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ABSTRACT. We address the study of a weakly damped wave equation in space-
dimension two, with a damping coefficient depending on the displacement. The
equation is shown to generate a semigroup possessing a compact global attractor
of optimal regularity, as well as an exponential attractor.

Let Q C R? be a bounded domain with smooth boundary 9. We consider the
following wave equation with nonlinear damping:

Opu + o(u)du — Au + p(u) = f,

(0.1 u(0) = wg, Bpu(0) =
u‘ag = 0.

Here, f € L*() is independent of time, while p € C%(R), with ©(0) = 0, fulfills

(0.2) " (W) < c(L+ ),  p=0,

(0.3) o'(u) > —, ¢ >0,

(0.4) lim infM > =),

lu| =00 U

where ¢ > 0 and A\; > 0 is the first eigenvalue of —A on L?*(Q2) with Dirichlet
boundary conditions. Concerning the damping term, we assume that o € C'(R)
with

(0.5) o(u) > oy >0,

(0.6) o' (w)] < clo()'™, € (0,1],

for some ¢ > 0. Note that (0.6) implies that (redefining the constant c)
(0.7) o' (u)] < e(1+ [ul?), q =12

Equation (0.1) is a model for a vibrating membrane in a stratified viscous medium:
the variable u represents the displacement from equilibrium, 0;u is the velocity,
whereas the term o(u)dyu accounts for dynamical friction. Finally, f — ¢(u) corre-
sponds to a (nonlinear) elastic force. Our main result reads as follows:

Theorem 0.1. Equation (0.1) generates a semigroup S(t) on H}(Q) x L*(Q) which
possesses a (unique) compact global attractor A. Moreover, A is a bounded subset
of [HA*(Q)NH ()] x H}(2), and it coincides with the unstable set of the stationary
points of S(t).

The same problem in space-dimension one has been considered in |6], where the
existence of a strongly continuous semigroup possessing a regular compact attractor
(and also exponential attractors) has been proven. Clearly, the analysis made in [6]
took great advantage of the “goodémbedding properties that hold in dimension one.
Indeed, the result obtained there is optimal, and is valid also if condition (0.5) is
replaced by the weaker requirement that o(u) > 0 for every u (meaning that the
density of the medium is allowed to vanish at infinity).

On the contrary, in dimension two we can no longer appeal to the continuous em-
bedding HJ(Q2) < L*(Q) (which is false in dimensions greater than one). This



introduces some difficulties, that can be overcome by means of a subtler analysis.
The main ingredient is the use of a suitable decomposition of the solution, which
has been shown to be very effective to prove asymptotic compactness for this kind
of hyperbolic problems in the recent paper [10]| (but see also [5, 8, 12]).

The three-dimensional case, for which we already established a well-posedness result
(see Remark 1.6 below), is much harder, and requires the introduction of different
techniques. We will address this issue in a forthcoming work.

Notation. We denote by H, = dom[(—A)s/z}, s € R, the scale of Hilbert spaces
generated by —A with Dirichlet boundary conditions on (L*(Q),(-,-),|| - ||). In
particular,
H.,=H'Q), Hy=1L*Q), H =H)Q), Hy=H(Q)NH).
Then, we introduce the family of product Hilbert spaces
Hs = Hs+1 X Hsa

endowed with the standard inner products and norms. Throughout the paper, we
shall tacitly make use of the Poincaré, Young and Holder inequalities, along with
the continuous embedding H; — LP(2), for every p € [1,00). We shall also need
the Gagliardo-Nirenberg interpolation inequality in dimension two, namely

(0.8) l2llzr < cllz 2V 217, pe[L,00).

The symbols ¢ and () will stand for a generic positive constant and a generic positive
increasing function, respectively. Finally, for any given function z(t), we write for

short &, (t) = (2(t), 0y2(t)).

We conclude the section recalling two Gronwall-type lemmas that will be used in
the sequel.

