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Abstra
t. We address the study of a weakly damped wave equation in spa
e-dimension two, with a damping 
oe�
ient depending on the displa
ement. Theequation is shown to generate a semigroup possessing a 
ompa
t global attra
torof optimal regularity, as well as an exponential attra
tor.Let Ω ⊂ R
2 be a bounded domain with smooth boundary ∂Ω. We 
onsider thefollowing wave equation with nonlinear damping:(0.1) 









∂ttu+ σ(u)∂tu− ∆u+ ϕ(u) = f,

u(0) = u0, ∂tu(0) = u1,

u|∂Ω = 0.Here, f ∈ L2(Ω) is independent of time, while ϕ ∈ C2(R), with ϕ(0) = 0, ful�lls
|ϕ′′(u)| ≤ c

(

1 + |u|p
)

, p ≥ 0,(0.2)
ϕ′(u) ≥ −ℓ, ℓ ≥ 0,(0.3)

lim inf
|u|→∞

ϕ(u)

u
> −λ1,(0.4)where c ≥ 0 and λ1 > 0 is the �rst eigenvalue of −∆ on L2(Ω) with Diri
hletboundary 
onditions. Con
erning the damping term, we assume that σ ∈ C1(R)with

σ(u) ≥ σ0 > 0,(0.5)
|σ′(u)| ≤ c[σ(u)]1−δ, δ ∈ (0, 1],(0.6)for some c ≥ 0. Note that (0.6) implies that (rede�ning the 
onstant c)(0.7) |σ′(u)| ≤ c

(

1 + |u|q
)

, q = 1−δ
δ
.Equation (0.1) is a model for a vibrating membrane in a strati�ed vis
ous medium:the variable u represents the displa
ement from equilibrium, ∂tu is the velo
ity,whereas the term σ(u)∂tu a

ounts for dynami
al fri
tion. Finally, f − ϕ(u) 
orre-sponds to a (nonlinear) elasti
 for
e. Our main result reads as follows:Theorem 0.1. Equation (0.1) generates a semigroup S(t) on H1

0 (Ω)×L2(Ω) whi
hpossesses a (unique) 
ompa
t global attra
tor A. Moreover, A is a bounded subsetof [

H2(Ω)∩H1
0 (Ω)

]

×H1
0 (Ω), and it 
oin
ides with the unstable set of the stationarypoints of S(t).The same problem in spa
e-dimension one has been 
onsidered in [6℄, where theexisten
e of a strongly 
ontinuous semigroup possessing a regular 
ompa
t attra
tor(and also exponential attra
tors) has been proven. Clearly, the analysis made in [6℄took great advantage of the �goodëmbedding properties that hold in dimension one.Indeed, the result obtained there is optimal, and is valid also if 
ondition (0.5) isrepla
ed by the weaker requirement that σ(u) > 0 for every u (meaning that thedensity of the medium is allowed to vanish at in�nity).On the 
ontrary, in dimension two we 
an no longer appeal to the 
ontinuous em-bedding H1

0 (Ω) →֒ L∞(Ω) (whi
h is false in dimensions greater than one). This1



introdu
es some di�
ulties, that 
an be over
ome by means of a subtler analysis.The main ingredient is the use of a suitable de
omposition of the solution, whi
hhas been shown to be very e�e
tive to prove asymptoti
 
ompa
tness for this kindof hyperboli
 problems in the re
ent paper [10℄ (but see also [5, 8, 12℄).The three-dimensional 
ase, for whi
h we already established a well-posedness result(see Remark 1.6 below), is mu
h harder, and requires the introdu
tion of di�erentte
hniques. We will address this issue in a forth
oming work.Notation. We denote by Hs = dom[

(−∆)s/2
], s ∈ R, the s
ale of Hilbert spa
esgenerated by −∆ with Diri
hlet boundary 
onditions on (L2(Ω), 〈·, ·〉, ‖ · ‖). Inparti
ular,

