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ABSTRACT. Here we develop methods for efficient pricing multidimensional discrete-
time American and Bermudan options by using regression based algorithms to-
gether with a new approach towards constructing upper bounds for the price of
the option. Applying the sample space with payoffs at the optimal stopping times,
we propose sequential estimates for continuation values, values of the consumption
process, and stopping times on the sample paths. The approach admits construct-
ing both low and upper bounds for the price by Monte Carlo simulations. The
methods are illustrated by pricing Bermudan swaptions and snowballs in the Libor
market model.

1. Introduction

Valuation of high-dimensional American and Bermudan options is one of the most
difficult numerical problems in financial engineering. Besides its practical relevance,
investigations in this field are of great theoretical importance because pricing of
the American style options is an archetype for high-dimensional optimal stopping
problems. Several approaches have been proposed recently for pricing such options
using Monte Carlo simulation technique (see, e.g. [1]-[12], [14]-[17], [21, 22, 24]
and references therein). With simulation approaches it is often an open question
whether or not an obtained numerical result is sufficiently accurate. As a rule,
during the realization of a numerical procedure there arise many errors of different
kind which are difficult to take into account. That is why in a number of works (see,
e.g. [3, 4, 14, 15, 16, 17, 21, 22]), different procedures are proposed that are able
to produce lower and upper bounds for the true price. The knowledge of lower and
upper bounds makes possible to evaluate the accuracy of price estimates. Our aim
is to construct effective numerical methods providing with both lower and upper
bounds for the price of American and Bermudan options.

In [3] we develop an approach for pricing American options both in the case of
discrete-time and continuous-time financial models. The approach is based on the
fact that an American option is equivalent to a European one with a consumption
process involved (the so called Earlier Exercise Premium representation). It allows
us, in principle, to construct iteratively a sequence v', V', v2, V2% 3 .., where
vl, v% w3, .., is an increasing sequence of lower bounds and V!, V2 .., is a
decreasing sequence of upper bounds. Unfortunately, the construction of the above
sequence of bounds requires very laborious calculations. Even V2 is, as a rule,
too expensive. In [4] we propose to use an increasing sequence of low bounds
for constructing both upper bound and low bound at initial position (tg, Xo). It
is assumed that the sequence is not too expensive from computational point of
view. This can be achieved by using local low bounds which take into account
a small number of steps ahead. The method of [4] is suitable for getting rough
estimates. However, for obtaining more accurate results one needs rather expensive
calculations.

?

Let us consider a discrete-time financial model

(B, Xt,) = (By, Xiy oy X2), =10,1,..., T,



where By, is price of a scalar riskless asset (we assume that By, is deterministic and
By, = 1) and X, = (X, ...,Xtdi) is price vector of risky assets. Along with index
t; we shall use below the index 7, writing (¢;, X;) instead of (¢;, X¢,). Let fi(z) be
a payoff at time ¢; provided that X,, = X; = z, z € X C R? where X is a state
space (e.g., X = R4, X = Ri).

We assume that the modelling is based on the filtered space (Q,F, (Fi)o<i<z, P),

where the probability measure P is the risk-neutral pricing measure for the prob-
lem under consideration, and X; is a Markov chain with respect to the filtration

(Fi)o<i<t -

With respect to the probability measure P the discounted process X;/B; is a mar-
tingale and the price u;(X;) of the American option is given by

(1.1) ui(z) = sup B;E (&)

7'67;,1' BT

In (1.1) Xtt;z is the value of Markov chain at instant ¢; > ¢; starting at ¢; from z,
Ti 1 is set of stopping times 7 taking values in {7,2+ 1,...,Z}.

The value process u; (Snell envelope) can be determined by induction as follows:
(1.2) uz(z) = fr(z),

u(z) = max{fi(m),BiE' (%p&; = m)} ,1=7I-—1,...,0.
i1

We see that theoretically the problem of evaluating uo(Xo), the price of the discrete-
time American option at the initial position (tg, Xo), is easily solved using iteration
procedure (1.2). However, if X is high dimensional and Z is large, the iteration
procedure is not practical.

In order to use regression methods for sequential evaluation of u;, one can consider
the (d + 1)-dimensional sample
B; .
(13) (sz —ui_|_1(mXi+1)), m = 1, ceey M, 1= 0, ...,I— 1,
B
from (X;,u;41(Xs41)), where (¢;, »X;) are M independent trajectories all starting
from the point (to, Xo) (see, e.g., [24] and [12]).

The samples using optimal stopping times 7%® = 742 were first introduced in [19]

(see [9] and [12] as well). They are from (X, fT(Xff“’Xi“)) = (X;, fr(XEX),

with 7 = 7t+1.%i+1 and have the form
(1.4)
B; t; X; B; ti, mXi t; X;
mry 5 JTr\im = lmANAyy, — Jrim T =T m = .
( X f ( XT1+1, m 1+1)) ( X f ( XT«” m 1))7 i+1, m «u+17 17 7]\4

B, B,

Applying (1.3), we use some estimate U;y1(X;41) instead of u;41(X;41) while ap-
plying (1.4), we can employ an estimate 7 = 7t+1 Xit1 for rti+1, Xit1 This makes
possible to construct a low bound for continuation value (low continuation value)
and an upper bound for consumption process (upper consumption process). If the



payoff at (¢;, mX;) is less or equal to a low continuation value, then first, the posi-
tion (¢;, mX;) belongs to the continuation region (consequently, it is natural to take
#ti mXi — ptivs, mXit1) and second the consumption process at (%, mX;) is equal to
zero. Otherwise the position (¢;, »X;) can belong either to the exercise region or
to the continuation region. In the latter case we compute the upper consumption
process at (t;, »X;) as a difference between the payoff and the low continuation
value and set 7% =%i = ¢, As a result all the positions (;, ,,X;) are equipped with
stopping times and consumption processes. Due to this it becomes possible to find
the low and upper bounds for the price of the option under consideration at the
initial position (tq, Xo).

In Section 2, we recall the approach (see [3], [4]) to pricing American and Bermudan
options using consumption processes in the form suitable for our purposes. Fur-
thermore, we give here a comparison with the dual approach (see [21], [14]) for the
first time. In Section 3, we propose a number of algorithms for subsequent esti-
mating optimal stopping times and continuation values using different regression
methods. Special attention is paid to linear regression methods (see [19] and [9]).
In contrast to other works using the regression approach in pricing American and
Bermudan options, we construct together with an estimate of continuation value an
upper consumption process. Section 4 gives formulas for the Monte Carlo calcula-
tion of low and upper bound at the initial position (tg, Xo). Section 5 is devoted
to simulations: the results of numerical experiments for Bermudan swaptions and
cancellable snowballs in a full factor Libor market model confirm efficiency of the
proposed algorithms. Finally, in Appendix we show that using of procedure (1.2)
and sample (1.3) for sequential evaluating u,(X;) together with modern methods of
multidimensional approximation (see e.g., [10], [25] and references therein) can give
effective algorithms for pricing high-dimensional American and Bermudan options.

2. The approach based on consumption processes

To be self-contained, let us briefly recall the approach to pricing American and
Bermudan options using consumption processes [3].

2.1. The continuation value, the continuation and exercise regions. For the
considered American option, let us introduce the continuation value

(2.1) Ci(z) = B;E (%p&; = a:) ,1=0,...,T—1; Cz(z) = fr(z),
i+l
the continuation region C and the exercise (stopping) region & :
(2.2) C={{ti,2): filz) < Ci(z)},
€ ={(tz): fiz) > Ci(z)}.
Clearly, (t7,z) € € for any z.

