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Abstrat. We address the study of a weakly damped wave equation in spae-dimension two, with a damping oe�ient depending on the displaement. Theequation is shown to generate a semigroup possessing a ompat global attratorof optimal regularity, as well as an exponential attrator.Let Ω ⊂ R
2 be a bounded domain with smooth boundary ∂Ω. We onsider thefollowing wave equation with nonlinear damping:(0.1) 









∂ttu+ σ(u)∂tu− ∆u+ ϕ(u) = f,

u(0) = u0, ∂tu(0) = u1,

u|∂Ω = 0.Here, f ∈ L2(Ω) is independent of time, while ϕ ∈ C2(R), with ϕ(0) = 0, ful�lls
|ϕ′′(u)| ≤ c

(

1 + |u|p
)

, p ≥ 0,(0.2)
ϕ′(u) ≥ −ℓ, ℓ ≥ 0,(0.3)

lim inf
|u|→∞

ϕ(u)

u
> −λ1,(0.4)where c ≥ 0 and λ1 > 0 is the �rst eigenvalue of −∆ on L2(Ω) with Dirihletboundary onditions. Conerning the damping term, we assume that σ ∈ C1(R)with

σ(u) ≥ σ0 > 0,(0.5)
|σ′(u)| ≤ c[σ(u)]1−δ, δ ∈ (0, 1],(0.6)for some c ≥ 0. Note that (0.6) implies that (rede�ning the onstant c)(0.7) |σ′(u)| ≤ c

(

1 + |u|q
)

, q = 1−δ
δ
.Equation (0.1) is a model for a vibrating membrane in a strati�ed visous medium:the variable u represents the displaement from equilibrium, ∂tu is the veloity,whereas the term σ(u)∂tu aounts for dynamial frition. Finally, f − ϕ(u) orre-sponds to a (nonlinear) elasti fore. Our main result reads as follows:Theorem 0.1. Equation (0.1) generates a semigroup S(t) on H1

0 (Ω)×L2(Ω) whihpossesses a (unique) ompat global attrator A. Moreover, A is a bounded subsetof [

H2(Ω)∩H1
0 (Ω)

]

×H1
0 (Ω), and it oinides with the unstable set of the stationarypoints of S(t).The same problem in spae-dimension one has been onsidered in [6℄, where theexistene of a strongly ontinuous semigroup possessing a regular ompat attrator(and also exponential attrators) has been proven. Clearly, the analysis made in [6℄took great advantage of the �goodëmbedding properties that hold in dimension one.Indeed, the result obtained there is optimal, and is valid also if ondition (0.5) isreplaed by the weaker requirement that σ(u) > 0 for every u (meaning that thedensity of the medium is allowed to vanish at in�nity).On the ontrary, in dimension two we an no longer appeal to the ontinuous em-bedding H1

0 (Ω) →֒ L∞(Ω) (whih is false in dimensions greater than one). This1



introdues some di�ulties, that an be overome by means of a subtler analysis.The main ingredient is the use of a suitable deomposition of the solution, whihhas been shown to be very e�etive to prove asymptoti ompatness for this kindof hyperboli problems in the reent paper [10℄ (but see also [5, 8, 12℄).The three-dimensional ase, for whih we already established a well-posedness result(see Remark 1.6 below), is muh harder, and requires the introdution of di�erenttehniques. We will address this issue in a forthoming work.Notation. We denote by Hs = dom[

(−∆)s/2
], s ∈ R, the sale of Hilbert spaesgenerated by −∆ with Dirihlet boundary onditions on (L2(Ω), 〈·, ·〉, ‖ · ‖). Inpartiular,