H−1 = H−1(Ω), H0 = L2(Ω), H1 = H1
0 (Ω), H2 = H2(Ω) ∩H1

0 (Ω).Then, we introdu
e the family of produ
t Hilbert spa
es
Hs = Hs+1 ×Hs,endowed with the standard inner produ
ts and norms. Throughout the paper, weshall ta
itly make use of the Poin
aré, Young and Hölder inequalities, along withthe 
ontinuous embedding H1 →֒ Lp(Ω), for every p ∈ [1,∞). We shall also needthe Gagliardo-Nirenberg interpolation inequality in dimension two, namely(0.8) ‖z‖L2p ≤ c‖z‖1/p‖∇z‖1−1/p, p ∈ [1,∞).The symbols c and Q will stand for a generi
 positive 
onstant and a generi
 positivein
reasing fun
tion, respe
tively. Finally, for any given fun
tion z(t), we write forshort ξz(t) = (z(t), ∂tz(t)).We 
on
lude the se
tion re
alling two Gronwall-type lemmas that will be used inthe sequel.Lemma 0.2. Let E : H0 → R satisfy

β‖ζ‖2
H0

−m ≤ E(ζ) ≤ Q(‖ζ‖H0
) +m, ∀ζ ∈ H0,for some β > 0 and m ≥ 0. Let now ξ ∈ C(R+,H0) be given. Suppose that the map

t 7→ E(ξ(t)) is 
ontinuously di�erentiable and ful�lls the di�erential inequality
d

dt
E(ξ(t)) + ε‖ξ(t)‖2

H0
≤ k,for some ε > 0 and k > 0. Then

‖ξ(t)‖H0
≤ Q

(

k +m+ β−1), ∀t ≥ t0,where t0 = Q(‖ξ(0)‖H0
) +Q(k).Lemma 0.3. Let Λ : R
+ → R

+ be an absolutely 
ontinuous fun
tion satisfying
d

dt
Λ(t) + 2εΛ(t) ≤ h(t)Λ(t) + k,where ε > 0, k ≥ 0 and ∫ t

s
h(τ)dτ ≤ ε(t−s)+m, for all t ≥ s ≥ 0 and some m ≥ 0.Then,

Λ(t) ≤ Λ(0)eme−εt +
kem

ε
, ∀t ≥ 0.2



We address the reader to [2℄ for the proof of Lemma 0.2, whereas Lemma 0.3 isobtained quite dire
tly from the usual Gronwall lemma.1. The Solving SemigroupTo begin our analysis, we proveTheorem 1.1. Equation (0.1) generates a semigroup S(t) on the phase spa
e H0.The proof of the theorem is 
arried out by means of a Galerkin approximations
heme. Existen
e is obtained exploiting the uniform energy estimate established inthe next proposition, and then passing to the limit in a standard way.Proposition 1.2. For every t ≥ 0, there holds
‖ξu(t)‖H0

≤ Q(‖ξu(0)‖H0
) +Q(‖f‖).Proof. Introdu
e the energy fun
tional

E0 = ‖ξu‖
2
H0

+ 2〈Φ(u), 1〉 − 2〈f, u〉,where
Φ(u) =

∫ u

0

ϕ(y)dy.From (0.4),(1.1) ‖∇u‖2 + 2〈Φ(u), 1〉 ≥ 2β‖∇u‖2 − c,for some β > 0. Thus, (0.2) entails
β‖ξu‖

2
H0

−Q(‖f‖) ≤ E0 ≤ Q(‖ξu‖H0
) +Q(‖f‖).Multiplying (0.1) by ∂tu, we �nd(1.2) d

dt
E0 + 2〈σ(u)∂tu, ∂tu〉 = 0,and the 
on
lusion follows integrating on (0, t). �Integrating equality (1.2) on (0,∞), and using Proposition 1.2 and (0.5), we alsoobtain the existen
e of suitable dissipation integrals, namely,Lemma 1.3. There holds

σ0

∫ ∞

0

‖∂tu(t)‖
2dt ≤

∫ ∞

0

〈σ(u(t))∂tu(t), ∂tu(t)〉dt ≤ Q(‖ξu(0)‖H0
) +Q(‖f‖).Remark 1.4. Observe that E0 is a Lyapunov fun
tion for S(t).Uniqueness is a 
onsequen
e of the following 
ontinuous dependen
e result.Proposition 1.5. For every T > 0 and every R ≥ 0, any two solutions u1 and u2to equation (0.1) ful�ll the estimate