Let X;’z, 7 =1,1+1,...,Z, be the Markov chain starting at the step ¢ from the point
z: X =z, and ,X;*, m =1,..., M, be independent trajectories of the Markov



chain. The Monte Carlo estimator ;(z) for u;(z) (in the case when £ is known) has
the form

(2.3) X0,

M:
m\m

m=1

where 7 is the first time at which X;’z gets into & (of course, 7 in (2.3) depends
on i,z, and m: T =, ). Thus, for estimating uz( ), it is sufficient to examine

sequentially the position (t;, mX ) for 3 =2,24 1, ...,Z whether it belongs to £ or
not.

Let us give a simple sufficient condition for moving along the trajectory using a low
bound v. Introduce the set

C, = {(tk,m) . folz) < BRE (%p{k = a:) } .

Since C, C C, the sufficient condition consists in fulfilment of the inclusion (¢;, mX;’z)

Co.
!

Clearly, if v}, ..., v} are some lower bounds, then the function v;(z) = max; <x<; v¥(z)
is a lower bound as well. Besides, f;(z) is also a lower bound. Henceforth we consider
lower bounds satisfying the inequality v;(z) > fi(z).

2.2. Equivalence of American options to European ones with consumption
processes involved. For 0 < <7 —1 equation (1.2) can be rewritten in the form

(2.4) wi(z) = B;E (%ﬁ’“ﬁx —m)—l—[f( ) — BE(%)E*”W:UE)F

Introduce the functions

(25) yi(z) = [fi(a:) — B,E (%ﬁ“ﬁm - m)]+ i=T—1,..,0.

Due to (2.4), we have

ur 1(Xz1) = Br . E (fIJ(B )|7: —1> +yr-1(X7-1),

(X7
uz_2(Xz-2) = B2 E (%U‘}_z) + v7-2(X1-2)
-1
(X7
= Br_,E (fIfB )|f _2) + By »E (%VH) + yroa(X7o2).
T 7T—1

Doing in just the same way further, we get

(2.6) wi(X:) = B,E (fIéXI) |]-") _ﬁfl) B (MIE)

+7:(X;),2=0,..,7 — 1.




Putting Xy = z and recalling that By = 1, we obtain

00 i () 4 5 ()

Formula (2.7) gives the value of the European option with the payoff function f;(z)
and with the consumption process +; defined by (2.5).

2.3. Upper and low bounds using consumption processes. The obtained re-
sult about equivalence of the discrete-time American option to the European option
with the consumption process cannot be used directly because u;(z) and conse-
quently 7;(z) are unknown. We take advantage of the discovered connection in the
following way (see [3]).

Let v;(z) be a lower bound on the true option price u;(z). We introduce the function
(upper consumption process)

(2.8) in(2) = [fi(a:) — BE (%m - m)] '  i=0,..,7—1.

Clearly,
Yin(T) = i(2).

Hence the price V;(z) of the European option with the payoff function f;(z) and
with the upper consumption process v; ,(z) is an upper bound: V;(z) > w;(z).

Conversely, if V;(z) is an upper bound on the true option price u;(z) and

+

then
Yiv(z) < yi(z).

and the price v;(z) of the European option with the low consumption process ~; v (z)
is a lower bound: v;(z) < w;(z).

Thus, starting from a lower bound v}(z), one can construct the upper bound V!(z)
as the European option with the consumption process ;,:(z) and so on. This
procedure gives us the sequences v} (z) < vZ(z) < v}(z) < ... < w(z), and V(z) >
VZ2(z) > ... > ui(z). All the bounds v* and V* can in principle be evaluated by
the Monte Carlo simulations. However each further step of the procedure requires
labor-consuming calculations and in practice it is possible to realize only a few steps
of this procedure. In this connection, much attention is given to variance reduction
technique and some constructive methods reducing statistical errors are proposed

(see [3]).

2.4. Comparison with the dual approach. Without loss of generality we assume
in this section that B; = 1. The dual approach, developed in [21] and [14] is based



on the following observation. For any 0 <7 < T and any supermartingale (.5;)i<;j<z
with S; = 0 we have that

(2.10) ui(X;) = sup B (fr(X;)|Fi) < sup E(fr(X;) - 5-|F)

T€7_ 767_1

<E[max(fj( i) —Si)|Fi| s

1<3<T

hence the right-hand side provides an upper bound for w,(X;). It can be shown
that the equality in (2.10) is attained at the martingale part of the Doob-Meyer
decomposition of the price process u;:

M)
M;=0, M;= Y (w(X)—Ew(X)|Fii), i<j<T.
=241

The duality representation provides a simple way to estimate the Snell envelope from
above, using a lower approximation process {v;(X;)}. Let M be the martingale

(2.11) M7 = 0;
M? 1t i(X5) — B (v(X5)]F5-1)

.7
—Z'UIXI ZE (w(X)|Fim), 1<3<T

Then, for any 0 <7 < 7 the process ]\Zj = M- M}, j=1,...,7, is a martingale
with ]\A/.f“ = 0 and according to (2.10)

VPX) = B | e (506) - 75) 1] 2 ()

i<5<T
In particular, for 2 =0

Vo’ (Xo) = vo(Xo)

(2.12) +E

max (fj( ) — vi(X5) + Z (i1 (X41)| 1) —UI(XI))>] :

0<5<T
- =0

The upper bound V5(X,) obtained in section 2.3 can be transformed to

V(o) = B (fz(Xe)) + B Y [506) ~ B (vea(Kera) 7]
213)  =volXo) + BY (max (A(X), B (vin (X))}~ w(X),

where it is assumed that
filXs) <vi(X;), +=0,..., -1, v(Xg)= fr(Xg).

It is interesting to compare V; and VP starting from the same low bound v;. A com-
prehensive comparison of Vo(Xo) and VP (X,) seems to be difficult and we restrict

6



ourselves to some examples. First, we construct examples where V5(X,) < VP (Xo).
Let us define

r:=min{0 <:<Z—1: f(X;) > E (vit1|F)},
and 7 =7 if f;(X;) < E (vi11|F;) for all 5. We see that if 7 =7 or
fi(Xe) 2 B (vip1 (X)) F), 2>,
with probability 1, then

71

V(o) = (o) + B'Y (B (w2 (Kipn) ) — i X0)
B w6 B Y (5(5) (X)) < K2(Xo).

