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Abstract

We prove the local exponential stabilizability for the MHD system, with
internally distributed feedback controllers. These controllers take values in a
finite dimensional space which is the unstable manifold of the elliptic part of
the linearized operator. The stabilization of the linear system is derived using
a unique continuation property for systems of parabolic and elliptic equations,
as well as the equivalence between controllability and feedback stabilizability
in the case of finite dimensional systems. The feedback that stabilizes the
linearized system is also stabilizing the nonlinear system in the domain of a
fractional power of the elliptic operator.

1 Introduction

This paper is concerned with the study of the local exponential stabilization for the
magnetohydrodynamic (MHD) equations, with feedback controllers, localized in a
subdomain and taking values in a finite dimensional space.

The idea is to linearize the system around a stationary state and then construct
a feedback controller stabilizing the linear system. The last step is to show that
the same controller stabilizes, locally in a specified space, the nonlinear system. In
order to stabilize the linear system one needs to project the system on the stable
and unstable subspaces corresponding to a spectral decomposition of the elliptic
part. The unstable subspace is finite dimensional and the projected system on
it is exactly controllable, as a consequence of the approximate controllability of
the original linearized system; one may thus construct a feedback stabilizing this
finite dimensional linear system. The projected system on the stable subspace is,
of course, asymptotically stable and, in fact, the feedback for the finite dimensional
system is stabilizing the initial linearized equations. The approximate controllability
of the linearized system is a consequence of the unique continuation property for the
adjoint system. We prove this by adapting the Carleman inequality obtained by
O.Yu. Imanuvilov (see [10]) in order to establish exact controllability of parabolic
equations and coupling it (as in [9] when deriving an observability inequality for
linearized Navier-Stokes equations) with a refined Carleman inequality for elliptic
equations obtained by O.Yu.Imanuvilov and J.-P.Puel in [14],[15]. The fact that the
feedback controller constructed in the linear case is also stabilizing the nonlinear
system is proved by using the solution of a Lyapunov equation.

The corresponding problem for Navier-Stokes equations was first studied by V.Barbu
in [2]|, where the method of spectral decomposition was applied. There, the exact
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controllability of the finite dimensional projection was derived as a consequence of
the exact null controllability of the linearized Navier-Stokes equations (for the con-
trollability of Navier-Stokes equations see the papers of O.Yu.Imanuvilov [12],[13]).
Later, V.Barbu and R.Triggiani 7] proved the feedback stabilizability of Navier-
Stokes with distributed controllers taking values in a finite dimensional space. Feed-
back stabilization of Navier-Stokes equations with boundary tangential controllers
was studied by V.Barbu, I.Lasiecka and R. Triggiani in [5] and [6]. The key in ob-
taining the exact controllability for the finite dimensional system is here a Kalman
type condition, derived as a consequence of the unique continuation property for a
stationary Stokes type system. In both situations the feedback stabilizing the initial
nonlinear Navier-Stokes system is the solution of an algebraic Ricatti equation com-
ing from a quadratic optimal control problem with infinite horizon. Nevertheless,
in [5] it was also emphasized the fact that the feedback stabilizing the linearized
system is also stabilizing the nonlinear one.

We also mention here the result of exact controllability for the magnetohydrody-
namic equations obtained by V.Barbu, T.Havarneanu, C.Popa and S.S.Sritharan in
[3], [4] (see also [11]). We did not choose to use this exact controllability result in
order to derive controllability for the finite dimensional projection since exact con-
trollability is a more involved result and, moreover, supplementary regularity for the
stationary solution is needed. Also, a unique continuation result does not depend
on the boundary conditions, as in the case of observability inequalities of Carleman
type, and may thus be applied to the stabilization of other systems.

2 Preliminaries

Let Q C R? be a bounded connected set with C? boundary 9. Let Q = Qx (0, 00),
¥ =00 x (0,00), n is the unit exterior normal to 0€2. We consider in the paper the
following MHD controlled system:

1

S =AY+ Vy— (B-V)B+ V(B +p) = f+xu in Q.
OB _

5 +n curl curl B+ (y-V)B — (B -V)y = P(x,v) in Q,

. (1)

Vy:O, V-B=0 1nQ’
y=0, B-n=0,(curl B) x n=0 on Y
y("o):y(b B(ao):BO in €.

The functions that appear in the system are y = (y1,ys,93) : @ % (0,7) — R3 is the
velocity field, p : Q x (0,T) — R is the pressure, B = (By, B, B3) : Qx (0,T) — R?
is the magnetic field. The functions u = (uy, us, u3),v = (v1,v2,v3) : WX (0,T) — R3



are the controllers and x,, : L*(w) — L*(f2) is the operator extending the functions
in L?(w) with 0 to the whole Q. We will suppose that u,v € U := L?(0,T; (L*(w))?).
The coefficients v, n are the positive kinematic viscosity and the magnetic resistivity
coefficients.

