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1 Introduction 

In this paper we consider the hypersingular integral equation on the interval 

lal u( T) 
(Du)(t) := p.f. I l 2 dT = f(t), 

0 T-t 0:::; t:::; 1, (1) 

where f is a given function and u is to be found. The integral in (1) is to be 
interpreted as a Hadamard finite part integral. For the definition of such a finite 
part integral we refer, e.g., to [7]. 

The hypersingular integral equation (1) results from a certain boundary integral 
method, which has attracted the attention of several mathematicians in recent years. 
In particular, we mention the paper [3] of Costabel and Stephan, where the Galer kin 
method for the hypersingular integral equation on polygons is studied, and the arti-
cle [2] of Costabel, which gives a survey about several boundary integral operators 
on Lipschitz domains and investigates the Galerkin method for those. In the paper 
[13] of von Petersdorff and Stephan a multigrid method on graded meshes is consid-
ered for the hypersingular integral equation. In [1] (Sect.1.6 and 5.1) a quadrature 
method for the hypersingular integral equation on an interval is deduced and an 
error estimate is proved. The first regorous analysis of a fully discretized method 
for the hypersingular integral equation has been given by Kieser, Kleemann and 
Rathsfeld in [8]. There a very easy discretisation scheme is used to get a quadrature 
method for this equation on a smooth closed curve and stability and error estimates 
for this method are obtained. 

Another approach is given by Erwin, Stephan in [6], where a collocation method 
using Chebyshev polynomials has been considered for the hypersingular integral 
equation on the interval. In [6] the operator D is considered as an operator acting 
between some spaces of Sobolev type, which are defined by means of Chebyshev 
polynomials. 

In the present paper we shall propose a fully discretized quadrature method for 
the hypersingular integral equation on the interval (1 ). Because the solution of 
this equation has an end-point behaviour like s~(l - s)~ (see [6]) we carry out a 
refinement of the grid near the end points of the interval. To this end we perform a 
change of the variables T = 1( a), t = 1( s) in the integral (1 ), where 1 has an end-
point behaviour like sex. Transformations like that have been used already for some 
integral equations, for example, in the case of the Cauchy singular integral equation 
(see [12] and [14]) or in the case of boundary integral equations of the second kind 
for the harmonic Dirichlet problem in plane domains with corners ( c.f. [9]). In the 
present paper the transformation 1 : [O, 1] ~ [O, 1] is chosen like in [9] 

[v(s)]a 
l( s) = [v( s )Jex+ [v(l - s )]ex 0 ~ s ~ 1, (2) 
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with 

(
1 1) 3 1 1 v(s)= --- (1-2s) +-(2s-1)+-, 
a 2 a 2 

3 
a> 2· (3) 

The function r has an end-point behaviour like so: near 0 and like 1 - ( 1 - s )o: 
near 1. Note that the cubic polynomial v is chosen such that v(O) = 0, v(l) = 1, 
and r'( ~) = 2. The latter property ensures, roughly speaking, that one half of the 
grid points is equally distributed over the total interval, whereas the other half is 
accumulated towards the two end points. 

Multiplying Equation (1) by r'( s ), we get the transformed equation 

!1 r'( s )r'( u) 
p.f. Jo Ir( O") - !( s) 12 w( O" )du = g( s ), 

with 

w(s) := u(r(s)), g(s) := f(r(s))r'(s). 

Using the quadrature rule 

1: f(t)dt ~ 
00 

2= 
j=-oo 

j::h+lmod2 

2 
f(tj)- ' n 

0 < s < 1, (4) 

(5) 

for n even and applying a kind of regularization to the finite part integral (cf. the 
next section for more details), we get the quadrature method 

,k==l,. . .,n-1. (6) 

The term - n;2 ek results from the mentioned regularization. A corresponding 
term occurs in the case of a closed curve (see [8]). 

The paper is organized as follows. In Section 2 the quadrature method (6) is 
deduced. 

In Section 3 the mapping properties of the approximate operators correspond-
ing to ( 6) and the corresponding discretized spaces are investigated. In Section 
4 the stability of the method is proved. Let us denote the matrix of the linear 
system of Equation (6) by An. The main point of the proof is that there holds 
(-Ane, e) rv (Bne, e) for all finite sequences e = {ek}/::i uniformly with respect to 
n. Here Bn is the norm isomorphism of the regarded discrete spaces. 

The error estimate is deduced in Section 5. Let f be sufficiently smooth such 
that w = u o r belongs to the Sobolev space H 11 with s < o:t1. If Un = Wn o ,-1 

(i.e. Un o r = wn), where Wn is a high order interpolation of the approximate 
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values wn(ti) = e;, j = 1, ... , n - l, obtained by solving (6), then the Sobolev norm 
llu - unll1 can be estimated by Gni+e-s with€ sufficiently small. 

2 

In Section 6 another transformation is used, namely, a cos-transformation like 
that used for the numerical solution of first-kind integral equations with logarithmic 
kernel ( c.f. Sect. 3.8 in [16]). The quadrature method derived with the help of this 
transformation is shown to be stable, too. Here the proof reduces to the case of the 
unit circle. The stability of this method is easier to prove than that of the method 
with r defined by (2) and the order of the convergence is higher, since there is no 
bound for s from above. However the techniques used in Sections 2-5 and 7 apply 
to the case of more general integral equations on the interval or on the polygon 
provided the asymptotic behaviour of the solution near to the endpoints or corner 
points, respectively, is known. 

In the Appendix some technical lemmas are proved. 

Here we acknowledge the useful advices of A. Rathsfeld and thank him. 

2 The discretisation of the hypersingular inte-
gral equation 

Consider the hypersingular integral equation on the interval I = [O, 1] , 

11 u(T) 
(Du)(t) := p.f. I l 2 dT = f(t), t E J. 

0 T-t 

By [13], [2] and [3], the mapping 

D: H1(J) ---t H_1(I) 
2 2 

is bijective and continuous. Here the space fI l (I) is defined by 
2 

H1(I) := {ul1: u E H1(1R),ulR\I = O} 
2 2 

and equipped with the norm of H1(1R). The space H_1(J) is defined as the dual 
2 2 

space of fh(I) with respect to the Lrscalar product (see [3]). 
2 

Remark 2.1 For u E H1(1R) with ulR\I = 0, there holds 
2 
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with 

I u Ii j_oo j_oo I u( x) - u(;) 12 dxdy 
2 -00 -oo I x - y I 

1111 I u(x)- u(y) 12 ·11 I u(x) 12 --'------'--'---dX dy + 2 dx, 
o o I x - y 12 o x(1 - x) 

and II u 111"-'I u 11. 
2 2 

The proof is well known and not hard. 

Remark 2.2 Let f E C 00 and u be the solution of Equation (1). Then there holds 
u(t) = tt(1 - t)tgl(t) with gl(t) smooth. 

The statement of Remark 2.2 will be frequently used in the subsequent Sections 
and will be proved in the appendix. For the case f ¢ C 00 a statement about the 
asymptotics can be found in [6]. 

In order to get a refinement of the grid near the end points of the interval I we 
will apply a transformation of coordinates. Consider the transformation function 
I : I --+ I of R.Kress [9] given by (2) and (3). The condition a > ~ is necessary to 
guarantee the monotonicity of v. The stronger condition a > ~ will be needed in 
the proof of stability. 

By [7] it is possible to apply the usual rules of transformation for the finite part 
integral in (1) if t E (0, 1). Thus (1) is equivalent to (4). Now we set 

h( ) ·= la - sl 21'(s)T'(a) 
s, a . lf(a) -1(s)l2 . 

With this notation Equation ( 4) is equivalent to 

11 w(a) 
Aw(s) := p.f. I l 2 h(s,a)da == g(s). 

o a - s 
(7) 

We shall deduce a quadrature method for Equation (7). To this end we use the well 
known quadrature rule (5). Obviously, there holds 

11 w(a) 11 w(a) !al w(a) 
p.f. I 12 h( s, a )da == p.f. . I 12 da + I 12 ( h( s, a) - 1 )da. o a-s o a-s o a-s 

(8) 

Now we continue the function w to a function on JR by setting w( t) : = 0 for all 
t ¢ [O, l]. Note that w remains smooth since u(s) has the end-point asymptotics 
st(l - s) ~ ands is replaced bys = 1( a) with 1( a) ""'aa(l - a)'\ a being sufficiently 
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large. The first integral on the right-hand side of (8) is a finite part integral. At 
the point s == tk, 1 :::; k :::; n - 1 we can compute it by using the regularisation 

11 w(a) j_co w(a) 
p.f. I 12 da == p.f. I 12 da o a - tk -co a - tk 

Now there holds 

/_
co 1 

p.f. I 12da - o, 
-co a - tk 

/_

co 1 
p.f. da 

-co a - tk 0. 