The strict inequality Vo < VP is achieved in the following simple example with
Z = 3. Due to (2.12), the dual price at time 0 can be computed via the formula

VE)D = Emax{fo, fi — vi + Evi,max{fs, E(us|F2)} + Evi + E(vs|F1) — v1 — va}
= Emax{fo, fi —vi + Evy, E(va|F1) + ug — va — v1 + Evi}
(2.14)
= Emax{fo, max{f1, E(v2|F1) + us — v2} —v1 + Evi},

where we use the equality uy = max{fs, E(us|F2)} and the dependence of quanti-
ties involved on the underlying process X; is not shown explicitly for the sake of
simplicity. Formula (2.13) gives

Vo = Emax{fo, Ev1} + E(max{f1, E(va|F1)} — v1)
(2.15) + E(max{ fa, E(v3|F2)} — v2).
Let us take constant payoffs satisfying

fo<hfh<fa<fs, f+fa<fotfa
Clearly, u; = f3,2=0,...,3 and any low bound v; satisfies
JoS<vw<fs, fi<vuu<fs, fi<v:<fs, vs=f
Formula (2.15) gives Vo = f3 and (2.14) implies
VP = Emax{fo, E(vy|F1) + f3 —va + Evy — 1}
Clearly,
VE)D > E[E(ve|F1) + fa—va+ Evy — 1] = fa.
If v; and v, are such that the inequality
E(vs|Fi) + fs—va+ Evi —v1 > fo
is fulfilled with probability 1, then VI = f;. However, if
(2.16) E(vy|Fi)+ fa—va+ Evi —v1 < fo
with positive probability, then
max{ fo, E(va|F1) + f3 — va + Evi —v1} > E(va|F1) + f3 —va + Evy — vy

7



with the same probability and consequently VP > V;. The inequality (2.16) is
achieved, for example, if Ev; is close to f1, E(vs|F1) is close to fy and vy and v, are
equal to f3 with positive probability.

At the same time it is possible to construct examples when VP < V5. Indeed, let us

take v;(X;) = fi(X;) for all e = 0,...,7Z — 1, then according to (2.12)

7-1

= fo+ B | max 2 (B (fryalF1) = fi)

and due to (2.13)

fo-l-z (fix1]Fi) — ) >VD

However, the method based on the representation (2.6) has some advantages over
dual approach. First, V5(Xo) depends on v; monotonically that is if we have two
low bounds v and ¥ such that v,(X;) < 9,(X;) for all ¢, then V5(Xo) > %(Xo). This
immediately follows from the first line in (2.13). For the dual method this is not
always the case. Indeed, with three exercises (Z = 2) formula (2.12) gives

VE)D = Emax{fo, E(v1|Fo) + u1 — v1}.

Consider the case when the probability of event A := {Ev; —u; —v; > fo} is positive
and v; < u; — 6 with some constant § > 0. Then taking ¥; = v; + /2 on A and
U7 = v + 6 outside A we obtain

f/E)D = Emax{fo, E(01|Fo) +u1 — 01} > VE,D,

though v; > v;. Second, adaptive local low bounds of the form

vi(z) = fgg;{lvf(m), 1=0,...,7 -1,
where vi(z),...,v(z) are low bounds at z ordered according to their complexity

and [ may depend on z, can be used to construct Vo(Xo) (see [4]). Third, Vo(Xo) is
computationally less expensive than Vo(Xo). It is also worthwhile mentioning that
our approach allows us to construct low bounds using upper ones.

2.5. Bermudan options. As before we consider the discrete-time model
(Bi, X;) = (B, X}, .., X3, i=0,1,..,T.

However, now an investor can exercise his right only at time belonging to the set of
stopping times S = {s1, ..., s} within {0,1,...,7} where s; = Z. The price u;(X;) of
the Bermudan option is given by

ui(X;) = sup BiE(fTEB )|f)

T€Tsn[i,1] T

where Tsnp; 7 is the set of stopping times 7 taking values in {sy, ..., s;}N{%,7+1, ..., T}.

8



The value process u; is determined as follows:

uz(z) = fz(),

| 1), B (252 o) | ies,
u(e) = wea (X
B;E (Mm = a:) 1 ¢S
B

Thus, we obtain that the Bermudan option is equivalent to the European option
with the payoff function f;(z) and with the consumption process v; defined by

|:f1(:11) — BZE (%p@ = :E):| , ’L c S,
2+1
0,:¢ 5

Yi(z) =

From here all the results for discrete-time American options obtained in this section
can be carried over to the Bermudan options. For example, if v;(z) is a lower bound
of the true option price u;(z), the price V;(z) of the European option with the payoff
function fr(z) and with the consumption process

|:f1(:11) — BZE ('Uz-l—gi-l—l)p(z = :E):| , ’L c S,
2+1
07 1 ¢ S:

Yin(2) =
is an upper bound: V;(z) > w;(z).
3. Optimal stopping times and algorithms with low continuation values

The samples with optimal stopping times are introduced first in [19] (see [9] as well).

3.1. Basic relations for optimal stopping times. The optimal stopping time
T ¥ depends on the initial position (%;,z). It is defined recurrently by the
dynamic programming principle in the following way. We set

'i,:z:,r

(3.1) e =T =T
™ = tixgo )< hi@) T T X{GE)> o)

= tiX{uie)=f@)} T T X fui(2)> f:(2)}
i=T—1,..0.

Thus, for any position (#;,z), the optimal stopping time 7% is either equal to ¢; :
79 = ¢;, or 7" > ¢;. It is also clear that (;, ) is a stopping point (i.e., 7% = ;)
iff (¢;,z) € € (i-e., (t;, z) belongs to the exercise region). The instant 7" is the first
one at which the trajectory (tj,X;’z) either gets into £ during: < 7 < 7Z —1 or

% = T. So, (Ti’z,Xj_’Z;) € & (see (2.2). Let us give some recurrence relations for



u;(z) and Cji(z) :
(3.2a) ui(X;) = max{fi(Xi), Ci(Xi)}, uz(z) = f(=),

B;
(3.2b) Ci(Xi) = B,+1E(ui+1(Xz’+1)|Xz’), Cz(z) = f(=),

B;
(3-2C) Ci(Xi) = B'+1E(maX{f¢+1(Xi+1), CZ-+1(X1-+1)}|X1-),

B;
(3.2d) ui(Xi) = max{f;(Xi), B%HE(U¢+1(X¢+1)|X¢)}-
We note that
2 XiHl,XiH

(3.3) Ui1(Xit1) = Bi B (%pﬁ'ﬂ—l) :

tiv1,Xit1
(3.4) E(uip1(Xi1)|Xs) = E (BZ-HE (Mu—zﬂ) |j:1.)

B
2 XiHl,XiH
BB (%m) |
where
7 = it X
Hence due to (3.2b),
2 XiHl,XiH

(3.5) Ci(X;) = B,E (%p@) }

We emphasize that for any stopping time 7 > ¢;,; the function

. Xfi+1,93
(36) ’U,L'_|_1(:IJ) == B,L'_|_1E (M)
B;
is a low bound for u,;1(z).
Since
s F(x87)
(3.7 Ci(z)= sup BE|——|X;,=2| = sup BEF|—"—"),
B B
TETit1,1 T TETit1,1 T
the function
(X7

is a low continuation value for any stopping time 7 > ¢;,;.

10



3.2. Subsequent estimating optimal stopping times. Considering C;(z) as a
regression function (see (3.5)), it is natural to introduce after [19] and [9] the sample

B;

(3.9) (mXi B,

B s
fT(mXiHl, MXH-I)) = (mXi; B_fT(mXi“ MXl))’
7 = Ftitn mXi+17 m=1,.., M,

from (X, %fT(Xf“’Xi“)) = (X, %fT(Xf’Xi)), where 7 = 7ttt Xit1
We are about to use (3.10) for subsequent constructing an estimate 7% m%i for
optimal stopping time 7% m%i  Clearly, 70 ™%z = 71, mXz = T Let 7ttt mXit1 4 =
T —1,..,1, (in reality 74+ mXi+1) be known. Using the sample (3.10) at the step
t;, we evaluate C;(,,X;) as a regression due to (3.5). Let é’i(mXi) be an estimate
of Ci(mX;) (we recall that knowledge of é’i(mXi) gives U;(mX;) due to (3.2a)). If
filmXi) > é’i(mXi) then 7t mXi = ¢, otherwise 7t m%i = pti+1, mXin1 (see (3.1)).
As a result we obtain the sample like (3.10) at the step ¢;_;:

B;_ x. B;_ . .
(310) (T"Xi—h —1fT(mX7€“ MXl)) = (mXi—17 1fT(mX7€l_1, MXl_l))a
B, B,
r=rtomXiom =1, M.

