
Weierstraÿ-Institutfür Angewandte Analysis und Sto
hastikim Fors
hungsverbund Berlin e.V.Preprint ISSN 0946 � 8633
Global attra
tors for semigroups of 
losed operatorsVittorino Pata1, Sergey Zelik2submitted: 6 Jun 2006

1 Dipartimento di Matemati
a �F.Brios
hi�Polite
ni
o di MilanoVia Bonardi 920133 MilanoItalyE-Mail: pata�mate.polimi.it
2 Weierstraÿ-Institutfür Angewandte Analysis und Sto
hastikMohrenstraÿe 3910117 BerlinGermanyE-Mail: zelik�wias-berlin.de

No. 1141Berlin 2006
W I A S

2000 Mathemati
s Subje
t Classi�
ation. 34D45, 47H20, 47J35.Key words and phrases. Semigroups of operators, abstra
t Cau
hy problems, 
losed operators,global attra
tors, 
onne
ted attra
tors.This work was partially supported by the Weierstrass Postdo
toral Fellowship Program.



Edited byWeierstraÿ-Institut für Angewandte Analysis und Sto
hastik (WIAS)Mohrenstraÿe 3910117 BerlinGermanyFax: + 49 30 2044975E-Mail: preprint�wias-berlin.deWorld Wide Web: http://www.wias-berlin.de/



Abstra
t. In this note, we establish a general result on the existen
e of globalattra
tors for semigroups S(t) of operators a
ting on a Bana
h spa
e X , wherethe strong 
ontinuity S(t) ∈ C(X ,X ) is repla
ed by the mu
h weaker requirementthat S(t) be a 
losed map. 1. Introdu
tionLet K denote either R
+ or N, and let X be a Bana
h spa
e or, more generally,a 
omplete metri
 spa
e. A 
losed semigroup on X is a one-parameter family of(nonlinear) operators S(t) : X → X (t ∈ K) satisfying the 
onditions(S.1) S(0) = IX ;(S.2) S(t + τ) = S(t)S(τ), for all t, τ ∈ K;(S.3) xn → x and S(t)xn → y imply that y = S(t)x.When K = N, S(t) is 
alled a dis
rete semigroup. Assumptions (S.1)-(S.2) are thesemigroup properties, while (S.3) says that S(t) is a 
losed (nonlinear) map.The interest in 
onsidering su
h an obje
t is motivated by the study of di�erentialequations in Bana
h spa
es. Assuming to have, for every x0 ∈ X , a unique globalsolution x(t) ∈ X to the abstra
t Cau
hy problem

{

x′(t) = A(x(t)), t > 0,

x(0) = x0,where A is a given (nonlinear) operator de�ned on a dense domain D ⊂ X , andwriting x(t) = S(t)x0, it is readily seen that S(t) ful�lls (S.1)-(S.2).A

ording to the standard terminology (
f. [1, 2, 3, 4, 6, 7, 8℄), a semigroup S(t)is dissipative when there exists an absorbing set. This is a bounded set B ⊂ X forwhi
h, given any bounded set U ⊂ X , there exists t0 = t0(U) ∈ K (the enteringtime) su
h that
S(t)U ⊂ B, ∀t ≥ t0.A set K ⊂ X is 
alled attra
ting for S(t) if, for any bounded set U ⊂ X ,

lim
t→∞

δ(S(t)U ,K) = 0,where δ is the Hausdor� semidistan
e in X . Clearly, an absorbing set is attra
tingas well. A semigroup possessing a 
ompa
t attra
ting set is said to be asymptoti
ally
ompa
t. A relevant obje
t whi
h provides an a

urate des
ription of the longtermdynami
s of S(t) is the global attra
tor, namely, a 
ompa
t set A ⊂ X whi
h isat the same time attra
ting and fully invariant for S(t) (i.e. S(t)A = A for every
t ∈ K). The global attra
tor, if it exists, is easily seen to be unique.In the 
lassi
al textbooks (
f. [1, 2, 3, 4, 6, 7, 8℄), the existen
e of the global at-tra
tor A is usually established for asymptoti
ally 
ompa
t semigroups within theassumption that S(t) ∈ C(X ,X ) for every �xed t ∈ K. In that 
ase, A turns out to1