Lemma 0.2. Let E : Hy — R satisfy

B¢l —m < E(Q) < QUICIIn,) +m, V¢ € Hy,

for some B >0 and m > 0. Let now & € C(RT, Hy) be given. Suppose that the map
t— E(&(t)) is continuously differentiable and fulfills the differential inequality

T EE®) +ellE®l, <k,
for some e >0 and k > 0. Then
€@ < Q(k+m+ 571, V=t

where to = Q([1£(0)||#,) + Q).

Lemma 0.3. Let A : R™ — R™ be an absolutely continuous function satisfying

CA(E)+2:A(1) < hOAD) +

where e >0, k>0 and fst h(T)dr < e(t—s)+m, for allt > s > 0 and some m > 0.

Then,

A(t) < A(0)e™e " + k%, vt > 0.



We address the reader to [2] for the proof of Lemma 0.2, whereas Lemma 0.3 is
obtained quite directly from the usual Gronwall lemma.

1. THE SOLVING SEMIGROUP

To begin our analysis, we prove

Theorem 1.1. Equation (0.1) generates a semigroup S(t) on the phase space H,.

The proof of the theorem is carried out by means of a Galerkin approximation
scheme. Existence is obtained exploiting the uniform energy estimate established in
the next proposition, and then passing to the limit in a standard way.

Proposition 1.2. For every t > 0, there holds
1€u(®) 10 < QUIEL(0)[740) + QLIS -

Proof. Introduce the energy functional

Ey = [|&ullig, + 2(@(u), 1) = 2(f,u),

where .
Ply) —
(u) /0 e(y)dy
From (0.4),
(1.1) [Vul[* +2{®(u), 1) > 26| Vul]* — ¢,

for some 3 > 0. Thus, (0.2) entails

Bllgullfy, — QU < Eo < QI€ullr) + QUIFND.
Multiplying (0.1) by dyu, we find

d
(1.2) %EO + 2(o(u)Ou, Oyuy = 0,
and the conclusion follows integrating on (0, ). O

Integrating equality (1.2) on (0, 00), and using Proposition 1.2 and (0.5), we also
obtain the existence of suitable dissipation integrals, namely,

Lemma 1.3. There holds
Uo/0 10pu(t)|[*dt < /0 (o (u(t))0u(t), du(t))dt < Q([|€u(0)l2,) + QUISI)-
Remark 1.4. Observe that Ej is a Lyapunov function for S(t).

Uniqueness is a consequence of the following continuous dependence result.

Proposition 1.5. For every T > 0 and every R > 0, any two solutions u' and u?
to equation (0.1) fulfill the estimate

1€ (T) = &2(D)3,, < Q(R)EPIT]E,1(0) = &2 (0)]5,_,.
for all initial data ||£,:(0)|n, < R.



Proof. Define w(t) = f(fu(f)df. Integrating (0.1) on (0,t) yields

Opw(t) + X(u(t)) — Aw(t) = —/0 o(u(r))dr + X(u(0)) + du(0) + tf,
where we put
S = [ oy

Let now u', u? be two solutions to (0.1) with initial data ||£,:(0)|x, < R, and denote
their difference by @ = u' — «2. From the uniform estimate of Proposition 1.2,

1€ (Bl < Q(R), VYt =>0.

Then, the corresponding difference w = w' — w? solves the equation
(1.3) Oy + L(u') — B(u?) — Aw = F + G,

where

and
G = 3(u*(0)) — 2(u?(0)) + 0,u(0).
The monotonicity of ¥ implies that
(S(u') — B(u?),a) > 0.
Hence, multiplying (1.3) by d;w = @, we have

1d, ., _d d
g < 7 _ o\ o).

Integrating on (0,77), we are led to
1€a(T)I3¢, < N1a(O)[I* + 2(F(T), w(T)) + 2(G, w(T)) — 2/0 (O (2), w(t))dt

1 )
< S1€a(T3 + 4IED)IE_, + 20)1° + 4G5,

T
9 / 10 F(6)] 11 € (8) 4y .