Coming to 7% »*1 we can evaluate uo(Xo). Indeed, since Xj is a nonrandom vector
? ? ?

we have (see (3.2d) and (3.4)

(3.11)
uo(Xo) = max{ fo(Xo), éE(ul(Xf°’X°)} = max {fo(Xo), E (“XTW) } , T =X

So, our main problem is to evaluate the continuation value C;(,,X;) using sample
(3.10). There are a lot of nonparametric regression methods to attain this objective
(see, e.g., [13]). In the next subsection we propose some algorithms basing both on
local modelling and least squares estimation. In contrast to other works using the
regression approach in pricing American options, we construct together with the
estimate é’i(mXi) an upper consumption process.

The most appropriate are methods for which the estimate é’i(mXi) is a low contin-
uation value. Then we are able to construct both a low and an upper bounds.

3.3. Algorithms with the local Monte Carlo approach. For every position
(ti;y mXi), m =1,..M, let us construct N = N, ,,, additional independent trajecto-
ries on [¢;,t;11], i.e., the trajectories with the length of one step. To the instant ¢;,;
we obtain N 4 1 points , X/ ™% n =0,1,..., N, where we put o X/ ™ =, Xis1.

ti+1 ti-l-l
Introduce the notation ,, n X1 :=x Xttii;l’"xi. Let Ty p := 7+ mnXiti Due to (3.5)
and the Monte Carlo approach (let us note that 7,,, = 7+ mnXi+1 is equal to
rto mXi provided 7t m%i > ¢, see also (3.7)) , we have
(3.12)
i+1,Xi N tit1, mnXit1
fT(X7t' + +1) BZ men(XTmn )
CilwX;)=B,F | ————— 21X, =, X; | ~ : ! .
( ) ( B, | N+1 Z% B .

11



For every point ,,nXit1 =n Xttii;l’"xi we find the nearest one among ;1 X;11, & =
1,...M, let it be gimnq)Xit1. For the position (ti11, kmmn)Xit1), it is known the
estimate 7x(m) of the optimal stopping time 7%+t k(mmXit1  To avoid confusion,
let us emphasize that the points ,, ,X;11 lie on the trajectories starting from the
same position (¢;, mX;) while the points k(mm)Xit1 lie on the trajectories which
have different starting positions (Z;, k(m,n)X;). For any point X, = Xttii;l’"xi one
can define the stopping 7 = 7(X;41) > tiy1 analogously to Ty(mn), i.e., first, you
find the nearest point to X;;, among X;11, kK =1,...M, say ; X, 11, and second, for
the position (¢;41, 3Xi+1) you know the estimate 7; of the optimal stopping time
rh+ X1 which you take as 7 : 7 = 7(X;41) = 7. Clearly, for the points ,,,X;11
this stopping time 7 = 7(mnXit1) := Tmm coincides with 74y, ). Introduce

ooy (SR
Ci(z) = B,;E (B—7’=|XZ = a:) )
From (3.7) and (3.8) it follows
(3.13) Ci(z) = é’z(az) + ri(z),

where r,(z) > 0, i.e. é’z(az) is a low continuation value at the position (¢;, z).
Analogously to (3.12) we have

B N fomn (X5 )

(3.14) (m Xs) N+1; Bty Fede )
tit1, mnXit1
B; i P B ) (mX:)
_ az m<y1 ),y
N —I— ]_ "0 Bﬁ'c(m,'n.)

where o;(,»X;) is the Monte Carlo error which becomes small with increasing N.

Let us pay attention that in general the points X;f“’ min Xt

do not belong to the
considered sample of M independent trajectories all starting from the initial point
(to, Xo). That is why the sum in (3.14) cannot be taken as an estimate for the

continuation value C;(,nX;).

m,n

For the continuation value, it is natural to introduce the estimate

i+l k(m,n)Xi
N fﬁc(m,n)( L k) +1)

A BZ 7ﬁl‘c('m.'n.)
1 i(mX:) = ’
(3.15) CGX) =g 12— B

n=0 k(m,n)

Let us note that in (3.15) and in (3.14) we consider the trajectories X;Hl’ b(mm) Xit1
and X+t mnXin starting from different positions (£;+1, k(m,n)Xit1) and (tit1, mnXit1)
but with the same sources of randomness. If M is large, the points ,, ,X;+1 and
k(mm)Xit1 are at a short distance and we get

N tiv1, mnXit1
A BZ f%k(m,n) (X? m,n )
(3.16) CilmX) = =72 — g~ BilaXi)

k(m,n)

= Ci(mX:) — ati(mXi) — Bi(mXa),

where the approximation error 3; is small.

12



From (3.13) we obtain
(3.17) Ci(mX:) = Ci(mXi) + pi(mXs) — 7i(mX5),
where p; = —a; — ;.

We can claim that the estimate é’i(mXi) is a low continuation value at the position
(t;, mX;) within the accuracy depending on N and M, because p; becomes small
with increasing M and N and r; > 0. It should be noted that r; essentially depends
on a procedure of subsequent estimating optimal stopping times and can be com-
paratively large (i.e. 7; > 0) if the procedure is unsuccessful. Thus the following
theorem is justified.

Theorem 3.1. The estimate é’i(mXi) 15 a low continuation value within the accu-
racy depending on N (the accuracy determined by the Monte Carlo error) and M
(the accuracy determined by the approzimation error).

Corollary 3.2. Consider the consumption

(3.18) Fi(mXi) = [fi(mXi) — CilmX)]T
Because ¥;(mXi) = [[i(mXi) — Ci(mXs) + mi(mXs) — pi(mXi)]T, we have
(3.19) Yi(mXi) < Yi(mXi), if 7 > py,

[Yi(mXs) — pi(mX) + 7i(m X)) < Yl Xi) < v(mXi), if pi > 7.

We see that 4;(mX;) is an upper consumption in the most typical case v; > p;,
otherwise it can be not an upper bound however in such a case ¥;(mX;) s insignifi-
cantly distinguished from v;(m X;), 1.€., Yi(mXi) s an upper consumption within the
accuracy depending on M and N.

3.4. Algorithms with the local Monte Carlo approach, continuation. For
the estimate (3.15) we use one nearest point k(m,n)Xit1 among , X;11, m=1,..., M,
to every point ,,,X;11. Now let us for every point ,,,X;y1 =n Xttii;l’"xi find a
few (say Kmn) nearest ones among ,,X;y11, m = 1,...M. Let us denote them by
kimn Xit1, B =1,..., Kp o (in contrast to k(m, n), the function k[m, n] is a multifunc-
tion). The estimates 7y, of the optimal stopping times Tgpm ) := rhitts klmn] Xit1
are known. Then the following expression

tit1, 'm.,'n.Xi
Biyy X f(Xa 0 )

(3.20) Uz’+1(nXtZ’ mXi) _ Frlm,n]
tit1 Km,n kz:; Bﬁ[m,n]
s a low bound for usa(e) at the position (ts, nX(5,™) (of course, within the

accuracy of approximation).

