introdue the setCv = �(tk; x) : fk(x) < BkE�vk+1(Xk+1)Bk+1 jXk = x�� :Sine Cv � C, the suÆient ondition onsists in ful�lment of the inlusion (tj; mX i;xj ) 2Cv.Clearly, if v1i ; :::; vli are some lower bounds, then the funtion vi(x) = max1�k�l vki (x)is a lower bound as well. Besides, fi(x) is also a lower bound. Heneforth we onsiderlower bounds satisfying the inequality vi(x) � fi(x):2.2. Equivalene of Amerian options to European ones with onsumptionproesses involved. For 0 � i � I�1 equation (1.2) an be rewritten in the form(2.4) ui(x) = BiE �ui+1(Xi+1)Bi+1 jXi = x�+�fi(x)�BiE�ui+1(Xi+1)Bi+1 jXi = x��+ :Introdue the funtions(2.5) i(x) = �fi(x)�BiE �ui+1(Xi+1)Bi+1 jXi = x��+ ; i = I � 1; :::; 0:Due to (2.4), we haveuI�1(XI�1) = BI�1E �fI(XI)BI jFI�1�+ I�1(XI�1);uI�2(XI�2) = BI�2E�uI�1(XI�1)BI�1 jFI�2�+ I�2(XI�2)= BI�2E �fI(XI)BI jFI�2�+BI�2E �I�1(XI�1)BI�1 jFI�2�+ I�2(XI�2):Doing in just the same way further, we getui(Xi) = BiE�fI(XI)BI jFi�+Bi I�(i+1)Xk=1 E�I�k(XI�k)BI�k jFi�(2.6) +i(Xi); i = 0; :::;I � 1:4



Putting X0 = x and realling that B0 = 1; we obtain(2.7) u0(x) = E�fI(XI)BI �+ 0(x) + I�1Xi=1 E�i(Xi)Bi � :Formula (2.7) gives the value of the European option with the payo� funtion fi(x)and with the onsumption proess i de�ned by (2.5).2.3. Upper and low bounds using onsumption proesses. The obtained re-sult about equivalene of the disrete-time Amerian option to the European optionwith the onsumption proess annot be used diretly beause ui(x) and onse-quently i(x) are unknown. We take advantage of the disovered onnetion in thefollowing way (see [3℄).Let vi(x) be a lower bound on the true option prie ui(x):We introdue the funtion(upper onsumption proess)(2.8) i;v(x) = �fi(x)�BiE�vi+1(Xi+1)Bi+1 jXi = x��+ ; i = 0; :::;I � 1:Clearly, i;v(x) � i(x):Hene the prie Vi(x) of the European option with the payo� funtion fi(x) andwith the upper onsumption proess i;v(x) is an upper bound: Vi(x) � ui(x):Conversely, if Vi(x) is an upper bound on the true option prie ui(x) and(2.9) i;V (x) = �fi(x)�BiE �Vi+1(Xi+1)Bi+1 jXi = x��+ ; i = 0; :::;I � 1;then i;V (x) � i(x):and the prie vi(x) of the European option with the low onsumption proess i;V (x)is a lower bound: vi(x) � ui(x):Thus, starting from a lower bound v1i (x); one an onstrut the upper bound V 1i (x)as the European option with the onsumption proess i;v1(x) and so on. Thisproedure gives us the sequenes v1i (x) � v2i (x) � v3i (x) � ::: � ui(x); and V 1i (x) �V 2i (x) � ::: � ui(x). All the bounds vk and V k an in priniple be evaluated bythe Monte Carlo simulations. However eah further step of the proedure requireslabor-onsuming alulations and in pratie it is possible to realize only a few stepsof this proedure. In this onnetion, muh attention is given to variane redutiontehnique and some onstrutive methods reduing statistial errors are proposed(see [3℄).2.4. Comparison with the dual approah. Without loss of generality we assumein this setion that Bi � 1. The dual approah, developed in [21℄ and [14℄ is based5



on the following observation. For any 0 � i � I and any supermartingale (Sj)i�j�Iwith Si = 0 we have thatui(Xi) = sup�2Ti;I E (f� (X� )jFi) � sup�2Ti;I E (f� (X� )� S� jFi)(2.10) � E �maxi�j�I (fj(Xj)� Sj) jFi� ;hene the right-hand side provides an upper bound for ui(Xi). It an be shownthat the equality in (2.10) is attained at the martingale part of the Doob-Meyerdeomposition of the prie proess ui:Mi = 0; Mj = jXl=i+1 (ul(Xl)� E (ul(Xl)jFl�1)) ; i < j � I:The duality representation provides a simple way to estimate the Snell envelope fromabove, using a lower approximation proess fvi(Xi)g. Let Mv be the martingaleMv0 = 0;(2.11) Mvj =Mvj�1 + vj(Xj)� E (vj(Xj)jFj�1)= jXl=1 vl(Xl)� jXl=1 E (vl(Xl)jFl�1) ; 1 � j � I:Then, for any 0 � i � I the proess fMij = Mvj �Mvi ; j = i; : : : ;I, is a martingalewith fMii = 0 and aording to (2.10)V Di (Xi) := E �maxi�j�I �fj(Xj)� fMij� jFi� � ui(Xi):In partiular, for i = 0V D0 (X0) = v0(X0)+ E "max0�j�I fj(Xj)� vj(Xj) + j�1Xl=0 (E (vl+1(Xl+1)jFl)� vl(Xl))!# :(2.12)The upper bound V0(X0) obtained in setion 2.3 an be transformed toV0(X0) = E (fI(XI )) + E I�1Xi=0 [fi(Xi)�E (vi+1(Xi+1)jFi)℄+= v0(X0) + E I�1Xi=0 (maxffi(Xi); E (vi+1(Xi+1)jFi)g � vi(Xi)) ;(2.13)where it is assumed thatfi(Xi) � vi(Xi); i = 0; : : : ;I � 1; vI(XI) = fI(XI):It is interesting to ompare V0 and V D0 starting from the same low bound vi. A om-prehensive omparison of V0(X0) and V D0 (X0) seems to be diÆult and we restrit6