Thus with ei == w(ti),j == 1, ... ,n -1, and ei == 0,j:::; 0 or j ~ n, we obtain 

Now we compute the sums in the following way 
co 1 2 co 2n co 4n 

j~= lti - tkl 2 n i~= Ii - kl 2 
- ~ P' 

j=:Jc+lmod2 j=:Jc+lmod2 j odd 

Finally, we arrive at 

co 4n 71"2 n7r2 
~ (2i - i)a = 4ng = T· 

co 

2: 
i=-= j - k 

2 

j=:Jc+lmod2 

co 4 2: -:- == 0. 
i=-= J 
j odd 

Now we consider the second part of the sum in (8). First define 

l( ) ·== h( s, a) - 1 
s, a . I 12 a-s 
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The function l( tk, a) is continuous, because 

k=l, ... ,n-1. 

Thus 

11 w(a) 11 I 12 ( h( a, t k) - 1) da = w (a) l ( t k, a) da rv 
o a - tk o 

n-1 

L: 
j=l 

j:::lc+lmod2 

Combining this with (9), we get the quadrature method (6) for the approximate 
solution of (7). 

Now we define an approximate solution Wn for w by 

n-1 

Wn = L e3c/>}d\s), (11) 
1=1 

where ¢}d) denotes the interpolation basis of piecewise polynomials of degree d, 
i.e. c/>}d)(tk) = Ek,3, <P}d) is continuous and the restriction of ¢}d) to the interval 
[~, d(k:l)] is a polynomial of the degree d for k = 0, ... , ~ - 1. Here we choose n 
such that ~ E JN. If d = 1 we write </>1 instead of ¢}1

). There holds 

n(s - ~), s E [~, *], 

0, else. 

Remark 2.3 The linear spline functions are the simplest splines with ¢1 E fl 1. and 
2 

c/>1 o ,-1 E fl i. 
2 

The proof of ¢1 o ,-1 E fI 1. can be found in the appendix. 
2 

Let us denote the matrix of the linear system of equations (6) by An, i.e. 

with 
_?t'2 

2 
2 

jkj2 
0, 

k = 0, 
k is odd, 

else. 
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We shall interprete this matrix An as an operator from the discrete space of finite se-
quences equipped with the norm induced by fI .!. a into its dual space. The definition 
of these discrete spaces is given in the next se~tion. 

3 The discrete spaces h1 a , h_1 
2' 2,a 

Proving the stability for the operator sequences An means that we have to show 
the invertibility of the operators An and the uniform boundedness of their inverses. 
The operators An have to be considered from the discrete space of finite sequences 
equipped with the norm induced by fl la into its dual space. It will be easier to prove 

2, 
the stability by using some equivalent norms of these spaces. Before introducing 
these norms we mention some properties of the transformation r. The properties 
1.-8. are easy consequences of the definitions of v, r and h. A comment on the 
proof of property 9 can be found in the appendix. 

Remark 3.1 There holds 

1. v(O) == 0 , v(l) == 1 , vn) = ~ , v(s) = 1 - v(l - s), and v is strictly 
monotonically increasing. 

2. v'(s) = -6(~ - t)(l - 2s)2 + ~ , v'(s) == v'(l - s), v'(O) = v'(l) = 
3 - ~, v'( ~) = ~, v' rv C and v' is monotonically decreasing on [O, ~] and 
monotonically increasing on [ t, 1] 

3. Ifs E [O, ~] then v(s) rv s. Ifs E [i, 1] then 1-v(s)rv1 - s. 

4. r(O) = 0, r(l) = 1, r(t) = t, r(s) = 1-r(l-s) andr is strictly monotonically . . increasing. 

5. r'(s) rv sa-l ifs E [O, tJ, r'(s) rv (1- s)a-l ifs E [i, 1] and 

av'( s )( v( 8 )r-1 ( v(l - s )r-1 

'""'(s) - > 0 0 < s < 1. 1 
- [( v( s) )a+ ( v(l - s) )a]2 ' 

6 Th h ld l''(s)s(l-s) 1 Th ,{ f [O n] th 1 ~ 1 d j . ere o s "Y(s)(l-,,(l-s)) rv • ere;ore i s E , 2 en ~ ,,(s/n) rv -; an i 

1. 

s E [!! n] then 1 "Y'(s/n) rv - 1-. 
2' n 1-"Y(s/n) n-s 

"(s) = av( s r-2v(l - s )a-2 [v"( s )v( s )v(l - s) + (a - 1 )(1 - 2v( s) )] 
r [v(s )a+ v(l - s )a] 2 

2a(a - l)v(sr-1v(l - s)a-1v'(s) 2(v(l - sr-1 -v(sr-1) 

+ [v(s)a + v(l - s)a]3 

and ifs E [O, 8(a)] then r" > 0 , ifs E [1 - 8(a), 1] then r" < 0, with 
8(a) E (O,~]. !fa~~~' then we can choose 8(a) = ~.1 
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8. Ifs E [ 0<;), 1 - 0<;)] then 1'( s) '"" 1. 

9. There holds h( s, a) ~ 1 and h( s, s) = 1. 

Now we study the mapping properties of the operators and the spaces, in which 
the operators are acting, more precisely. The operator D is a bijective and continu-
ous mapping between fh.(I) and H_l.(I) which are dual spaces with respect to the 

2 2 
L2-scalar product. Then the operator A transformed according to (7) is a bijective 
and continuous mapping in the transformed spaces, 

A: fh a(!)~ H_l. a(!) 
2' 2' 

Here the spaces fI 1. a (I) and H _ 1. a (I) are defined in a natural way by 
2 I 2 I 

fI~,a(I) := {</>: ef;(t) = 'l/;(1(t)),'lj; E fI~(J)}, 

H_l. a(!):= {J: ef;(t) = ,(/J(r(t))r'(t),,(/J E H_l.(J)} 
2 1 . 2 

and the norms are given by l<Pl1 a := l'l/Jl1 and 1¢1_1. a := l,(/Jl-1, respectively. 
2 I 2 2 I 2 

Because of 

l </>( s )</>1 ( s )ds = l </>(1'( s) )</>1 (1'( s) }r'( s )ds = l '>f;( s )1/;1( s )ds, 

the spaces fil. a(!) and H_l. a(!) are dual with respect to the Lrscalar product. 
2 I 2 I 

The operator A : w 1---)- g is mapping from fI 1 a(!) into the space dual with respect 
2 I 

to the Lrscalar product. 

We shall consider the approximate operators An in discrete spaces, using the the-
ory . of Vainikko [18]. We define a system of discrete spaces 
(En)nEN by En:= {{e;}j::{} equipped with the norm 

n-1 

ll{e;}j::-i llEn = II L e;<P;ll.ffl. (I)• 
j=l 2 'a 

Let P = (Pn)nEN be a sequence of operators 

(13) 

For each fixed n there holds 
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Thus we denote the finite l2-space by l2(n) := { {ei}j:::-i}, and equip it with the norm 

and the scalar product 

Now it make sense to define the second system of discrete spaces 
(Fn)neN by Fn := {{ej}j::i} equipped with the norm, which is dual to the norm of 
En with respect to the l2( n )-scalar product. Analogously, we set Q = ( qn)neN with 

(14) 

The approximate operators An are mapping in theses dual discrete spaces 

Theorem 3.1 There holds 

~-1 1 n-1 1 n-1 l i 1 2 

ll{e;}ll~n ~ ~ yef + 1~ n _ 1ef + .~ h(;;:, ;;:l Ii_ 112 (ez - e,) 
i~lmod2 

(15) 

. where Bn ·is a positive self adjoint matrix. Additionally, there holds 

The proof of this theorem requires a lot of cumbersome technical computations. It 
can be found in the appendix .. 