H−1 = H−1(Ω), H0 = L2(Ω), H1 = H1
0 (Ω), H2 = H2(Ω) ∩H1

0 (Ω).Then, we introdue the family of produt Hilbert spaes
Hs = Hs+1 ×Hs,endowed with the standard inner produts and norms. Throughout the paper, weshall taitly make use of the Poinaré, Young and Hölder inequalities, along withthe ontinuous embedding H1 →֒ Lp(Ω), for every p ∈ [1,∞). We shall also needthe Gagliardo-Nirenberg interpolation inequality in dimension two, namely(0.8) ‖z‖L2p ≤ c‖z‖1/p‖∇z‖1−1/p, p ∈ [1,∞).The symbols c and Q will stand for a generi positive onstant and a generi positiveinreasing funtion, respetively. Finally, for any given funtion z(t), we write forshort ξz(t) = (z(t), ∂tz(t)).We onlude the setion realling two Gronwall-type lemmas that will be used inthe sequel.Lemma 0.2. Let E : H0 → R satisfy

β‖ζ‖2
H0

−m ≤ E(ζ) ≤ Q(‖ζ‖H0
) +m, ∀ζ ∈ H0,for some β > 0 and m ≥ 0. Let now ξ ∈ C(R+,H0) be given. Suppose that the map

t 7→ E(ξ(t)) is ontinuously di�erentiable and ful�lls the di�erential inequality
d

dt
E(ξ(t)) + ε‖ξ(t)‖2

H0
≤ k,for some ε > 0 and k > 0. Then

‖ξ(t)‖H0
≤ Q

(

k +m+ β−1), ∀t ≥ t0,where t0 = Q(‖ξ(0)‖H0
) +Q(k).Lemma 0.3. Let Λ : R
+ → R

+ be an absolutely ontinuous funtion satisfying
d

dt
Λ(t) + 2εΛ(t) ≤ h(t)Λ(t) + k,where ε > 0, k ≥ 0 and ∫ t

s
h(τ)dτ ≤ ε(t−s)+m, for all t ≥ s ≥ 0 and some m ≥ 0.Then,

Λ(t) ≤ Λ(0)eme−εt +
kem

ε
, ∀t ≥ 0.2



We address the reader to [2℄ for the proof of Lemma 0.2, whereas Lemma 0.3 isobtained quite diretly from the usual Gronwall lemma.1. The Solving SemigroupTo begin our analysis, we proveTheorem 1.1. Equation (0.1) generates a semigroup S(t) on the phase spae H0.The proof of the theorem is arried out by means of a Galerkin approximationsheme. Existene is obtained exploiting the uniform energy estimate established inthe next proposition, and then passing to the limit in a standard way.Proposition 1.2. For every t ≥ 0, there holds
‖ξu(t)‖H0

≤ Q(‖ξu(0)‖H0
) +Q(‖f‖).Proof. Introdue the energy funtional

E0 = ‖ξu‖
2
H0

+ 2〈Φ(u), 1〉 − 2〈f, u〉,where
Φ(u) =

∫ u

0

ϕ(y)dy.From (0.4),(1.1) ‖∇u‖2 + 2〈Φ(u), 1〉 ≥ 2β‖∇u‖2 − c,for some β > 0. Thus, (0.2) entails
β‖ξu‖

2
H0

−Q(‖f‖) ≤ E0 ≤ Q(‖ξu‖H0
) +Q(‖f‖).Multiplying (0.1) by ∂tu, we �nd(1.2) d

dt
E0 + 2〈σ(u)∂tu, ∂tu〉 = 0,and the onlusion follows integrating on (0, t). �Integrating equality (1.2) on (0,∞), and using Proposition 1.2 and (0.5), we alsoobtain the existene of suitable dissipation integrals, namely,Lemma 1.3. There holds

σ0

∫ ∞

0

‖∂tu(t)‖
2dt ≤

∫ ∞

0

〈σ(u(t))∂tu(t), ∂tu(t)〉dt ≤ Q(‖ξu(0)‖H0
) +Q(‖f‖).Remark 1.4. Observe that E0 is a Lyapunov funtion for S(t).Uniqueness is a onsequene of the following ontinuous dependene result.Proposition 1.5. For every T > 0 and every R ≥ 0, any two solutions u1 and u2to equation (0.1) ful�ll the estimate