ourselves to some examples. First, we onstrut examples where V0(X0) � V D0 (X0).Let us de�ne � := minf0 � i � I � 1 : fi(Xi) � E (vi+1jFi)g ;and � = I if fi(Xi) < E (vi+1jFi) for all i. We see that if � = I orfi(Xi) � E (vi+1(Xi+1)jFi) ; i � �;with probability 1, thenV0(X0) = v0(X0) + E ��1Xi=0 (E (vi+1(Xi+1)jFi)� vi(Xi))+ E(f� (X� )� v�(X� )) + E I�1Xj=�+1 (fj(Xj)� vj(Xj)) � V D0 (X0):The strit inequality V0 < V D0 is ahieved in the following simple example withI = 3. Due to (2.12), the dual prie at time 0 an be omputed via the formulaV D0 = Emaxff0; f1 � v1 + Ev1;maxff2; E(u3jF2)g+ Ev1 + E(v2jF1)� v1 � v2g= Emaxff0; f1 � v1 + Ev1; E(v2jF1) + u2 � v2 � v1 + Ev1g= Emaxff0;maxff1; E(v2jF1) + u2 � v2g � v1 + Ev1g;(2.14)where we use the equality u2 = maxff2; E(u3jF2)g and the dependene of quanti-ties involved on the underlying proess Xi is not shown expliitly for the sake ofsimpliity. Formula (2.13) givesV0 = Emaxff0; Ev1g+ E(maxff1; E(v2jF1)g � v1)+ E(maxff2; E(v3jF2)g � v2):(2.15)Let us take onstant payo�s satisfyingf0 < f1 < f2 < f3; f1 + f2 < f0 + f3:Clearly, ui = f3; i = 0; : : : ; 3 and any low bound vi satis�esf0 � v0 � f3; f1 � v1 � f3; f2 � v2 � f3; v3 = f3:Formula (2.15) gives V0 = f3 and (2.14) impliesV D0 = Emaxff0; E(v2jF1) + f3 � v2 + Ev1 � v1g:Clearly, V D0 � E[E(v2jF1) + f3 � v2 + Ev1 � v1℄ = f3:If v1 and v2 are suh that the inequalityE(v2jF1) + f3 � v2 + Ev1 � v1 � f0is ful�lled with probability 1, then V D0 = f3. However, if(2.16) E(v2jF1) + f3 � v2 + Ev1 � v1 < f0with positive probability, thenmaxff0; E(v2jF1) + f3 � v2 + Ev1 � v1g > E(v2jF1) + f3 � v2 + Ev1 � v17



with the same probability and onsequently V D0 > V0. The inequality (2.16) isahieved, for example, if Ev1 is lose to f1, E(v2jF1) is lose to f2 and v1 and v2 areequal to f3 with positive probability.At the same time it is possible to onstrut examples when V D0 � V0. Indeed, let ustake vi(Xi) = fi(Xi) for all i = 0; : : : ;I � 1, then aording to (2.12)V D0 = f0 + E "max0�j�I j�1Xl=0 (E (fl+1jFl)� fl)#and due to (2.13) V0 = f0 + I�1Xi=0 (E (fi+1jFi)� fi)+ � V D0 :However, the method based on the representation (2.6) has some advantages overdual approah. First, V0(X0) depends on vi monotonially that is if we have twolow bounds v and ~v suh that vi(Xi) � ~vi(Xi) for all i, then V0(X0) � ~V0(X0). Thisimmediately follows from the �rst line in (2.13). For the dual method this is notalways the ase. Indeed, with three exerises (I = 2) formula (2.12) givesV D0 = Emaxff0; E(v1jF0) + u1 � v1g:Consider the ase when the probability of eventA := fEv1�u1�v1 � f0g is positiveand v1 < u1 � � with some onstant � > 0. Then taking ~v1 = v1 + �=2 on A and~v1 = v1 + � outside A we obtain~V D0 := Emaxff0; E(~v1jF0) + u1 � ~v1g > V D0 ;though ~v1 > v1. Seond, adaptive loal low bounds of the formvi(x) = max1�k�l vki (x); i = 0; : : : ;I � 1;where v1(x); : : : ; vl(x) are low bounds at x ordered aording to their omplexityand l may depend on x, an be used to onstrut V0(X0) (see [4℄). Third, V0(X0) isomputationally less expensive than V0(X0). It is also worthwhile mentioning thatour approah allows us to onstrut low bounds using upper ones.2.5. Bermudan options. As before we onsider the disrete-time model(Bi;Xi) = (Bi;X1i ; :::;Xdi ); i = 0; 1; :::;I:However, now an investor an exerise his right only at time belonging to the set ofstopping times S = fs1; :::; slg within f0; 1; :::;Ig where sl = I. The prie ui(Xi) ofthe Bermudan option is given byui(Xi) = sup�2TS\[i;I℄BiE�f�(X� )B� jFi� ;where TS\[i;I℄ is the set of stopping times � taking values in fs1; :::; slg\fi; i+1; :::;Ig:8



The value proess ui is determined as follows:uI(x) = fI(x);ui(x) =8>><>>: max�fi(x); BiE�ui+1(Xi+1)Bi+1 jXi = x�� ; i 2 S;BiE �ui+1(Xi+1)Bi+1 jXi = x� ; i =2 S:Thus, we obtain that the Bermudan option is equivalent to the European optionwith the payo� funtion fi(x) and with the onsumption proess i de�ned byi(x) = 8<: �fi(x)�BiE�ui+1(Xi+1)Bi+1 jXi = x��+ ; i 2 S;0; i =2 S:From here all the results for disrete-time Amerian options obtained in this setionan be arried over to the Bermudan options. For example, if vi(x) is a lower boundof the true option prie ui(x), the prie Vi(x) of the European option with the payo�funtion fI(x) and with the onsumption proessi;v(x) = 8<: �fi(x)�BiE�vi+1(Xi+1)Bi+1 jXi = x��+ ; i 2 S;0; i =2 S;is an upper bound: Vi(x) � ui(x):3. Optimal stopping times and algorithms with low ontinuation valuesThe samples with optimal stopping times are introdued �rst in [19℄ (see [9℄ as well).3.1. Basi relations for optimal stopping times. The optimal stopping time� i;x = � ti;x depends on the initial position (ti; x): It is de�ned reurrently by thedynami programming priniple in the following way. We set� I;x = �T;x = T;(3.1) � i;x = ti�fCi(x)�fi(x)g + � i+1;Xi;xi+1�fCi(x)>fi(x)g= ti�fui(x)=fi(x)g + � i+1;Xi;xi+1�fui(x)>fi(x)g;i = I � 1; :::; 0:Thus, for any position (ti; x); the optimal stopping time � i;x is either equal to ti :� i;x = ti; or � i;x > ti: It is also lear that (ti; x) is a stopping point (i.e., � i;x = ti)i� (ti; x) 2 E (i.e., (ti; x) belongs to the exerise region). The instant � i;x is the �rstone at whih the trajetory (tj;X i;xj ) either gets into E during i � j � I � 1 or� i;x = I: So, (� i;x;X i;x� i;x) 2 E (see (2.2). Let us give some reurrene relations for9



ui(x) and Ci(x) :ui(Xi) = maxffi(Xi); Ci(Xi)g; uI(x) = f(x);(3.2a) Ci(Xi) = BiBi+1E(ui+1(Xi+1)jXi); CI(x) = f(x);(3.2b) Ci(Xi) = BiBi+1E(maxffi+1(Xi+1); Ci+1(Xi+1)gjXi);(3.2) ui(Xi) = maxffi(Xi); BiBi+1E(ui+1(Xi+1)jXi)g:(3.2d)We note that(3.3) ui+1(Xi+1) = Bi+1E f� (X ti+1 ;Xi+1� )B� jXi+1! ;E(ui+1(Xi+1)jXi) = E  Bi+1E  f� (X ti+1;Xi+1� )B� jFi+1! jFi!(3.4) = Bi+1E f� (X ti+1 ;Xi+1� )B� jXi! ;where � = � ti+1;Xi+1 :Hene due to (3.2b),(3.5) Ci(Xi) = BiE f� (X ti+1;Xi+1� )B� jXi! :We emphasize that for any stopping time ~� � ti+1 the funtion(3.6) vi+1(x) = Bi+1E f~� (X ti+1 ;x~� )B~� !is a low bound for ui+1(x).Sine(3.7) Ci(x) = sup�2Ti+1;I BiE f� (X ti+1 ;Xi+1� )B� jXi = x! = sup�2Ti+1;I BiE �f� (X ti;x� )B� � ;the funtion(3.8) i(x) = BiE �f~� (X ti;x~� )B~� �is a low ontinuation value for any stopping time ~� � ti+1.10