4 The stability of the quadrature method 

With the help of Theorem 3.1 we are able to show the stability of sequence An. Note 
that the matrices -An and Bn have a similar structure and differ only in the main 
diagonal: 
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and 

where 

Ck= { 

1 k<!!-1 k' - 2 

1 k > !! n-k' - 2 

n-1 1 dk = 2 I: h(tk,tj)lk -jj2' 
j=l 

j~Jcmod2 

The mapping properties of '1Fn are a direct consequence of Theorem 3.1: 

are isomorph mappings and their norms are independend of n. 

Now the mapping An En -t Fn is invertible if and only if 
A~ := -An : En -t Fn is invertible. Furthermore, Bn is positive and selfadjoint. 
Thus A~ : En -t Fn is invertible if and only if '1Fn-1 A~ '1R-1 is invertible in 
l2 ( n ). The last assertion is equivalent to the relation 

for all e = { ei }j::{ E l2( n) which is equivalent to the following one 

~-1 1 n-1 1 
(A~e, e)l2(n) rv (Bne, e)l2(n) = L ye?+ L n _ zel 

l=l l=~ 

n-1 l i 1 2 

+ L~ h(;-,;;)1z-i12(6-ei)· 
i~Lmod2 

Thus the stability of the quadrature method follows directly from the subsequent 
theorem. 
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Theorem 4.1 There holds 

~ -1 1 n-1 1 n-1 l i 1 2 

(A~U) ~ ~ z~T + i~ n - z~T + .~ h(;;:, ;;:)I l -i 12(6- ~.) . 
i~lmod2 

Proof: Using h( x, y) = h( y, x) and ai-i = ai-l we obtain 

n-l l · 1 1 - :E h( -, .:_ )al-i( eiei - -a - -en 
i,i=i n n 2 2 
i;i!l 

with 

71"2 n-1 l i 1 
Rl : = -2 - 2 L h( - ' - ) I l - . 12 . 

i=i n n i 
i~lmod2 

It remains to show that Rl rv f + n~z· Because of h:::; 1 (see Sect.3) we have 

71"2 n-1 l i 1 
-2 - 2 :E h( - ' - ) I l - . 12 

i=l n n . i 
i~lmod2 

0 2 00 2 
i~oo ( l - i)2 + ~ ( l - i)2 

i~lmod2 i~lmod2 

Thus there holds 

1 1 Rlrv-+--+ l n - l 

+ 'f (l ~ ")2 (i -h( !_, i) ;?: 0. 
i=i i n n 

i~lmod2 

n-l 2 ( l i ) :E ( l - ')2 1 - h( - ' - ) . 
i=l i n n 

i~lmod2 
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What remains to show is the estimate 

- n-1 1 1 
Rz := tt 2 rz,i ~ G(y) + G(n_ z), 

i~tmod2 

Using the definition of the function h we get 

For the denominator we have 

(1( .£) -1( i_ )) 2 ( l - i)2 = ( fl 1'( .£ + h( i - l) )dh) 2 ( l -2i)4. 
n n lo n n n 

Furthermore there holds 

l i lol i l - i l - i 1(-) -1(-) = 11
(- + h(-))dh-

n n o n n n 

1' ( i_) ( l - i) + r1 [1' ( i_ + h( l - i)) - 1' ( i )] dh l - i 
n n lo n n n · n 
. l . 1 1 . l . (l ') 2 ?, -?, ?, -?, -?, 

11
(-)(-) + r f 1"(- + uv(-))dvudu -
n n lo lo n n n 

and thus 

(16) 

n !al lo1 l i l - i -. 1'(-)111
(- + uv(-)) l-i o o n n n 

'( i ) "( l ( i - l ))d d -1 - I - + UV -- VU U 
n n n 

lol lol i l - i lol !al l i - l - 1"(- + uv(-))dvudu 1"(- + uv(-))dvudu 
o o n n o o n n 

i'(~) =-·I'(*) f 1 f 1 1"( i + uv( l - i))dvudu 
L! Jo lo n n n 
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1
1 

( i) 11 11 
[ i l ~ i l i - l ] +~ 111

(- + uv(-)) - 1"(- + uv(-)) dvudu 
-"oo n n n n n 

11 11 i l - i 11 11 l i - l -. 111
(- + uv(-))dvudu 1"(- + uv(-))dvudu 

o o n n o o n n 

11 l i - l 11 11 i l - i 111
(- + h(-))dh 1"(- + uv(-))dvudu 

o n n o o n n 
i ll ll 11 l i - l +1'(-) 1111

(- + uvw(-))dvuduwdw 
n o o o n n 

1111 i l-i 1111 l i-l - 1"(- + uv(-))dvudu 1"(- + uv(-))dvudu. 
o o n n o o n n 

We arrive at 

1 rz,i 
Tzi = - 2·. 

' n2 (J~ 1'(* + h(i~l ))dh) 
(17) 

Now we have to distinguish several cases. Choose a positive number E < ~· 
First l~t l < ne. There holds 1'( x) rv xa:-i if x E [O, ~ ). Furthermore for those l 

and arbitrary i we have 

fi 1'( !_ + h(i - l))dh ~ G (l + ?:)0:-1 
lo n n n 

(18) 

To proof (18) we first remark, that if i < l then 

fl 1'( !_ + h(i - l))dh ~ {~ 1'( !:_ + h(i - l))dh 
lo n n lo n n 

If i ~ l and * ::; ~ then we have * + he~z) ::; ~ and 

11 l i - l lil l i - l. 1'(- + h(-))dh ~ 1'(- + h(-))dh 
o n n ~ n n 

In the case when i ~ l and ~ ::; * ::; 1 , define the number h1 by h1 := ;::::~: < ~· 
For all h < h1 we find 

l i-l . l i 1 ;;: + h(-;;:-) = (1 - h);;: + h;;:::; (1 - h)e + h = h(l - e) + E::; 2· 
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Thus 

!a l l i - l hh1 l i - l r'(- + h(-))dh ?_ r'(- + h(-))dh 
o n n !:l. n n 

2 

because 

l h ( i - l) l + i hi -+ - >--n n - n 2' 
,;! hi h h " - < < 1· 2 - -

So (18) is true for all i. Furthermore there holds 

"( ) < c a:-2 1' x - x ' 1'111 ( x) ~ C xa-3' 

and hence 

Using (16) and (17) we see that 

With the definition of rz i and Rz we arrive at , 

n-1 n-1 1 1 
Rz = 2 ~ rz,i ~ c ~ ( z + i )2 ~ c z · 

i~lmod2 i~lmod2 

The second case l > n(l - E) can be reduced to the first case l < nE with the 
help of the relations 

r(x) = 1 -1'(1 - x), r' ( x) = ,, ( 1 - x), 

r"( x) = -1'"(1 - x ), 1'111( x) = 1'111(1 - x ). 

In the third case nE < l < n(l - E) it remains to show that Rz ~ ~C, because in 
this case l r-.J n, n - l r-.J n. The assertion Rz ~ ~C is true if the function 

Rz(Y) := (1'( x) - r(Y) )2 
- r'( x )r'(y )( x - y )2 

(r(x) -1'(Y))2(x -y)2 
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is integrable for fixed x = ~. Now Rz(y) can be transformed analogously to rz,i and 
we get 

k1(Y) := Ri(y) 2 

(fo1 r'(x + h(y - x ))dh) 

with 

- f 1 f 1 f 1 Rz(y) :=lo r"(x + h(y - x))dh lo lo r"(y + uv(x -y))dvudu 

+r'(y) l f fo1
1 111(x + uvw(y - x))dvuduwdw 

- r1 f
1 
r"(y + uv(x -y))dvudu f

1 
f

1 
r"(x + uv(y - x))dvudu. 

~ ~ . ~ ~ 

This term Rz(y) is integrable if the numerator Rz(y) is integrable , because of 

f 1'(x + h(y - x))dh?::: C, 

For y E U0(0) there holds 

r"(y) f'V ya-2,,111(y) f'V ya.-3. 

y E (0,1]. 