‖ξu1(T ) − ξu2(T )‖2
H

−1
≤ Q(R)eQ(R)T‖ξu1(0) − ξu2(0)‖2

H
−1
,for all initial data ‖ξui(0)‖H0

≤ R. 3



Proof. De�ne w(t) =
∫ t

0
u(τ)dτ . Integrating (0.1) on (0, t) yields

∂ttw(t) + Σ(u(t)) − ∆w(t) = −

∫ t

0

ϕ(u(τ))dτ + Σ(u(0)) + ∂tu(0) + tf,where we put
Σ(u) =

∫ u

0

σ(y)dy.Let now u1, u2 be two solutions to (0.1) with initial data ‖ξui(0)‖H0
≤ R, and denotetheir di�erene by ū = u1 − u2. From the uniform estimate of Proposition 1.2,

‖ξui(t)‖ ≤ Q(R), ∀t ≥ 0.Then, the orresponding di�erene w̄ = w1 − w2 solves the equation(1.3) ∂ttw̄ + Σ(u1) − Σ(u2) − ∆w̄ = F +G,where
F (t) = −

∫ t

0

[

ϕ(u1(τ)) − ϕ(u2(τ))
]

dτand
G = Σ(u1(0)) − Σ(u2(0)) + ∂tū(0).The monotoniity of Σ implies that

〈Σ(u1) − Σ(u2), ū〉 ≥ 0.Hene, multiplying (1.3) by ∂tw̄ = ū, we have
1

2

d

dt
‖ξw̄‖

2
H0

≤
d

dt
〈F, w̄〉 +

d

dt
〈G, w̄〉 − 〈∂tF, w̄〉.Integrating on (0, T ), we are led to

‖ξw̄(T )‖2
H0

≤ ‖ū(0)‖2 + 2〈F (T ), w̄(T )〉 + 2〈G, w̄(T )〉 − 2

∫ T

0

〈∂tF (t), w̄(t)〉dt

≤
1

2
‖ξw̄(T )‖2

H0
+ 4‖F (T )‖2

H
−1

+ ‖ū(0)‖2 + 4‖G‖2
H

−1

+ 2

∫ T

0

‖∂tF (t)‖H
−1
‖ξw̄(t)‖H0

dt.Using now the growth restritions (0.2) and (0.7) on ϕ and σ, we get at one theontrols
4‖F (T )‖2

H
−1

≤ Q(R)T

∫ T

0

‖ū(t)‖2dt ≤ Q(R)T

∫ T

0

‖ξw̄(t)‖2
H0
dt,

‖ū(0)‖2 + 4‖G‖2
H

−1
≤ Q(R)‖ξū(0)‖2

H
−1
,

‖∂tF (t)‖H
−1

≤ Q(R)‖ū(t)‖ ≤ Q(R)‖ξw̄(t)‖H0
.Therefore, the di�erential inequality turns into

‖ξw̄(T )‖2
H0

≤ Q(R)‖ξū(0)‖2
H

−1
+Q(R)(1 + T )

∫ T

0

‖ξw̄(t)‖2
H0
dt,4



and from the Gronwall lemma we onlude that
‖ū(T )‖2 ≤ ‖ξw̄(T )‖2

H0
≤ Q(R)eQ(R)T‖ξū(0)‖2

H
−1
.Finally, from (1.3) we read that

‖∂tū‖H
−1

= ‖∂ttw̄‖H
−1

≤ ‖Σ(u1) − Σ(u2)‖H
−1

+ ‖∇w̄‖ + ‖F‖H
−1

+ ‖G‖H
−1
,whih, due to the above inequalities and to the immediate ontrol

‖Σ(u1) − Σ(u2)‖H
−1

≤ Q(R)‖ū‖,furnishes
‖∂tū(T )‖2

H
−1

≤ Q(R)eQ(R)T ‖ξū(0)‖2
H

−1
.The proof is then ompleted. �Remark 1.6. The very same argument applies in R

3, learly, provided that ϕ and
σ satisfy suitable growth restritions (preisely, ubi growth for ϕ and quadratigrowth for σ). In that ase, Proposition 1.2 holds as well.2. DissipativityWe now proeed to investigate the asymptoti properties of (0.1). We preliminarilyshow the existene of a bounded absorbing set B0 ⊂ H0Proposition 2.1. For every R ≥ 0 there exists t0 = t0(R) suh that