Denote by
H={z¢c(L*(Q)*):V-2=0,z-n=0on 0Q}
endowed with the L? norm and
Vi=Hn(Hg)’
Vo=HnN(H)?
endowed with the H' norm. We denote by |- | and (-,-) the L? norm respectively
the L? scalar product.

We also recall here the standard estimate on the trilinear term appearing in the
Navier-Stokes equations and, consequently in the MHD system (see [18]). Let for
m > 0,V™:= HN(H™(Q))* with norm || - ||,,. Then the trilinear form

b(u, v, w) := /Q[(u - V)] - wdz —/ Z uZ w]dx

Z

is well defined on (V')? and extends to V™ x V™2t x Vs when my +mo +my > 3

and m; # % or when at leas one of m; = % and my; + mg + mg > % . In these

situations we have:
|b(u, v, w)| < Cllwllm, |0]mg1[|w]|ms- (2)

Also, it is antisymmetric in the last two variables: b(u, v, w) = —b(u,w,v).

Consider for a given f € (H ()% a steady state variational solution (¢, B, p) €
Vi x Vo x L) of (1):

—yAy+(y-V)y+V(%B2)—(B-V)B+Vp:f in €,
ncurl curl B+ (§-V)B—(B-V)§=0 in Q, )
V-4y=0, V-B=0 in Q,
=0, B-n=0,(curl B) xn=0 on X.

We will assume the following hypothesis on the regularity of the stationary solution:

(H) ¥, B e WH(Q) N L>*(Q). (4)

In order to write (1) in an abstract form we define the following two operators (P
is the Leray projection):

Ay = —PAy for y € D(A)
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AyB = curl (curl B) for B € D(A,)

where

D(Ay) = (H*(Q))* N V4,
D(Ay) :={B € (H*(Q))’ NV, | (curl B) x n =0 on 00}.

With no loss of generality we will suppose that v =7 = 1 and system (1) may thus
be written as

v +Ay+ Ply-Vy) — P(B-VB) = Pf+ P(x.u),
B'+ 4B +y-VB—B-Vy=P(x.w), (5)

y(0) = yo, B(0) = Bo.

The main question we address in this paper is to find a feedback control (u,v) =
K(y, B) such that, if (yo, By) is in a neighborhood of (y, B) (in a topology to be
specified) then system (5) admits a global weak solution that satisfies an estimate

of the form: ) )
I(y, B) — (7, B)|| < Ce™||(yo — 7, Bo — B)||

with C v positive constants and the norm is in a space that a will be specified. More-
over, the feedback control we will construct will take values in a finite dimensional
space.

In order to do this, we need to study the difference between the solution of (1) and
the stationary solution satisfying (3). After renaming by y, B, p, yo, Bo the quantities
y—17, B— B, p—p, yo— y and respectively By — B, we obtain the following system
that we have now to stabilize in 0:

v+ Ay +Ply-Vy+y-Vy—B-VB+B-VB)+
+P(y-Vy—B-VB) = P(x.u),

B'+ A3B +y-VB+4yVB—B-Viy— B-Vy+ (6)
+(y- VB = B-Vy) = P(xuv),

y(0) = yo, B(0) = By.
The first thing we are doing is to find a feedback that stabilizes the linearized system:

y + Ay +Ply-Vi+14-Vy—B-VB+ B-VB) = P(x.u),
B'+ AB+ P(y-VB+4yVB—B-Vy— B-Vy) = P(x.v), (7)

y(0) = yo, B(0) = By.

We observe (see [4]) that in the second equation one has to introduce a supplemen-
tary Leray projection since otherwise we could not obtain a solution (y, B) of (7)



with a divergence free B. Denote by A the following operator:

alv ) - A+ P(y-Vij+4-Vy—B-VB+ B-VB) )
B AyB+P(y-VB+3VB—-B-Vj—B-Vy) |’

with D(A) = D(A;) x D(Ay) C H x H and by B: (L*(w))? x (L*(w))®> - H x H

g @) _ [ Plhuu
v )\ Plwv) )
Then the linear controlled system (7) is written in the abstract form

{fo2rm &

where we denoted by z = (y, B)Y, w = (u,v)” and the solution corresponding to
the control w will be denoted as 2.

The stabilization result concerning the linearized MHD system, that will be proved
in Section 3, is the following:

Theorem 1 ¢) The operator —A generates an analytic semigroup in H x H, with
compact resolvent.

12) The linear system (7) is approzimately controllable in any time T.

i11) There exist a finite dimensional subspace U C (L*(w))? x (L*(w))? and a linear
continuous operator K : H x H — U such that the operator — A+ BK generates an
analytic semigroup of negative type i.e. a semigroup satisfying an estimate of the
form:

|e M AZBE) | < Ce™ ¢ > 0. (10)

where C,§ are positive constants. Moreover, for any positive § there exists such a
feedback K with a corresponding change of the constant C' = C(6) and of the finite
dimensional space U.