3.2. Subsequent estimating optimal stopping times. Considering Ci(x) as aregression funtion (see (3.5)), it is natural to introdue after [19℄ and [9℄ the sample(mXi; BiB� f�(mX ti+1 ; mXi+1� )) = (mXi; BiB� f� (mX ti ; mXi� ));(3.9) � = � ti+1; mXi+1 ; m = 1; :::;M;from (Xi; BiB� f� (X ti+1 ;Xi+1� )) = (Xi; BiB� f� (X ti;Xi� )); where � = � ti+1;Xi+1 :We are about to use (3.10) for subsequent onstruting an estimate �̂ ti; mXi foroptimal stopping time � ti; mXi: Clearly, � I; mXI = �̂ I; mXI = I: Let � ti+1; mXi+1; i =I � 1; :::; 1; (in reality �̂ ti+1; mXi+1) be known. Using the sample (3.10) at the stepti, we evaluate Ci(mXi) as a regression due to (3.5). Let Ĉi(mXi) be an estimateof Ci(mXi) (we reall that knowledge of Ĉi(mXi) gives ûi(mXi) due to (3.2a)). Iffi(mXi) � Ĉi(mXi) then �̂ ti; mXi = ti, otherwise �̂ ti; mXi = �̂ ti+1 ; mXi+1 (see (3.1)).As a result we obtain the sample like (3.10) at the step ti�1:(mXi�1; Bi�1B� f� (mX ti ; mXi� )) = (mXi�1; Bi�1B� f�(mX ti�1; mXi�1� ));(3.10) � = � ti; mXi ; m = 1; :::;M:Coming to � t1; mX1; we an evaluate u0(X0): Indeed, sineX0 is a nonrandom vetor,we have (see (3.2d) and (3.4)(3.11)u0(X0) = maxff0(X0); 1B1E(u1(X t0;X01 )g = max�f0(X0); E�f� (X t1;X1� )B� �� ; � = � t1;X1 :So, our main problem is to evaluate the ontinuation value Ci(mXi) using sample(3.10). There are a lot of nonparametri regression methods to attain this objetive(see, e.g., [13℄). In the next subsetion we propose some algorithms basing both onloal modelling and least squares estimation. In ontrast to other works using theregression approah in priing Amerian options, we onstrut together with theestimate Ĉi(mXi) an upper onsumption proess.The most appropriate are methods for whih the estimate Ĉi(mXi) is a low ontin-uation value. Then we are able to onstrut both a low and an upper bounds.3.3. Algorithms with the loal Monte Carlo approah. For every position(ti; mXi); m = 1; :::M; let us onstrut N = Ni;m additional independent trajeto-ries on [ti; ti+1℄; i.e., the trajetories with the length of one step. To the instant ti+1we obtain N + 1 points nX ti; mXiti+1 ; n = 0; 1; :::; N; where we put 0X ti; mXiti+1 =m Xi+1:Introdue the notation m;nXi+1 :=n X ti; mXiti+1 : Let �m;n := � ti+1; m;nXi+1 : Due to (3.5)and the Monte Carlo approah (let us note that �m;n = � ti+1; m;nXi+1 is equal to� ti; mXi provided � ti; mXi � ti+1; see also (3.7)) , we have(3.12)Ci(mXi) = BiE f�(X ti+1;Xi+1� )B� jXi =m Xi! ' BiN + 1 NXn=0 f�m;n(X ti+1 ; m;nXi+1�m;n )B�m;n :11



For every point m;nXi+1 =n X ti; mXiti+1 we �nd the nearest one among kXi+1; k =1; :::M; let it be k(m;n)Xi+1: For the position (ti+1; k(m;n)Xi+1), it is known theestimate �̂k(m;n) of the optimal stopping time � ti+1; k(m;n)Xi+1 : To avoid onfusion,let us emphasize that the points m;nXi+1 lie on the trajetories starting from thesame position (ti; mXi) while the points k(m;n)Xi+1 lie on the trajetories whihhave di�erent starting positions (ti; k(m;n)Xi): For any point Xi+1 = X ti; mXiti+1 onean de�ne the stopping ~� = ~�(Xi+1) � ti+1 analogously to �̂k(m;n); i.e., �rst, you�nd the nearest point to Xi+1 among kXi+1; k = 1; :::M; say ~kXi+1; and seond, forthe position (ti+1; ~kXi+1) you know the estimate �̂~k of the optimal stopping time� ti+1; ~kXi+1 whih you take as ~� : ~� = ~� (Xi+1) = �̂~k: Clearly, for the points m;nXi+1this stopping time ~� = ~�(m;nXi+1) := ~�m;n oinides with �̂k(m;n): Introdue~Ci(x) = BiE f~�(X ti+1 ;Xi+1~� )B~� jXi = x! :From (3.7) and (3.8) it follows(3.13) Ci(x) = ~Ci(x) + ri(x);where ri(x) � 0; i.e. ~Ci(x) is a low ontinuation value at the position (ti; x):Analogously to (3.12) we have~Ci(mXi) = BiN + 1 NXn=0 f~�m;n(X ti+1 ; m;nXi+1~�m;n )B~�m;n + �i(mXi)(3.14) = BiN + 1 NXn=0 f�̂k(m;n)(X ti+1 ; m;nXi+1�̂k(m;n) )B�̂k(m;n) + �i(mXi);where �i(mXi) is the Monte Carlo error whih beomes small with inreasing N:Let us pay attention that in general the points X ti+1 ; m;nXi+1~�m;n do not belong to theonsidered sample of M independent trajetories all starting from the initial point(t0;X0): That is why the sum in (3.14) annot be taken as an estimate for theontinuation value Ci(mXi):For the ontinuation value, it is natural to introdue the estimate(3.15) Ĉi(mXi) = BiN + 1 NXn=0 f�̂k(m;n)(X ti+1 ; k(m;n)Xi+1�̂k(m;n) )B�̂k(m;n) :Let us note that in (3.15) and in (3.14) we onsider the trajetories X ti+1 ; k(m;n)Xi+1sandX ti+1 ; m;nXi+1s starting from di�erent positions (ti+1; k(m;n)Xi+1) and (ti+1; m;nXi+1)but with the same soures of randomness. If M is large, the points m;nXi+1 andk(m;n)Xi+1 are at a short distane and we getĈi(mXi) = BiN + 1 NXn=0 f�̂k(m;n)(X ti+1 ; m;nXi+1�̂k(m;n) )B�̂k(m;n) � �i(mXi)(3.16) = ~Ci(mXi)� �i(mXi)� �i(mXi);where the approximation error �i is small.12