We see, that Rz(Y) is integrable if y2a.-4 is integrable. Obviously this is true if a > ~. 
This completes the proof of Theorem 4.1. I 

5 The convergence of the quadrature method 

In this section we shall derive error estimations. First we remark that due to the 
definition there holds 

(19) 

where u is the solution of (1 ), w = u or is the solution of (7), Wn is the approximate 
solution of (7) defined by (6) and (11) and Uno r = Wn· Furthermore there holds 
K~ = P:pn, where K~ E L(H~,a) is the interpolation projector onto the contin-
uous polynomial splines of degree d, Pn : H l a ~ En is the discretisation opera-

2, 

tor defined by (13) and P: : En ~ fl la is the prolongation operator defined by 
2, • 

P:{ejy;~I = ~j~J ei<P}d). So Equation (11) is equiva~ent to Wn = P:wn with 
wn = {ej}j~f defined by (6). Using the triangle inequality, we obtain 

First we estimate llK~w - wll 1 a· To this end we use the following lemma: 
2, 
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Lemma 5.1 For all w E if 1 there holds llwll1 a:=; Cllwll1. 
2 2' 2 

Proof: If u E fI1,u(!(t)) = w(t) then llwll1 a= 1lull1. Thus we get 
' 2 2' 2 

llulli = /1 /1 lu(x) - u(y)l2 dxdy + 2 /1 lu(x)l2 dx 
2 lo lo lx-yl2 lo x(l-x) 

= /1 /1 lw(x)- w(y)l2 r'(x)r'(y)dxdy + 2 /1 lw(x)l21'(x) dx 
lo lo b(x) -1(y)j2 lo r(x)(l -1(x)) 

= /1 /1 lw(x)-w(y)l2 h(x,y)dxdy + 2 /1 lw(x)l2 r'(x)x(l - x) dx 
lo lo lx-yl2 lo x(l-x)1(x)(l-1(x)) 

::; C ( / 1 
/

1 lw(x) - w(y)l2 
dxdy + 2 /1 lw(x)l2 

dx) = Cllwll1, 
lo lo Ix - yl 2 lo x(l - x) 2 

with the properties 6 and 9 of Remark 3.1. Thus 

llwll !. a = !lull!. :=; Cllwll !. 
2' 2 2 

and the lemma is proved. 

Due to [16], Sect.5.31 there holds 

if w E Hs and 1 :=; s :=; d + 1. 

Now we consider the second term of the sum in (20). 

Lemma 5. 2 There holds 

llP:e11 !. a ::; Cllel!En· 
2' 

for all e = {e;} E En with a constant C independend of n. 

The proof can be found at the end of the appendix. 

Using this lemma, we get 

I 

(21) 

(22) 

From the Theorems 3.1 and 4.1 it follows that the sequence {An}nEN, :J 

An E L(En, Fn) converges stably to A E L(if 1 a' H_!. a) in the sense of Vainikko [18], 
2' 2' 

i.e. An ~ A and there is a number n 0 such that 
A~1 E L( Fn, En) exists for all n > n 0 and the inverses are uniformly bounded. 
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Hereby we use the following notation: We write An ~ A, if the convergence 
llqnAx - AnxnllFn ~ 0 follows from llPnX - Xnll ~ 0. The uniformly boundedness of 
the inverses of An and the convergence An !!!.+ A follows from 
(y'R-lAnv'B:-1e,e) r..J (e,e) and the construction of An. Thus the assumptions 
of the convergence theorem in Sect.3 of [18] are fulfilled and there holds 

The operators A and An can be represented in the form A - D + L and 
An== Dn + Ln with 

11 w(a) 
Dw(s) == I 12 da, 

0 O' - s 

11 w(a) 11 Lw(s) ==(A- D)w(s) == I 12 (h(s,a)- l)da == w(a)l(s,a)da, 
0 O'-S 0 

Obviously, 

(24) 

Because we have to estimate the norm II · llFn, but no explicit formula for that norm 
is available, we shall use the following lemma. 

Lemma 5.3 Let M be an arbitrary but fixed real positive number and let 
a < M. Then there holds 

Proof: Due to Sobolev's embedding theorem the mapping E : Hi ~ LM is 
2 

continuous. Thus by duality, the mapping E : Lq ~ H_~ is continuous for q == M~l. 
Let g E L 00 be an arbitrary function. Using the definition of H _ l ex we get 

2' 
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From the properties of I we see that 

11-r' 0\-l L = t l-r'b:1(t)l dt = t 1-y'~tl -r'(t)dt 

= {11-1 lq-1 dt = [11_1 IM'-• dt < c, 
lo 1'(t) lo 1'(t) -

since a < M. We arrive at 

By duality we get 

(25) 

for arbitrary f E H1 a· Using the norm equivalence of Theorem 3.1 we find 
2, 

n-1 n-1 

II :E ei<PillL1 < Gii :E ei<Pillt,a 
j=l j=l 

= Cll{e3}j~i II En 

< c 11 /En { ej Yl~i llz2(n)· 

On the other side there holds 

Thus we get 

(26) 

Furthermore we obtain 

ll'l/JllFn - II /En -l'!fallz2(n) ::; sup (/En -l'ljl, T/)l2(n) 
l111llz2(n)9 

- sup ('!fa, ()12(n) ::; sup ('!fa, ()12{n) ::; Cll'!fallzoo 
llv1.Bn°Cllz2(n)9 llCllz 1 (n)~C 

and the lemma is proved. I 

Choose now a sufficiently large number M and assume a < M. Remind that 

h(a, t) - 1 1'(t)t'(a) 1 
l(a,t)= la-tj 2 . = h(t)-1(a)j 2 -la-tl2 ' 

18 



Now we can estimate 

< C sup [ w(a)l(a, tk)da - '!:_ 'f w(t;)l(t;, tk) 
k=l, ... ,n-1 0 n j=l 

j::k+lmod2 

(27) 

if 0 :::; s < i and w E Wi. Here Wi denotes the Sobolev space of power 1 and order 
s (cf. Triebel [17]). The last estimate is true, because w and its derivativs up to the 

-order i are periodic and the rectangle rule over a periodic interval approximates 
the integral of a function with arbitrarily high order. More exactly, there holds the 
following lemma, which can be found in [4], pp.109-110. 

Lemma 5.4 Lets > 0. If f E Wt and J(r)(O) = f(r)(l) for r:::; s, then 

J tj = -
n 

The function l( t, a )w( er) and its derivatives up to the order s are periodic func-
tions of a if s < i , because (:a-t l( t, ·) is bounded for any fixed t E (0, 1 ), 
w(er) ~ a~ in a neighbourhood of 0, w(er) ~ (1 - er)~ in a neighbourhood of 1, 
and thus w<s)(O) = w(s)(l) ifs < i· Consequently we get Equation (27). 

It remains to examine whether the norms Ill(-, t)wllw: are uniformly bounded or 
not. 

Lemma 5.5 The mapping er ~ erk+2 (1 - er)k+2 (:a-)k l(er, t) is uniformly bounded 
with respect to t for an arbitrary integer k. . 

Proof: First let k = 0. Then we have 

! -~ ' t = o, (1' 

-y'(uh'(t) 1 . 
l( er, t) = b(u)--y(t)I\- lu-W , t -:f._O, 1, 

- (1-o-)2 , t - 1. ' 

Using the Lagrange form of the remainder of the Taylor's series, we get 

( )

2 . l 1"'(er) 1 1"(er) l(a, t)--+ --- - - -- if t--+ er -:f. 0. 
6 1'(a) 4 1'(er) 
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Obviously the function (1 - a)2a2 l(a, t) is uniformly bounded with respect to t if 
a ¢ Ue(O) U Ue(l). If a E Ue(O) then (1 - a)2a2l(a, t) is uniformly bounded with 
respect tot, It-al> 5, because the denominater contains t-a and 1'(t)-1'(a), 1' is 
monotone and continuous and the numerator is bounded. 
If a E Ue(O), It - al < 5 then ll(a, t) - liIDt-cr l(a, t)I < C and 
(1 - a)2a2l(a, t) ::; c, since r'(a) f'V acx-i, r"(a) f'V acx- 2 , 1'111(a) f'V acx-3 and thus 

CT2 ( ~ ~:'(~,1- i ( ~:(:?)2) :::: Const. If CT E u.(1) then the uniformly boundedness of 
(1 - a)2a2l(a, t) can be deduced analogously. 
Now let k = 1. Then there holds 

B l -;3 ' t = o, 
-y"(crh'(t) -y'(cr)2-y'(t) 2 

Bal( a, t) = b(cr)--y(t)l2 -_ 2 ,,,~cr)--y(t)l3 + lcr-ti3. ' t # O; 1 
(1-cr)3 ' t = 1. 

Using the Lagrange form of the remainder of Taylor's series again we get 

~l(a, t) ~ ~ 1'(
4
)(a) - ~ (r"(a))

2 
if t ~a# 0. 

