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ABSTRACT. In this note, we establish a general result on the existence of global
attractors for semigroups S(t) of operators acting on a Banach space X, where
the strong continuity S(t) € C(X, X) is replaced by the much weaker requirement
that S(t) be a closed map.

1. INTRODUCTION

Let K denote either RT or N, and let X be a Banach space or, more generally,
a complete metric space. A closed semigroup on X is a one-parameter family of
(nonlinear) operators S(t) : X — X (¢ € K) satisfying the conditions

(5.1) 5(0) = Tx;
(S.2) S(t+7)=S5(t)S(r), for all t, 7 € K;
(S.3) , — z and S(t)z,, — y imply that y = S(t)x.

When K = N, S(t) is called a discrete semigroup. Assumptions (S.1)-(S.2) are the
semigroup properties, while (S.3) says that S(t) is a closed (nonlinear) map.

The interest in considering such an object is motivated by the study of differential
equations in Banach spaces. Assuming to have, for every zy € X, a unique global
solution x(t) € X to the abstract Cauchy problem

{x’(t) = Az(t)), t>0,
x(0) = xo,

where A is a given (nonlinear) operator defined on a dense domain D C X, and
writing z(t) = S(t)xo, it is readily seen that S(¢) fulfills (S.1)-(S.2).

According to the standard terminology (cf. [1, 2, 3, 4, 6, 7, 8|), a semigroup S(¢)
is dissipative when there exists an absorbing set. This is a bounded set B C X for
which, given any bounded set U C X, there exists tg = to(U) € K (the entering
time) such that

SHOUC B, Yt >t
A set I C X is called attracting for S(t) if, for any bounded set U C X,

Tim 8(S(#)U, K) = 0,

where ¢ is the Hausdorff semidistance in X. Clearly, an absorbing set is attracting
as well. A semigroup possessing a compact attracting set is said to be asymptotically
compact. A relevant object which provides an accurate description of the longterm
dynamics of S(t) is the global attractor, namely, a compact set A C X which is
at the same time attracting and fully invariant for S(t) (i.e. S(¢t)A = A for every
t € K). The global attractor, if it exists, is easily seen to be unique.

In the classical textbooks (cf. [1, 2, 3, 4, 6, 7, 8|), the existence of the global at-
tractor A is usually established for asymptotically compact semigroups within the
assumption that S(t) € C(X, X) for every fixed ¢t € K. In that case, A turns out to



be w-limit set of (any) absorbing set B, defined as

w(B) = JSsmB.

teK >t

On the other hand, there are interesting situations arising from concrete differential
problems where the related semigroup of solutions S(t) does not fulfill such a strong
continuity property. Typically, the convergence z,, — z in X might imply that
S(t)x, — S(t)z only in some weaker topology. Nonetheless, in this case, condition
(S.3) is immediately seen to hold.

Remark 1. To the best of our knowledge, the only exception is the treatise [1]
(see §1, Theorem 2.1), where, besides the standard results, the existence of a global
attractor for a semigroup S(¢) lacking strong continuity is proved under the assump-
tion that there exists a compact absorbing set B such that, for any ¢t > ¢, (where ¢,
is the entering time of B into itself),

SHEC S(HE,  VECB

and S(t)"ly is a closed set, for every y € X. In fact, this is the same as requiring
the continuity of the map S(¢) : B — B. However, we observe that compact ab-
sorbing sets generally appear when dealing with semigroups generated by parabolic
equations, which exhibit an instantaneous regularization of the initial data, whereas
they never occur in hyperbolic problems.

2. THE MAIN RESULT

In order to state the main result, we first recall a definition. Given a bounded set
U C X, the Kuratowski measure of noncompactness a(U) is defined as

a() = inf {d : U has a finite covering of balls of & of diameter less than d}.

