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Abstrat. In this note, we establish a general result on the existene of globalattrators for semigroups S(t) of operators ating on a Banah spae X , wherethe strong ontinuity S(t) ∈ C(X ,X ) is replaed by the muh weaker requirementthat S(t) be a losed map. 1. IntrodutionLet K denote either R
+ or N, and let X be a Banah spae or, more generally,a omplete metri spae. A losed semigroup on X is a one-parameter family of(nonlinear) operators S(t) : X → X (t ∈ K) satisfying the onditions(S.1) S(0) = IX ;(S.2) S(t + τ) = S(t)S(τ), for all t, τ ∈ K;(S.3) xn → x and S(t)xn → y imply that y = S(t)x.When K = N, S(t) is alled a disrete semigroup. Assumptions (S.1)-(S.2) are thesemigroup properties, while (S.3) says that S(t) is a losed (nonlinear) map.The interest in onsidering suh an objet is motivated by the study of di�erentialequations in Banah spaes. Assuming to have, for every x0 ∈ X , a unique globalsolution x(t) ∈ X to the abstrat Cauhy problem

{

x′(t) = A(x(t)), t > 0,

x(0) = x0,where A is a given (nonlinear) operator de�ned on a dense domain D ⊂ X , andwriting x(t) = S(t)x0, it is readily seen that S(t) ful�lls (S.1)-(S.2).Aording to the standard terminology (f. [1, 2, 3, 4, 6, 7, 8℄), a semigroup S(t)is dissipative when there exists an absorbing set. This is a bounded set B ⊂ X forwhih, given any bounded set U ⊂ X , there exists t0 = t0(U) ∈ K (the enteringtime) suh that
S(t)U ⊂ B, ∀t ≥ t0.A set K ⊂ X is alled attrating for S(t) if, for any bounded set U ⊂ X ,

lim
t→∞

δ(S(t)U ,K) = 0,where δ is the Hausdor� semidistane in X . Clearly, an absorbing set is attratingas well. A semigroup possessing a ompat attrating set is said to be asymptotiallyompat. A relevant objet whih provides an aurate desription of the longtermdynamis of S(t) is the global attrator, namely, a ompat set A ⊂ X whih isat the same time attrating and fully invariant for S(t) (i.e. S(t)A = A for every
t ∈ K). The global attrator, if it exists, is easily seen to be unique.In the lassial textbooks (f. [1, 2, 3, 4, 6, 7, 8℄), the existene of the global at-trator A is usually established for asymptotially ompat semigroups within theassumption that S(t) ∈ C(X ,X ) for every �xed t ∈ K. In that ase, A turns out to1



be ω-limit set of (any) absorbing set B, de�ned as
ω(B) =

⋂

t∈K

⋃

τ≥t

S(τ)B.On the other hand, there are interesting situations arising from onrete di�erentialproblems where the related semigroup of solutions S(t) does not ful�ll suh a strongontinuity property. Typially, the onvergene xn → x in X might imply that
S(t)xn → S(t)x only in some weaker topology. Nonetheless, in this ase, ondition(S.3) is immediately seen to hold.Remark 1. To the best of our knowledge, the only exeption is the treatise [1℄(see �1, Theorem 2.1), where, besides the standard results, the existene of a globalattrator for a semigroup S(t) laking strong ontinuity is proved under the assump-tion that there exists a ompat absorbing set B suh that, for any t ≥ t0 (where t0is the entering time of B into itself),

S(t)E ⊂ S(t)E , ∀E ⊂ Band S(t)−1y is a losed set, for every y ∈ X . In fat, this is the same as requiringthe ontinuity of the map S(t) : B → B. However, we observe that ompat ab-sorbing sets generally appear when dealing with semigroups generated by paraboliequations, whih exhibit an instantaneous regularization of the initial data, whereasthey never our in hyperboli problems.2. The Main ResultIn order to state the main result, we �rst reall a de�nition. Given a bounded set
U ⊂ X , the Kuratowski measure of nonompatness α(U) is de�ned as

α(U) = inf
{
d : U has a �nite overing of balls of X of diameter less than d

}
.We report some well-known properties of α (see e.g. [3, 7℄).

⋄ α(U) = α(U).
⋄ U1 ⊂ U2 implies that α(U1) ≤ α(U2).
⋄ α(U) = 0 if and only if U is ompat.
⋄ If {Ut}t∈K is a family of nonempty losed sets suh that Ut1 ⊃ Ut2 for t1 < t2and limt→∞ α(Ut) = 0, then U =

⋂

t∈K
Ut is nonempty and ompat.