From (3.13) we obtain(3.17) Ĉi(mXi) = Ci(mXi) + �i(mXi)� ri(mXi);where �i = ��i � �i:We an laim that the estimate Ĉi(mXi) is a low ontinuation value at the position(ti; mXi) within the auray depending on N and M , beause �i beomes smallwith inreasing M and N and ri � 0: It should be noted that ri essentially dependson a proedure of subsequent estimating optimal stopping times and an be om-paratively large (i.e. ri � 0) if the proedure is unsuessful. Thus the followingtheorem is justi�ed.Theorem 3.1. The estimate Ĉi(mXi) is a low ontinuation value within the au-ray depending on N (the auray determined by the Monte Carlo error) and M(the auray determined by the approximation error).Corollary 3.2. Consider the onsumption(3.18) ̂i(mXi) = [fi(mXi)� Ĉi(mXi)℄+:Beause ̂i(mXi) = [fi(mXi)� Ci(mXi) + ri(mXi) � �i(mXi)℄+, we havei(mXi) � ̂i(mXi); if ri � �i;(3.19) [i(mXi)� �i(mXi) + ri(mXi)℄+ � ̂i(mXi) � i(mXi); if �i > ri:We see that ̂i(mXi) is an upper onsumption in the most typial ase ri � �i,otherwise it an be not an upper bound however in suh a ase ̂i(mXi) is insigni�-antly distinguished from i(mXi), i.e., ̂i(mXi) is an upper onsumption within theauray depending on M and N .3.4. Algorithms with the loal Monte Carlo approah, ontinuation. Forthe estimate (3.15) we use one nearest point k(m;n)Xi+1 among mXi+1; m = 1; :::;M;to every point m;nXi+1: Now let us for every point m;nXi+1 =n X ti; mXiti+1 �nd afew (say Km;n) nearest ones among mXi+1; m = 1; :::M: Let us denote them byk[m;n℄Xi+1; k = 1; :::;Km;n (in ontrast to k(m;n); the funtion k[m;n℄ is a multifun-tion). The estimates �̂k[m;n℄ of the optimal stopping times �k[m;n℄ := � ti+1; k[m;n℄Xi+1are known. Then the following expression(3.20) vi+1(nX ti ; mXiti+1 ) = Bi+1Km;n Km;nXk=1 f(X ti+1 ; k[m;n℄Xi+1�̂k[m;n℄ )B�̂k[m;n℄is a low bound for ui+1(x) at the position (ti+1; nX ti; mXiti+1 ) (of ourse, within theauray of approximation).Clearly,(3.21)Ĉi(mXi) = BiBi+1 � 1N + 1 NXn=0 vi+1(nX ti; mXiti+1 ) = BiN + 1 NXn=0 1Km;n Km;nXk=1 f(X ti+1 ; k[m;n℄Xi+1�̂k[m;n℄ )B�̂k[m;n℄13



is a low ontinuation value at (ti; mXi) (of ourse, within the auray dependingon M and N):The estimate (3.15) is the partiular ase of (3.21) when Km;n = 1:Remark 3.3. For estimate (3.21), analogs of Theorem 3.1 and Corollary 3.2 aretrue as well.3.5. Algorithms with k-NN estimates. In the previous algorithms we onstrutNi;m additional trajetories for every point mXi; m = 1; :::M: Let us onsiderN = Ni;m nearest points m;1Xi; :::;m;NXi to the point mXi instead of onstrut-ing the additional trajetories. All the points m;1Xi; :::;m;NXi belong to the set fmXi; m = 1; :::Mg. We have m;nX(ti; m;nXi)i+1 =m;n Xi+1; n = 0; 1; :::; N; m;0Xi =mXi; m;0Xi+1 =m Xi+1; with known �̂m;n = �̂ ti+1; m;nXi+1 and f(X(ti+1; m;nXi+1)�̂ ti+1; m;nXi+1 ) (letus note that we use another notation in this subsetion and, in partiular, we em-phasize that the points m;nXi+1 belong to the set f mXi+1; m = 1; :::Mg). Thenanalogously to (3.15), we evaluate:(3.22) Ĉi(mXi) = BiN + 1 NXn=0 f�̂m;n(X ti+1 ; m;nXi+1�̂m;n )B�̂m;n :This estimate is an analog of (3.15). To get an analog of (3.21) let us �nd for everypoint m;nXi+1 =m;n X(ti; m;nXi)i+1 a few (say Km;n) nearest ones among mXi+1; m =1; :::M: Denote them by m;n;kXi+1; k = 1; :::;Km;n: Then(3.23) Ĉi(mXi) = Bi � 1N + 1 NXn=0 1Km;n Km;nXk=1 f(X ti+1 ; m;n;kXi+1�̂m;n;k )B�̂m;n:k ;where �̂m;n;k are known estimates of the optimal stopping times �m;n;k := � ti+1; m;n;kXi+1 .We note that m;n;kXi+1 in (3.23) are distinguished from m;n;kXi+1 in (3.21).Remark 3.4. For estimate (3.23) analogs of Theorem 3.1 and Corollary 3.2 aretrue as well.Remark 3.5. k-NN estimates belong to the lass of loal averaging estimates (see[13℄). One an use other estimates of this lass, for example, kernel estimates andloal polynomial kernel estimates. Note, that the latter type of estimates an behelpful for estimating deltas (see (6.8) and (6.9)).3.6. Linear regression. Regression-based methods approximate the ontinuationvalue using a basis funtion expansion:Ci(x) � KXr=1 �ir r(x); i = 0; 1; : : : ;I � 1;where f r(x)gKr=1 is a set of basis funtions eah mapping X to R. In the notationsCi(x) � �>i  (x)14