Clearly,
(3.21)
tit1, m,n Xig1
é ( X ) BZ ]_ z]v: ( Xt“ 'm.X1,) Bq, iv: ]_ K'm.,’"r f(X%k-[I-m,n‘]b[ ] + )
i\m<g ) — AT | 1 Vi n -
BZ-I-l N —|— 1 =0 1 bit1 N ‘I‘ 1 0 Km,n E—1 Bﬁc[m,n]
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is a low continuation value at (t;, ,X;) (of course, within the accuracy depending

on M and N).
The estimate (3.15) is the particular case of (3.21) when K,,, = 1.

Remark 3.3. For estimate (3.21), analogs of Theorem 3.1 and Corollary 3.2 are
true as well.

3.5. Algorithms with k-NN estimates. In the previous algorithms we construct
N, ., additional trajectories for every point ,,X;, m = 1,..M. Let us consider
N = N,,, nearest points ,,1X;,...,mn X; to the point ,, X, instead of construct-

ing the additional trajectories. All the points ,,1X;,...,m v X; belong to the set {
mXi, m = 1,..M}. We have o X ™% — X, n= 0,1,y N, moXi =m
Xy moXit1 =m Xiy1, with known 7,,, = 7+ maXiti and f(X;_iiii :”LZ‘;{(:;)) (let
us note that we use another notation in this subsection and, in particular, we em-

phasize that the points ,, ,X;+1 belong to the set { ,X;y1, m = 1,...M}). Then
analogously to (3.15), we evaluate:

N Xti+1, mnXitl

A Bi f%m,n T
(3.22) CilmX) = 527 3 ( = )

Z
n=0 m,n

This estimate is an analog of (3.15). To get an analog of (3.21) let us find for every
(ti, m,nXi)
X

point mnXit1 =mn X1 a few (say K,,n) nearest ones among X1, m =

1,...M. Denote them by nxXit1, K =1,..., Ky pn. Then

N Kmn ti-l—ly'm.'n.kXi-I-l

. 1 1 TG TR
3.23 Ci(mX:) = B; - Tt ,
(3.23) (mXi) N +1Z e =

n=0 m,n k=1 Tm,n.k

where 7, » . are known estimates of the optimal stopping times Ty, , g := 75+ mnkXit1
We note that ,, X1 in (3.23) are distinguished from ,, n £ X;41 in (3.21).

Remark 3.4. For estimate (3.23) analogs of Theorem 8.1 and Corollary 3.2 are
true as well.

Remark 3.5. k-NN estimates belong to the class of local averaging estimates (see
[13]). One can use other estimates of this class, for ezample, kernel estimates and
local polynomaial kernel estimates. Note, that the latter type of estimates can be

helpful for estimating deltas (see (6.8) and (6.9)).

3.6. Linear regression. Regression-based methods approximate the continuation
value using a basis function expansion:

K
Ciz) = Y Butpe(z), i=0,1,...,T-1,
r=1

where {,(2)}X.| is a set of basis functions each mapping X to R. In the notations
Ci(z) = B ()
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with
B = (B, Bix), P(z) = (Wa(), .., dx(2)) .

Vector f; can be estimated using the sample

?

fT (m t1+1 mX1+1)) 7A_m — 'f-ti+1’ mX«;+17 m = ]_7 ceey
m

(m 7y B
as
Bi= Aty

Here 121¢ is the K x K matrix with gr entry

1 M
37 2 Yalm X (X))

and &gy is the K-vector with rth entry
B me( t1+1 ’m.X1+1)

MZ¢ Ba.

The estimate BAZ then defines an estimate
Ci(z) = B/ ¢(z)
of the continuation value at an arbitrary point z in the state space X. Now, if

filmXs) > C( X;) then 7t =Xi = ¢, otherwise 7t m%i = ptit1, mXis1 (gee (3. 1))
As a result we obtain at the step ¢;,_; the sample :

(mXi—17 Z 1f7’m(m tl m i )) = (mXi—la Z 1f7'm(m tl ts m&ie 1)),

N Ny X .
Tm=T0v™ m=1,..., M.

Theorem 3.6. The estimate
(3.24) Ci(mXi) = BB $(mX:)

18 a low continuation value within the accuracy depending on K and M.

Proof. Having éj(m), z€X, 7=0,...,7—1, one can define a stopping time 7 for
every trajectory Xtt; * 7=1,..,Z,1in the following way. If Ci(z) < fi(z), then we
put 7t * = ¢, If CA'z(a:) > fi(z), then we put 7% * > ¢,. Further if CH_l( t+1z) <

fir1(Xf2 %), then we put 7% ® = t,44, and so on. If C; HXEE) > fi(XE®) for all

tiy1
j =1,...,2—1, then we put 7% ® = I. Clearly, 7t =i —7't1 ’"Xl, m = 1 M, e,
7 is an extension of 7. Let us introduce the value

- frXEHT)
(325) CZ(:IJ) = B,FE B—|XZ =z, F = i+t Xi+1‘

Due to (3.7) and (3.8), é’z(az) is a low continuation value, i.e.,

(3.26) é’z(az) = Ci(z) — ri(),

15



where r;(z) > 0. But for the conditional expectation (3.25), Ci (z) can be considered
as an estimate by the linear regression method. Therefore

(3.27) Ci(z) = Ci(z) + ai(=),

where a;(z) is the regression error which depends on K and M. From (3.26) and
(3.27) we obtain

(3.28) Ci(mXi) = CilmX:) — i(mXi) — ri(mX0).

Theorem 3.6 is proved.

Remark 3.7. Formally, the theorem is true even if the error o;(z) is large. But
its significance manifests itself when a;(z) is rather small (this can be reached due
to successful choice of ¥1(z),...,¥x(z) and sufficiently large M ). Then é’i(mXi)
is really (not only within the accuracy depending on K and M) a low continuation
value.

4. Global low and upper bounds

Aiming to estimate the price of the American option at a fixed position (%o, o), we
simulate the independent trajectories ,, X;, : = 1,...,Z, m =1, ..., M, of the process
X, starting at the instant ¢ = ¢g from zo : Xo = zo.

For constructing the global low bound we use formula (3.11). Indeed (3.11) gives
the following estimate

~ Atl )(1
sy Tm =T '™

A me(th le)
(4.1) Uo(Xo) = max {fo Xo), Vi Z —}

We note that (4.1) always is a low bound for ug(Xs) even if 7, is not equal to
optimal stopping time 7%+ mX1,

To construct the global upper bound we use Subsection 2.3. Let v;(z) be a low
bound and (¢;, »X;) be the position on the m-th trajectory at the time instant ¢,.
We calculate the low continuation value

Bi1

at the position (¢;, mX;). If

then (¢;, mXi) € C (see (2.2)) and we move one step ahead along the trajectory to
the next position (%11, mXit1). Otherwise if

(4.4) filmXi) 2 ciw(mXi),

then we cannot say definitely whether the position (¢;, »X;) belongs to C or to &.
In spite of this fact we do one step ahead in this case as well. Let us recall that the
true consumption at (¢;,z) is equal to

(4.5) v (z) = [fi(z) = C: ()]

16



see (2.5) and (2.1)). Thus, it is natural to define the upper consumption ~,, at any
’
position (ti, sz-) by the formula

(4.6) Viw(mXs) = [filmXi) — ciw(mXi)]T.