We report some well-known properties of « (see e.g. [3, 7]).

o a) = all).

o Uy C Uy implies that a(U;) < a(Us).

o a(U) = 0 if and only if I is compact.

o If {U;}iex is a family of nonempty closed sets such that Uy, D Uy, for t; <ty
and limy .o a(Uy) = 0, then U = (), U, is nonempty and compact.

o If {U;}1ex and U are as above, given any t, — oo and any xz, € U,,, there
exist x € U and a subsequence z,, — x.

Theorem 2. Assume the following hypotheses:

(i) there exists an absorbing set B C X;
(ii) there exists a sequence t,, € K such that lim «(S(t,)B) = 0.

n—oo

Then, w(B) is the global attractor of S(t).



Proof. We begin to show that w(B) is compact and attracting. This part makes use
only of (S.1)-(S.2). Owing to (i), let ¢y € K be such that S(¢)B C B, for all t > t,.
For t >ty + t,,, we have the inclusion
S(t)B = S(t,)S(t —t,)B C S(t,)B.
Thus, (ii) actually implies that «(S(¢)B) — 0 as t — co. Besides, if ¢ > ¢,
U =SB =] 8t—t)S(r+to)B C | S(t—to)B=5(t—t)B.
T>t TeK TeK
Hence, o
tlim ally) = tlim a(ldy) = 0.
Since the sets U, are nested, we conclude that w(B) = (U is nonempty and

compact. Assume now that w(B) is not attracting for S(¢). Then, there exist ¢ > 0
and sequences z,, € B and 7,, — 0o such that

inf ||S(7,)x,, — > e.
inf(|S(r)r, — | 2

If 7, > to, it follows that S(7,)z, € U,,_4,. Appealing to the properties of «a, the
sequence S(7,)z, must have a cluster point in w(B), which is a contradiction.

The next step is to prove that w(B) is fully invariant for S(¢). To this end, we pre-
liminarily observe that, since w(B) is compact and attracting, given any sequences
z, € B and 7,, — 00, there exist y € w(B) such that S(7,)z, — y up to a subse-
quence. Indeed, from the attracting property of w(B) we have that

711LI1010 3(S(m)B,w(B)) = 0.

In other words, there is a sequence y,, € w(B) such that
lim ||[S(7,)xn — yal| = 0.
Exploiting the compactness of w(B), there exists y € w(B) and a sequence ny such
that y,, — y which, in turn, implies that
S(Tn,, )T, — Y.
Let then z € w(B). By the definition of w-limit set, there exist 7,, — oo and z, € B
satisfying
S(1)xn — .
On the other hand, given any ¢ € K, there exist y;,y2 € w(B) such that, up to
subsequences,
S(Tn - t)In — U1
and
S(t)S(1n)xn, = S(1 + t)xy — Yoo
Since S(t)S(1, — t)x, = S(7n)Zn, in light of (S.3), we conclude that
x=Sty,  y2=S)z,
which yields the sought invariance property S(t)w(B) = w(B). O
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Although we wrote the result in great generality, in the applications, assumption
(i) is usually verified by proving the existence of a compact attracting set for S(t).

If S(t) € C(X,X), the attractor A provided by Theorem 2 is well-known to be
connected (when X is either a Banach space or a complete metric space whose balls
are connected). Without this continuity assumption, connectedness may fail to hold,
as the following example (for a discrete semigroup) shows.

Example 3. let X = (?(N) be the space of square summable sequences r = {x'},cn.
Denoting by e, (k € N) the element of X such that e!, = 4,,, we introduce the
function p : R™ — X as

1
p(r) = B {60 +(k+1—r)ee + (r— fi)e,.;.:,.z], re€lkk+1).