with �>i = (�i1; : : : ; �iK);  (x) = ( 1(x); : : : ;  K(x))>:Vetor �i an be estimated using the sample(mXi; BiB�̂m f�̂m(mX ti+1 ; mXi+1�̂m )); �̂m = �̂ ti+1; mXi+1; m = 1; : : : ;M;as �̂i = Â�1 �̂ V :Here Â is the K �K matrix with qr entry1M MXm=1 q(mXi) r(mXi)and �̂ V is the K-vetor with rth entry1M MXm=1 r(mXi)Bif�̂m(X ti+1 ; mXi+1�̂m )B�̂m :The estimate �̂i then de�nes an estimateĈi(x) = �̂>i  (x)of the ontinuation value at an arbitrary point x in the state spae X. Now, iffi(mXi) � Ĉi(mXi) then �̂ ti; mXi = ti, otherwise �̂ ti; mXi = �̂ ti+1 ; mXi+1 (see (3.1)).As a result we obtain at the step ti�1 the sample :(mXi�1; Bi�1B�̂m f�̂m(mX ti ; mXi�̂m )) = (mXi�1; Bi�1B�̂m f�̂m(mX ti�1 ; mXi�1�̂m ));�̂m = �̂ ti; mXi; m = 1; :::;M:Theorem 3.6. The estimate(3.24) Ĉi(mXi) = Bi�̂>i  (mXi)is a low ontinuation value within the auray depending on K and M:Proof. Having Ĉj(x); x 2 X; j = 0; :::;I � 1; one an de�ne a stopping time ~� forevery trajetory X ti; xtj ; j = i; :::;I; in the following way. If Ĉi(x) � fi(x); then weput �̂ ti; x = ti: If Ĉi(x) > fi(x); then we put �̂ ti; x > ti: Further, if Ĉi+1(X ti; xti+1 ) �fi+1(X ti; xti+1 ); then we put �̂ ti; x = ti+1; and so on. If Ĉj(X ti; xtj ) > fj(X ti; xtj ) for allj = i; :::;I�1; then we put �̂ ti; x = I: Clearly, ~� ti; mXi = �̂ ti; mXi; m = 1; :::;M; i.e.,~� is an extension of �̂ : Let us introdue the value(3.25) ~Ci(x) = BiE f~�(X ti+1 ;Xi+1~� )B~� jXi = x! ; ~� = ~� ti+1 ; Xi+1:Due to (3.7) and (3.8), ~Ci(x) is a low ontinuation value, i.e.,(3.26) ~Ci(x) = Ci(x)� ri(x);15



where ri(x) � 0: But for the onditional expetation (3.25), Ĉi(x) an be onsideredas an estimate by the linear regression method. Therefore(3.27) ~Ci(x) = Ĉi(x) + �i(x);where �i(x) is the regression error whih depends on K and M: From (3.26) and(3.27) we obtain(3.28) Ĉi(mXi) = Ci(mXi)� �i(mXi)� ri(mXi):Theorem 3.6 is proved.Remark 3.7. Formally, the theorem is true even if the error �i(x) is large. Butits signi�ane manifests itself when �i(x) is rather small (this an be reahed dueto suessful hoie of  1(x); : : : ;  K(x) and suÆiently large M). Then Ĉi(mXi)is really (not only within the auray depending on K and M) a low ontinuationvalue. 4. Global low and upper boundsAiming to estimate the prie of the Amerian option at a �xed position (t0; x0), wesimulate the independent trajetories mXi; i = 1; :::;I; m = 1; :::;M; of the proessXi, starting at the instant t = t0 from x0 : X0 = x0:For onstruting the global low bound we use formula (3.11). Indeed (3.11) givesthe following estimate(4.1) û0(X0) = max(f0(X0); 1M MXm=1 f�̂m(X t1; mX1�̂m )B�̂m ) ; �̂m = �̂ t1; mX1 :We note that (4.1) always is a low bound for u0(X0) even if �̂m is not equal tooptimal stopping time � t1; mX1.To onstrut the global upper bound we use Subsetion 2.3. Let vi(x) be a lowbound and (ti; mXi) be the position on the m-th trajetory at the time instant ti.We alulate the low ontinuation value(4.2) i;v(mXi) = BiE�vi+1(mXi+1)Bi+1 jFi�at the position (ti; mXi): If(4.3) fi(mXi) < i;v(mXi);then (ti; mXi) 2 C (see (2.2)) and we move one step ahead along the trajetory tothe next position (ti+1; mXi+1): Otherwise if(4.4) fi(mXi) � i;v(mXi);then we annot say de�nitely whether the position (ti; mXi) belongs to C or to E.In spite of this fat we do one step ahead in this ase as well. Let us reall that thetrue onsumption at (ti; x) is equal to(4.5) i (x) = [fi (x)�Ci (x)℄+16



(see (2.5) and (2.1)). Thus, it is natural to de�ne the upper onsumption i;v at anyposition (ti; mXi) by the formula(4.6) i;v(mXi) = [fi(mXi)� i;v(mXi)℄+:Obviously, i;v � Ci and hene i;v � i: Therefore, the prie Vi(x) of the Euro-pean option with payo� funtion fi(x) and upper onsumption proess i;v is anupper bound on the prie ui(x) of the original Amerian option. In the ase (4.3)i;v(mXi) = i(mXi) = 0 and we do not get any error. If (4.4) holds and besidesi;v(mXi) < Ci(mXi), we get an error. If i;v(mXi) is large, then it is in generalimpossible to estimate this error, but if i;v(mXi) is small, the error is small as well.Having found i;v, we an onstrut an estimate V̂0(x0) of the upper bound V0(x0)for u0(x0) by the formula(4.7) V̂0(x0) = 1M MXm=1 fI(mXI)BI + 1M I�1Xi=0 MXm=1 i;v(mXi)Bi :Note that for the onstrution of an upper bound V0 one an use di�erent loallow bounds depending on a position. This opens various opportunities for adaptiveproedures (see [4℄). For instane, if i;v(mXi) is large, then it is reasonable to usea more powerful loal instrument at the position (ti; mXi):Instead of using a low bound for onstruting a global upper one, one an use lowontinuation values, in partiular, those from Setion 3. So, let Ĉi(mXi) be a lowontinuation value. Then (ompare with (4.6))(4.8) ̂i(mXi) = [fi(mXi)� Ĉi(mXi)℄+is an upper onsumption value and the orresponding global upper bound is givenby the formula(4.9) V̂0(x0) = 1M MXm=1 fI(mXI)BI + 1M I�1Xi=0 MXm=1 ̂i(mXi)Bi :Remark 4.1. In reality (see (3.19)) the global upper bound is equal to V̂0(x0) +�,where �! 0 when M;N !1: Therefore we have û0(X0) � u0(X0) � V̂0(x0) +�,i.e. the auray is evaluated by the di�erene V̂0(x0)+�� û0(X0) (not by V̂0(x0)�û0(X0)). In pratie, it may be happened that V̂0(x0) � û0(X0): Clearly, in suh aase the auray is evaluated by �.5. Simulations5.1. Bermudan max alls on d assets. This is a benhmark example studied in[7℄, [14℄ and [21℄ among others. Spei�ally, the model with d idential assets isonsidered where eah underlying has dividend yield Æ. The risk-neutral dynami ofassets is given by dXktXkt = (r � Æ)dt+ �dW kt ; k = 1; :::; d;17