⋄ If {Ut}t∈K and U are as above, given any tn → ∞ and any xn ∈ Utn , thereexist x ∈ U and a subsequene xnk
→ x.Theorem 2. Assume the following hypotheses:(i) there exists an absorbing set B ⊂ X ;(ii) there exists a sequene tn ∈ K suh that lim

n→∞
α(S(tn)B) = 0.Then, ω(B) is the global attrator of S(t).2



Proof. We begin to show that ω(B) is ompat and attrating. This part makes useonly of (S.1)-(S.2). Owing to (i), let t0 ∈ K be suh that S(t)B ⊂ B, for all t ≥ t0.For t ≥ t0 + tn, we have the inlusion
S(t)B = S(tn)S(t − tn)B ⊂ S(tn)B.Thus, (ii) atually implies that α(S(t)B) → 0 as t → ∞. Besides, if t ≥ t0,

Ut =
⋃

τ≥t

S(τ)B =
⋃

τ∈K

S(t − t0)S(τ + t0)B ⊂
⋃

τ∈K

S(t − t0)B = S(t − t0)B.Hene,
lim
t→∞

α(Ut) = lim
t→∞

α(Ut) = 0.Sine the sets Ut are nested, we onlude that ω(B) =
⋂

t≥0 Ut is nonempty andompat. Assume now that ω(B) is not attrating for S(t). Then, there exist ε > 0and sequenes xn ∈ B and τn → ∞ suh that
inf

x∈ω(B)
‖S(τn)xn − x‖ ≥ ε.If τn ≥ t0, it follows that S(τn)xn ∈ Uτn−t0 . Appealing to the properties of α, thesequene S(τn)xn must have a luster point in ω(B), whih is a ontradition.The next step is to prove that ω(B) is fully invariant for S(t). To this end, we pre-liminarily observe that, sine ω(B) is ompat and attrating, given any sequenes

xn ∈ B and τn → ∞, there exist y ∈ ω(B) suh that S(τn)xn → y up to a subse-quene. Indeed, from the attrating property of ω(B) we have that
lim

n→∞
δ(S(τn)B, ω(B)) = 0.Thus, in partiular,

lim
n→∞

[
inf

x∈ω(B)
‖S(τn)xn − x‖

]
= 0.In other words, there is a sequene yn ∈ ω(B) suh that

lim
n→∞

‖S(τn)xn − yn‖ = 0.Exploiting the ompatness of ω(B), there exists y ∈ ω(B) and a sequene nk suhthat ynk
→ y whih, in turn, implies that

S(τnk
)xnk

→ y.Let then x ∈ ω(B). By the de�nition of ω-limit set, there exist τn → ∞ and xn ∈ Bsatisfying
S(τn)xn → x.On the other hand, given any t ∈ K, there exist y1, y2 ∈ ω(B) suh that, up tosubsequenes,

S(τn − t)xn → y1and
S(t)S(τn)xn = S(τn + t)xn → y2.Sine S(t)S(τn − t)xn = S(τn)xn, in light of (S.3), we onlude that

x = S(t)y1, y2 = S(t)x,whih yields the sought invariane property S(t)ω(B) = ω(B). �3



Although we wrote the result in great generality, in the appliations, assumption(ii) is usually veri�ed by proving the existene of a ompat attrating set for S(t).If S(t) ∈ C(X ,X ), the attrator A provided by Theorem 2 is well-known to beonneted (when X is either a Banah spae or a omplete metri spae whose ballsare onneted). Without this ontinuity assumption, onnetedness may fail to hold,as the following example (for a disrete semigroup) shows.Example 3. let X = ℓ2(N) be the spae of square summable sequenes x = {xι}ι∈N.Denoting by eκ (κ ∈ N) the element of X suh that eι
κ = δικ, we introdue thefuntion ϕ : R

+ → X as
ϕ(r) =

1

2

[
e0 + (κ + 1 − r)eκ+1 + (r − κ)eκ+2

]
, r ∈ [κ, κ + 1).Note that ϕ maps ontinuously R

+ into the unit ball of X , and [ϕ(r)]0 = 1/2 forevery r ∈ R
+. Besides, it is onstruted in suh a way not to have any luster pointas r → ∞. Next, we onsider a ontinuous dereasing ut-o� funtion θ : R

+ → [0, 1]suh that θ(r) = 1 for r ≤ 1/4 and θ(r) = 0 for r ≥ 1/2. Finally, we de�ne the map
S : X → X as

Sx =







1 − θ(x0)

2
(e0 + x) + θ(x0)ϕ(1/x0), if x0 > 0,

−e0, if x0 ≤ 0,and we set
S(t) = S ◦ S · · · ◦ S

︸ ︷︷ ︸

t times , t ∈ N.Naming
X+ = {x ∈ X : x0 > 0}, X− = {x ∈ X : x0 < 0}, X 0 = {x ∈ X : x0 = 0},we observe that SX+ ⊂ X+ and S(X 0∪X−) ⊂ X−. Hene, we readily see that S(t)is ontinuous on X+ ∪ X−. It is then easy to onlude that S(t) is a losed map.Indeed, the only ase to hek is when xn ∈ X+, x ∈ X 0 are suh that xn → x and