‖ξu1(T ) − ξu2(T )‖2
H

−1
≤ Q(R)eQ(R)T‖ξu1(0) − ξu2(0)‖2

H
−1
,for all initial data ‖ξui(0)‖H0

≤ R. 3



Proof. De�ne w(t) =
∫ t

0
u(τ)dτ . Integrating (0.1) on (0, t) yields

∂ttw(t) + Σ(u(t)) − ∆w(t) = −

∫ t

0

ϕ(u(τ))dτ + Σ(u(0)) + ∂tu(0) + tf,where we put
Σ(u) =

∫ u

0

σ(y)dy.Let now u1, u2 be two solutions to (0.1) with initial data ‖ξui(0)‖H0
≤ R, and denotetheir di�eren
e by ū = u1 − u2. From the uniform estimate of Proposition 1.2,

‖ξui(t)‖ ≤ Q(R), ∀t ≥ 0.Then, the 
orresponding di�eren
e w̄ = w1 − w2 solves the equation(1.3) ∂ttw̄ + Σ(u1) − Σ(u2) − ∆w̄ = F +G,where
F (t) = −

∫ t

0

[

ϕ(u1(τ)) − ϕ(u2(τ))
]

dτand
G = Σ(u1(0)) − Σ(u2(0)) + ∂tū(0).The monotoni
ity of Σ implies that

〈Σ(u1) − Σ(u2), ū〉 ≥ 0.Hen
e, multiplying (1.3) by ∂tw̄ = ū, we have
1

2

d

dt
‖ξw̄‖

2
H0

≤
d

dt
〈F, w̄〉 +

d

dt
〈G, w̄〉 − 〈∂tF, w̄〉.Integrating on (0, T ), we are led to

‖ξw̄(T )‖2
H0

≤ ‖ū(0)‖2 + 2〈F (T ), w̄(T )〉 + 2〈G, w̄(T )〉 − 2

∫ T

0

〈∂tF (t), w̄(t)〉dt

≤
1

2
‖ξw̄(T )‖2

H0
+ 4‖F (T )‖2

H
−1

+ ‖ū(0)‖2 + 4‖G‖2
H

−1

+ 2

∫ T

0

‖∂tF (t)‖H
−1
‖ξw̄(t)‖H0

dt.Using now the growth restri
tions (0.2) and (0.7) on ϕ and σ, we get at on
e the
ontrols
4‖F (T )‖2

H
−1

≤ Q(R)T

∫ T

0

‖ū(t)‖2dt ≤ Q(R)T

∫ T

0

‖ξw̄(t)‖2
H0
dt,

‖ū(0)‖2 + 4‖G‖2
H

−1
≤ Q(R)‖ξū(0)‖2

H
−1
,

‖∂tF (t)‖H
−1

≤ Q(R)‖ū(t)‖ ≤ Q(R)‖ξw̄(t)‖H0
.Therefore, the di�erential inequality turns into

‖ξw̄(T )‖2
H0

≤ Q(R)‖ξū(0)‖2
H

−1
+Q(R)(1 + T )

∫ T

0

‖ξw̄(t)‖2
H0
dt,4



and from the Gronwall lemma we 
on
lude that
‖ū(T )‖2 ≤ ‖ξw̄(T )‖2

H0
≤ Q(R)eQ(R)T‖ξū(0)‖2

H
−1
.Finally, from (1.3) we read that

‖∂tū‖H
−1

= ‖∂ttw̄‖H
−1

≤ ‖Σ(u1) − Σ(u2)‖H
−1

+ ‖∇w̄‖ + ‖F‖H
−1

+ ‖G‖H
−1
,whi
h, due to the above inequalities and to the immediate 
ontrol

‖Σ(u1) − Σ(u2)‖H
−1

≤ Q(R)‖ū‖,furnishes
‖∂tū(T )‖2

H
−1

≤ Q(R)eQ(R)T ‖ξū(0)‖2
H

−1
.The proof is then 
ompleted. �Remark 1.6. The very same argument applies in R