Obviously, ¢;, < C; and hence v;, > ;. Therefore, the price V;(z) of the Euro-
pean option with payoff function f;(z) and upper consumption process 7;, is an
upper bound on the price u;(z) of the original American option. In the case (4.3)
Yiw(mXi) = ¥i(mX;) = 0 and we do not get any error. If (4.4) holds and besides
Ciw(mXi) < Ci(mX;), we get an error. If ~,;,(nX;) is large, then it is in general
impossible to estimate this error, but if 7, ,(m X;) is small, the error is small as well.

Having found +;,, we can construct an estimate %(azo) of the upper bound V;(zo)
for ug(zo) by the formula

M -1 M
. 1 fr(mXz) 1 Vi (m Xi)
4.7 | = — _ 4 — e
” SRR PYE S DI
Note that for the construction of an upper bound V5 one can use different local
low bounds depending on a position. This opens various opportunities for adaptive
procedures (see [4]). For instance, if ; ,(mX;) is large, then it is reasonable to use

a more powerful local instrument at the position (¢;, mX;).

Instead of using a low bound for constructing a global upper one, one can use low
continuation values, in particular, those from Section 3. So, let C;(,»X;) be a low
continuation value. Then (compare with (4.6))

(4.8) Fi(mX) = [filmX:) — CilmX)]T

is an upper consumption value and the corresponding global upper bound is given
by the formula

) | M e | 1M (X,
(4.9) %(mo):MZL(BII)—I-M;; (Bi )

Remark 4.1. In reality (see (3.19)) the global upper bound is equal to %(mo) + A,
where A — 0 when M, N — oco. Therefore we have 4o(Xo) < uo(Xo) < %(mo) + A,
i.e. the accuracy is evaluated by the difference %(azo) + A —1(Xo) (not by %(azo) —
Uo(Xo)). In practice, it may be happened that %(azo) < Ug(Xo). Clearly, in such a
case the accuracy is evaluated by A.

>

5. Simulations

5.1. Bermudan max calls on d assets. This is a benchmark example studied in
[7], [14] and [21] among others. Specifically, the model with d identical assets is
considered where each underlying has dividend yield §. The risk-neutral dynamic of
assets is given by

dx*

L = (r—8)dt+odW}, k=1,...4,
Xt
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where Wk, k = 1,...,d, are independent one dimensional Brownian motions and
r,0,0 are constants. At any time t € {to,...,tzr} the holder of the option may
exercise it and receive the payoff

f(Xt) = (ma‘X(tha 7X1§1) - K)+
We take t; =:T/Z,7=0,...,7, with T =3, Z = 9 and apply the local Monte Carlo

method described in the section 3.3. The number of outer Monte Carlo simulations
M = 10000 and the number of inner Monte Carlo simulations N = 100. The results
are presented in Table 5.1 in dependence on = with Xp = (X¢3,..., X7, Xl = ... =
X& = z5. Monte-Carlo error is computed using M outer trajectories. The true values
are quoted from [12]. The good quality of low bound ug(Xo) comparatively to the

TABLE 5.1. Bounds (with 95% confidence intervals) for Bermudan
max call with parameters K = 100, » = 0.05, 0 = 0.2, § = 0.1 and
different d and zq

d | zo | Lower Bound | Upper Bound | True Value

To(Xo) Vo(Xo)
90 | 7.96540.239 8.4174+0.082 8.08

2100 | 13.644+0.300 | 14.493+0.113 13.90
110 | 20.875+0.370 | 22.01440.165 21.34
90 |16.795+0.315 | 19.012640.153 16.71
5| 100 | 26.265+0.379 | 29.340£0.183 26.21
110 | 36.790£0.437 | 40.630£0.208 36.84

upper bound ‘//\E)(Xo) can be attributed to the fact that ‘//\E)(Xo) uses local estimates
of continuation values in an additive form while %y(Xo) is based on suboptimal
stopping family which depends only on the sign of difference between the payoff and
continuation value. Also note, that values of upper bound lie outside 95% confidence
interval around the true value. This is again due to the local estimation error and
can be cured by increasing the number of inner simulations N.

5.2. Bermudan swaptions in the Libor market model. Let us consider the
Libor market model with respect to a tenor structure 0 = Ty < 77 < ... < T7 in the
spot Libor measure P*. The dynamics of the forward Libor L;(t), 0 < ¢t < T}, 1 =
1,...,7 —1, is governed by the SDE

§;LiL v
(5.1) dLi= Y #den}dW*, Li(0)=I° telo,Tl,
i=n(2) 7

where 6; = Tj11 — T are day count factors, ¢t — ~;(t) = (7:1(¢),...,7.4(t)) are
deterministic volatility vector functions defined in [0,7;] (called factor loadings),
and 7(t) := min{m : T,, > t} denotes the next reset date at time ¢t. In (5.1)
W*(t), 0 <t <Tr_4,isastandard d-dimensional Wiener process under the measure
P* with d, 1 < d < Z, being the number of driving factors. The spot Libor measure
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P* is induced by the numeraire

n(t) 1

(5.2) B*(t) (1+6L;(
=0

where B;(t), = 0,...,Z, is the value of a zero coupon bond with face value 1 at 7.
At a tenor date T;, : = 1,...,n — 1, we have (see [12])

n—1 1
5.3 B.(T;) = — n=1,...,T.
(53) ® =115
Note, that in (5.2) and (5.3) we set by definition Hﬁc =1for k >l and Lo(T,) = L
is a constant. It is also worth mentioning that B,(t), n = 1,...,7 — 1, are uniquely

defined by Libors on the tenor grid only (fortunately, we need values of B*(t) only
there as well).

A European swaption with maturity 7; and strike 8 gives the right to contract at
T; for paying a fixed coupon € and receiving floating Libor at the settlement dates
Tit1,-..,Tr. The corresponding payoft at maturity 7; is given by

fi Li(T3), - - -, Lo (T, (Z‘Bj‘l'l Li(T:) — 9)) -

Note, that by setting L;(t) = L;(Tj), ¢t > T}, for j =0,...,7 — 1, we can define f;
as a function of the whole Libors vector (Lo(T3),. .., Lz_1(T3)).

A Bermudan swaption issued at ¢ = 0 gives the right to obtain

fil Li(Ty), . .., L1+ (T3))

at an exercise date 1 € {s1,...,5 =Z — 1} C {1,...,Z — 1}, to be decided by the
option holder. Its risk-neutral price is given by

uo(Lo(0), -, Lr-4(0)) = sup (fT(LT(TTg;tT;)LI_l(TT)) ‘ f") ’

where Ts is the set of stopping times 7 taking values in {si, ..., s;}.
For our simulation study we use the Libor volatility structure

(5.4)  %(t) = cig(Ti — t)e;, where  g(s) = goo + (1 — goo + as)e™™,

with e; being d-dimensional unit vectors, decomposing an input correlation matrix
of rank d and g > 0,a > 0,5 > 0, ¢; > 0 being the constants (see [22]). For
generating Libor models with different numbers of factors d, we take as a basis a
correlation structure of the form

le:eXp(_¢|’L—J|)7 i)j:]-)"')I_]-)

which has full rank for ¢ > 0, and then for a particular choice of d we deduce from

p a rank-d correlation matrix p(? with decomposition pz(-j) =ele;, 1<1,57<TI,
by principal component analysis. We take as model parameters a flat 10% initial
Libor curve (i.e. L? = 0.1 for s = 0,1,...,Z — 1) over a 40 period quarterly tenor
structure, and the parameters

T=41,6=025 ¢ =02 a=15 b=35 go = 0.5, ¢ = 0.0413.