‖ξu(t)‖H0
≤ Q(‖f‖), ∀t ≥ t0,whenever ‖ξu(0)‖H0

≤ R.Proof. For ε ∈ (0, 1) to be �xed later, we introdue the energy funtional
Eε = ‖ξu‖

2
H0

+ 2〈Φ(u), 1〉 − 2〈f, u〉 + 2ε〈Υ(u), 1〉+ 2ε〈∂tu, u〉,with Φ(u) as in Proposition 1.2 and
Υ(u) =

∫ u

0

yσ(y)dy.Notie that, from (0.5), 〈Υ(u), 1〉 ≥ 0. Thus, on aount of (0.2), (0.7) and (1.1) wehave the ontrols(2.1) β‖ξu‖
2
H0

−Q(‖f‖) ≤ Eε ≤ Q(‖ξu‖H0
) +Q(‖f‖),for some β > 0, provided that ε is small enough. Multiplying (0.1) by ∂tu+ εu, we�nd

d

dt
Eε + 2ε‖∇u‖2 + 2〈σ(u)∂tu, ∂tu〉 − 2ε‖∂tu‖

2 + 2ε〈ϕ(u), u〉 = 2ε〈f, u〉.Using (0.4), we have the estimate
2ε‖∇u‖2 + 2ε〈ϕ(u), u〉 ≥ 2βε‖∇u‖2 − c,whereas (0.5) yields
2〈σ(u)∂tu, ∂tu〉 − 2ε‖∂tu‖

2 ≥ βε‖∂tu‖
2,5



if ε is small enough. Thus, estimating the right-hand side of the di�erential equalityas
2ε〈f, u〉 ≤ βε‖∇u‖2 + c‖f‖2,we end up with the inequality(2.2) d

dt
Eε + βε‖ξu‖

2
H0

≤ Q(‖f‖).Fixing now the parameter ε in suh a way that all the above relationships hold, thelaim follows from Lemma 0.2. �For further sopes, it is onvenient to subsume Proposition 1.2 and Proposition 2.1in the following unitary fashion.Proposition 2.2. For every t ≥ 0, there holds
‖ξu(t)‖H0

≤ Q(‖ξu(0)‖H0
)e−t +Q(‖f‖).The next step is to demonstrate higher-order dissipativity.Proposition 2.3. For every t ≥ 0, there holds

‖ξu(t)‖H1
≤ Q(‖ξu(0)‖H1

)e−ε1t +Q(‖f‖),for some ε1 > 0 and some positive inreasing funtion Q.Proof. Leaning on the absorbing set B0, it is enough to prove that for every R > 0there exists ν = ν(R) suh that(2.3) ‖ξu(t)‖H1
≤ Q(‖ξu(0)‖H1

)e−νt +Q(R+ ‖f‖),whenever ‖ξu(0)‖H0
≤ R. Fix then R > 0 and hoose ‖ξu(0)‖H0

≤ R. FromProposition 2.2, we learn that(2.4) ‖ξu(t)‖H0
≤ QR,where we wrote for short QR = Q(R+‖f‖). Setting η = ∂tu, di�erentiation of (0.1)with respet to time yields

∂ttη + σ(u)∂tη + σ′(u)η2 − ∆η + ϕ′(u)η = 0.Then, for ε ∈ (0, 1) to be �xed later, we de�ne the funtional
Λ = ‖ξη‖

2
H0

+ 2ε〈η, ∂tη〉,whih satis�es the inequalities(2.5) 1

2
‖ξη‖

2
H0

≤ Λ ≤ 2‖ξη‖
2
H0
,provided that ε is small enough. Multiplying the above equation by ∂tη+ εη, we areled to

d

dt
Λ + 2ε‖∇η‖2 + 2〈σ(u)∂tη, ∂tη〉 + 2〈σ′(u)η2, ∂tη〉 − 2ε‖∂tη‖

2

= −2ε〈σ(u)η, ∂tη〉 − 2ε〈σ′(u)η2, η〉 − 2ε〈ϕ′(u)η, η〉 − 2〈ϕ′(u)η, ∂tη〉.6



On aount of (0.2), (0.7) and (2.4), the terms in the right-hand side are ontrolledas
−2ε〈σ(u)η, ∂tη〉 ≤

