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ABSTRACT. In this short note we present a direct method to establish the optimal
regularity of the attractor for the semilinear weakly damped wave equation with
a nonlinearity of critical growth

We consider the semilinear weakly damped wave equation on a bounded domain
2 C R3 with smooth boundary 0f2

Onu + Opu — Au + p(u) = f,
(1) u(0) = ug, Ou(0) = uy,

Ulpn = 0.

Here, f € L2(1) is independent of time and ¢ € C2(R), with ¢(0) = 0, satisfies the
growth and the dissipation conditions

(2) 0" ()| < e(1+|r]),
(3) lim n “"Y) > A
(4) ¢'(r) > L,

for every r € R, where A\; > 0 is the first eigenvalue of —A on L2(2) with Dirichlet
boundary conditions and ¢ > 0.

The asymptotic behavior of solutions to equation (1) has been the object of extensive
studies (see, e.g. [1]-]5], [7] and [9]-[18]). In particular, denoting

H=Hol(Q) x L2(Q)  and V= [H2(Q)N H1o(Q)] x H1o(Q),
the following result holds.

Theorem 1. Problem (1) generates a Cy-semigroup S(t) on the phase space H
which possesses a compact global attractor A. Besides, A is a bounded subset of V.

Theorem 1 was first proved by Babin and Vishik [3]. We mention that the result is
still valid if one removes condition (4), which is however very reasonable. In that
case, the existence of the attractor was shown in [1], whereas its V-regularity first
appeared in the papers [9, 10, 17]. In particular, the argument presented in [17]
allows also to treat the nonautonomous case.

In all the preceding works, the V-regularity of the attractor is achieved by means
of rather complicated and long procedures, requiring multiplications by fractional
operators and bootstrap arguments. The aim of this note is to show how to obtain
this result in a very direct way, exploiting only quite simple energy estimates. This
approach can be applied to treat more complicated boundary conditions such as, for
example, dynamic boundary conditions (where the use of fractional operators may
be problematic), as well as to deal with stabilization problems. The key step of our
proof is a suitable decomposition of the solution u to (1), which has been already
successfully employed in the recent works [6, 8, 18].

A new proof of Theorem 1. In what follows, we will often make use without
explicit mention of the Sobolev embeddings and of the Young, the Hélder and the



Poincaré inequalities. As usual, we will perform formal estimates that can be justi-
fied in a proper Galerkin approximation scheme. Finally, for any function z(t), we
will write for short &,(t) = (2(t), 0:2(t)).

We begin recalling a basic estimate.

Lemma 2. For every t > 0, there holds

1€a(@)]I22 + /too 10cu()[IPdr < Q(II€u(0)ll)e™=" + QUIL1),

for some € > 0 and some positive increasing function Q).

The proof may be found, for instance, in [3], and it is carried out by multiplying the
equation by Oyu + cu, for some € > 0 suitably small. In particular, this result yields
the existence of a bounded absorbing set By C H for the semigroup S(t).

In view of (2) and Lemma 2, we choose 6 > ¢ large enough such that the inequality
1
(5) IV + (0 = 20)l|2]° = (¢ (u(t))z,2) 2 0

holds for every z € Hyl(Q2), every t > 0 and every solution u(t) with &,(0) € By.
Then, we set

U(r) = p(r) + or.
Clearly, condition (2) still holds with ) in place of ¢. Besides, on account of (4),
(6) W'(r) 2 0.
We now consider initial data &,(0) € By, and we decompose the solution to (1) into
the sum u = v 4+ w, where v and w solve the equations

v + O — Av + P(u) — Y(w) =0,
(7) £(0) = £u.(0),

vjaq =0,

Opw + Oyw — Aw + Y(w) = Ou + f,
(8) &w(0) = (0,0),

’LU‘@Q =0.

In the following, ¢ > 0 will stand for a generic constant depending (possibly) only
on the size of By (but neither on the particular £,(0) € By nor of the time ).

Lemma 3. For every t > 0, we have that ||, (t)||x < c.