19



We consider Bermudan swaptions with yearly exercise opportunities, hence (4; are
equal to a quarter year) s; = 41, ¢ =1,...,10. For a practically exactnumerical
integration of the SDE, we used the log-Euler scheme with At = §/5.

Now, we apply the regression method described in section 3.5, where at each exercise
date T}, the value of the European swaption

Tsi+1 )7 EERE] Ln—l(TSHI)) ‘ F )

B*(T5i+1 )

which we can exercise at the next exercise date T, , is used as a basis function
together with a powers up to second order of the immediate payoft f,,. Although
closed form expressions for European swaptions do not exist in a Libor market model,
there do exist very accurate (typically better than 0.3% relative error) formulas (see
[22]) which we use for the computation of S;.

Si(Lo(Ts)s- > Ln-1(Ts)) = B*(T.,)E (f‘i+1(L5i+1(

The resulting low bound %, and upper bound Vp are given in Table 5.2 for different
numbers of factors d and different coupons . True values (computed with less than
1% relative error) are quoted from [16].

d 0 | uo ‘//\E) True Value
0.08 | 1094.84+1.2 | 1096.1+£2.0 1096.1
40 10.10 | 338.24+1.0 | 341.2+1.3 339.3
0.12 ] 96.4£0.5 100.0£0.6 97.2
0.08 | 1096.34+1.3 | 1096.6+2.0 1096.5
10 10.10 | 344.3+1.0 | 346.7+1.3 344.7
0.12 |1 101.7+£0.6 | 104.940.7 101.3
0.08 |1108.1+1.5 | 1110.5+2.4 1109.2
1 10.10|381.7+1.2 |384.7£1.6 382.1
0.12 ] 121.2+0.7 |123.1£0.8 121.3

TABLE 5.2. Prices of bermudan swaptions x10*

5.3. Cancellable Snowballs in the Libor market model. Let us consider a
snowball swap contract. According to this contract one has to pay, instead of floating
Libor, so called Snowball coupons which follow the following term sheet. One pays
on a semi-annual base a constant rate I over the first year and in the forthcoming
years (Previous Coupon+A-Libor)", where A increases as specified in the contract.
A cancellable snowball swap is a snowball which may be cancelled (exercised) after
the first year. Here we consider this cancellable snowball product in a Libor market
model (5.1). The snowballs coupons K, settled at 711, ¢ =0,...,Z—1, are specified
by

1=2

Ki=1, i=0,1,
= ( 7-1.

K; = (K;_y + A; — L(Ty))",

g0 ey
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We consider the contract where A increases on an annual base in such a way that
Ag - S
Aiy1 = A +s(t mod 2),

with S and s given in the contract. The value ug of the cancellable snowball swap

at To = 0 1s given by
"\ fi(Lo(Ty), ..., Liq (T
uO(LO(O);---,LI—l(O)) = sup E (; f]( 2( 2)3*( 7 1( J 1) fO) 7
where Ts is the set of stopping times 7 taking values in {2,...,7Z} and
fi(La(T2), -, Lia(T5-1)) = 8-1(Lja(Tjmn) — Kjma), 7=1,...,T.

T€Ts Tj)
Note, that predictable cashflows f; can take negative values. Since we are going

to use linear regression method it is important to find a good basis functions. One
possible way would be to include still alive Europeans

~ fa(L)
jr?pas};-E (q:l B*(Tq) ‘ fj)

at T but unfortunately there is no analytical representation for them. However, an
approximation can be found (see [5]) using the fact that forany j+1 <p<Z

z fq(L) 1— Bp(Tj) Z Kq—15q—1
E( B (T,)| J’) T 7 ( 2 By | " J’)
fj) |

q=j+1 q=5+1
1 — Bp(Tj) Kj5j & Kq—15q—1
_E Tta—17¢—1
) 2
where 0 < a < 1 is a constant which may depend on p and is to be found using

B(Ty)  B* (T B*(T,)

q=75+2

Replacing in the last summand K,_; by

Kq—l - (aKJ + Aq—l - Lq—l(Tq—l))+7 .7 + 2 S q S D,

optimization, we get a reasonable approximation quality. The value of

K, 18,1
E q q
( B*(T,)

B,(T;
fj) = BZECZ% EBq ((O‘Kj + Aq—l - Lq—l(Tq—l))-I_(Sq—l‘ '7:1') )
where Ep, denotes the expectation in respect to T, forward measure, can be cal-
culated using the Black’s formula. Finally, the quadratic polynomials of the spot
Libor L;(T;) complete the set of basis function at T, 7 =2,...,T.

As a numerical example let us consider 6yr Snowball with §; = 0.5yr (Z = 12) and
take I = 0.079, S = 0.01. Further, the volatility structure (5.4) with a = 0.976, b =

2, goo = 1.5 is employed and the correlation matrix is given by
7 — 1|

-2

pij:exp{ logpoo}, 1<4,73<T -1,

with po = 0.663. The tenor structure, initial Libor curve and factor loadings ¢; are
shown in Table 5.3. The results in dependence on s are presented in Table 5.4.
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Tenors | 0.0 0.5 1 1.5 2 2.5
Lo 0.023 | 0.025 | 0.027 | 0.027 | 0.031 | 0.031
e 0.153 | 0.143 | 0.14 | 0.140 | 0.139

Tenors 3 3.5 4 4.5 5 5.5
Lo 0.033 | 0.034 | 0.036 | 0.036 | 0.038 | 0.039
ci 0.138 [ 0.137 | 0.136 | 0.135 | 0.134 | 0.132

TABLE 5.3. Tenor structure, initial Libor curve and factor loadings

s | ug v
0.005 | 64.84+2.4 | 67.4£2.2
0.004 | 101.94£2.3 | 107.3£1.9
0.003 | 139.84+2.2 | 143.3+£1.7

TABLE 5.4. Prices of cancellable snowballs x10*

6. Appendix: Direct Snell envelope by multidimensional approximation
and regression

The aim of this section is to show that a modification of procedure (1.2) together
with some kind of interpolation can be successfully used in practice. To this end we
use (d + 1)-dimensional sample (see (1.3))

(61) (mXi,ui+1(mXi+1)), m = 1, ...,M, = 0, ,L — 1,

from (X;,u;41(X;41)) for sequential evaluating u;(X;), : = L —1,...,0; un(Xg) =
fo(Xa).