3, 
learly, provided that ϕ and
σ satisfy suitable growth restri
tions (pre
isely, 
ubi
 growth for ϕ and quadrati
growth for σ). In that 
ase, Proposition 1.2 holds as well.2. DissipativityWe now pro
eed to investigate the asymptoti
 properties of (0.1). We preliminarilyshow the existen
e of a bounded absorbing set B0 ⊂ H0Proposition 2.1. For every R ≥ 0 there exists t0 = t0(R) su
h that

‖ξu(t)‖H0
≤ Q(‖f‖), ∀t ≥ t0,whenever ‖ξu(0)‖H0

≤ R.Proof. For ε ∈ (0, 1) to be �xed later, we introdu
e the energy fun
tional
Eε = ‖ξu‖

2
H0

+ 2〈Φ(u), 1〉 − 2〈f, u〉 + 2ε〈Υ(u), 1〉+ 2ε〈∂tu, u〉,with Φ(u) as in Proposition 1.2 and
Υ(u) =

∫ u

0

yσ(y)dy.Noti
e that, from (0.5), 〈Υ(u), 1〉 ≥ 0. Thus, on a

ount of (0.2), (0.7) and (1.1) wehave the 
ontrols(2.1) β‖ξu‖
2
H0

−Q(‖f‖) ≤ Eε ≤ Q(‖ξu‖H0
) +Q(‖f‖),for some β > 0, provided that ε is small enough. Multiplying (0.1) by ∂tu+ εu, we�nd

d

dt
Eε + 2ε‖∇u‖2 + 2〈σ(u)∂tu, ∂tu〉 − 2ε‖∂tu‖

2 + 2ε〈ϕ(u), u〉 = 2ε〈f, u〉.Using (0.4), we have the estimate
2ε‖∇u‖2 + 2ε〈ϕ(u), u〉 ≥ 2βε‖∇u‖2 − c,whereas (0.5) yields
2〈σ(u)∂tu, ∂tu〉 − 2ε‖∂tu‖

2 ≥ βε‖∂tu‖
2,5



if ε is small enough. Thus, estimating the right-hand side of the di�erential equalityas
2ε〈f, u〉 ≤ βε‖∇u‖2 + c‖f‖2,we end up with the inequality(2.2) d

dt
Eε + βε‖ξu‖

2
H0

≤ Q(‖f‖).Fixing now the parameter ε in su
h a way that all the above relationships hold, the
laim follows from Lemma 0.2. �For further s
opes, it is 
onvenient to subsume Proposition 1.2 and Proposition 2.1in the following unitary fashion.Proposition 2.2. For every t ≥ 0, there holds
‖ξu(t)‖H0

≤ Q(‖ξu(0)‖H0
)e−t +Q(‖f‖).The next step is to demonstrate higher-order dissipativity.Proposition 2.3. For every t ≥ 0, there holds

‖ξu(t)‖H1
≤ Q(‖ξu(0)‖H1

)e−ε1t +Q(‖f‖),for some ε1 > 0 and some positive in
reasing fun
tion Q.Proof. Leaning on the absorbing set B0, it is enough to prove that for every R > 0there exists ν = ν(R) su
h that(2.3) ‖ξu(t)‖H1
≤ Q(‖ξu(0)‖H1

)e−νt +Q(R+ ‖f‖),whenever ‖ξu(0)‖H0
≤ R. Fix then R > 0 and 
hoose ‖ξu(0)‖H0

≤ R. FromProposition 2.2, we learn that(2.4) ‖ξu(t)‖H0
≤ QR,where we wrote for short QR = Q(R+‖f‖). Setting η = ∂tu, di�erentiation of (0.1)with respe
t to time yields

∂ttη + σ(u)∂tη + σ′(u)η2 − ∆η + ϕ′(u)η = 0.Then, for ε ∈ (0, 1) to be �xed later, we de�ne the fun
tional
Λ = ‖ξη‖