ε

3
‖∇η‖2 + εQR‖∂tη‖

2,

−2ε〈σ′(u)η2, η〉 − 2ε〈ϕ′(u)η, η〉 ≤
ε

3
‖∇η‖2 +QR,and, using (0.8),

−2ε〈ϕ′(u)η, ∂tη〉 ≤ QR‖η‖L4‖∂tη‖

≤ QR‖∇η‖
1/2‖∂tη‖

≤
ε

3
‖∇η‖2 + ε‖∂tη‖

2 +
QR

ε2
.Therefore, we get

d

dt
Λ + ε‖∇η‖2 + 2〈σ(u)∂tη, ∂tη〉 + 2〈σ′(u)η2, ∂tη〉 − ε(3 +QR)‖∂tη‖

2 ≤
QR

ε2
.We now turn to the terms in the left-hand side. We have

2〈σ′(u)η2, ∂tη〉 ≥ −〈σ(u)∂tη, ∂tη〉 − 〈[σ′(u)]2[σ(u)]−1η2, η2〉.At this point, we �x ε = ε(R) small enough suh that (2.5) holds and
σ0 − ε(3 +QR) ≥ ε.Hene, using (0.5) and (2.5), we obtain the di�erential inequality(2.6) d

dt
Λ +

ε

2
Λ ≤ 〈[σ′(u)]2[σ(u)]−1η2, η2〉 +QR.The last step is the ontrol of the remaining term in the left-hand side. On aountof (0.5) and (0.6), there is no loss of generality to assume δ < 1/2. Note that, from(0.6),

(

[σ′(u)]2[σ(u)]−1
)1/(1−2δ)

≤ cσ(u).Thus, applying the Hölder inequality with exponents (

1
1−2δ

, p1, p2

), with 1/p1 +
1/p2 = 2δ, we get

〈[σ′(u)]2[σ(u)]−1η2, η2〉 = 〈[σ′(u)]2[σ(u)]−1|η|2−4δ, η2|η|4δ〉

≤ c〈σ(u)η, η〉1−2δ‖η‖2
L2p1

‖η‖4δ
L4δp2

.Exploiting the interpolation inequality (0.8), we �nd the ontrols
‖η‖2

L2p1
≤ c‖η‖2/p1‖∇η‖2−2/p1 ≤ QR‖∇η‖

2−2/p1 ,and
‖η‖4δ

L4δp2
≤ c‖η‖2/p2‖∇η‖4δ−2/p2 ≤ QR‖∇η‖

4δ−2/p2 .Sine by (0.7) and (2.4) we have
〈σ(u)η, η〉 ≤ QR‖∇η‖,7



applying (2.5) we onlude that
〈[σ′(u)]2[σ(u)]−1η2, η2〉

≤ QR〈σ(u)η, η〉1−2δ‖∇η‖2

≤ QR〈σ(u)η, η〉1−2δ +QR〈σ(u)η, η〉1−2δΛ

≤ QR +
ε

8
‖∇η‖2 +

ε

8
Λ +QR〈σ(u)η, η〉Λ

≤ QR +
ε

4
Λ +QR〈σ(u)η, η〉Λ.Therefore, (2.6) turns into

d

dt
Λ +

ε

4
Λ ≤ QR +QR〈σ(u)η, η〉Λ.Thanks to Lemma 1.3 (reall that η = ∂tu), we are in a position to apply Lemma 0.3,whih, together with (2.5), entail