where W kt ; k = 1; :::; d, are independent one dimensional Brownian motions andr; Æ; � are onstants. At any time t 2 ft0; :::; tIg the holder of the option mayexerise it and reeive the payo�f(Xt) = (max(X1t ; :::;Xdt )�K)+:We take ti = iT=I; i = 0; :::;I, with T = 3; I = 9 and apply the loal Monte Carlomethod desribed in the setion 3.3. The number of outer Monte Carlo simulationsM = 10000 and the number of inner Monte Carlo simulations N = 100. The resultsare presented in Table 5.1 in dependene on x0 with X0 = (X10 ; : : : ;Xd0 )T ,X10 = ::: =Xd0 = x0. Monte-Carlo error is omputed usingM outer trajetories. The true valuesare quoted from [12℄. The good quality of low bound bu0(X0) omparatively to theTable 5.1. Bounds (with 95% on�dene intervals) for Bermudanmax all with parameters K = 100; r = 0:05, � = 0:2, Æ = 0:1 anddi�erent d and x0d x0 Lower Bound Upper Bound True Valuebu0(X0) bV0(X0)90 7.965�0.239 8.417�0.082 8.082 100 13.644�0.300 14.493�0.113 13.90110 20.875�0.370 22.014�0.165 21.3490 16.795�0.315 19.0126�0.153 16.715 100 26.265�0.379 29.340�0.183 26.21110 36.790�0.437 40.630�0.208 36.84upper bound bV0(X0) an be attributed to the fat that bV0(X0) uses loal estimatesof ontinuation values in an additive form while bu0(X0) is based on suboptimalstopping family whih depends only on the sign of di�erene between the payo� andontinuation value. Also note, that values of upper bound lie outside 95% on�deneinterval around the true value. This is again due to the loal estimation error andan be ured by inreasing the number of inner simulations N .5.2. Bermudan swaptions in the Libor market model. Let us onsider theLibor market model with respet to a tenor struture 0 = T0 < T1 < : : : < TI in thespot Libor measure P �. The dynamis of the forward Libor Li(t); 0 � t � Ti; i =1; : : : ;I � 1, is governed by the SDE(5.1) dLi = iXj=�(t) ÆjLiLj>i j1 + ÆjLj dt+ Li >i dW �; Li(0) = L0i ; t 2 [0; Ti℄;where Æj = Tj+1 � Tj are day ount fators, t 7! i(t) = (i;1(t); : : : ; i;d(t)) aredeterministi volatility vetor funtions de�ned in [0; Ti℄ (alled fator loadings),and �(t) := minfm : Tm > tg denotes the next reset date at time t. In (5.1)W �(t); 0 � t � TI�1; is a standard d-dimensional Wiener proess under the measureP � with d; 1 � d < I, being the number of driving fators. The spot Libor measure18



P � is indued by the numeraire(5.2) B�(t) := B�(t)(t) �(t)�1Yi=0 (1 + ÆiLi(Ti));where Bi(t); i = 0; : : : ;I; is the value of a zero oupon bond with fae value 1 at Ti:At a tenor date Ti; i = 1; :::; n� 1; we have (see [12℄)(5.3) Bn(Ti) = n�1Yj=i 11 + ÆjLj(Ti) ; n = 1; : : : ;I:Note, that in (5.2) and (5.3) we set by de�nition Qlk = 1 for k > l and L0(T0) = L00is a onstant. It is also worth mentioning that Bn(t); n = 1; : : : ;I � 1, are uniquelyde�ned by Libors on the tenor grid only (fortunately, we need values of B�(t) onlythere as well).A European swaption with maturity Ti and strike � gives the right to ontrat atTi for paying a �xed oupon � and reeiving oating Libor at the settlement datesTi+1; : : : ; TI. The orresponding payo� at maturity Ti is given byfi(Li(Ti); : : : ; LI�1(Ti)) :=  I�1Xj=i Bj+1(Ti)Æj(Lj(Ti)� �)!+ :Note, that by setting Lj(t) = Lj(Tj); t > Tj, for j = 0; : : : ;I � 1, we an de�ne fias a funtion of the whole Libors vetor (L0(Ti); : : : ; LI�1(Ti)).A Bermudan swaption issued at t = 0 gives the right to obtainfi(Li(Ti); : : : ; LI�1(Ti))at an exerise date i 2 fs1; : : : ; sl = I � 1g � f1; : : : ;I � 1g, to be deided by theoption holder. Its risk-neutral prie is given byu0(L0(0); : : : ; LI�1(0)) = sup�2TS E � f� (L� (T�); : : : ; LI�1(T�))B�(T�) ����F0� ;where TS is the set of stopping times � taking values in fs1; :::; slg.For our simulation study we use the Libor volatility struture(5.4) i(t) = ig(Ti � t)ei; where g(s) = g1 + (1� g1 + as)e�bs;with ei being d-dimensional unit vetors, deomposing an input orrelation matrixof rank d and g1 � 0; a � 0; b � 0; i > 0 being the onstants (see [22℄). Forgenerating Libor models with di�erent numbers of fators d, we take as a basis aorrelation struture of the form�ij = exp(��ji� jj); i; j = 1; : : : ;I � 1;whih has full rank for � > 0, and then for a partiular hoie of d we dedue from� a rank-d orrelation matrix �(d) with deomposition �(d)ij = e>i ej; 1 � i; j < I,by prinipal omponent analysis. We take as model parameters a at 10% initialLibor urve (i.e. L0i = 0:1 for i = 0; 1; : : : ;I � 1) over a 40 period quarterly tenorstruture, and the parametersI = 41; Æi = 0:25; i � 0:2; a = 1:5; b = 3:5; g1 = 0:5; � = 0:0413:19



We onsider Bermudan swaptions with yearly exerise opportunities, hene (Æi areequal to a quarter year) si = 4i; i = 1; : : : ; 10. For a pratially exatnumerialintegration of the SDE, we used the log-Euler sheme with �t = Æ=5.Now, we apply the regression method desribed in setion 3.5, where at eah exerisedate Tsi the value of the European swaptionSi(Lsi(Tsi); : : : ; Ln�1(Tsi)) = B�(Tsi)E� fsi+1(Lsi+1(Tsi+1); : : : ; Ln�1(Tsi+1))B�(Tsi+1) ����Fsi�whih we an exerise at the next exerise date Tsi+1 is used as a basis funtiontogether with a powers up to seond order of the immediate payo� fsi. Althoughlosed form expressions for European swaptions do not exist in a Libor marketmodel,there do exist very aurate (typially better than 0:3% relative error) formulas (see[22℄) whih we use for the omputation of Si.The resulting low bound bu0 and upper bound bV0 are given in Table 5.2 for di�erentnumbers of fators d and di�erent oupons �. True values (omputed with less than1% relative error) are quoted from [16℄.d � bu0 bV0 True Value0.08 1094.8�1.2 1096.1�2.0 1096.140 0.10 338.2�1.0 341.2�1.3 339.30.12 96.4�0.5 100.0�0.6 97.20.08 1096.3�1.3 1096.6�2.0 1096.510 0.10 344.3�1.0 346.7�1.3 344.70.12 101.7�0.6 104.9�0.7 101.30.08 1108.1�1.5 1110.5�2.4 1109.21 0.10 381.7�1.2 384.7�1.6 382.10.12 121.2�0.7 123.1�0.8 121.3Table 5.2. Pries of bermudan swaptions �1045.3. Canellable Snowballs in the Libor market model. Let us onsider asnowball swap ontrat. Aording to this ontrat one has to pay, instead of oatingLibor, so alled Snowball oupons whih follow the following term sheet. One payson a semi-annual base a onstant rate I over the �rst year and in the forthomingyears (Previous Coupon+A-Libor)+, where A inreases as spei�ed in the ontrat.A anellable snowball swap is a snowball whih may be anelled (exerised) afterthe �rst year. Here we onsider this anellable snowball produt in a Libor marketmodel (5.1). The snowballs oupons Ki, settled at Ti+1; i = 0; : : : ;I�1, are spei�edby Ki = I; i = 0; 1;Ki = (Ki�1 +Ai � Li(Ti))+; i = 2; : : : ;I � 1:20