S(t)xn → y, for some y ∈ X . But the latter onvergene annot our, sine ϕ hasno luster points at in�nity. On the other hand, the attrator of S(t) onsists of twopoints, preisely,
A = {e0,−e0}.Here, the assumptions of Theorem 2 are satis�ed, sine

K = {βe0, β ∈ [−1, 1]}is a ompat attrating set.There are however some ases where we an reover the onnetedness of A withoutrequiring the ontinuity of S(t).Proposition 4. Assume there exist a sequene tn → ∞ and a onneted set C ⊃ Asuh that S(tn)C is relatively ompat for every n. Then A is onneted.4



Proof. For every �xed n, the map Sn = S(tn) : C → X is ontinuous. Indeed, if
xk ∈ C onverges to some x ∈ C, then Snxk belongs to a ompat set and, owing to(S.3), its only luster point is Snx. If A is not onneted, there are two disjoint opensets O1 and O2 suh that A ∩ Oj 6= ∅ and A ⊂ O1 ∪ O2. For every integer n, Theset SnC is onneted and SnC ⊃ SnA = A, whih implies that SnC ∩ (O1 ∪O2) 6= ∅.Thus, we an selet yn ∈ SnC \ (O1 ∪ O2). Sine A is ompat and attrating,there exists y ∈ A suh that, up to a subsequene, yn → y. On the other hand,
y 6∈ O1 ∪ O2, and so y 6∈ A, leading to a ontradition. �Remark 5. Note that the ompat attrating set K of Example 3 is onneted, butthe image S(t)K is not relatively ompat for any t ≥ 1.Colleting Theorem 2 and Proposition 4, we haveCorollary 6. Let S(t) have a onneted ompat attrating set K. Assume alsothat S(t)K ⊂ K for every t large enough. Then S(t) possesses a onneted globalattrator.Corollary 6 is partiularly useful. Indeed, in most onrete ases, the ompatattrating set K is a ball of Z, where Z is another Banah spae ompatly embeddedinto X . Besides, it is often possible to prove an estimate of the form

‖S(t)z‖Z ≤ Q(‖z‖Z)Ψ(t) + C, ∀z ∈ Z,where C > 0, Q is a positive inreasing funtion and Ψ is a positive funtionvanishing at in�nity. It is then lear that, up to possibly replaing K with a largerball of Z, the set K is attrating and ful�lls the relation S(t)K ⊂ K for t largeenough. 3. An AppliationLet Ω ⊂ R
2 be a bounded domain with smooth boundary ∂Ω. Consider the waveequation with nonlinear damping







∂ttu + σ(u)∂tu − ∆u + ϕ(u) = 0, t > 0,

u(0) = u0, ∂tu(0) = u1,

u|∂Ω = 0.The funtion ϕ ∈ C2(R), with ϕ(0) = 0, ful�lls
|ϕ′′(u)| ≤ c1

(
1 + |u|p

)
, ϕ′(u) ≥ −c2, lim inf

|u|→∞

ϕ(u)

u
> −λ,where p, c1, c2 ≥ 0 and λ > 0 is the �rst eigenvalue of −∆ on L2(Ω) with Dirihletboundary onditions, while σ ∈ C1(R) is suh that

σ(u) ≥ σ0 > 0, |σ′(u)| ≤ c2[σ(u)]ν ,for some c2 ≥ 0 and some ν < 1. As shown in [5℄, this problem generates a semigroup
S(t) on the phase spae X = H1

0 (Ω)× L2(Ω), whih possesses a ompat attrating5



set K satisfying the hypotheses of Corollary 6. However, for any two initial data
x1, x2 ∈ X with ‖xj‖ ≤ ̺, only a ontinuous dependene estimate of the form

‖S(t)x1 − S(t)x2‖W ≤ kekt‖x1 − x2‖for some k = k(̺) is available, where W = L2(Ω) × H−1(Ω). Hene, we havethe weaker ontinuity S(t) ∈ C(X ,W), whih is enough in order for (S.3) to hold.Corollary 6 then yields the existene of a onneted global attrator.Referenes[1℄ A.V. Babin, M.I. Vishik, Attrators of evolution equations, North-Holland, Amsterdam, 1992.[2℄ V.V. Chepyzhov, M.I. Vishik, Attrators for equations of mathematial physis, Amer. Math.So., Providene, 2002.[3℄ J.K. Hale, Asymptoti behavior of dissipative systems, Amer. Math. So., Providene, 1988.[4℄ A. Haraux, Systèmes dynamiques dissipatifs et appliations, Masson, Paris, 1991.[5℄ V. Pata, S. Zelik, Attrators and their regularity for 2-D wave equations with nonlinear damp-ing, submitted.[6℄ J.C. Robinson, In�nite-dimensional dynamial systems, Cambridge University Press, Cam-bridge, 2001.[7℄ G.R. Sell, Y. You, Dynamis of evolutionary equations, Springer, New York, 2002.[8℄ R. Temam, In�nite-dimensional dynamial systems in mehanis and physis, Springer, NewYork, 1997.

6