The main result of this paper, that will be proved in Section 4, concerns the null
stabilization of the nonlinear system (6), and consequently of system (1) around the
stationary solution satisfying (5):

Theorem 2 There exist 6 > 0, C' > 0, a neighborhood V, of 0 in D(Ai), a finite
dimensional subspace U C (L*(w))® x (L?(w))? and a continuous linear feedback
operator K : H x H — U such that system (6) with yo € V, admits a global weak
solution that satisfies:

A% (y(1), B(t))| < C| A% (yo, Bo)le™™, t > 0. (11)



3 Feedback stabilization of the linearized MHD sys-
tem. Proof of Theorem 1

i) The operator A admits the representation A = A + A, where

y \_ [ Ay
(5 )55 )
A (v )_ P(y-Vij+y-Vy—B-VB+B-VB)
\'B ) \ Ply-VB+yVB—B-Viy—B-Vy)
with D(A) = D(A) C H x H and D(Ag) = Vi x Vo C H x H. Remark that, since
y, B € Wi3(Q) N L=, for y € Vi, B € V5 the products of the type y - VB, B - Vy
appearing in the definition of Ay are in L? and it is easy to see that Ay is closed, A
is semi-positive self-adjoint operator and D(Ay) C D(A). Moreover, an estimate of

the type
| Aoyl < e[ Ay| + C(e)ly]

is standard to prove (see e.g. [16]) and it implies that —A is the generator of an
analytic semigroup. Compactness of the resolvent is, finally, a consequence of the
Rellich theorem on the compact embedding for Sobolev spaces on bounded domains
(i.e. D(A) is compactly embedded in H x H).

The fact that —A has compact resolvent and generates an analytic semigroup im-
plies that its spectrum o(.A) is discrete, with no finite accumulation points and is

contained in an angular domain V, := {2z € C : arg(z — a) € (—60,0)} with some
77

ii) Approximate controllability in time T for problem (9) is equivalent to the unique
continuation property for the dual equation, i.e. if £ is a solution of the dual equation

-+ A€¢=0 te(0,7) (12)
and
B¢=0,te(0,T),
then £ = 0.
Let £ = (¢,C)T. Then, the dual equation (12) may be rewritten as (note that
curl curl B = —AB + V(divB)):
—6— AC+ (VO)YB— (VO3 + (VIB)C + (VIH)C+Vr =0 inQ,

~C, — AC+ (VOB — (VO)y — (VIB) — (VTH)C+Vp=0 inQ,
(13)
V- (=0, V-C=0 in Q

(=0,C-n=0, (curl C) xn=0 on X.



For a vectorial function ¢ : 2 — R? (R?® ~ M3, (R)) we denote by:
D¢ =Vo¢+(Vo)', D¢=Ve¢— (Vo).

When computing the adjoint equation, if we make a further integration (actually
use the antisymmetry of the trilinear term b, see (2)) the dual equation (12) takes

the form: ~
—G = AC—(DQy+ (DC)B+Vr =0 inQ,

~C; — AC + (D*¢)B — (D*C)j+Vp=0 inQ,
(14)
V-(=0,V-C=0 in Q

(=0,C-n=0, (rl C) xn=0 on X.

Actually, the difference between the two forms of the dual equation is hidden in the
pressure terms, but we will see that it is more convenient to work with the latter.

The unique continuation property that has to be proved reads:
(=0,C=0inwx (0,7)=(¢(=0,C=0in Q (15)
This assertion will be proved in Section 5.

iii) We separate now the spectrum of A in a stable part and an unstable one. Let
d > 0 be such that o(A) N {\ Re A = 0} = ¢. Let 01 = o(A) N {A\| Re A < ¢},
oy = o(A)N{A| Re A > §}. It is clear that oy is a finite set and oy C Vg or some
0" € (0,%). Correspondingly, the complexified space (H x H)¢ is decomposed as a
direct sum of two closed subspaces Hy @ H,, subspaces which are invariant for A (we
denoted also by A the complexified operator) and o(A|H;) = 04,7 = 1,2. Of course
H, is finite dimensional and let N = dim H;. Denote by Py the projection onto H;
given by the direct sum H; @ Hs and by Qn = I — Py. Then, with z; = Pyz and
29 = Qnz, equation (9) projects in two equations:

2y + Az = PyBw (16)

Zé + .AZQ = QNB’LU (17)

The operator —A; = —Qn.A generates on H, a stable analytic semigroup that
satisfies:

|7 22] < Ce™ |2y (18)