Using now the growth restrictions (0.2) and (0.7) on ¢ and o, we get at once the
controls

T T
YFD), < QR)T / la()|Pdt < Q(R)T / €a(t)]B .
0 0
JaO)I? + 4GI%, < QUR)IIEO)IZ .,
10FD s, < QR[] < QR)€x(t) 1.
Therefore, the differential inequality turns into

1€a(T)1l3, < QUR)IE(0)II3., + Q(R)(L + T)/O 1€ (£) 1744t
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and from the Gronwall lemma we conclude that

[a(T)[? < [1€a(T) 3, < QR E(0)[I3,,-
Finally, from (1.3) we read that

10l 7y = 10w ]|z, < [[2(u') = Z(w)|[r_y + IV + [[Fllry + (Gl
which, due to the above inequalities and to the immediate control
[S(u") = 2(u?)]ln, < QR)|al,
furnishes
18:a(T) 1%, < Q(R)eP™T||&(0)[13,_,.

The proof is then completed. U

Remark 1.6. The very same argument applies in R3, clearly, provided that ¢ and
o satisfy suitable growth restrictions (precisely, cubic growth for ¢ and quadratic
growth for o). In that case, Proposition 1.2 holds as well.

2. DISSIPATIVITY
We now proceed to investigate the asymptotic properties of (0.1). We preliminarily
show the existence of a bounded absorbing set By C H,
Proposition 2.1. For every R > 0 there exists ty = to(R) such that

1€u@) I3 < QUISID, V=10,
whenever ||€,(0)]x, < R.

Proof. For e € (0,1) to be fixed later, we introduce the energy functional
E. = [[€ull3g, + 2(@(w), 1) = 2(f, u) + 2e(L(u), 1) + 2¢(ru, u),
with ®(u) as in Proposition 1.2 and

T(u) = /Ou yo(y)dy.

Notice that, from (0.5), (Y(u), 1) > 0. Thus, on account of (0.2), (0.7) and (1.1) we
have the controls

(2.1) BléullF, — QU < Be < Q1€ullro) + QUIFID

for some 3 > 0, provided that ¢ is small enough. Multiplying (0.1) by dyu + eu, we
find

d
EE'S 4 2¢||Vu||* + 2(o(u)Opu, Opu) — 2¢||0u||* + 2 (p(u), u) = 2e(f, u).

Using (0.4), we have the estimate

2e | Vul|* + 22 (p(u), u) > 20e||Vul]* —c,
whereas (0.5) yields

2(a(uw)Oyu, Oyu) — 2¢||0ul||* > Bel|Owul|?,
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if € is small enough. Thus, estimating the right-hand side of the differential equality
as

2¢(f,u) < Be||Vul* + el £I1%,
we end up with the inequality

d
(2.2) pr Bell&ullz, < QUIN-
Fixing now the parameter ¢ in such a way that all the above relationships hold, the
claim follows from Lemma 0.2. |

For further scopes, it is convenient to subsume Proposition 1.2 and Proposition 2.1
in the following unitary fashion.

Proposition 2.2. For every t > 0, there holds
1€u ()10 < QUUIE0)I35)e™" + QI fI])-

The next step is to demonstrate higher-order dissipativity.

Proposition 2.3. For every t > 0, there holds
1€®)llr: < QUIEL(O) I )e™= + QI FI]),

for some €1 > 0 and some positive increasing function Q).

Proof. Leaning on the absorbing set By, it is enough to prove that for every R > 0
there exists v = v(R) such that

(2:3) 1€l < QUIE(D) Iy )e™" + QR+ II£1]),

whenever [|£,(0)|lxn, < R. Fix then R > 0 and choose [|£,(0)]]%, < R. From
Proposition 2.2, we learn that

(2'4) ||€u(t)||7'lo < QRa

where we wrote for short Qr = Q(R+||f||). Setting n = du, differentiation of (0.1)
with respect to time yields

O + o (w0 + o' (w)n* — An + ¢ (u)n = 0.
Then, for € € (0,1) to be fixed later, we define the functional
A = 11&ll7, + 2¢{n, Orm),

which satisfies the inequalities

1
(2.5) sl < A < 206,

provided that € is small enough. Multiplying the above equation by 0;n+¢en, we are
led to

d :
T 2e[|Vnl* + 2{o (u) e, n) + 2(0” (u)n*, Ipn) — 2¢]|Oun||*

= —2e(o(u)n, Om) — 2o’ (w)n*, n) — 2e(&'(w)n, n) — 2(¢' (u)n, ).