2
H0

+ 2ε〈η, ∂tη〉,whi
h satis�es the inequalities(2.5) 1

2
‖ξη‖

2
H0

≤ Λ ≤ 2‖ξη‖
2
H0
,provided that ε is small enough. Multiplying the above equation by ∂tη+ εη, we areled to

d

dt
Λ + 2ε‖∇η‖2 + 2〈σ(u)∂tη, ∂tη〉 + 2〈σ′(u)η2, ∂tη〉 − 2ε‖∂tη‖

2

= −2ε〈σ(u)η, ∂tη〉 − 2ε〈σ′(u)η2, η〉 − 2ε〈ϕ′(u)η, η〉 − 2〈ϕ′(u)η, ∂tη〉.6



On a

ount of (0.2), (0.7) and (2.4), the terms in the right-hand side are 
ontrolledas
−2ε〈σ(u)η, ∂tη〉 ≤

ε

3
‖∇η‖2 + εQR‖∂tη‖

2,

−2ε〈σ′(u)η2, η〉 − 2ε〈ϕ′(u)η, η〉 ≤
ε

3
‖∇η‖2 +QR,and, using (0.8),

−2ε〈ϕ′(u)η, ∂tη〉 ≤ QR‖η‖L4‖∂tη‖

≤ QR‖∇η‖
1/2‖∂tη‖

≤
ε

3
‖∇η‖2 + ε‖∂tη‖

2 +
QR

ε2
.Therefore, we get

d

dt
Λ + ε‖∇η‖2 + 2〈σ(u)∂tη, ∂tη〉 + 2〈σ′(u)η2, ∂tη〉 − ε(3 +QR)‖∂tη‖

2 ≤
QR

ε2
.We now turn to the terms in the left-hand side. We have

2〈σ′(u)η2, ∂tη〉 ≥ −〈σ(u)∂tη, ∂tη〉 − 〈[σ′(u)]2[σ(u)]−1η2, η2〉.At this point, we �x ε = ε(R) small enough su
h that (2.5) holds and
σ0 − ε(3 +QR) ≥ ε.Hen
e, using (0.5) and (2.5), we obtain the di�erential inequality(2.6) d

dt
Λ +

ε

2
Λ ≤ 〈[σ′(u)]2[σ(u)]−1η2, η2〉 +QR.The last step is the 
ontrol of the remaining term in the left-hand side. On a

ountof (0.5) and (0.6), there is no loss of generality to assume δ < 1/2. Note that, from(0.6),

(

[σ′(u)]2[σ(u)]−1
)1/(1−2δ)

≤ cσ(u).Thus, applying the Hölder inequality with exponents (

1
1−2δ

, p1, p2

), with 1/p1 +
1/p2 = 2δ, we get

〈[σ′(u)]2[σ(u)]−1η2, η2〉 = 〈[σ′(u)]2[σ(u)]−1|η|2−4δ, η2|η|4δ〉

≤ c〈σ(u)η, η〉1−2δ‖η‖2
L2p1

‖η‖4δ
L4δp2

.Exploiting the interpolation inequality (0.8), we �nd the 
ontrols
‖η‖2

L2p1
≤ c‖η‖2/p1‖∇η‖2−2/p1 ≤ QR‖∇η‖

2−2/p1 ,and
‖η‖4δ

L4δp2
≤ c‖η‖2/p2‖∇η‖4δ−2/p2 ≤ QR‖∇η‖

4δ−2/p2 .Sin
e by (0.7) and (2.4) we have
〈σ(u)η, η〉 ≤ QR‖∇η‖,7



applying (2.5) we 
on
lude that
〈[σ′(u)]2[σ(u)]−1η2, η2〉

≤ QR〈σ(u)η, η〉1−2δ‖∇η‖2

≤ QR〈σ(u)η, η〉1−2δ +QR〈σ(u)η, η〉1−2δΛ

≤ QR +
ε

8
‖∇η‖2 +

ε

8
Λ +QR〈σ(u)η, η〉Λ

≤ QR +
ε

4
Λ +QR〈σ(u)η, η〉Λ.Therefore, (2.6) turns into

d

dt
Λ +

ε

4
Λ ≤ QR +QR〈σ(u)η, η〉Λ.Thanks to Lemma 1.3 (re
all that η = ∂tu), we are in a position to apply Lemma 0.3,whi
h, together with (2.5), entail