‖ξη(t)‖H0
≤ Q(‖ξη(0)‖H0

)e−νt +QR,for some ν = ν(R) > 0. By omparison with the original equation (0.1), we obtainthe required inequality (2.3). �3. Asymptoti Compatness: Proof of Theorem 0.1In order to prove the existene of the global attrator and its regularity, we shallexploit a quite e�etive deomposition of the solution, whih has been used in thereent paper [10℄. This approah will allow us to prove the desired result withoutbootstrap arguments; thus, avoiding the use of frational operators, that wouldrequire a rather deliate treatment (due to the presene of the nonlinear damping).First, using (0.2) and Proposition 2.2, we hoose θ ≥ ℓ large enough suh that theinequality(3.1) 1

2
‖∇z‖2 + (θ − 2ℓ)‖z‖2 − 〈ϕ′(u(t))z, z〉 ≥ 0holds for every z ∈ H1, every t ≥ 0 and every solution u(t) with ξu(0) ∈ B0. Then,we set

ψ(r) = ϕ(r) + θr.Condition (0.2) still holds with ψ in plae of ϕ, besides by virtue of (0.3),(3.2) ψ′(r) ≥ 0.We now onsider initial data ξu(0) belonging to the bounded absorbing set B0 pro-dued by Proposition 2.1, and we deompose the orresponding solution to (0.1)into the sum u = w + v, where w and v solve the equations(3.3) 









∂ttw + σ(w)∂tw − ∆w + ψ(w) = θu+ f,

ξw(0) = (0, 0),

w|∂Ω = 0, 8



and(3.4) 









∂ttv + σ(u)∂tv − ∆v + (σ(u) − σ(w))∂tw + ψ(u) − ψ(w) = 0,

ξv(0) = ξu(0),

v|∂Ω = 0.Till the end of the setion, the generi onstant c ≥ 0 will depend only on the sizeof the absorbing set B0. Arguing exatly as in Proposition 1.2 and Proposition 2.1,we obtain the uniform bound(3.5) ‖ξw(t)‖H0
≤ c, ∀t ≥ 0.In addition, multiplying (3.3) by ∂tw and integrating on (s, t), thanks to Lemma 1.3we readily see that(3.6) σ0

∫ t

s

‖∂tw(τ)‖2dτ ≤

∫ t

s

〈σ(w(τ))∂tw(τ), ∂tw(τ)〉dτ ≤ ω(t− s) +
c

ω
,for every t ≥ s ≥ 0 and every ω > 0.Lemma 3.1. For every t ≥ 0, we have that ‖ξw(t)‖H1

≤ c.We leave to the reader the proof of Lemma 3.1, sine it is basially a repetition ofthe proof of Proposition 2.3. Indeed, setting now η = ∂tw, di�erentiation of (3.3)with respet to time entails
∂ttη + σ(w)∂tη + σ′(w)η2 − ∆η + ψ′(w)η = θ∂tu.Hene, the only di�erene here is that the initial data are null, and in the �naldi�erential inequality it will appear also the extra term ‖∂tu‖

2 multiplied by thefuntional. Notie that Lemma 0.3 is needed in its full strength, sine in this asewe have dissipation integrals of the form (3.6).Lemma 3.2. For every t ≥ 0 and some ν > 0, we have that ‖ξv(t)‖H0
≤ ce−νt.Proof. For ε ∈ (0, 1) to be determined later, de�ne

Λ = ‖ξv‖
2
H0

+ 2〈ψ(u) − ψ(w), v〉 − 〈ψ′(u)v, v〉+ 2ε〈∂tv, v〉.On aount of (0.3) and (3.1), together with the uniform bounds on ‖∇u‖ and
‖∇w‖, the funtional Λ satis�es the inequalities(3.7) 1

4
‖ξv‖

2
H0

≤ Λ ≤ c‖ξv‖
2
H0
,provided that ε is small enough. Multiplying (3.4) by ∂tv+ εv, we have the equality

d

dt
Λ + 2ε‖∇v‖2 + 2〈σ(u)∂tv, ∂tv〉 − 2ε‖∂tv‖

2 + 2ε〈ψ(u)− ψ(w), v〉

= 2〈(ψ′(u) − ψ′(w))∂tw, v〉 − 〈ψ′′(u)∂tu, v
2〉 − 2〈(σ(u) − σ(w))∂tw, ∂tv〉

− 2ε〈(σ(u) − σ(w))∂tw, v〉 − 2ε〈(σ(u)∂tv, v〉.9



We now reonstrut Λ in the right-hand side. Indeed, it is easily seen that, for εsmall enough,
2ε‖∇v‖2 + 2〈σ(u)∂tv, ∂tv〉 − 2ε‖∂tv‖