Ba 3 1'(a) 2 r'(a) 

Combining this assertion with r'( a) f'V acx-1, r"( a) f'V acx-2 , , 111
( a) f'V acx-3 and 

1'(4)( a) f'V acx-4 for a E Ue(O), we get the uniform boundedness of 
(1 - a)3a3 ;crz(a, t) analogously to the proof of the uniform boundedness of 
(1- a)2a2l(a,t). By further differentiations of the formula for l(a,t) we get the 
assertion of the lemma. I 

On the other hand the solution w( a) of Equation (7) has an end point behaviour 
like w(a) = a~(l - a)~gl(a) with smooth gl since the solution u(a) of Equa-
tion (1) can be written in the form u(a) = at(l - a)tgl(a) (see remark 2.2) and 
w(a) = u(r(a)) .. This fact together with Lemma 5.5 implies that 

sup lll(t, ·)wllw• < oo 
O<t<l 1 

(28) 

for any s satisfying 0 ::; s < ~ - 1. Indeed, consider, for example, the function 
w(a) =a~ and supposes is an integer. Then 

t Cj (~) j l( CT, t)CT~-(·-i) 
i=O Ba 

(~ Cj<Ti+2 (:CT r !(CT, t)) CT~-•-2. 
The last function is integrable if i - s - 2 > -1, i.e., s < i - 1. Ifs > 0 is not an 
integer, then another straightforward argumentation including the special definition 
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of the norm in Wt leads to the same result. Toghether with the estimate (27) we 
arrive at 

a 
O~s< 2 -l. (29) 

It remains to estimate llqnDw - DnPnWllFn· Using Sobolev's embedding theorem 
and Lemma 5.3, we get 

with 

llqnDW - DnPnWllFn < CllqnDW - DnpnwllzcX> 
< CllPnqnDW - PnDnpnwllLco 

CllKnDW - PnDnPnWllLco 
< CllK~DRw - P:-D~p~wllHi. 

2 +l! 

n-1 

Pn( {<j}j::-{) := L <j'lj;j; 
j=l 

J t· - -
J - ' n 

(30) 

where 'lj;j is the smoothest interpolation spline of order d with respect to the partition 
tj, 

with 

00 

P~(~<i}~_00 ) := ~ <i'lj;i, 
j=-oo 

P~J = q~j = {j(tj)}j:_ 00 , 

K R·- pR R _ pR R n .- nPn - nqn, 

R J_oo f(a) D f(t) := p.f. I 12 da, 
-oo (] - t 

D~ := n (ak-j)';,j=-oo = nC(a), 

k = 0, 
k is odd 

else. 
a(t) = a(eis) = -7rlsl; -?r < s ~ 7r. 

Here C( a) denotes the convolution matrix generated by the Fourier coefficients of a. 
The spline order d is only of technical importance in the proof. It can be choosen 
large enough. Here the estimate is true for arbitrary d. The operators Kn and K: are the interpolation projectors onto the space of smoothest splines of order 
d. The last estimatein (30) is true, because KnDw - PnDnPnW is a projection of 
KR DRw - pR DRpRw in L n · n n n oo· 
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Lemma 5.6 If~ < s ~ d + 2 and if E is arbitrarily small but fixed, then there is a 
constant G > 0 such that 

llK~ DR f - P~ D~p~ JllHl+ ~ Gn~+e-sllJllH,, 
2 I! 

for anyf E Hs(R). 

Proof: It is well known that the vector ( e-iei) :_
00

; (-7r < t ~ 7r) is an eigenvec-
tor of the convolution operator C(a) = (ak-i)~i=-oo corresponding to the eigenvalue 
a(eie) = -7rltl. Furthermore, for ge(t) := e-iet, we obtain 

and 

0 bviously we have also 

Let F denote the usual Fourier transform 

(F f)(e) = ~ j00 

f(t)eitedt. 
v 27r -00 

Then there holds 

f(t) = vk 1: (FJ)(Oi(t)d~, 
and therefore 

On the other hand there holds 

( c.f. [11]) and thus 
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Consequently we get 

·!. ' 
with rn(e) = na(ein) + 7rjff There holds 

; l 2:'.: 1. (31) 

To see (31) we have to distinguish two cases. If le! < n7r then na( ei~) = -7rlel 
and thus rn(e) = 0. If lel 2:'.: n7r then jna(ei~)I ~ 7r 2 < 7r (~/ and 

7r le I ~ ( ~) z-
2 ~~lz1 . Obviously there holds 

where L~ denotes the orthoprojection onto the spline space Zin{ 'l/Ji }~_00 • Using 
(31 ), we get the following estimate for the second term of the sum 

with l = s - ~ - €. 

< 
< 

Cn1-lll(F J)(e)Vl + e2 z+t+ellL2 
Cn1-lllfllH l ~ Cn~+e-sllfllH., 

z+2 +I! 

From [16], Section 2, we see that for ~ + € ~ s1 ~ d + 1 there holds 

li(K~ - L~) ,kr 1: rn(O(Ff)(Old~llHi+• ~ 
< Cnt+e-si II ~ f 00 rn(e)(F f)(e)idellH.l 

y 27r -oo 

< Cnt+e-si ll(F f)(e)rn(0Vl + e2s1 llL2 
l ~s1+l < Cn2+e-si ll(F J)(e)y 1 + e2 llL2 

(33) 

< cnt+e-si ll!llH,.1+1 = Cn~+e-sll!llH .. , (34) 

for alls = s1 + 1 with.~ < s ~ d + 2. This completes the proof of the lemma. I 
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Note that the estimate (30) is true for arbitrary d and using Lemma 5.6 we arrive 
at 

(35) 

if~< sand w E Hs. From the estimates (20), (21), (22), (23), (24) ,(29) and (35) 
we obtain the following theorem: 

Theorem 5.1 Let 0 < s < min{d, ~ - 1}. If u is the solution of Equation {1), w 
the solution of {7), Wn the solution of the quadrature equation {6) defined by {11) 
and Un := Wn o ,-1 , then there holds 

(36) 

if w E Hs+!+e for some positive E. 
2 

Remark 5.1 If f is sufficiently smooth, then there holds w E Hs for s < ~· 

This is an easy consequence of the definition of w and Remark 2.2. 

6 Another quadrature method for the hypersin-
gular integral equation 

In this section we shall propose another quadrature method for the Equation (1), 
using a cos-transformation. We shall proceed like in Sect 3.8. of [16], where the 
numerical solution of first-kind integral equations with logarithmic kernel is treated. 

First recall the hypersingular integral equation : 

!al u( T) 
(Du)(t) := I 12 dr = f(t). 

0 T-t 

Now we change the variables with another transformation function r1: 

( ) 
1 - COS 'JrS 

!1 s := 2 ; s E [O, 1). 

Similar to Section 2 we get that Equation (1) is equivalent to 

. -11 r~ ( s )r~ (a) _ Aw(s) .- I ( ) ( )l 2 w(a)da - g(s), o {1 a - {1 s 
(37) 

with 

w(s) := u(r1(s)), g(s) :== J(r1(s))r~(s). 
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There holds 
"Yi( s )Ti( a) 7£" 2 sin 7ra sin 7r s 

h1( a) - fl (s )1 2 - 4 ( COS?rS~COS'.71"0" r 
7r 2 sin 7r a sin 7r s 

- 4 sin2 7£"~ sin2 7£"~ 
2 2 

:

2 

Cin2 ~T - sin2 ~~) · 
Thus 

11 7£"2 ( 1 1 ) Aw(s) = -4 . 2 s-a- - . 2 ~ w(a)da = g(s). o sm 7r - 2- sm 7r 2 
(38) 

Analogously to Section 2 we can deduce the quadrature method for n even 

(39) 

with k = 1, ... , n - 1. 

The kernel function 
1 

"ff (?y{(n12 of A is 2-periodic and odd with respect to each 
"fl O" -"(1 s 

variable over the interval [-1, 1]. For real t, let Ht denote the Sobolev space of 
2-periodic functions (distributions). We will especially be interested in the subspace 
H! of odd functions, 

H! = {f E Ht : f ( -s) = - f ( s)}. 

There holds 

w EH!, (40) 

where 

7£"2 /_1 w( a) A0 w( s) := -4 . 2 s-a- da. 
-1 Sln 7£"-2-

(41) 
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since w is odd. 

An easy computation shows that A0 maps odd functions into odd functions and 
even functions into even functions. 