‖ξη(t)‖H0
≤ Q(‖ξη(0)‖H0

)e−νt +QR,for some ν = ν(R) > 0. By 
omparison with the original equation (0.1), we obtainthe required inequality (2.3). �3. Asymptoti
 Compa
tness: Proof of Theorem 0.1In order to prove the existen
e of the global attra
tor and its regularity, we shallexploit a quite e�e
tive de
omposition of the solution, whi
h has been used in there
ent paper [10℄. This approa
h will allow us to prove the desired result withoutbootstrap arguments; thus, avoiding the use of fra
tional operators, that wouldrequire a rather deli
ate treatment (due to the presen
e of the nonlinear damping).First, using (0.2) and Proposition 2.2, we 
hoose θ ≥ ℓ large enough su
h that theinequality(3.1) 1

2
‖∇z‖2 + (θ − 2ℓ)‖z‖2 − 〈ϕ′(u(t))z, z〉 ≥ 0holds for every z ∈ H1, every t ≥ 0 and every solution u(t) with ξu(0) ∈ B0. Then,we set

ψ(r) = ϕ(r) + θr.Condition (0.2) still holds with ψ in pla
e of ϕ, besides by virtue of (0.3),(3.2) ψ′(r) ≥ 0.We now 
onsider initial data ξu(0) belonging to the bounded absorbing set B0 pro-du
ed by Proposition 2.1, and we de
ompose the 
orresponding solution to (0.1)into the sum u = w + v, where w and v solve the equations(3.3) 









∂ttw + σ(w)∂tw − ∆w + ψ(w) = θu+ f,

ξw(0) = (0, 0),

w|∂Ω = 0, 8



and(3.4) 









∂ttv + σ(u)∂tv − ∆v + (σ(u) − σ(w))∂tw + ψ(u) − ψ(w) = 0,

ξv(0) = ξu(0),

v|∂Ω = 0.Till the end of the se
tion, the generi
 
onstant c ≥ 0 will depend only on the sizeof the absorbing set B0. Arguing exa
tly as in Proposition 1.2 and Proposition 2.1,we obtain the uniform bound(3.5) ‖ξw(t)‖H0
≤ c, ∀t ≥ 0.In addition, multiplying (3.3) by ∂tw and integrating on (s, t), thanks to Lemma 1.3we readily see that(3.6) σ0

∫ t

s

‖∂tw(τ)‖2dτ ≤

∫ t

s

〈σ(w(τ))∂tw(τ), ∂tw(τ)〉dτ ≤ ω(t− s) +
c

ω
,for every t ≥ s ≥ 0 and every ω > 0.Lemma 3.1. For every t ≥ 0, we have that ‖ξw(t)‖H1

≤ c.We leave to the reader the proof of Lemma 3.1, sin
e it is basi
ally a repetition ofthe proof of Proposition 2.3. Indeed, setting now η = ∂tw, di�erentiation of (3.3)with respe
t to time entails
∂ttη + σ(w)∂tη + σ′(w)η2 − ∆η + ψ′(w)η = θ∂tu.Hen
e, the only di�eren
e here is that the initial data are null, and in the �naldi�erential inequality it will appear also the extra term ‖∂tu‖

2 multiplied by thefun
tional. Noti
e that Lemma 0.3 is needed in its full strength, sin
e in this 
asewe have dissipation integrals of the form (3.6).Lemma 3.2. For every t ≥ 0 and some ν > 0, we have that ‖ξv(t)‖H0
≤ ce−νt.Proof. For ε ∈ (0, 1) to be determined later, de�ne

Λ = ‖ξv‖
2
H0

+ 2〈ψ(u) − ψ(w), v〉 − 〈ψ′(u)v, v〉+ 2ε〈∂tv, v〉.On a

ount of (0.3) and (3.1), together with the uniform bounds on ‖∇u‖ and
‖∇w‖, the fun
tional Λ satis�es the inequalities(3.7) 1