2 + 2ε〈ψ(u) − ψ(w), v〉

≥ εΛ +
ε

2
‖∇v‖2 + σ0‖∂tv‖

2.Therefore, we are led to the di�erential inequality
d

dt
Λ + εΛ +

ε

2
‖∇v‖2 + σ0‖∂tv‖

2

≤ 2〈(ψ′(u) − ψ′(w))∂tw, v〉 − 〈ψ′′(u)∂tu, v
2〉 − 2〈(σ(u) − σ(w))∂tw, ∂tv〉

− 2ε〈(σ(u)− σ(w))∂tw, v〉 − 2ε〈(σ(u)∂tv, v〉.Then, we proeed to ontrol the terms in the right-hand side. Regarding the �rsttwo, we have (f. [10℄ where similar alulations appear)
2〈(ψ′(u) − ψ′(w))∂tw, v〉 − 〈ψ′′(u)∂tu, v

2〉 ≤
ε

4
‖∇v‖2 +

c

ε

(

‖∂tu‖
2 + ‖∂tw‖

2
)

Λ.Conerning the remaining terms, we have (f. (0.7))
−2〈(σ(u) − σ(w))∂tw, ∂tv〉 ≤ c〈(1 + |u|q + |w|q)|∂tw|

1/2|∂tw|
1/2|v|, |∂tv|〉

≤ c‖∂tw‖
1/2‖∇v‖‖∂tv‖

≤ c‖∂tw‖
1/2Λ

≤
ε

4
Λ + c‖∂tw‖

2Λ.Similarly,
−2ε〈(σ(u) − σ(w))∂tw, v〉 ≤

ε

4
Λ + c‖∂tw‖

2Λ.Finally,
−2ε〈σ(u)∂tv, v〉 ≤ cε‖∂tv‖‖∇v‖ ≤

ε

4
‖∇v‖2 + cε‖∂tv‖

2.Colleting the above inequalities, we end up with
d

dt
Λ +

ε

2
Λ + (σ0 − cε)‖∂tv‖

2 ≤
c

ε

(

‖∂tu‖
2 + ‖∂tw‖

2
)

Λ.At this point, we �x ε > 0 small enough suh that the above onditions are satis�edand σ0 − cε ≥ 0, so to obtain
d

dt
Λ +

ε

2
Λ ≤ c

(

‖∂tu‖
2 + ‖∂tw‖

2
)

Λ.In view of the integral estimates provided by Lemma 1.3 and (3.6), the onlusionfollows by applying Lemma 0.3 along with (3.7). �We an now onlude theProof of Theorem 0.1. Proposition 2.1 provides the existene of a bounded absorb-ing set B0, while Lemma 3.1 and Lemma 3.2 show that S(t)B0 is (exponentially)attrated by a bounded subset C ⊂ H1. Hene, C is a ompat attrating set.By standard arguments of the theory of dynamial systems (see e.g. [1, 9, 11℄), weonlude that there exists a (unique) ompat global attrator A ⊂ C. Sine S(t)10



possesses a Lyapunov funtion (f. Remark 1.4), the attrator is the unstable set ofthe stationary points of S(t). �4. Exponential AttratorsWe �nally state a result on the existene of an exponential attrator.Theorem 4.1. The semigroup S(t) possesses a regular exponential attrator, namely,a ompat set M ⊂ H0, bounded in H1 and of �nite fratal dimension in H0, posi-tively invariant for S(t), and satisfying the following exponential attration property:(EA) There exist ω > 0 suh that
distH0