We onsider the ontrat where A inreases on an annual base in suh a way thatA2 = S Ai+1 = Ai + s (i mod 2);with S and s given in the ontrat. The value u0 of the anellable snowball swapat T0 = 0 is given byu0(L0(0); : : : ; LI�1(0)) = sup�2TS E  �Xj=1 fj(L2(T2); : : : ; Lj�1(Tj�1)B�(Tj) �����F0! ;where TS is the set of stopping times � taking values in f2; : : : ;Ig andfj(L2(T2); : : : ; Lj�1(Tj�1)) = Æj�1(Lj�1(Tj�1)�Kj�1); j = 1; : : : ;I:Note, that preditable ashows fj an take negative values. Sine we are goingto use linear regression method it is important to �nd a good basis funtions. Onepossible way would be to inlude still alive Europeansmaxj<p�I E pXq=1 fq(L)B�(Tq)�����Fj!at Tj but unfortunately there is no analytial representation for them. However, anapproximation an be found (see [5℄) using the fat that for any j + 1 � p � IE pXq=j+1 fq(L)B�(Tq)�����Fj! = 1 �Bp(Tj)B�(Tj) � E  pXq=j+1 Kq�1Æq�1B�(Tq) �����Fj!= 1 �Bp(Tj)B�(Tj) � KjÆjB�(Tj+1) � E  pXq=j+2 Kq�1Æq�1B�(Tq) �����Fj! :Replaing in the last summand Kq�1 byeKq�1 = (�Kj +Aq�1 � Lq�1(Tq�1))+; j + 2 � q � p;where 0 < � < 1 is a onstant whih may depend on p and is to be found usingoptimization, we get a reasonable approximation quality. The value ofE  eKq�1Æq�1B�(Tq) �����Fj! = Bq(Tj)B�(Tj)EBq �(�Kj +Aq�1 � Lq�1(Tq�1))+Æq�1��Fj� ;where EBq denotes the expetation in respet to Tq forward measure, an be al-ulated using the Blak's formula. Finally, the quadrati polynomials of the spotLibor Lj(Tj) omplete the set of basis funtion at Tj; j = 2; : : : ;I.As a numerial example let us onsider 6yr Snowball with Æi = 0:5yr (I = 12) andtake I = 0:079; S = 0:01. Further, the volatility struture (5.4) with a = 0:976; b =2; g1 = 1:5 is employed and the orrelation matrix is given by�ij = exp � jj � ijI � 2 log �1� ; 1 � i; j � I � 1;with �1 = 0:663. The tenor struture, initial Libor urve and fator loadings i areshown in Table 5.3. The results in dependene on s are presented in Table 5.4.21



Tenors 0.0 0.5 1 1.5 2 2.5L0 0.023 0.025 0.027 0.027 0.031 0.031i 0.153 0.143 0.14 0.140 0.139Tenors 3 3.5 4 4.5 5 5.5L0 0.033 0.034 0.036 0.036 0.038 0.039i 0.138 0.137 0.136 0.135 0.134 0.132Table 5.3. Tenor struture, initial Libor urve and fator loadingss bu0 bV00.005 64.8�2.4 67.4�2.20.004 101.9�2.3 107.3�1.90.003 139.8�2.2 143.3�1.7Table 5.4. Pries of anellable snowballs �1046. Appendix: Diret Snell envelope by multidimensional approximationand regressionThe aim of this setion is to show that a modi�ation of proedure (1.2) togetherwith some kind of interpolation an be suessfully used in pratie. To this end weuse (d + 1)-dimensional sample (see (1.3))(6.1) (mXi; ui+1(mXi+1)); m = 1; :::;M; i = 0; :::; L� 1;from (Xi; ui+1(Xi+1)) for sequential evaluating ui(Xi); i = L � 1; :::; 0; uL(XL) =fL(Xl):6.1. Methods based on multivariate interpolation. Let us suppose that thevalues ui+1(mXi+1) of the funtion ui+1(x) be known. The ontinuation value Ci(Xi)an be onsidered as the prie of the European option on [ti; ti+1℄ at the position(ti;Xi) with the payo� funtion ui+1(x). Hene, due to the Monte Carlo approah,(6.2) Ci(mXi) = BiBi+1E(ui+1(X(ti;Xi)i+1 )jXi =m Xi) ' BiBi+1 1N NXn=1 ui+1(nX(ti; mXi)i+1 ):In (6.2), all the points nX(ti; mXi)i+1 ; n = 1; :::; N; belong to trajetories starting at theinstant ti from mXi and they are onditionally independent under known mXi. Thenumber N an be hosen depending on i and m : N = Ni;m: These points di�erfrom mXi+1 and therefore we need in an interpolation of ui+1(nX(ti; mXi)i+1 ) throughui+1(jXi+1); j = 1; :::;M . Let us note that at present there are new developmentsin the theory of multidimensional approximation (see e.g., [10℄, [25℄ and referenestherein) and making use of the theory allows to realize the needed interpolation. Let~ui+1(nX(ti; mXi)i+1 ) be an approximation of ui+1(nX(ti; mXi)i+1 ) through ui+1(jXi+1); j =22