4
‖ξv‖

2
H0

≤ Λ ≤ c‖ξv‖
2
H0
,provided that ε is small enough. Multiplying (3.4) by ∂tv+ εv, we have the equality

d

dt
Λ + 2ε‖∇v‖2 + 2〈σ(u)∂tv, ∂tv〉 − 2ε‖∂tv‖

2 + 2ε〈ψ(u)− ψ(w), v〉

= 2〈(ψ′(u) − ψ′(w))∂tw, v〉 − 〈ψ′′(u)∂tu, v
2〉 − 2〈(σ(u) − σ(w))∂tw, ∂tv〉

− 2ε〈(σ(u) − σ(w))∂tw, v〉 − 2ε〈(σ(u)∂tv, v〉.9



We now re
onstru
t Λ in the right-hand side. Indeed, it is easily seen that, for εsmall enough,
2ε‖∇v‖2 + 2〈σ(u)∂tv, ∂tv〉 − 2ε‖∂tv‖

2 + 2ε〈ψ(u) − ψ(w), v〉

≥ εΛ +
ε

2
‖∇v‖2 + σ0‖∂tv‖

2.Therefore, we are led to the di�erential inequality
d

dt
Λ + εΛ +

ε

2
‖∇v‖2 + σ0‖∂tv‖

2

≤ 2〈(ψ′(u) − ψ′(w))∂tw, v〉 − 〈ψ′′(u)∂tu, v
2〉 − 2〈(σ(u) − σ(w))∂tw, ∂tv〉

− 2ε〈(σ(u)− σ(w))∂tw, v〉 − 2ε〈(σ(u)∂tv, v〉.Then, we pro
eed to 
ontrol the terms in the right-hand side. Regarding the �rsttwo, we have (
f. [10℄ where similar 
al
ulations appear)
2〈(ψ′(u) − ψ′(w))∂tw, v〉 − 〈ψ′′(u)∂tu, v

2〉 ≤
ε

4
‖∇v‖2 +

c

ε

(

‖∂tu‖
2 + ‖∂tw‖

2
)

Λ.Con
erning the remaining terms, we have (
f. (0.7))
−2〈(σ(u) − σ(w))∂tw, ∂tv〉 ≤ c〈(1 + |u|q + |w|q)|∂tw|

1/2|∂tw|
1/2|v|, |∂tv|〉

≤ c‖∂tw‖
1/2‖∇v‖‖∂tv‖

≤ c‖∂tw‖
1/2Λ

≤
ε

4
Λ + c‖∂tw‖

2Λ.Similarly,
−2ε〈(σ(u) − σ(w))∂tw, v〉 ≤

ε

4
Λ + c‖∂tw‖

2Λ.Finally,
−2ε〈σ(u)∂tv, v〉 ≤ cε‖∂tv‖‖∇v‖ ≤

ε

4
‖∇v‖2 + cε‖∂tv‖

2.Colle
ting the above inequalities, we end up with
d

dt
Λ +

ε

2
Λ + (σ0 − cε)‖∂tv‖

2 ≤
c

ε

(

‖∂tu‖
2 + ‖∂tw‖

2
)

Λ.At this point, we �x ε > 0 small enough su
h that the above 
onditions are satis�edand σ0 − cε ≥ 0, so to obtain
d

dt
Λ +

ε

2
Λ ≤ c

(

‖∂tu‖
2 + ‖∂tw‖

2
)

Λ.In view of the integral estimates provided by Lemma 1.3 and (3.6), the 
on
lusionfollows by applying Lemma 0.3 along with (3.7). �We 
an now 
on
lude theProof of Theorem 0.1. Proposition 2.1 provides the existen
e of a bounded absorb-ing set B0, while Lemma 3.1 and Lemma 3.2 show that S(t)B0 is (exponentially)attra
ted by a bounded subset C ⊂ H1. Hen
e, C is a 
ompa
t attra
ting set.By standard arguments of the theory of dynami
al systems (see e.g. [1, 9, 11℄), we
on
lude that there exists a (unique) 
ompa
t global attra
tor A ⊂ C. Sin
e S(t)10



possesses a Lyapunov fun
tion (
f. Remark 1.4), the attra
tor is the unstable set ofthe stationary points of S(t). �4. Exponential Attra
torsWe �nally state a result on the existen
e of an exponential attra
tor.Theorem 4.1. The semigroup S(t) possesses a regular exponential attra
tor, namely,a 
ompa
t set M ⊂ H0, bounded in H1 and of �nite fra
tal dimension in H0, posi-tively invariant for S(t), and satisfying the following exponential attra
tion property:(EA) There exist ω > 0 su
h that
distH0