be ω-limit set of (any) absorbing set B, de�ned as
ω(B) =

⋂

t∈K

⋃

τ≥t

S(τ)B.On the other hand, there are interesting situations arising from 
on
rete di�erentialproblems where the related semigroup of solutions S(t) does not ful�ll su
h a strong
ontinuity property. Typi
ally, the 
onvergen
e xn → x in X might imply that
S(t)xn → S(t)x only in some weaker topology. Nonetheless, in this 
ase, 
ondition(S.3) is immediately seen to hold.Remark 1. To the best of our knowledge, the only ex
eption is the treatise [1℄(see �1, Theorem 2.1), where, besides the standard results, the existen
e of a globalattra
tor for a semigroup S(t) la
king strong 
ontinuity is proved under the assump-tion that there exists a 
ompa
t absorbing set B su
h that, for any t ≥ t0 (where t0is the entering time of B into itself),

S(t)E ⊂ S(t)E , ∀E ⊂ Band S(t)−1y is a 
losed set, for every y ∈ X . In fa
t, this is the same as requiringthe 
ontinuity of the map S(t) : B → B. However, we observe that 
ompa
t ab-sorbing sets generally appear when dealing with semigroups generated by paraboli
equations, whi
h exhibit an instantaneous regularization of the initial data, whereasthey never o

ur in hyperboli
 problems.2. The Main ResultIn order to state the main result, we �rst re
all a de�nition. Given a bounded set
U ⊂ X , the Kuratowski measure of non
ompa
tness α(U) is de�ned as

α(U) = inf
{
d : U has a �nite 
overing of balls of X of diameter less than d

}
.We report some well-known properties of α (see e.g. [3, 7℄).

⋄ α(U) = α(U).
⋄ U1 ⊂ U2 implies that α(U1) ≤ α(U2).
⋄ α(U) = 0 if and only if U is 
ompa
t.
⋄ If {Ut}t∈K is a family of nonempty 
losed sets su
h that Ut1 ⊃ Ut2 for t1 < t2and limt→∞ α(Ut) = 0, then U =

⋂

t∈K
Ut is nonempty and 
ompa
t.

⋄ If {Ut}t∈K and U are as above, given any tn → ∞ and any xn ∈ Utn , thereexist x ∈ U and a subsequen
e xnk
→ x.Theorem 2. Assume the following hypotheses:(i) there exists an absorbing set B ⊂ X ;(ii) there exists a sequen
e tn ∈ K su
h that lim

n→∞
α(S(tn)B) = 0.Then, ω(B) is the global attra
tor of S(t).2



Proof. We begin to show that ω(B) is 
ompa
t and attra
ting. This part makes useonly of (S.1)-(S.2). Owing to (i), let t0 ∈ K be su
h that S(t)B ⊂ B, for all t ≥ t0.For t ≥ t0 + tn, we have the in
lusion
S(t)B = S(tn)S(t − tn)B ⊂ S(tn)B.Thus, (ii) a
tually implies that α(S(t)B) → 0 as t → ∞. Besides, if t ≥ t0,

Ut =
⋃

τ≥t

S(τ)B =
⋃

τ∈K

S(t − t0)S(τ + t0)B ⊂
⋃

τ∈K

S(t − t0)B = S(t − t0)B.Hen
e,
lim
t→∞

α(Ut) = lim
t→∞

α(Ut) = 0.Sin
e the sets Ut are nested, we 
on
lude that ω(B) =
⋂

t≥0 Ut is nonempty and
ompa
t. Assume now that ω(B) is not attra
ting for S(t). Then, there exist ε > 0and sequen
es xn ∈ B and τn → ∞ su
h that
inf

x∈ω(B)
‖S(τn)xn − x‖ ≥ ε.If τn ≥ t0, it follows that S(τn)xn ∈ Uτn−t0 . Appealing to the properties of α, thesequen
e S(τn)xn must have a 
luster point in ω(B), whi
h is a 
ontradi
tion.The next step is to prove that ω(B) is fully invariant for S(t). To this end, we pre-liminarily observe that, sin
e ω(B) is 
ompa
t and attra
ting, given any sequen
es