6.1. Methods based on multivariate interpolation. Let us suppose that the
values u;41(mXit1) of the function u;;1(z) be known. The continuation value C;(X;)
can be considered as the price of the European option on [t;,¢,11] at the position
(t;, X;) with the payoff function u,;1(z). Hence, due to the Monte Carlo approach,

B B 1 &

. X 7 i, mX;s

(62) CilmXs) = 5 —E(uina (XET )X = Xo) = 27D T (b X ).
=1

(e
B4 B4 t

In (6.2), all the points an'(_le, ’"Xi), n =1,..., N, belong to trajectories starting at the
instant ¢; from ,,X; and they are conditionally independent under known ,,X;. The
number N can be chosen depending on ¢ and m : N = N,,,. These points differ
from ,, X;11 and therefore we need in an interpolation of ui+1(nXi(_t|fl’ ’"Xi)) through
Uir1(;Xir1), 7 = 1,..., M. Let us note that at present there are new developments
in the theory of multidimensional approximation (see e.g., [10], [25] and references
therein) and making use of the theory allows to realize the needed interpolation. Let

ﬂi+1(an-(_t|fl’ ’"Xi)) be an approximation of ui_|_1(nXi(_t|fl’ ’"Xi)) through w;1(;Xit1), J =
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1,...,M. Let r; be the error of interpolation after substituting 121-+1(an-(:_1'1’ ’"Xi))

instead of ui+1(nXi(_t|fl’ ’"Xi)) in the right-hand side of (6.2). Clearly, 1 tends to
zero if M goes to infinity. Besides, the Monte Carlo error, say ry, is present in
(6.2). Clearly, o tends to zero if N goes to infinity. We have assumed above that
the values u;y1(;X;41) are known. However, in reality we know their estimates
Uit1(;Xip1) only. Interpolation of ui_|_1(nXi(_t|_il’ mXi)) through w;y1(;X;41) gives an
additional error which increases with decreasing 2.

So, we get the following algorithm for evaluating uo(zo). We have

Ur(mXz) = ur(mXr) = fo(mX1).

The values 4;(m X;), © = L—1,...,0, are found, if knowing ;1 (mXi+1), in the follow-
ing way. We simulate N = N, ,,, trajectories starting from the position (¢;, »X;) on

the interval [t;, ¢;41] and obtain the points , Z(jfl ’"Xi), n =1,..., N. Then we approx-
imate 121-+1(an-(:_1'1’ ’"Xi)) through 4;11(mXit1), m =1,..., M. We note that the point
mXi+1 18 present among the points an'(_le, ’"Xi), say 1X1-(_Tfl’ mXi) =m Xi+1. Clearly,
Gt (X5 ™) = G (mXir) = Gipa(mXigr). Getting s (o X55™"), n =
1,..., N, we evaluate C;(nX;) :
N
A B, 1 . .
. N T ~ (ti, mX:)
(6.3) CilmX;) = B N"z:;um(nXi+1 ).
Then we set
(64) '&z(sz) = max {fz(mX'L)7 éz(sz)} ) 1=1L— 17 ) 17
and finally
A 1 1,
. UglAg) = max o\o)y 5 77 Ut lmAl .
(6.5 (x,) Fo(0), e D ()
1 m=1

The number N is chosen taking into account the Monte Carlo error in (6.3) which
is surely evaluated during numerical experiments. It is natural that if the one-step
errors 71 and ry are sufficiently small, the global error will be small as well. It can
be controlled in accordance with the practical rule: if the estimated values do not
differ essentially after increasing N and M, then the obtained values are close to the
true ones.

6.2. Using the nearest points. The previous algorithm is rather expensive be-
cause, knowing w;i1(mXi+1) and aiming to evaluate u;(mX;), we construct N;,,
additional trajectories for every point ,, X;, m = 1,...M, and then interpolate N,
unknown values of the function u,;y1(z). It turns out that in principle it is possible to
avoid both the construction of additional trajectories and interpolation. To this end
let us consider K = K ,, nearest points ., X;,...,m, Xi to the point ,, X,;. We have
kaz.(_Tfl’ m i) =m,, Xi+1 with known values U;11(m, Xi+1), & =1, ..., K. Because ,,, X;
are close to ,, X;, one can approximately consider all the points ,,, X;+1 as points on
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the trajectories starting from the same point ,, X; at the instant ¢;. Therefore it 1s
reasonable to introduce the following estimate of C;(,, X;) :

K

(6.6) Ci(mX;) = 7 D Uit (m, Xit1),

where mg is equal to m.

Then we use (6.4)-(6.5). This procedure is not so expensive as the previous one.

6.3. Estimation of C;(,,X;) as a regression function. Let us consider a sample
(Xm,Ym), m =1,..., M, from (X,Y) and recall the local regression approach. Of

interest is to estimate the regression function
(6.7) c(z)=EY|X =)

and the derivatives ¢'(z), ...,c®)(z) at a point = xo. For simplicity in writing we
suppose for a while that X and Y are one-dimensional. Assume that there exists
the (p 4 1)-th derivative of ¢(z) at the point zg. The unknown regression function
c(z) can be locally approximated by a polynomial of order p due to the weighted
least squares regression problem (see [13])

2

M
(6.8) ;Kh(X — o) |Ym —Zﬁj m— )| — mi%,

where h is a bandwidth, K is a kernel function. Denote by Bj; 7 =0,...,p, the
solution to the problem (6.8). Then

(6.9) &(@o) = Bo, -+ €9 (z0) = 516, § = 0, .

One can apply the regression approach to the sample
B;

B;
_— —u, 1 (X
Bint U +1( +1))

6.10 X, :
(6.10) ( Bro

Uit1(mXir1)), m=1,..., M, from (X,

and get the continuation value C;(z) as the regression function
B;
B

Ci(z) = E (vip1(Xip1)| Xi = ).

This approach gives us éi(mXi) as a function of ,X; (m is fixed) and of all the
values u;41(kXit1), kK =1,..., M, (of course, in reality we have ;41 (xX;+1) instead
of uit1(kXit1), k=1,...,M). Then we use (6.4)-(6.5).

6.4. Direct Snell envelope in the case of known transition probabilities for
asserts. Let the transition probabilities

(6.11) P(Xy € dz|X; = y) = pjk(y, z)dz, 5 <k,
be known. For example, they are known for the Black-Scholes model

(6.12) dXt = (r = ) Xldt + o Xldwl, 1 =1,...,d.
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Let the values u;y1(mXiy1), m = 1,..., M, be known (in reality @;11(mXit1) are
known). We have
(6.13)  Ci(eXi) = E (i1 (Xin1) [ X5) =

By By

/ui+1($)Pz’,z’+1(kXi,$)d$-

The known values ,, X1, m =1, ..., M, are distributed as 1.i.d. due to the law

(6.14) Po,i+1(Xo, z) := piy1(Xo, z).
We get
(6.15) B (usss(Xeen) ) = [ ens()pisns (s 2)da

Piit1(6Xi, ) ( Piit1 (8 Xi, Xit1) )
= U, :IJ’—Z' X,:IJd:IJ:E U, )(Z : )(Z
[ i@ B (3o, 2) e L,
Diit1 (e Xi, mXit1)
p’i+1(X07 mX'i-I-l)
In (6.15) only one error is present, namely the Monte Carlo error. It will be accumu-

lated because in reality instead of u;11(mXi+1) we have the estimate ;41 (mXit1)-
As a result we obtain the following estimate for the continuation value

M
1 X Diit1 (e Xi, mXit1)
— Uig1 (mXs ’
Bi1 M"; #i(mXita) pir1(Xo, mXit1)

1 M
&~ — Z u'i—l—l(mX'i-I—l)
M m=1

(6.16) Ci(Xi) = B

Then we use (6.4)-(6.5).

We emphasize that in the case considered we need not both in simulation of addi-
tional trajectories and in any interpolation. It is suitable for construction of test
examples. Let us note that this case is connected with the mesh method. To be
convinced in this it suffices to set

: 5 i1 (kXi, m<Xs
(6.17) Wi o= Piv(k +1) ,
p’i+1(X07 mX'i-I-l)

see details in [12].
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