(S(t)B,M) ≤ Q(R)e−ωt,for every B ⊂ H0 su
h that supζ∈B ‖ζ‖H0
≤ R.Here, distH0

denotes the usual Hausdor� semidistan
e in H0. As a byprodu
t, wehaveCorollary 4.2. The global attra
tor A of S(t) has �nite fra
tal dimension in H0.Proof. In the previous se
tion we proved the existen
e of a bounded subset of C of
H1 (we 
an assume without loss of generality that C is a 
losed ball of H1) su
h that

distH0
(S(t)B, C) ≤ Q(R)e−νt,for every B ⊂ H0 with supζ∈B ‖ζ‖H ≤ R. It is also apparent from Proposition 2.3that, up to possibly enlarging C, there is a time tC ≥ 0 su
h that S(t)C ⊂ C, whenever

t ≥ tC. We now appeal to the following abstra
t result [3℄ (see also [7℄).Lemma 4.3. Let there exist t⋆ ≥ tC su
h that(C1) The map (t, z) 7→ S(t)z : [t⋆, 2t⋆] × C → C is Lips
hitz 
ontinuous when C isendowed with the H0-topology.(C2) Setting S = S(t⋆), there are γ ∈ (0, 1
2
) and Γ ≥ 0 su
h that, for every

ζ1, ζ2 ∈ C,
Sζ1 − Sζ2 = D(ζ1, ζ2) +K(ζ1, ζ2),where

‖D(ζ1, ζ2)‖H0
≤ γ‖ζ1 − ζ2‖H0

and ‖K(ζ1, ζ2)‖H1
≤ Γ‖ζ1 − ζ2‖H0

.Then there exists a set M ⊂ C, 
losed and of �nite fra
tal dimension in H0, posi-tively invariant for S(t), su
h that
distH0

(S(t)C,M) ≤Me−ω0t,for some ω0 > 0 and M ≥ 0.Sin
e C is positively invariant and bounded inH1, the nonlinearities be
ome nonessen-tial. Hen
e, the 
he
k of (C1)-(C2) is not di�erent from the analogous 
ase in spa
edimension one, previously treated in the paper [6℄ (to whi
h we address the reader forthe details). Thus, we obtain �almostthe the thesis of Theorem 4.1, in the sense thatthe basin of exponential attra
tion is C, and not the whole spa
e H0, as required.11



To rea
h the 
on
lusion, we have to appeal to the transitivity of the exponentialattra
tion [4, Theorem 5.1℄. Namely, if
distH0

(S(t)B, C) ≤ Q(R)e−νt and distH0
(S(t)C,M) ≤ Me−ω0t,then the desired property (EA) follows, provided that we 
an show the (lo
ally)Lips
hitz 
ontinuity

‖S(t)ζ1 − S(t)ζ2‖H0
≤ CeKt‖ζ1 − ζ2‖H0

,where both C and K may depend (in
reasingly) on the norms of ζ1, ζ2. This seemsout of rea
h. Nonetheless, a 
loser look to the proof of [4, Theorem 5.1℄ shows that infa
t it is enough to prove the above 
ontinuity for ζ1 ∈ H0 and ζ2 ∈ C, whi
h is trueand quite easy to demonstrate. Indeed, denoting by uj the solution to (0.1) withinitial data ζj, and by ū = u1 − u2, multiplying (0.1) by ∂tū the only problemati
term to 
ontrol is
〈σ(u1)∂tu

1 − σ(u2)∂tu
2, ∂tū〉.But, due to (0.6),

〈σ(u1)∂tu
1 − σ(u2)∂tu

2, ∂tu〉 = 〈σ(u1)∂tū, ∂tū〉 + 〈(σ(u1) − σ(u2))∂tu
2, ∂tū〉

≥ 〈(σ(u1) − σ(u2))∂tu
2, ∂tū〉,and using the fa
t that ∂tu

2 ∈ H1 we easily get that
|〈(σ(u1) − σ(u2))∂tu

2, ∂tū〉| ≤ c‖ξū‖
2
H0
,for some c depending only on the size of the initial data. An appli
ation of theGronwall lemma 
ompletes the argument. �Referen
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