We continue g to an odd function on [-1, 1] by g(-s) := -g(s) and set e-k := -ek; k = 1, ... , n - 1, which corresponds to an odd continuation of w. Then 
the quadrature method (39) is equivalent to 

n-1 

I: 
j=l-n. 

j::Jc+lmod2 

0 = fo. 

(42) 

with k = 1 - n, ... , n - 1; k =/= 0. The restriction k =/= 0 can be omitted, because 
g(O) = f( 11 (0))1'~ (0) = 0 and the sum of the right-hand side of ( 42) is zero if k = 0, 
because of ej = -e-j. 

Furthermore there holds 

11"2 /_1 w( a) 71"2 /_1 w( a) 
A 0 w(s) = - da = - da, 4 -1 sin2 7r";u 2 -1 1- cos7r(s - a) 

( 43) 

and thereby A 0 is the hypersingular integral operator on the unit circle ( c.f.[8]). 
Stability and error estimates for the following quadrature method applied to this 
hypersingular integral are proved in [8]: 

n-1 

L: 
j=l-n. 

j::Jc+lmod2 

n-1 

I: 
j=l-n 

j=:Jc+lmod2 

n-1 

o = I: ej 
j=l-n 

7r2 1 mr2 

- e- - -ek n 1- COS7r(tk -tj) 1 2 
(44) 

with k = 1 - n, ... , n - 1. In the papers of Kress [10] and Proessdorf and Saranen 
[15] it is shown that the product integration formula leads to the same quadrature 
method. The quadrature methods ( 42) and ( 44) differ from each other only by the 
one-dimensional functional, which guarantees the uniqueness of the solution. So we 
get the stability of ( 42) and of (39) by pertubation theorems ( c.f. [11]). For the 
quadrature method ( 44) the following convergence estimate is proved in [8] 

(45) 

provided w E H., and s > ~' s ;:::: r ;:::: 1. Repeating the arguments of [8] we get the 
same convergence estimate for ( 42) and for (39). Thus 

if w E H 8 ands> ~· 

26 



7 Appendix 

In this section we shall give the missing technical proofs. 

7.1. First we shall prove that ¢k(1-1(t)) E H1(J). Obviously it remains to show 
2 

c/>1(1-1(t)) E H1(I), that means 
2 

l
-r-1(~) l-r-1(~) (n1-1(t)- n1-1(s))2 l-y-1(~) (n1-1(t))2 

( ) 2 dtds + dt < oo. 
o o t-s o t 

Using the properties of 1 (see Remark 3.1), we obtain 

l ~ ( ns )2 '( )d 
( ) 

l s s 
0 ls 

11 1 s2 s 
--1'(-)ds 

o n1(~) n 

11 82 1 
~ -ds = - < oo. 

0 s 2 

Furthermore there holds 

r-1 ( ~) e-1 ( ~) _( n_1_-_1 (_t )_-_n1_-_1_( s_) )_2 dtds = 
lo lo (t - s )2 

r ~ r ~ 2 '( ) '( ) ( t - s )2 lo lo n 1 s 1 t (r(t) ~ 1(s))2dtds 
l l - f' f' n 2 h(s, t)dtds ::S C, 

because h is bounded and hence the assertion is proved. I 

7.2. Further we shall give an argumentation for property 9 in Remark 3.1, i.e. 
for the assertion h( s, a) ::; 1, s, a E [O, 1]. In the case of i'( s) = sex there holds 

Setting x = ; we get 

On the other hand, 
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~ 1 fo 2 (x + h(l - x)t-1dh + l (x + h(l - x)yx-1dh 
2 l ((x + h(l - x))"-1 + (x + (1 - h)(l - x))"-}h. (46) 

Using the well known inequality az + bz ~ 2( ab) i with z > 0, we find that 

(x + h(l - x)yx-1 + (x + (1 - h)(l - x)yx-1 ~ ( 47) 

a-1 a-1 
~ 2(x + h(l - x))-2 (x + (1 - h)(l - x))-2 . 

Furthermore there holds 

(x + h(l - x))(x + (1 - h)(l - x)) = x + h(l - h)(x2 
- 2x + 1) ~ x, 

and thus 
a-1 a-l a-1 (x + h(l - x))-2 (x + (1 - h)(l - x))-2 ~ x-2 . (48) 

By ( 46), ( 4 7) and ( 48) it follows that 

f 1 f 1 a-1 a-1 lo (x + h(l - x)yx-1dh ~ 2 Ji x-2 dh = x-2 , 
2 

and thus 

cx-1 - x h( s, a) = h( x) = 2 ~ l. 
(J~(x + h(l - x))a-ldh) 

I 

For the transformation r introduced in (2) the proof is more complicated. 

7 .3. Now we pass to the proof of Remark 2.2, i.e. we prove that the solution 
u of the hypersin?ular integral equation on the interval can be written in the form 
u(t) = tt(l - t)2gl(t) with gl E C 00

• Like in Sect. 6 we transform Equation 
(1) setting t = r 1(s) = l-co;C"'"s) to get Equation (37). The ~elation (41) holds 
provided w E H6 is odd. The mapping properties of operator Ao can be found in 
[8]. In particular we get w E C 00 if g E C00

, where g is defined on [-1, 1] by odd 
continuation. Now g E C 00 follows from f E C 00 in the following way: 
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and thus 

oo J(k)(O) 
g(t) = 7~(t) ~ k! (/1(t))\ t E [O, l]. 

Using that g and /~ are odd and /l is even, we get 

We arrive at g E C00
• Using the definitions of /l and g it can be seen that the odd 

continuation of g is 2-peridic with all derivativs. Thus w E C00
• Now there holds 

u(t) = w('Y;1(t)) = w ( ~ arccos(l - 2t)) . 

Because u(O) = u(l) = 0, w is odd and arccos(l - 2t) = t~(l - t)~gli(t) with 
gli E C00 the assertion u(t) = t~(l - t)~ gl(t) is proved. I 

7.4. Now we give the proof of the main theorem of Section 3. First we use the 
definitions of the norms in En and lh a and the definition of the linear splines cPi 

2, 

to evaluate ll{ei}llEn: 

with 

llff•}111n = {1 r1 (L:i;n<P.(~) - ~~;11 ez<Pz(y))
2 

h(x, y )dxdy 
lo lo x - y 

+ r1 (I:?;11ez</>z(x))21'( x )dx 
lo 1(x)(l -1(x)) 

n-1 ii+l J,l+l Sf,i( X, y) X y L: . ( )2 h(-, -)dxdy 
i,l=O i l x - y n n 

+ ~ J,l+i ~ (6(l + 1 - x) + 6+i(x - l))
2

1,( ~ )dx. 
l=O l n 1(~)(1 -1(~)) n 

Sz,i(x,y) := 6(l + 1- x) + 6+i(x - l)- ei(i + 1 -y)- ei+i(Y - i). 

We set 

1i+1 J,l+l Sf,i( x, y) x y 
Sii := ( )2 h(-,-)dxdy. 

' i z x-y nn 
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First we consider the second term of the sum ( 49). Because of -rc'X(~~~(;}) rv 1 ( c.f. 
prop.6 of Remark 3.1) there holds 

J,
l+l 1(6(l+1- x) + 6+i(x - l))2 1'(~)dx rv 

z n 1(!)(1 - 1(!)) n 

J,
l+l (6(l + 1 - x) + 6+i(x - l))2 d 

l n!(l - !) x 

Let 1 < l < !! - 1 . Since 1 - ~ rv 1 if~ < 1 we have - - 2 n n 2' 

J,
l+i ( 6( l + 1 - x) + 6+1 ( x - l) )2 dx 

z n!(l - !) 

If l = 0 then 

Analogously we obtain 

J,
l+l (6(l + 1 - x) + 6+i(x - l))2 d rv _l_(t2 t2 ) 

z n!(l - !) x n - l <:.l + <:.l+i ' 

if ~ :::; l :::; n - 1. We arrive at 

~ J,l+l 1 ( ez( l + 1 - x) + 6+i ( x - l) )2 '( x )d ~1 
1 t2 ~ 1 c2 

L.J - x x l - x rv L.J -<:.z + L.J --<:.z . 
l=O l n 1(;J(l - 1(~)) n l=l l l=!l n - l 

2 

(51) 

Now we investigate Sz,i· Without loss of generality let i :::; l. Before studying Sz,i 
we prove the following lemma. 