Proof. The same argument of the proof of Lemma 2 applies to (8), since from
Lemma 2 we know that the right-hand side belongs to L>(0, co; L2(£2)). Observe
also that here the initial data are null. 0]

Lemma 4. For everyt > s > 0 and every w > 0, there holds

t
/ ||3tw(7)||2d7 <w(t—s)+ 5



Proof. Define the functional
A = || Vl? + [|8sw]]” + 2(P (w), 1) — 20{u, w) — 2(f, w),

where W(w) = [ ¢(y)dy. Note that A < ¢, due to (2) and Lemma 3. Thus,
multiplying (8) by d,w, and applying once more Lemma 3, we obtain

d c

%A + 2||0sw]|* = —20(0su, w) < 2w + ;||8tu||2,
and the claim is proved integrating in time on (s, t), exploiting the integral estimate
furnished by Lemma 2. O

Collecting the above results, for all initial data &,(0) € By we have the bounds

9) [&u(@) I3 + 1€u(®)lln < <,
and
(10) / (o) + (D dr < wit =)+ S, V>0

In order to conclude, we need the following generalized version of the Gronwall
lemma.

Lemma 5. Let A : Rt — R* be an absolutely continuous function satisfying

%A(t) +2eA(t) < h()A(t) + k,

where e >0, k > 0 and fsth(T)dT <e(t—s)+m, forallt > s >0 and some m > 0.
Then,

A < AO)eme— + P s,

o €
We are now in a position to prove

Lemma 6. For everyt > 0 and some v > 0, there holds

1€ (Bl < ce™".
Proof. For € € (0,1) to be determined later, define the functional
A = [IVol* + 10wl* + ellvll* + 2((w) — ¥(w), v) — (¥ (u)v, v) + 26(dv, v).
Note that, from (4) and (5),
1
20 (w) = P(w), v) = (¢ (w)v,v) > (0 = 20)[ol* = (¢ (w)v, v) = =5 [|Vo||*
Hence, on account of (2) and (9), A satisfies the inequalities
1
(11) Fl&lls < A < cll&

provided that ¢ is small enough. Multiplying (7) by ;v + v, we find the equality

SN+ oA+ ST+ T = 2(( () — /() Bo, v) — (8" (), 02),
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where we set
= %HVUHz + (2 — 38)[|0v]|* + (¥ (u)v, v) — e2||v]|* — 2e2(yw, v).
Using (2), (6) and (9), it is apparent that T" > 0 if ¢ is small enough, and
2((¥'(w) — ¥/ (w)dyw, v) — (V" (u)du, v2) < c([|Opul] + [|Ocw]) | V0]
< SVl + = (10l + aw]?) A

by means of (11). At this point, choosing £ > 0 such that the above conditions are
all satisfied, we obtain the differential inequality

d
(12) EA—H—:A < c([|0wul® + || 8w | *) A
In view of (10), the desired conclusion follows from Lemma 5 and (11). O

Lemma 7. For every t > 0, there holds
16w @)y < c.

Proof. Setting ¢ = Oyw, we differentiate (8) with respect to time, so to obtain
Ouq + 0,q — Aq + V' (w)q = 00,u.
Then, for € > 0, we define the functional
A =|Vall* + [10qll* + ellall* + (' (w)q. a) + 26(Drq. ),

which, similarly to the previous lemma, satisfies the inequalities

1
Sllalli < A < eli&l

when ¢ is small enough. Multiplying the above equation by 0,q + €q, we are led to

d
@A +eA+ %||Vq||2 +110:q|]* + T = 20{0u, 0,q) + (" (w)Ow, q2) + 2e0({du, Oyw),

where
€ /
r= §HVCIH2 + (1= 32)]|10uq||* + (@' (w)q, q) — €2[lq||* — 222(Dyq, q).

Again, I' > 0 provided that ¢ is small enough, whereas the right-hand side of the
above differential equality is controlled as

20(0,u, 0,q) + 2£0(0,u, Oyw) + 2(¢" (w)dyw, q2)
< SIVall? + 19ugl” + el +c.

Hence, fixing € small, we end up with the differential inequality
%A 4 eA < c|Aw|2A + c.

and from Lemma 5, we get the bound
IVOw(t)|| + [|ww(t)|| < c.
With this information, we recover from (8) the further control ||Aw(t)|| < c. O
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Collecting Lemma 6 and Lemma 7, we learn that S(¢)By is (exponentially) attracted
by a bounded subset C C V. In other words, C is a compact attracting set. This,
by standard arguments of the theory of attractors (see e.g. [3, 12, 16]), yields the
existence of a compact global attractor A C C for the semigroup S(¢). The proof of
Theorem 1 is then completed.
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