On account of (0.2), (0.7) and (2.4), the terms in the right-hand side are controlled
as

—2¢e(o(u)n, Om) < —||V77||2+«€QR||@77||2
—2e(o’ (w)n?, n) — 2e(¢'(w)n, n) < ||V77|| + Qr,

and, using (0.8),

—2e(¢'(u)n, Oim) < Qrlinlz+]|0m|
< QrlIVll||0m|
@r
—||V77||2 +ellomll’ + =
Therefore, we get

d
SN+ eIVl + 2o (), D) + 240’ Bon) — (3 + QO] < L.

We now turn to the terms in the left-hand side. We have

20" (w)n?, 0m) = —(o(w)dn, dim) — (o' (w)*[o(w)] 7 0%, ).
At this point, we fix € = £(R) small enough such that (2.5) holds and
g0 — 3+ Qr) > ¢.
Hence, using (0.5) and (2.5), we obtain the differential inequality
d

(2.6) M5 A < {0 )Plo ()] 7) + Q.

The last step is the control of the remaining term in the left-hand side. On account
of (0.5) and (0.6), there is no loss of generality to assume 6 < 1/2. Note that, from
(0.6),

([o' (w) 2o ()] ™) "7 < colu).

Thus, applying the Holder inequality with exponents (1_—125,]91,])2), with 1/p; +
1/ps = 20, we get

(o’ (P[o ()] ™n* %) = (o’ (WP[o ()] =, n*In]*)

< c{o (@i, )20l Zen 10l isre

Exploiting the interpolation inequality (0.8), we find the controls
1l Z2n < cllnll>PIVnlP~2# < QrlVal>~2/7,

and
100l Pusny < cllnll?P2 ([ V)| =272 < Qg Vn|| =272,
Since by (0.7) and (2.4) we have

(o(uw)n,n) < Qr|Vn|,
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applying (2.5) we conclude that

([o' (W) (w)] P, 0°)

< Qr{o(w)n, n)' || Vn|?

< Qr{o(w)n, n)' ™ + Qrlo(u)n,n)' A
< Qut SIValP + SA + Qalown.n)A

< Qgr+ ZA + Qr{o(u)n, mA.

Therefore, (2.6) turns into

d

SA+ ZA < Qr + Qrlo(u)n, mA.

Thanks to Lemma 1.3 (recall that n = 0,u), we are in a position to apply Lemma 0.3,
which, together with (2.5), entail

121340 < QUUEH(O)Io)e™" + Qr,

for some v = v(R) > 0. By comparison with the original equation (0.1), we obtain
the required inequality (2.3). O

3. AsymMPTOTIC COMPACTNESS: PROOF OF THEOREM 0.1

In order to prove the existence of the global attractor and its regularity, we shall
exploit a quite effective decomposition of the solution, which has been used in the
recent paper [10]. This approach will allow us to prove the desired result without
bootstrap arguments; thus, avoiding the use of fractional operators, that would
require a rather delicate treatment (due to the presence of the nonlinear damping).
First, using (0.2) and Proposition 2.2, we choose § > ¢ large enough such that the
inequality

(3.1) %HWII2 +(0 = 20)|[2lI* — (¢ (u(t))z, 2) > 0

holds for every z € Hy, every t > 0 and every solution u(t) with &,(0) € By. Then,
we set

Y(r) = p(r) + 0or.
Condition (0.2) still holds with v in place of ¢, besides by virtue of (0.3),
(3.2) 1//(7’) > 0.

We now consider initial data &,(0) belonging to the bounded absorbing set By pro-
duced by Proposition 2.1, and we decompose the corresponding solution to (0.1)
into the sum u = w + v, where w and v solve the equations

Opw + o(w)ow — Aw + (w) = fu + f,
(3.3) £,(0) = (0,0),

wian = 0,



and
Opv + o(u)ow — Av + (o(u) — o(w))ow + P (u) — P(w) = 0,
(3.4) £,(0) = &.(0),

Vo = 0.