Note that ¢ maps continuously RT into the unit ball of X, and [p(r)]® = 1/2 for
every r € RT. Besides, it is constructed in such a way not to have any cluster point
as r — 0o. Next, we consider a continuous decreasing cut-off function § : R* — [0, 1]
such that 6(r) =1 for » < 1/4 and 6(r) = 0 for r > 1/2. Finally, we define the map
S: X — X as

Gy — %ﬂo) (eo +2) + 0(z")p(1/2%), if 2° >0,
—¢€o, if 20 <0,
and we set
S(t)y=808---08, teN.
¢ times
Naming

X"‘:{IEX:Q;O>O}’ X_:{$€X:$O<O}, X0:{$€X:$0:0},

we observe that SXT C Xt and S(X°UX ™) C X~. Hence, we readily see that S(#)
is continuous on X U X ™. It is then easy to conclude that S(t) is a closed map.
Indeed, the only case to check is when z, € X*, v € X% are such that x,, — x and
S(t)x, — vy, for some y € X. But the latter convergence cannot occur, since ¢ has
no cluster points at infinity. On the other hand, the attractor of S(t) consists of two
points, precisely,

A= {60, —60}.
Here, the assumptions of Theorem 2 are satisfied, since
K = {Beo, B€[-1,1]}
is a compact attracting set.
There are however some cases where we can recover the connectedness of A without
requiring the continuity of S(t).

Proposition 4. Assume there exist a sequence t, — oo and a connected set C O A
such that S(t,)C is relatively compact for every n. Then A is connected.



Proof. For every fixed n, the map S, = S(t,) : C — X is continuous. Indeed, if
xr € C converges to some x € C, then S,z belongs to a compact set and, owing to
(S.3), its only cluster point is S,z. If A is not connected, there are two disjoint open
sets O and Oy such that AN O; # () and A C O; U Oy. For every integer n, The
set S,C is connected and S,C D S, A = A, which implies that S,CN (O UOs) # 0.
Thus, we can select y, € S,C\ (O; U O;). Since A is compact and attracting,
there exists y € A such that, up to a subsequence, y, — y. On the other hand,
y & OpUQO,, and so y € A, leading to a contradiction. O

Remark 5. Note that the compact attracting set K of Example 3 is connected, but
the image S(¢)KC is not relatively compact for any ¢ > 1.

Collecting Theorem 2 and Proposition 4, we have

Corollary 6. Let S(t) have a connected compact attracting set IC. Assume also
that S(t)IC C K for every t large enough. Then S(t) possesses a connected global
attractor.

Corollary 6 is particularly useful. Indeed, in most concrete cases, the compact
attracting set KC is a ball of Z, where Z is another Banach space compactly embedded
into X'. Besides, it is often possible to prove an estimate of the form

1S@®)zllz < Ql=l2)¥(t) +C,  Vze Z,

where C' > 0, () is a positive increasing function and ¥ is a positive function
vanishing at infinity. It is then clear that, up to possibly replacing K with a larger
ball of Z, the set K is attracting and fulfills the relation S(¢)IC C K for ¢ large
enough.

3. AN APPLICATION

Let © C R? be a bounded domain with smooth boundary 9. Consider the wave
equation with nonlinear damping

@tu + U(u)@tu — Au + SO(U) = 0, t> O,
u(0) = ug, Ou(0) = uy,
u‘ag = 0.
The function ¢ € C*(R), with ¢(0) = 0, fulfills
p(u)

" (w)] < er (1 + Jul?), ¢ (u) > —ca, liminf ——= > —A,

lu|—oc0 U

where p,ci,co > 0 and X > 0 is the first eigenvalue of —A on L?(2) with Dirichlet
boundary conditions, while o € C*(R) is such that

o(u) > o9 >0, o' (u)| < ealo(u)]”,

for some ¢3 > 0 and some v < 1. As shown in [5], this problem generates a semigroup
S(t) on the phase space X = H}(Q) x L?(2), which possesses a compact attracting

5



set IC satisfying the hypotheses of Corollary 6. However, for any two initial data
r1, 29 € X with [|z;]| < p, only a continuous dependence estimate of the form

IS(t)ar = S(t)z2llw < ke[|l — @]

for some k = k(o) is available, where W = L?(Q) x H~'(Q). Hence, we have
the weaker continuity S(t) € C(X, W), which is enough in order for (S.3) to hold.
Corollary 6 then yields the existence of a connected global attractor.
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