(S(t)B,M) ≤ Q(R)e−ωt,for every B ⊂ H0 suh that supζ∈B ‖ζ‖H0
≤ R.Here, distH0

denotes the usual Hausdor� semidistane in H0. As a byprodut, wehaveCorollary 4.2. The global attrator A of S(t) has �nite fratal dimension in H0.Proof. In the previous setion we proved the existene of a bounded subset of C of
H1 (we an assume without loss of generality that C is a losed ball of H1) suh that

distH0
(S(t)B, C) ≤ Q(R)e−νt,for every B ⊂ H0 with supζ∈B ‖ζ‖H ≤ R. It is also apparent from Proposition 2.3that, up to possibly enlarging C, there is a time tC ≥ 0 suh that S(t)C ⊂ C, whenever

t ≥ tC. We now appeal to the following abstrat result [3℄ (see also [7℄).Lemma 4.3. Let there exist t⋆ ≥ tC suh that(C1) The map (t, z) 7→ S(t)z : [t⋆, 2t⋆] × C → C is Lipshitz ontinuous when C isendowed with the H0-topology.(C2) Setting S = S(t⋆), there are γ ∈ (0, 1
2
) and Γ ≥ 0 suh that, for every

ζ1, ζ2 ∈ C,
Sζ1 − Sζ2 = D(ζ1, ζ2) +K(ζ1, ζ2),where

‖D(ζ1, ζ2)‖H0
≤ γ‖ζ1 − ζ2‖H0

and ‖K(ζ1, ζ2)‖H1
≤ Γ‖ζ1 − ζ2‖H0

.Then there exists a set M ⊂ C, losed and of �nite fratal dimension in H0, posi-tively invariant for S(t), suh that
distH0

(S(t)C,M) ≤Me−ω0t,for some ω0 > 0 and M ≥ 0.Sine C is positively invariant and bounded inH1, the nonlinearities beome nonessen-tial. Hene, the hek of (C1)-(C2) is not di�erent from the analogous ase in spaedimension one, previously treated in the paper [6℄ (to whih we address the reader forthe details). Thus, we obtain �almostthe the thesis of Theorem 4.1, in the sense thatthe basin of exponential attration is C, and not the whole spae H0, as required.11



To reah the onlusion, we have to appeal to the transitivity of the exponentialattration [4, Theorem 5.1℄. Namely, if
distH0

(S(t)B, C) ≤ Q(R)e−νt and distH0
(S(t)C,M) ≤ Me−ω0t,then the desired property (EA) follows, provided that we an show the (loally)Lipshitz ontinuity

‖S(t)ζ1 − S(t)ζ2‖H0
≤ CeKt‖ζ1 − ζ2‖H0

,where both C and K may depend (inreasingly) on the norms of ζ1, ζ2. This seemsout of reah. Nonetheless, a loser look to the proof of [4, Theorem 5.1℄ shows that infat it is enough to prove the above ontinuity for ζ1 ∈ H0 and ζ2 ∈ C, whih is trueand quite easy to demonstrate. Indeed, denoting by uj the solution to (0.1) withinitial data ζj, and by ū = u1 − u2, multiplying (0.1) by ∂tū the only problematiterm to ontrol is
〈σ(u1)∂tu

1 − σ(u2)∂tu
2, ∂tū〉.But, due to (0.6),

〈σ(u1)∂tu
1 − σ(u2)∂tu

2, ∂tu〉 = 〈σ(u1)∂tū, ∂tū〉 + 〈(σ(u1) − σ(u2))∂tu
2, ∂tū〉

≥ 〈(σ(u1) − σ(u2))∂tu
2, ∂tū〉,and using the fat that ∂tu

2 ∈ H1 we easily get that
|〈(σ(u1) − σ(u2))∂tu

2, ∂tū〉| ≤ c‖ξū‖
2
H0
,for some c depending only on the size of the initial data. An appliation of theGronwall lemma ompletes the argument. �Referenes[1℄ A.V. Babin, M.I. Vishik, Attrators of evolution equations, North-Holland, Amsterdam, 1992.[2℄ V. Belleri, V. Pata, Attrators for semilinear strongly damped wave equation on R
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