Equation (16) is a finite dimensional linear equation in the space H;. Moreover,
equation (16) is exactly controllable in any time 7. Indeed, we proved that equa-
tion (9) is approximately controllable in any time T, so the set {z“(T) : w €
L*(0,T;(L*(w)))?} is dense in H x H. So the projection of this set, through
Py, on Hy, which is finite dimensional, is the whole space that is {z"(T) : w €
L*(0,T;(L*(w))*)} = H,. Moreover, if we choose as U C (L*(w))? an N dimen-
sional subspace such that Im PyB = PyB(U) the pair (A, PyB) remains exactly
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controllable in any time 7" and thus is completely stabilizable (see [20]), i.e. for any
91 > 0 there exits a linear operator K; : H; — U and a constant C' = C(d;) such
that

||6_t(-’41_PNBK1) H < Ce_élt. (19)

The feedback K, that we will prove to stabilize the linear system (9), is defined as
K= Re K, K =K, o Py.

We denote by 25, 2K 2K the corresponding solutions of (9),(16) respectively (17).
The only estimate to put in evidence is on the corresponding solution of (17) because
we have by the complete stabilization of (16) that

| (8)] < Ce™|4). (20)
Variations of constants formula gives
() = e 220 /Ot e~ DA B, 2 (s)ds
Passing to the norm and using the estimates (18) and (20) we obtain
@) < ce i+ | Ol g3 0 g,
from where, for a §; > § and a constant C' = C(9, ),
|25 (1)) < Ce™|a).

This, together with (20), give (10) and we conclude the proof of the theorem.  m

4 Local stabilization of the MHD system. Proof of
Theorem 2

Lemma 4.1 Let H be a Hilbert space with norm |- | and scalar product (-,-) and let

—A be the generator of an analytic semigroup of negative type satisfying an estimate
of the type (10) and such that D(A) = D(A*). Then, the quadratic functional

h(z) = /Oo |Aze ™z 2dt

0
is finite for all z € H and defines an equivalent norm in H.

Proof From the theory of interpolation spaces (see [19] or [8]) we know that for
such operators and for 6 € (0, 1), the interpolation space

[D(A),Hlyg={z € H: 1" 242 € L*(0,00; H)} = D(A).
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An equivalent norm (0 & o(A)) is given by
0—3 f,—tA
[t772 Ae ! Z||L2(0,oo;H)
We prove first that there exists a positive constant C' such that for z € D(fl%)

2
hz) < ClEIR, gy

Indeed, integrating by parts in the integral of A we obtain

h(z) :/OOO t(A%e

~tA, A3 e M) dt =

MI»—‘

—/ ) A i Ae Az, Ae ) dt < C/ t|Ae~ 22t < C|2)%,

[un

where we have also used the fact that (AE)*.AT is an isomorphism of H.

For the reverse inequality we use the fact that for positive 6

|A6€_tAZ| S

c(0)
t—9|Z|~

1 —tA

So, if in the previous inequality we take 6 = 5 and instead of z, Aze z, we find
that

t|Ae 222 < O|Aze Mz
and the reverse inequality
el s, < h2)
is immediate. Of course, the two inequalities extend to the whole H and the proof
of the lemma is complete. [ ]

We turn now to the proof of Theorem 2. Let H = H x H and A = A — BK, where
K is the feedback constructed in Theorem 1. Consider the functional

h(z) = / etz 20,

0

A also defines an analytic semigroup of negative type in D(A), D(A) = D(A*) =
D(A), from Lemma 4.1 we deduce that

h(z) ~ ATz

We denote also by h the bilinear form giving h(z) = h(z, z). Given C € H it defines,
via the scalar product in H, a linear continuous functional on D(A4) so there exists
an unique S¢ € D(A17) such that (¢, z) = h(S¢,2) for all z € D(A7). It is clear
that S is self-adjoint in H. Denote by R = S~! which is an unbounded self-adjoint
operator with dense domain D(R) = Im S~ with D(R) € D(A1).



We prove that D(Az) C D(R) with continuous imbedding. To see this we have to
prove that if ¢ € D(Az) then the linear functional z — h(C, z) extends as a linear
continuous functional on H. Let ( = A_%n, with n € H. We have

1

MGz = [ (A, (A AL Ab ez ar,
0
So using Lemma 4.1 and the fact that (.,Zl_i)*/ﬁ is bounded in H we have

WGz < 0 ([T 1are i) ([T Ak ap )T < olak )

So we have that ¢ € D(R),
(B¢, z) = h(¢, 2),
and

|R¢| < CJA3¢. (21)

As usual, one may easily derive the Lyapunov equation satisfied by R:

(Rz, Az) — %M%ZP. (22)

We are now in a position to stabilize the nonlinear system (6). We introduce the
feedback K and system (6) may be rewritten as

2+ Az = g(2)
(23)
2(0) = zo

where the nonlinearity ¢ is
y \ _ ( P(B-VB—y-Vy)
I\B )"\ PB-Vy—y-VB)
The idea, the same as in [2] or [7], is to multiply equation (23), scalarly in H, with
Ry and integrate. The problem is that we do not know if (23) has a global strong
solution (difficulty of the same nature as in the case of Navier-Stokes equations).
So, one has to consider an approximate equation, to show that this is stable and

that its solution is converging to a weak solution of our problem, which conserves
the exponential decay at infinity.