Lemma 7.1 Ift,s E [0,1], 1:::; i,l :s;n-2, ll-il ~ 2 then 
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In order to prove this lemma we recall the definition of h and consider several terms 
of the product 

h( ). = r'(x)r'(y)(x -y)2 
x, Y (r(x)- r(Y))2 · 

First let 1 :::; l, i :::; ~ - 1, ll - ij ~ 2. Furthermore assume ~ < 5( a) with 5( a) 
being choosen as in Remark 3.1 . By considering the denominator and using the 
monotonicity of r, we see that 

1'(~) - {(~) 
1'(~) - {(*) 

< 1'(~) - {(*) 
1'(~) -1'(!) 

1'( ~) - 1'(~) 
< 1 + ( l ) ( l-2) 

'~ -{~ 
lr'(~) 

< i + 2 ,,cz~2), 

because r' is konvex in [O, 8( a)]. Further we have 

r'( ~) 
r'( z~2) 

v(~yx-1 v(l - ~ )'x-l (v(~yx + v(~)ex) 2 

vcz~2 )ex-1 v(l - l~2 )ex-1 v( ~)ex + v( n-~-1 )ex 
v(!±l)ex-1 < n 2a-122(ex-l) 
v( l~2)a-l ' 

because v(x) :::; 1, v(l - l~2 ) ~ ~ and (~)ex-l :::; v(x)ex + v(l - x)ex :::; 1. Since 
l ~ i + 2 ~ 3 and using the properties of v (see Remark 3.1), we get 

v( !±1) !±1 l + 1 
_..;..o..n_ r-..J _J!.._ - -- < 6 
vcz~2) l~2 - l - 2 - . 

We arrive at 

provided l + 1 ~ 5( a )n. Let now l ~ 5( a )n - 1. Then there holds 

1'(~) - {(~) 
1'(~) -1'(!) 
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because 1' "" 1 on the interval ( o(
2
a), 1 - o(

2
a) ). 

To get the estimate from below we have to distinguish two cases again. If 
i:::; 8(a)n - 2 then 

1(~) - 1(~) 
1(~) - 1(*) 

1(~) - 1(~) > 
1(~) - 1(*) 

1+ 1(*)-1(~) 
. 1(~) - 1(*) 

> 1 - 1(~) - 1(*) 
1(~) -1(*) 

1'(~ )~ + 1"(e2H~ 
1'(~); + 1"(e1);2 ' 

with ei E [*, ~] and e2 E [~, ~] . For the reciprocal value there holds 

because ~ ~:c';f;] is bounded (see the formula of 1" in Remark 3.1). 

If i ~ o(~)n then 

1(~)-1(~) 
1(~) - 1(*) 

with 6 E [~, ~], 6 E [*, ~]. The last estimate is true, because zz~i1 ~ ~ and 
· 1' "" 1 on· the interval ( o(;), 1 - o(;) ). We arrive at 

(53) 

Furthermore there holds 

(54) 

because of ll - ii ~ 2. Now it remains to consider the term 
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with f(t) := (v(t)yx + (v(l - t))a. Because of (~)a-l < f(t) < 1, v' rv 1, 
v(n~l),v(n-~-t) rv 1 and v(~) rv ~' v(~) rv ~we get 

1'(!±1). (l+t)a-1 n rv---
1'( ~) za-1 

Obviously 

( l + t)a-1 (l + l)a-1 1 < < < 2a-l - za-1 - za-1 - . 

We arrive at 

'( l + t) '( l ) l-rv1-. 
n n (55) 

With (53), (54) and (55) we obtain (52) in the case 1 ::; l, i ::; ~ - 1, ll - ii ~ 2. 
The case ~ ::; l, i ::; n - 2, ll - ii ~ 2 runs analogously. 

Consider the last case 1 ::; l, i ::; n - 2, ll - ii ~ 2, i ::; ~ - 1, l ~ ~· In this 
case there hold also (54) and (55). Using (53) separately for the intervals (0, ~] and 
[~, 1), we have 

l+t i+s l+t 1 1 i+s 1(-) -1(-) = 1(-) -1(-) + 1(-) -1(-) n n n 2 2 n 

l 1 1 i l i 
rv 1( - ) - 1( - ) + 1( - ) - !(-) = !( - ) - r( - ) . n 2 2 n n n 

So assertion (53) is true in this case, too. The formula (52) follows from (53), (54) 
and (55). This completes the proof of the lemma. I 

Now we continue the proof of the theorem. First let 1 ::; l, i ::; n - 2, 
ll - ii ~ 2. Using Lemma 7.1, and the definition of Sz,i , we see 

Sz · rv ,i 

l i li+l ll+l Sf,i( x, y) 
h(-, -) ( )2 dxdy n n i l x-y 

l i 1 i+l l+i 
~ h(-:;;,, ·:;;) (l - i)21 1 S~,;( X, y )dxdy, 

since (x!y) 2 rv (l!i) 2 • With the definition of sz,i we compute 
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This is a quadratic form with zero in ei = 6 = 6+i = ei+i and therewith equivalent 
to the following quadratic form with zero in ei = 6 = 6+i = ei+l: 

Thus we get for 1 ~ l, i ~ n - 2, ll - ii 2:: 2 

(56) 

Now we consider the second case 1 ~ i, l ~ n- 2, ll-ij < 2. Before estimating 
Si,i in this case in more detail we prove the following lemma. 

Lemma 7.2 lfx,y E [~, n~ 1 ], lx-yl ~~then h(x,y) f'J 1. 

Without loss of generality let x 2:: y. 
If x = y then there holds h( x, y) = 1 (see the definition of h). 
Let now x =f:. y. Then there holds 

h(x ) = r'( x }'y'(y )( x - y )2 = r'( x )r'(y) 
,y (r(x)-1'(Y))2 (1''(e))2 ' 

with a e E [y, x]. Because of x, y E [~, n~l], jx-yj ~ ~there is an l with 1 ~ l ~ n-4 
such that 

Analogously to ( 55) we get 

1'1 
( l + 1 

) f'J 1'1 
( x) f'J 1'1 

( y) f'J 1'1 
( e) 

n 

and we arrive at the assertion h( x, y) f'J 1. I 

Using the definition of Si,i and the last lemma we obtain 

(57) 
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provided 1 ~ i = l ~ n - 2. 
Now let 2 ~ l = i + 1 ~ n - 2. Using the definition of Sz,i and the last lemma again, 
we get 

Sz,1-1 rv fl fl+l s~,i( x, y) dxdy 
lz-1 lz (x -y)2 

- ef(3 - 4 ln 2) + (ef+l + ef_1)(1 - ln 2) + 6-16+i(l - 2 ln 2) 
+(ez6+i + 66-1)(-3 + 4 ln 2). 

This is a quadratic form with zero in ez = 6+i = 6-1 and therewith equivalent to 
the following quadratic form with zero in 6 = e1+1 == 6-1: 

Sz,z-1 rv (ez - 6-1)2 + (6 - 6+1)2
• (58) 

Let i = 0. For the present consideration let l ~ 2. Then there holds (x~y)2 ~ fr 
for ally E [O, 1], x E [l, l + l]. Using this property and h(x,y) ~ 1, we have 

11 1z+1 (6(l+1 - x) + 6+i(x - l) - 6y)2 

0 < Si,o ~ ( )2 dxdy 
0 l x -y 

< ~ l l (6(1 - x) + e1+1x - eiY)2 dxdy 

~ Gw + a+l + e~ + M+i) - ~(6e1 + ez+ie1)) 
c ( 2 2 t2) < Yi ez + el+l + C:.1 • 

Let now i == 0 and l == L Using h( x, y) ~ 1 again, we get 

0 < S10 < fi {2 (6(2- x) + e2(x -1) -e1Y)2 dtds 
'-Jo Ji (x-y) 2 

- ei(3 - 4ln 2) + e~(l - ln 2) + e1e2(-3 + 4 ln 2) 
< c(ei + eD. 