Till the end of the section, the generic constant ¢ > 0 will depend only on the size
of the absorbing set By. Arguing exactly as in Proposition 1.2 and Proposition 2.1,
we obtain the uniform bound

(3:5) 1€w@ o <c, VE20.

In addition, multiplying (3.3) by d,w and integrating on (s, t), thanks to Lemma 1.3
we readily see that

t
s w

t
(3.6) 00/ |0y (7)||2dT < / (o(w(7))0yw(T), yw(7)ydr < w(t — s) + E,
for every t > s > 0 and every w > 0.

Lemma 3.1. For every t > 0, we have that ||€,(t)||x, < c.

We leave to the reader the proof of Lemma 3.1, since it is basically a repetition of
the proof of Proposition 2.3. Indeed, setting now n = d,w, differentiation of (3.3)
with respect to time entails

Oun + o ()0 + o' (w)n® — An + ¢/ (w)n = 0u.

Hence, the only difference here is that the initial data are null, and in the final
differential inequality it will appear also the extra term ||Q;ul|?> multiplied by the
functional. Notice that Lemma 0.3 is needed in its full strength, since in this case
we have dissipation integrals of the form (3.6).

vt

Lemma 3.2. For every t > 0 and some v > 0, we have that ||£,(t)|lx, < ce”

Proof. For € € (0,1) to be determined later, define

A = [1&ll3, + 20 (w) — ¥(w), v) — (' (u)v, v) + 26(0v, v).
On account of (0.3) and (3.1), together with the uniform bounds on |[Vul|| and

|Vw||, the functional A satisfies the inequalities

1
(3.7) &l < A <&z,

provided that ¢ is small enough. Multiplying (3.4) by 0,v + v, we have the equality

d

PR 2¢|| V|| + 2{o (u) O, Bv) — 2|0 ]|* + 2¢(3b(u) — P(w), v)

= 2((¢'(u) = ' (w)dew, v) — (¥ (u)dyu, v*) — 2{(0(u) — o(w))dw, Oyv)
—2e((o(u) — o(w))0yw, v) — 2e((o(u)dw, v).



We now reconstruct A in the right-hand side. Indeed, it is easily seen that, for
small enough,

2e||Vo||? + 2{(co(u)dv, D) — 2|0 ||* + 28 (b (u) — ¥(w), v)
> eA+ 2| Vol? + oollaw]

Therefore, we are led to the differential inequality

d €
prEARECI, 5HWH2 + ao]| 0|
< 2((¢'(u) — ' (w)) 9w, v) — (" (w)Opu, v*) — 2((0(u) — o(w))Oyw, Fyv)

—2e((o(u) — o(w))dw, vy — 2e((o(u)Ow, v).
Then, we proceed to control the terms in the right-hand side. Regarding the first
two, we have (cf. [10] where similar calculations appear)

2((¢'(u) — ¢ (w) 0w, v) — (¥ (w) Oy, v*) < Z!lvvllz + E(H@UW + [|0w]*) A
Concerning the remaining terms, we have (cf. (0.7))
~2((o(u) = o(w))dw, O) < c((1+ [ul? + |w|")|dyw|"?|0w]"[v], |Orv])
< cl|0pw||'2[[Vol]|d;v ]
< cf|9pw]| /A

< ZA+ el oA,

Similarly,
—2e((0(u) — o(w))Byw, v) < ZA + ¢|| 8w 2A.
Finally,
—2e(o(u)0w,v) < cel|Ow||||Vv]| < ZHVUH2 + ce||0pw]2.
Collecting the above inequalities, we end up with
%A F A+ (o0 — Al < (10wl + a0 A

At this point, we fix € > 0 small enough such that the above conditions are satisfied
and og — ce > 0, so to obtain

d €
In view of the integral estimates provided by Lemma 1.3 and (3.6), the conclusion
follows by applying Lemma 0.3 along with (3.7). OJ

We can now conclude the

Proof of Theorem 0.1. Proposition 2.1 provides the existence of a bounded absorb-
ing set By, while Lemma 3.1 and Lemma 3.2 show that S(¢)B, is (exponentially)
attracted by a bounded subset C C H;. Hence, C is a compact attracting set.
By standard arguments of the theory of dynamical systems (see e.g. [1, 9, 11]), we
conclude that there exists a (unique) compact global attractor A C C. Since S(t)

10



possesses a Lyapunov function (cf. Remark 1.4), the attractor is the unstable set of
the stationary points of S(¢). O

4. EXPONENTIAL ATTRACTORS

We finally state a result on the existence of an exponential attractor.