1
For ¢ € H'(Q,R?) and € > 0 we define the truncation T.(¢) = ¢ if ||¢|| £ = and
€

S
0= e

and denote by g.(2) = g(7.(z)). The approximate equation is:

1
if ||| > = For z = (y, B)T € V we denote by T.(z) = (T.(y), T-(B))T

2+ Az = go(2)
(24)
2(0) = 2.
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For this equation one may prove (as in [2]|) that it has a strong solution z. €
C([0,T); H) N L?(0,T;V) N L2 .((0,T], D(A)). Moreover, one has for ¢t € [0,7]
the bound

t
(Y

and 2. — z strongly in L?*(0,7T; H) and weakly in L*(0,T;V). We also have, by the
Aubin compactness theorem that z. — z strongly in L2(0,T, D(A%)). The limit z
is a weak solution of (23).

0z, 4
il ) < Cra

We multiply now equation (24) by Rz. and obtain

%uzze, 2) + (Az, Rz) = (9:(22), R=.). (25)

Standard estimates using the inequality (2) for the trilinear term b show that, for
2 € D(A1)) C H2,¢ €V, one has

[(9:(2), O < [(9(2), Ol < Cllzlhll=] 2 [¢]. (26)
Using the interpolation inequality
2l = [Az=]? < | Aiz]| Ai2] < C(Rz, 2)2 | Al

and (26) with ¢ = Rz., we obtain from (25), (21) and (22) that

d ~ ~
T (Ree,2e) + AR < O(Rew, )3 AR (27)

1
With p = 1z it is easy to see that the set V, = {2 : (R20,20) < p} is invariant
under the flow generated by (24). Moreover, for z; € V, one has

d 1, -
&Rz z2) + 5\,4%25\2 <0

and thus, since ¢(Rz., z.) < |23 < C|A322, with some positive constant 4,
2

d
a(RZE’ ze) + 0(Rze, ze) < 0.

Integrating the last inequality one finds that
(R, 22)] < |(Rzo, 20)]e™

Now, because z. — z strongly in L2(0,T, D(A1)) then for ¢t a.e. |(Rz,z)| —
|(Rz, z)| and thus
I(Rz,2)| < |(Rzo, z0)]e™ .

and the inequality (11) follows. The proof is complete. [
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5 Unique continuation for systems of mixed parabolic-
elliptic equations

The purpose of this section is to study the unique continuation property for sys-
tems of parabolic-elliptic equations in order to apply these results to the unique
continuation of system (14).

In a first step, we will obtain estimates for parabolic and elliptic equations that will
have as consequence the unique continuation property established by J.-C. Saut and
B. Scheurer in [17]|. The systems for which such a unique property holds are systems
of linear parabolic and elliptic equations coupled in the terms of order 0 and 1. In
this form this result is applicable to the dual equation (12) in the form (13). This

is however requiring higher regularity for the stationary solution (g, B).

The result in [17] is not applicable to the dual system in form (14) because, when
applying the divergence to the equations in (14), the elliptic equations for 7 and p
contain second order derivatives in the other unknowns ¢ and C. That is the reason
for which we will make use of the more refined estimates for elliptic equations,
obtained by O.Yu. Imanuvilov and J.-P- Puel in [14], [15], and couple them with
the estimates for the parabolic part of the system.

The heat equation

To make computations as simple and transparent as possible, we consider first the
simplest case of (backward) heat equation:

%—i—Ay:f in Qx(0,7) (28)

Let w C 2. We intend to derive estimates that will have as a consequence the fact
thatif f =0and y = 0 on wx (0,T) then y = 0 on QT := Qx (0, 7). Also, for a given
0z 0z 0%z
ot ’ c%vl ’ 8158:@
and we use the the convention for summation when indices are repeated.

Let 0 < r < R, with Bg CC Q. It is enough to prove that ify = 0in Q, := B,.x(0,T)
then y = 0 on Qg := Bgx(0,T). If this is not the case, with no loss of generality (by
modifying R and replacing the time interval (0,7") with a smaller interval (¢;,%s)),
we will assume that

function z we will denote by 2, z,, 2, etc. the partial derivatives

= inf t)|?do, > 0. 29
mi= ly(z,t)|"do (29)

We choose an auxiliary function 1 € C?(Bpg) with the following properties:

Blosn = 0, Ylsy > 0, {2[Vi(z) = 0} C B, gﬁ — londBp  (30)

Obviously, it is easy to construct such a function and it may be chosen radially
symmetric with an unique critical point, namely in the center of the ball. Let for