1; :::;M . Let r1 be the error of interpolation after substituting ~ui+1(nX(ti; mXi)i+1 )instead of ui+1(nX(ti; mXi)i+1 ) in the right-hand side of (6.2). Clearly, r1 tends tozero if M goes to in�nity. Besides, the Monte Carlo error, say r2; is present in(6.2). Clearly, r2 tends to zero if N goes to in�nity. We have assumed above thatthe values ui+1(jXi+1) are known. However, in reality we know their estimatesûi+1(jXi+1) only. Interpolation of ui+1(nX(ti; mXi)i+1 ) through ûi+1(jXi+1) gives anadditional error whih inreases with dereasing i.So, we get the following algorithm for evaluating u0(x0). We haveûL(mXL) = uL(mXL) = fL(mXL):The values ûi(mXi); i = L�1; :::; 0; are found, if knowing ûi+1(mXi+1), in the follow-ing way. We simulate N = Ni;m trajetories starting from the position (ti; mXi) onthe interval [ti; ti+1℄ and obtain the points nX(ti; mXi)i+1 ; n = 1; :::; N: Then we approx-imate ~ui+1(nX(ti; mXi)i+1 ) through ûi+1(mXi+1); m = 1; :::;M . We note that the pointmXi+1 is present among the points nX(ti; mXi)i+1 ; say 1X(ti; mXi)i+1 =m Xi+1: Clearly,~ui+1(1X(ti; mXi)i+1 ) = ~ui+1(mXi+1) = ûi+1(mXi+1): Getting ~ui+1(nX(ti; mXi)i+1 ); n =1; :::; N; we evaluate Ci(mXi) :(6.3) Ĉi(mXi) = BiBi+1 1N NXn=1 ~ui+1(nX(ti; mXi)i+1 ):Then we set(6.4) ûi(mXi) = maxnfi(mXi); Ĉi(mXi)o ; i = L � 1; :::; 1;and �nally(6.5) û0(X0) = max(f0(X0); 1B1 1M MXm=1 û1(mX1)) :The number N is hosen taking into aount the Monte Carlo error in (6.3) whihis surely evaluated during numerial experiments. It is natural that if the one-steperrors r1 and r2 are suÆiently small, the global error will be small as well. It anbe ontrolled in aordane with the pratial rule: if the estimated values do notdi�er essentially after inreasing N andM; then the obtained values are lose to thetrue ones.6.2. Using the nearest points. The previous algorithm is rather expensive be-ause, knowing ûi+1(mXi+1) and aiming to evaluate ui(mXi); we onstrut Ni;madditional trajetories for every point mXi; m = 1; :::M; and then interpolate Ni;munknown values of the funtion ui+1(x). It turns out that in priniple it is possible toavoid both the onstrution of additional trajetories and interpolation. To this endlet us onsider K = Ki;m nearest points m1Xi; :::;mKXi to the point mXi: We havemkX(ti; mkXi)i+1 =mk Xi+1 with known values ûi+1(mkXi+1); k = 1; :::;K: Beause mkXiare lose to mXi; one an approximately onsider all the points mkXi+1 as points on23



the trajetories starting from the same point mXi at the instant ti: Therefore it isreasonable to introdue the following estimate of Ci(mXi) :(6.6) Ĉi(mXi) = BiBi+1 1K + 1 KXk=0 ûi+1(mkXi+1);where m0 is equal to m:Then we use (6.4)-(6.5). This proedure is not so expensive as the previous one.6.3. Estimation of Ci(mXi) as a regression funtion. Let us onsider a sample(Xm; Ym); m = 1; :::;M; from (X;Y ) and reall the loal regression approah. Ofinterest is to estimate the regression funtion(6.7) (x) = E(Y jX = x)and the derivatives 0(x); :::; (p)(x) at a point x = x0: For simpliity in writing wesuppose for a while that X and Y are one-dimensional. Assume that there existsthe (p + 1)-th derivative of (x) at the point x0: The unknown regression funtion(x) an be loally approximated by a polynomial of order p due to the weightedleast squares regression problem (see [13℄)(6.8) MXm=1Kh(Xm � x0) � "Ym � pXj=0 �j(Xm � x0)j#2 ! min�0;:::;�p;where h is a bandwidth, K is a kernel funtion. Denote by �̂j; j = 0; :::; p; thesolution to the problem (6.8). Then(6.9) ̂(x0) = �̂0; :::; ̂(j)(x0) = j!�̂j; j = 0; :::; p:One an apply the regression approah to the sample(6.10) (mXi; BiBi+1ui+1(mXi+1)); m = 1; :::;M; from (Xi; BiBi+1ui+1(Xi+1))and get the ontinuation value Ci(x) as the regression funtionCi(x) = BiBi+1E (ui+1(Xi+1)jXi = x) :This approah gives us Ĉi(mXi) as a funtion of mXi (m is �xed) and of all thevalues ui+1(kXi+1); k = 1; :::;M; (of ourse, in reality we have ûi+1(kXi+1) insteadof ui+1(kXi+1); k = 1; :::;M): Then we use (6.4)-(6.5).6.4. Diret Snell envelope in the ase of known transition probabilities forasserts. Let the transition probabilities(6.11) P (Xk 2 dxjXj = y) = pj;k(y; x)dx; j � k;be known. For example, they are known for the Blak-Sholes model(6.12) dX lt = (r � Æ)X ltdt+ �X ltdwlt; l = 1; :::; d:24



Let the values ui+1(mXi+1); m = 1; :::;M; be known (in reality ûi+1(mXi+1) areknown). We have(6.13) Ci(kXi) = BiBi+1E (ui+1(Xi+1)jkXi) = BiBi+1 Z ui+1(x)pi;i+1(kXi; x)dx:The known values mXi+1; m = 1; :::;M , are distributed as i.i.d. due to the law(6.14) p0;i+1(X0; x) := pi+1(X0; x):We get E (ui+1(Xi+1)jkXi) = Z ui+1(x)pi;i+1(kXi; x)dx(6.15)= Z ui+1(x)pi;i+1(kXi; x)pi+1(X0; x) pi+1(X0; x)dx = E�ui+1(Xi+1)pi;i+1(kXi;Xi+1)pi+1(X0;Xi+1) jkXi�' 1M MXm=1 ui+1(mXi+1)pi;i+1(kXi; mXi+1)pi+1(X0; mXi+1) :In (6.15) only one error is present, namely the Monte Carlo error. It will be aumu-lated beause in reality instead of ui+1(mXi+1) we have the estimate ûi+1(mXi+1):As a result we obtain the following estimate for the ontinuation value(6.16) Ĉi(kXi) = BiBi+1 � 1M MXm=1 ûi+1(mXi+1)pi;i+1(kXi; mXi+1)pi+1(X0; mXi+1) :Then we use (6.4)-(6.5).We emphasize that in the ase onsidered we need not both in simulation of addi-tional trajetories and in any interpolation. It is suitable for onstrution of testexamples. Let us note that this ase is onneted with the mesh method. To beonvined in this it suÆes to set(6.17) W ikm := pi;i+1(kXi; mXi+1)pi+1(X0; mXi+1) ;see details in [12℄. 7. AknowledgmentThis work was �nished while the seond author was a visitor of the Weierstrass-Institute f�ur Angewandte Analysis und Stohastik (WIAS), Berlin, due to the �-nanial supports from this institute and DFG (grant No. 436 RUS 17/137/05)whih are gratefully aknowledged.Referenes[1℄ L. Andersen, M. Broadie (2001). A primal-dual simulation algorithm for priing multidimen-sional Amerian options. Working paper, Columbia Business Shool, New York.[2℄ V. Bally, G. Pag�es, J. Printems (2005). A quantization tree method for priing and hedgingmultidimensional Amerian options. Mathematial Finane, 15, No. 1, 119-168.[3℄ D. Belomestny, G.N. Milstein (2006). Monte Carlo evaluation of Amerian options using on-sumption proesses. International Journal of Theoretial and Applied Finane, 9, No. 4, 1-27.25
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