We arrive at 

Analogously we show that 
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From (49), (50), (51), (56), (57), (58), (59) and (60) it follows that 

i-1 1 n-1 1 n-2 
ll{e;}ll~~ f'V I:: -zel +I:: n _ zel + 2:::(6 - ez+i)2

. 
l=l l=i l=l 

n-2 l . 1 
+ .~ h(;;:, ~) 

1
i_1

1
2m1 -e.)2 + (6 - e•+1l2 

li-lj~2 

+(6+i - ei)2 + (6+1 - ei+i)2) 
~-1 1 n-1 1 n-1 

f'V L: za + L: n _ ze; + 2:(6 - 6+1)2 

l=l l=i l=l 

~ l i 1 2 + L~ h(;,, ;, ) I i - z 12 ( ez - ei) , 
li-lj~2 

because for ll - ii ~ 2 there holds iz!i12 ""' iz-L112 rv IZ-i~ 11 2 and 
h(l i) ""' h(!±!. i) ""' h(l ill). Using h(l !±!.) ""' 1 we get n' n n 'n n' n n' n 

i-1 1 2 n-1 1 2 n-1 l i 1 2 
ll{ej}ll~n ""' ~ -zez + l~ n - zel + L~ h(;,,;,) I i - z 12 (6 - ei) 

2 i~L 

i-1 1 n-1 1 
""' L: -zel + L: n _ zel + 

l=l l=i 
i-l 2l 2i 1 

+ L~ h(-;,-;) I 2i - 2z 12 q(6z, e2l+1, 6i, e2i+i), 
i~l 

with 

Obviously q( e2l, 6z+i, 6i, 6i+i) lS a quadratic form with zero m 
e2l = 6z+i = e2i = 6i+i and thus equivalent to the quadratic form 
(6z - 6i+i)2 + (e2z+i - 6i)2 + (e2z - e2z+i)2 + (6i - 6i+i)2. Using this equivalence, 
we see that 
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Furthermore there holds 

n-2 l i 1 7r2 

I: h(-, -) I · - z 12 ~ -3 ' 
i=l n n i 

and we arrive at 

which completes the proof of the theorem, because the second assertion follows 
immediately by duality. I 

7.5. Last we give the proof of Lemma 5.2, i.e we show that 

for all e == { ei} E En. By definition of P~ and of the norm there holds 

(61) 

with 

si,i( x, y) ===. I: ekJ~d)( x) - I: ejJ)d>(y) 
kED(l) jED(i) 

and D(l) :== {d(l),d(l) + l, ... ,(l) + d}, where d(l) is defined by d(l) E Z, 
d( l) ~ l < d( l) + d, d( l) = 0 mod d~ The interpolation polynomials J~d) are polyno-
mials in [d(k), d(k) + d] with ~~d)(j) == 8k,j· We set 

1i+l1l+1 s~)x,y) x y 
Si i :== ( )2 h(-, -)dxdy. 

' , l x-y n n 
(62) 
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F. t "d th d t f th (61) B f i'(s)s(l-s) 1 us we cons1 er e secon erm o e sum . ecause o -y(s)(l--y(l-s)) "-J 

(property 6 in Remark 3.1), we have 

Let 1 :::; l :::; ~ - 1 . Then we obviously have 

(63) 

If l = 0 then 

( 
d -(d) ) 2 

11 ~k=l ek¢k (x) d < c ~ t2 
x(l x) X - L.-J~k' o n- - -n n k=l 

-(d) 
because l-~/n :::; 2 and ¢,,, }x) is a polynom of degree d - 1 ~ 1 for k = 1, ... , d ( c.f. 
definition of ¢id)). With (63) we get 

Analogously there holds 

and thus 

(64) 
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Consider now the first term of the right-hand side of ( 61 ), which will be de-
noted by Eni.}=1 Sz,i· To estimate Sz,i we distinguish several cases. First let 

l~imod2 

1 ::; l, i ::; n - 2, ll - ii ~ 2. Using the Lemma 7.1, we see that 

Sz · rv ,i 

[ i li+l ll+l Sf,i( x, y) 
h(-, -) ( )2 dxdy n n i l x-y 

l i 1 i+l l+l 
~ h(;;;,, ;;) (l - i)2 1 1 sf,,(x, y)dxdy, 

since -( 1 )2 rv (l 1
.)2 • With the definition of sz i we compute x-y -i ' 

l i+lll+l s; i( x, y )dxdy = 
T, l I 

( )

2 
i+l-d(i) l+i-d(l) d - d d - d 

= f f L:ek+d(z)¢1)(x)-L:ei+d(i)¢})(y) dxdy. 
li-d(i) jl-d(l) k=O j=O 

Because of 

and 

d 
~~ d) = i - E ¢ }d), 

i=l 

we get 

and therewith 

)

2 
i+l-d(i) l+i-d(l) d - d d - d) 

r r (E ek+d(z)¢1 ) ( x) - E ej+d(i)<!>} (y) dxdy ::; 
ji-d(i) lz-d(l) k=O j=O 
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Thus 

l i 1 ( 2 ~( )2 s1,i ~ ch(-,-) (z _ Y (ed(l) - ed(i)) + L-J ek+d(l) - ed(l) + 
n n i k=l 

(65) 

if ll - ii ;?: 2, 1 ~ l, i ~ n - 2. 

If i = 0, l ;?: 2 then (x!y) 2 ~ fr and thus 

( 

d d ) 2 c 1 l+l-d(l) - d - d 
Si,o ~ -z2 r r L ek+d(l) ¢~ \ x) - Lei¢) \y) dxdy 

lo lz-d(l) · k=o i=l 

c ( d d ) ~ fi {; a+d(I) + :; ~; · (66) 

Analogously there holds 

(67) 

Now we consider the second case ll - ii < 2. Using the property 9 in Remark 
3.1, i.e. h(x,y) ~ 1, we get 

/.
i+l 1l+l Sf,i( x, y) 

S1,i ~ C ( )2 dxdy, 
i l x - y 

in this case. Using ¢~d) ( x) = 1 - 2:%=1 ¢~d\ x) , we obtain 

( 
d (-c d) -c d) ) ) 2 

1

l+l-d(l) 1l+1-d(l) L:k=O ek+d(l) cPk ( X) - cPk (y) 
~z= ~~ 

' l-d(l) l-d(l) ( x - y )2 
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l

l+i-d(z)ll+i-d(l) (2:%=1 (ek+d(l) -<dcl)) (¢1d\x)-¢1d)(y)))2 
~~~~~~~-"-~~~~~..:.....:.-dxdy 

l-d(l) l-,d(l) ( x - y )2 . 

( 
d ( )2) 1l+l-d(l) 1l+l-d(l) (¢1d\x) - ¢1d)(y))2 

< c 2:: ek+d(l) - <d(l) ( ) 2 dxdy 
k=1 l-d(l) l-d(l) x - y 

< c (t ( ek+d(l) - edc1>f) , (68) 

because for k E { 1, ... , d} there holds 

with Ck E C some complex numbers. 

Let now 2 :::; i = l + 1 :::; n - 2. Additionally let l + 1 ;j:. 0 mod ( d). Then d( l) = 
d( l + 1 ). Using the definition of Sz,i as well as Lemma 7.2 and the representation 
;p~d)(x) = 1 - 2:%=1 ¢1d)(x), we get analogously to the case i = l 

1z+1-d(l) il+2-d(l) ( I:La <k+d(l) (¢id) ( x) - ¢id\y)) )2 
Si t+i = dxdy 

I l-d(l) l+1-d(l) ( x - y )2 

1

l+1-d(l) 1l+2-d(l) ( I:t=l ( ek+d(l) - ed(l)) ( ¢~d) ( x) - ¢~d) (y))) 2 
~~~~~~~~~~~~~~dxdy 

l-d(l) l+i-d(l) ( x - y )2 

< c (t ( ek+d(l) - edc1>) 2) . (69) 

Let now 2 :::; i = l + 1 :::; n - 2 and l + 1 = 0 mod ( d). Then 
,d( l) = l + 1 - d, d( l + 1) = l + 1 and we find 

( 0 -(d)( ) d t -(d)( )) 2 
- lal JO I:k=-d <k+l+l </>k X - I:j=O C:.j+l+l </>j y d d 

Sz,z+i - ( )2 x y 
0 -1 x - y 
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because for k E {1, ... , d} there holds 

!al j_o (J1d)(x))2 !al j_o x2 
( ) 2 dxdy ~ C ( )2 dxdy ~ C 

0 -1 x - y 0 -1 x - y 

Using the estimates (65), (66), (67), (68), (69) and (70) and the fact that, analo-
gously to the considerations in the proof of Theorem (3.1), quadratic formulas with 
the same zeros are equivalent, we arrive at 

n-1 

2:: Sl,i 
i,l=O 

Together with (61) and (64) we get that 

Finally from Theorem 3.1 the assertion llP:ell 1 a ~ OllellEn follows. 
2 I 
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