12



A>0
@) _ 2 logsg) V(@)

aT—nr YO0 mrm e

and a(t) = a|0Bg, ¢(t) = ¢|0Bg. Denote by z := e**y for some s, \ > 0. Using
(28), the equations satisfied by z is:

az,t) =

Z + {z” — 2502, + (3204721- — S0 — sozt)z} = fe* (31)
We reorder the terms in equation (31) and, denoting by
X(z,t) = [z“ + (8204722- + soy; — sat)z] ;

F(x,t) = —2s(a,2,; + sa;2)

we rewrite (31) as
2+ X(x,t) + F(x,t) = fe™ (32)

We multiply (32) with X (z,t), we integrate on Qg and, by Cauchy inequality we
obtain:

1
[ X (e tdedi + [ X0 F G tydad < [ pree (33)
QR 2 JQnr

Qr
We proceed as in [10] (see also [1]) to evaluate the integrals in (33). The idea is to
put in evidence the dominant terms in s, A\, ¢ as well as their signs. We will see that
the dominant term concerning z will be s3\*32? and the other terms, dominated by
it for s, A big enough, like s> A\3p3, will be generically denoted as l.0.t(z?). The same
for |Vz|? where the dominant term will be found to be sA%¢|Vz|* and the lower
order terms will be denoted as l.0.t.(]Vz|?). When talking about y the dominant
term will be found to be s> \*p?e?*22 and lower order terms like s2\*¢?e?5* 22 will be
denoted shortly as l.o.t.(y?). Similar notations will be used for the terms containing
|Vy|?. Finally, the dominant terms, with positive sign, will be found in the left part
of the final equality.

L. 2 X (x, t)dzdt:
Qr

2
/ 2 X (x, t)dzdt = / 224 + (Z—) <s2a2i + sou i — sat) dxdt =
QR 2 t ’

Qr
52
= 2z ndodt — / ZuZi + — (32a22~ + sy — sozt) dxdt =
Er 7 Qr 2 ' ’ t
= 2z dodt + lo.t.(2*)dxdt (34)
Xr Qr

I1. X(x,t)F(z,t)dxdt:
Qr

a) — 2/ zisa ;2 jdadt =
Qr

13



= 2/ 28052 5 + 2% 580 jdvdt — 2 zngsa iz jdrdt =
QR K K k2 b K I ER b k2 I

f— . . P p— 2 .. 2 . Ppp— . . . .
=/, 222 5505 — 25saidrdt + | 4ison, 2z,n;s00 2 jodt. (35)
R R

b) — 2/ ZiS0 2 = 2/ 228055 + zisa,jjdxdt — 2/ zn;sa j;zdodt  (36)
Qr Qr Zr
c)—2 [ sdla,zz;= s(a’a) j2°dxdt — / s*a’a m;2 dodt (37)
s ) ), ZR s P

Qr ' Qr

d.The other terms in / X(x,t)F(x,t)dxdt are of lower order in s, A\ and may be
Q
dominated by using Caughy’s inequality.

First estimates, for all solutions:

/ 83/\490 2sa le’dt—f-/ 4,06250‘|Vy|2+/
QR\Qr

<C { / ((s* N3 4+ s* A\ p?)y? + s)\<p\Vy|2)e25°‘dxdt] + [ fre*dxdt  (38)
Q'r QR
where the constant C' does not depend on the solution y and s > sg(A), A > Ao.
We estimate now the integrals on g denoted in the above formula, for short,

YR

. Remember that g—ﬁ = —1 on 0Bp.

(i) —/ sofa m; 2 dedt = 53)\3/ p*e* % |y|*dodt (39)
Since z = e**y, z,; = (sa;y + y;)e** and we have:

(ii) — 2/E zn;so iz jdodt = _2/2 (say +yi)nsa(say + y;)e**dodt =
R R

_ 3. 9 2 2 2 2.\ 25 _
= -2 - (s aangly|” — sy miay  — sTa oYy — S yyinioz,jy) e“*“dodt =
= 253)\3/ @36255‘|y|2dadt+/ lot (40)
Xr Xr
(iii)/ Z2sa njdodt = / (say + yi)*sa mne* =
Yr Xr
3.2 2sa 2

:/E s ofa m;e? Y’ + yisam; e + 2sayy o me”* dodt =
R

=N | @*e®’dodt + | lo.t.dodt (41)
YR YR

14



(iv) — 2/ znsajizdodt = —2/ (say + yi)nsa ye”* dodt =
YR 2R

S ay S
=2 - s*amya iyt dodt — 2/2R Sa’jja_nye2 dodt (42)

(v) / 2z ndodt = / (scwy + i) (s iy + yi)ne**dodt
Sr >

R
= 32/ (v ngy? + Lot)e**dodt (43)
TR

If we look now to the formulas (39)-(43) we find that the dominant term for the
integral on g is