Theorem 4.1. The semigroup S(t) possesses a reqular exponential attractor, namely,
a compact set M C Hy, bounded in Hy and of finite fractal dimension in Hy, posi-
tively invariant for S(t), and satisfying the following exponential attraction property:

(EA) There exist w > 0 such that
distyq, (S(t)B, M) < Q(R)e™",
for every B C Hy such that supecg [|C][#, < R-

Here, disty,, denotes the usual Hausdorff semidistance in Hy. As a byproduct, we
have

Corollary 4.2. The global attractor A of S(t) has finite fractal dimension in Ho.

Proof. In the previous section we proved the existence of a bounded subset of C of
H1 (we can assume without loss of generality that C is a closed ball of H;) such that
distyy, (S(t)B,C) < Q(R)e ™,

for every B C Ho with sup;cp[[C]|% < R. It is also apparent from Proposition 2.3
that, up to possibly enlarging C, there is a time ¢z > 0 such that S(¢)C C C, whenever
t > te. We now appeal to the following abstract result [3] (see also |7]).

Lemma 4.3. Let there exist t* > te such that

(C1) The map (t,z) — S(t)z : [t*,2t*] x C — C is Lipschitz continuous when C is
endowed with the Hy-topology.
(C2) Setting S = S(t*), there are v € (0,3) and T' > 0 such that, for every

(LG eC, 2
SC — 8SG = D(¢1,¢2) + K(C1, C2),

where
1D(C1, G2l < YIIG — Gl and  [[K(C1, G)ll#, < TI¢ — Gl

Then there exists a set M C C, closed and of finite fractal dimension in Hy, posi-
tively invariant for S(t), such that

distyy, (S(t)C, M) < Me ",
for some wy > 0 and M > 0.

Since C is positively invariant and bounded in H;, the nonlinearities become nonessen-
tial. Hence, the check of (C1)-(C2) is not different from the analogous case in space
dimension one, previously treated in the paper [6] (to which we address the reader for
the details). Thus, we obtain “almostthe the thesis of Theorem 4.1, in the sense that
the basin of exponential attraction is C, and not the whole space Hy, as required.

11



To reach the conclusion, we have to appeal to the transitivity of the exponential
attraction [4, Theorem 5.1]. Namely, if

disty, (S(t)B,C) < Q(R)e ™ and distyy, (S(t)C, M) < Me 0",

then the desired property (EA) follows, provided that we can show the (locally)
Lipschitz continuity

IS®)¢ = S llng < Ce™[I¢r = Gl

where both C' and K may depend (increasingly) on the norms of (, (3. This seems
out of reach. Nonetheless, a closer look to the proof of [4, Theorem 5.1] shows that in
fact it is enough to prove the above continuity for (; € Hy and (3 € C, which is true
and quite easy to demonstrate. Indeed, denoting by u’ the solution to (0.1) with
initial data ¢;, and by @ = u' — u?, multiplying (0.1) by 9,u the only problematic
term to control is
(o(uh)ou' — o(u?)owu?, o).
But, due to (0.6),
(o(uhou' — o(u?)ou?, o) = (o(uh)oa, o) + ((o(u') — o(u?))Owu?, O,u)
> {(o(u') — o(u?))ou?, O,u),
and using the fact that 9,u®? € H, we easily get that
[{(o(u') = o(u?))du?, 8w)| < c||€all3y,

for some ¢ depending only on the size of the initial data. An application of the
Gronwall lemma completes the argument. 0]
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