xn ∈ B and τn → ∞, there exist y ∈ ω(B) su
h that S(τn)xn → y up to a subse-quen
e. Indeed, from the attra
ting property of ω(B) we have that
lim

n→∞
δ(S(τn)B, ω(B)) = 0.Thus, in parti
ular,

lim
n→∞

[
inf

x∈ω(B)
‖S(τn)xn − x‖

]
= 0.In other words, there is a sequen
e yn ∈ ω(B) su
h that

lim
n→∞

‖S(τn)xn − yn‖ = 0.Exploiting the 
ompa
tness of ω(B), there exists y ∈ ω(B) and a sequen
e nk su
hthat ynk
→ y whi
h, in turn, implies that

S(τnk
)xnk

→ y.Let then x ∈ ω(B). By the de�nition of ω-limit set, there exist τn → ∞ and xn ∈ Bsatisfying
S(τn)xn → x.On the other hand, given any t ∈ K, there exist y1, y2 ∈ ω(B) su
h that, up tosubsequen
es,

S(τn − t)xn → y1and
S(t)S(τn)xn = S(τn + t)xn → y2.Sin
e S(t)S(τn − t)xn = S(τn)xn, in light of (S.3), we 
on
lude that

x = S(t)y1, y2 = S(t)x,whi
h yields the sought invarian
e property S(t)ω(B) = ω(B). �3



Although we wrote the result in great generality, in the appli
ations, assumption(ii) is usually veri�ed by proving the existen
e of a 
ompa
t attra
ting set for S(t).If S(t) ∈ C(X ,X ), the attra
tor A provided by Theorem 2 is well-known to be
onne
ted (when X is either a Bana
h spa
e or a 
omplete metri
 spa
e whose ballsare 
onne
ted). Without this 
ontinuity assumption, 
onne
tedness may fail to hold,as the following example (for a dis
rete semigroup) shows.Example 3. let X = ℓ2(N) be the spa
e of square summable sequen
es x = {xι}ι∈N.Denoting by eκ (κ ∈ N) the element of X su
h that eι
κ = δικ, we introdu
e thefun
tion ϕ : R

+ → X as
ϕ(r) =

1

2

[
e0 + (κ + 1 − r)eκ+1 + (r − κ)eκ+2

]
, r ∈ [κ, κ + 1).Note that ϕ maps 
ontinuously R

+ into the unit ball of X , and [ϕ(r)]0 = 1/2 forevery r ∈ R
+. Besides, it is 
onstru
ted in su
h a way not to have any 
luster pointas r → ∞. Next, we 
onsider a 
ontinuous de
reasing 
ut-o� fun
tion θ : R

+ → [0, 1]su
h that θ(r) = 1 for r ≤ 1/4 and θ(r) = 0 for r ≥ 1/2. Finally, we de�ne the map
S : X → X as

Sx =







1 − θ(x0)

2
(e0 + x) + θ(x0)ϕ(1/x0), if x0 > 0,

−e0, if x0 ≤ 0,and we set
S(t) = S ◦ S · · · ◦ S

︸ ︷︷ ︸

t times , t ∈ N.Naming
X+ = {x ∈ X : x0 > 0}, X− = {x ∈ X : x0 < 0}, X 0 = {x ∈ X : x0 = 0},we observe that SX+ ⊂ X+ and S(X 0∪X−) ⊂ X−. Hen
e, we readily see that S(t)is 
ontinuous on X+ ∪ X−. It is then easy to 
on
lude that S(t) is a 
losed map.Indeed, the only 
ase to 
he
k is when xn ∈ X+, x ∈ X 0 are su
h that xn → x and

S(t)xn → y, for some y ∈ X . But the latter 
onvergen
e 
annot o

ur, sin
e ϕ hasno 
luster points at in�nity. On the other hand, the attra
tor of S(t) 
onsists of twopoints, pre
isely,
A = {e0,−e0}.Here, the assumptions of Theorem 2 are satis�ed, sin
e