T
253)\3/ Pyte*  dodt = 2k:333)\3/ 6250‘@3/ yidodt
b 0 o9

In this situation, for s, A > 0 big enough, the integral on Xz becomes positive. So,
we finally may write the final estimate:

/ NPy |? + s\ e | Vy|*dxdt + / SN yPe* gt dodt < (44)
QRrR\Qr R

< C(/ s* A3y |2 4 s\ e | Vy|2dadt) —I—/ fre*dxdt
Qr Qr

This implies immediately that if f = 0 and y = 0 on B, x (0,7) then y = 0 on
BR X (O, T)

The case of general parabolic operators

Consider now an elliptic operator with the form

n aQy n ay
Ly = ij=——=—+ > bj=— +cy (45)
i,jzl J al'lal'] ]Zl / al'j
where

i) a;; € CY(Q"), ai; = aj; and define a uniformly positive definite matrix: 37, a;;(x)£'¢/ >
3)€|? for some positive constant 3 and all (z,t) € Q.

i) b € L=(QT)
iii) c € L*>(0,7; L™(2)) if n > 3 and ¢ € LP(Q) for some p > 1 if n = 2.

Then, if y € L*(0,T; H?

loc

(Q2)) satisfies

y+Ly=0 inQ"

15



and y =0in w x (0,7"), then y =0 in Q x (0,7).

This is the content of Theorem 1.1 in [17] and we show how to derive this result by
means of an inequality of type (44). Consider the nonhomogeneous equation

y+Ly=f in Q.

The key in obtaining in this case estimates of the type (44) is to move the first order
and zero order terms in the right hand side, incorporate them in the free term f,
and at the end of the computations, which in this case work almost identically as in
the model case, to apply the Holder inequality and dominate them with the terms
in the left hand side in inequality (44)(see also the inequality (38)).

- n a
More precisely, denote by f = f — Z bia — cy. The term f2e®drdt is esti-
i=1 T Qr

mated by / f2e***dxdt and the following terms (multiplied by some independent
Qr

constant):
/ bRyt drdt < C / Vy2e dadt = / Lot.(|Vy|?)dadt
Qr ’ Qr Qr
and
2 n—2
/ 02y2625adl‘dt < </ Cnensa>" (/ (yesa)n_ng> " .
R R R
But

2
(/ Cnensa) < e®ellzn = o(s)llellZn
R

and by the Sobolev embedding theorem

(/ (yeso‘)%d:pdt> ’ </ 2 dadt <
Qr

< 2/ <|Vy|2 + 32/\24,02y2) e**drdt = / Lot(y®) + lot(|Vy|?)dxdt.
Qr Q

R
The computations follow now the same lines as in the model case.

We observe here that, with no essential changes in the proof, the same estimates
hold for elliptic equations of the form Ly = f. [ ]

Systems of parabolic - elliptic equations

Consider now systems of the type

y;
ot

m n a
+Lzyz+22%kzxt—+2§zkxtyk_0 1<i<p
k=11=1 Oz

(46)

Liyi + 33y, ) == + > (e, hye =0, p<i<m
k=11=1 our o



where Yikl € LlOC(QT) Gik € LOO(O T Lloc(Q))

The unique continuation result in this case says that if y; = 0 on w x (0,7T),7 = 1,m,
then y; =0 on Q x (0,7),i = 1, m. This is essentially the content of Theorem 2.1
in [17]. The proof is quite similar to the case of a single parabolic equation we
described above and we just sketch it. So, for 0 < r < R we suppose that y; = 0,
on Q,,7 = 1,m and we want to prove that y; = 0, on Qg,? = 1, m. If it is not true,
we may suppose, as in the case of a single parabolic equation, that there exists an
igp € {1,...m} such that condition (29) holds for y;,. For each i € {1,...m}, for the
equation y;; + L;y; = f; we write an estimate of type (44) and add these estimates.
We keep in mind that among the terms on the boundary the one which is dominant

is / SA32G2 dodt. We obtain, for A > A and s > s()), that
YR

m

3 ( / Syl + sAzserSo‘Wyi\dedf) + (47)
i=1 \Y@r\@r

—1—/2 $3\3e23 B3y, [2dodt < C’Z (/Q (83X Py2 + s\ 2|V |*)e**dwdt+
R i=1

*,
Qr

Using now the Hélder inequality for the right side of the inequality, as in the case
of a general parabolic equation, we absorb the integrals on Qg \ @, from the right
side, into the corresponding integrals in the left side, for s, A big enough. We find
then that necessarily y; = 0 also on Qg \ Q,,7 = 1, m. ]

2

Yir (2, + ik (2, 1)y
53 e 05 + 3 alont)

k=11=1

25 dxdt)