K = {βe0, β ∈ [−1, 1]}is a 
ompa
t attra
ting set.There are however some 
ases where we 
an re
over the 
onne
tedness of A withoutrequiring the 
ontinuity of S(t).Proposition 4. Assume there exist a sequen
e tn → ∞ and a 
onne
ted set C ⊃ Asu
h that S(tn)C is relatively 
ompa
t for every n. Then A is 
onne
ted.4



Proof. For every �xed n, the map Sn = S(tn) : C → X is 
ontinuous. Indeed, if
xk ∈ C 
onverges to some x ∈ C, then Snxk belongs to a 
ompa
t set and, owing to(S.3), its only 
luster point is Snx. If A is not 
onne
ted, there are two disjoint opensets O1 and O2 su
h that A ∩ Oj 6= ∅ and A ⊂ O1 ∪ O2. For every integer n, Theset SnC is 
onne
ted and SnC ⊃ SnA = A, whi
h implies that SnC ∩ (O1 ∪O2) 6= ∅.Thus, we 
an sele
t yn ∈ SnC \ (O1 ∪ O2). Sin
e A is 
ompa
t and attra
ting,there exists y ∈ A su
h that, up to a subsequen
e, yn → y. On the other hand,
y 6∈ O1 ∪ O2, and so y 6∈ A, leading to a 
ontradi
tion. �Remark 5. Note that the 
ompa
t attra
ting set K of Example 3 is 
onne
ted, butthe image S(t)K is not relatively 
ompa
t for any t ≥ 1.Colle
ting Theorem 2 and Proposition 4, we haveCorollary 6. Let S(t) have a 
onne
ted 
ompa
t attra
ting set K. Assume alsothat S(t)K ⊂ K for every t large enough. Then S(t) possesses a 
onne
ted globalattra
tor.Corollary 6 is parti
ularly useful. Indeed, in most 
on
rete 
ases, the 
ompa
tattra
ting set K is a ball of Z, where Z is another Bana
h spa
e 
ompa
tly embeddedinto X . Besides, it is often possible to prove an estimate of the form

‖S(t)z‖Z ≤ Q(‖z‖Z)Ψ(t) + C, ∀z ∈ Z,where C > 0, Q is a positive in
reasing fun
tion and Ψ is a positive fun
tionvanishing at in�nity. It is then 
lear that, up to possibly repla
ing K with a largerball of Z, the set K is attra
ting and ful�lls the relation S(t)K ⊂ K for t largeenough. 3. An Appli
ationLet Ω ⊂ R
2 be a bounded domain with smooth boundary ∂Ω. Consider the waveequation with nonlinear damping







∂ttu + σ(u)∂tu − ∆u + ϕ(u) = 0, t > 0,

u(0) = u0, ∂tu(0) = u1,

u|∂Ω = 0.The fun
tion ϕ ∈ C2(R), with ϕ(0) = 0, ful�lls
|ϕ′′(u)| ≤ c1

(
1 + |u|p

)
, ϕ′(u) ≥ −c2, lim inf

|u|→∞

ϕ(u)

u
> −λ,where p, c1, c2 ≥ 0 and λ > 0 is the �rst eigenvalue of −∆ on L2(Ω) with Diri
hletboundary 
onditions, while σ ∈ C1(R) is su
h that

σ(u) ≥ σ0 > 0, |σ′(u)| ≤ c2[σ(u)]ν ,for some c2 ≥ 0 and some ν < 1. As shown in [5℄, this problem generates a semigroup
S(t) on the phase spa
e X = H1

0 (Ω)× L2(Ω), whi
h possesses a 
ompa
t attra
ting5



set K satisfying the hypotheses of Corollary 6. However, for any two initial data
x1, x2 ∈ X with ‖xj‖ ≤ ̺, only a 
ontinuous dependen
e estimate of the form

‖S(t)x1 − S(t)x2‖W ≤ kekt‖x1 − x2‖for some k = k(̺) is available, where W = L2(Ω) × H−1(Ω). Hen
e, we havethe weaker 
ontinuity S(t) ∈ C(X ,W), whi
h is enough in order for (S.3) to hold.Corollary 6 then yields the existen
e of a 
onne
ted global attra
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