Remark 5.1 We may apply now this result for the unique continuation property for
(12). The regularity needed for the parabolic part is Vi, VB € L?, 3, B € L™, so
W30 L (the same as in the hypotheses for the moment). Now, if we apply the
divergence to the equations in (13), we find two elliptic equations for w, p, containing
terms of the type Ay-C and B; ;C;;. At this point the previous result works if we ask
for the supplementary reqularity Ay, AB € L? and VB € L™, that is the stationary
solution should belong to W3 N W1,

Elliptic equations

We mention here the following theorem of O.Yu.Imanuvilov and J.P.Puel proved in
[15](see also [14]):

Theorem 3 Let D C R" be bounded, open, with C* boundary. Let y € H*(D)

17



solution of the following boundary value problem:

n a2y n ay

Ly := a;j(x + > bj(z)=—+
"0 of; . (48)
= D
#3 ghe) eey = £+ 5
y=9 on 0D

where

i) a;; € C*(D),b;,c,d; € L*(D),i,j = 1,n, a;; verify the uniform ellipticity condi-

tion
n

> a(2)E'¢ > BIEPvEE R, x €D

ij=1

for some 3 > 0.

ii) f, f; € L*(D),j =T,n, g € H2(dD).

Consider a function v € C?(D) with the following properties, analogous to (30):

9P

Ylop =0, Y|p >0, {z|V¢(z) =0} Cwy CC D, n

<0 on dD.

With n(x) = M@ | there exist A\, 7 and a constant C > 0 such that for all A >
A, 7 > T the following inequality holds:

/627"|Vy\2d:c+72)\2/ 26270y |2 <
Q
/|f|2 27'77d +

+ZT/ fiPnedn + [ (192 + 72Xy ) e s |
=1 7% w

<C

gl o +

(49)

Unique continuation for system (14)

We prove now the unique continuation result for system (14), that is property (15).

For 0 < r < R we suppose that ( = 0,C' = 0 on @, and we want to prove that
( =0,C =0on Qg. If it is not true, we may suppose, with no loss of generality,
that the following analogue of condition (29) holds:

= inf HI2+|C(z, t)?do, > 0. 50
mi= dnf GO + 1O 0o (50)

From (14) we find that also Vi = Vp = 0 in Q, so, since for given ¢ (-, 1), p(-, 1)
are defined up to an additive constant, we suppose with no loss of generality that

18



7 =p=0in Q,. By treating Vr, Vp as nonhomogeneous terms in (14) we obtain
first the following estimate of type (44) that is, for A > Ao, s > s0(A\):

/Q\Q S22+ |O) + s 22 (|VC [ + [VO|2)dadt+
R r

+/ 33/\3(|C|2+|C|2)e250‘<p3dadt§/Q (V2 + (Vo[> dedi+  (51)
YR R

+C/Q [SPAG3([C)2 + [OF) 4+ sA2o(|VC]? + [VCP)e**dxdt.

We need now to estimate the pressure terms m, p. We apply the divergence to the
equations in the dual system (14) and we obtain the following elliptic equations:

Ar = div ((D*¢)y — (D*C)B) in QT (52)

Ap=div (D*C)B - D*()y) in Q" (53)

We remark here that the result of J.-C. Saut and B. Scheurer on unique continuation
for systems of mixed parabolic-elliptic equations does not apply since the equations
for m and p contain second order derivatives of ( and C'. This is the reason for which
the stronger estimate of J.-P. Puel and O.Yu.Imanuvilov is needed. So, applying
inequality (49) to m and p on the ball Bp, for fixed ¢t and taking into account that
y,B € L>*(Q) and on Q,, m = p = 0, we obtain, for all 7 > 7, \ > A, the inequality:

[ (vl + VpP)e < € s (I,
R

HZ (9BR) )+

2
IR, g o

(54)
47 [ (DO + (D) Pnetmda.

25 2AWlo(sg)

then we multiply (54) by e #(T-9?

s

We choose in this inequality 7 = ——,
YT = (7

and integrate from 0 to 7. We obtain:

| eVl + Vo) <
Qr

T It W2y )i+ (55)

H?(0BR)

<o|[ et

H2 (0BRr

[ seI Ve + [VOP)ede]
R
We plug now inequality (55) into (51). We see that the integrals on Xz in the right

hand side of (54) are of lower order with respect to s, A, @ than the integrals on g
in the left side of (47). The same happens with the integrals concerning |V (|, |[VC|

19



on Qg \ @,. Finally, after absorbing in the left side of the inequality the lower order
terms in the right side, we obtain for A > X\, s > so(\):

L SNG4 ) + s\ (VG + [VOP)dadt+
QR\QT
[ SN+ O G dodt < (56)
2R

< C/Q [SNG (P + ICP) + sNo(IVC P + [V CP) | e dadt.

It follows that,necessarily, ( = 0,C =0 in Qg. ]

Remark 5.2 For the unique continuation property of the dual equation (14) only
the L* reqularity for the stationary data was needed.
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