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1 Introduction

In this paper we consider the hypersihgula,r integral equation on the interval

(Du)(t) := p.f. /: —u(idT = f(t), 0<t<1, : (1)

| 7 —1|?
where f is a given function and u is to be found. The integral in (1) is to be
interpreted as a Hadamard finite part integral. For the definition of such a finite
part integral we refer, e.g., to [7].

The hypersingular integral equation (1) results from a certain boundary integral
method, which has attracted the attention of several mathematicians in recent years.
In particular, we mention the paper [3] of Costabel and Stephan, where the Galerkin
method for the hypersingular integral equation on polygons is studied, and the arti-
cle [2] of Costabel, which gives a survey about several boundary integral operators
on Lipschitz domains and investigates the Galerkin method for those. In the paper
[13] of von Petersdorff and Stephan a multigrid method on graded meshes is consid-
ered for the hypersingular integral equation. In [1] (Sect.1.6 and 5.1) a quadrature
method for the hypersingular integral equation on an interval is deduced and an
error estimate is proved. The first regorous analysis of a fully discretized method
for the hypersingular integral equation has been given by Kieser, Kleemann and
Rathsfeld in [8]. There a very easy discretisation scheme is used to get a quadrature
method for this equation on a smooth closed curve and stability and error estimates
for this method are obtained.

Another approach is given by Erwin, Stephan in [6], where a collocation method
using Chebyshev polynomials has been considered for the hypersingular integral
equation on the interval. In [6] the operator D is considered as an operator acting
between some spaces of Sobolev type, which are defined by means of Chebyshev
polynomials.

In the present paper we shall propose a fully discretized quadrature method for
the hypersingular integral equation on the interval (1). Because the solution of
this equation has an end-point behaviour like s7(1 — s)7 (see [6]) we carry out a
refinement of the grid near the end points of the interval. To this end we perform a
change of the variables 7 = 4(¢), t = v(s) in the integral (1), where v has an end-
point behaviour like s*. Transformations like that have been used already for some
integral equations, for example, in the case of the Cauchy singular integral equation
(see [12] and [14]) or in the case of boundary integral equations of the second kind
for the harmonic Dirichlet problem in plane domains with corners (c.f. [9]). In the

present paper the transformation «y : [0,1] — [0,1] is chosen like in [9]
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with

o) = (é - %) (1—2s)° + -};(23 1)+ -;- o> g (3)

The function vy has an end-point behaviour like s* near 0 and like 1 — (1 — s)=
near 1. Note that the cubic polynomial v is chosen such that v(0) = 0, v(1) = 1,
and 7/(3) = 2. The latter property ensures, roughly speaking, that one half of the
~ grid points is equally distributed over the total interval, whereas the other half is
accumnulated towards the two end points.

Multiplying Equation (1) by +/(s), we get the transformed equation

P A0) v )
P[] Tl O =gls)  0<s <, @)
with

w(s) = u(y(s)),  g(s):= F(A(s)'(s).

Using the quadrature rule

; | ()

3| >

[ iwa~ R R e

Jj=—00
jz=k+1mod2

for n even and applying a kind of regularization to the finite part integral (cf. the
next section for more details), we get the quadrature method

, n—1 2 "/’(t ),yl(tk) 77,7{‘2 ’
t = —_ J ¢ ’k_—.l,._.,n_l; 6
746 ._,; . nl7(tj)_7(tk)I2£J g ‘ (6)

The term —’%2&‘ results from the mentioned regularization. A corresponding
term occurs in the case of a closed curve (see [8]).

The paper is organized as follows. In Section 2 the quadrature method (6) is
deduced.

In Section 3 the mapping properties of the approximate operators correspond-
~ ing to (6) and the corresponding discretized spaces are investigated. In Section
4 the stability of the method is proved. Let us denote the matrix of the linear
system of Equation (6) by A,. The main point of the proof is that there holds
(—ARé, &) ~ (Bpé,¢) for all finite sequences ¢ = {£}po] uniformly with respect to
n. Here B, is the norm isomorphism of the regarded discrete spaces.

The error estimate is deduced in Section 5. Let f be sufficiently smooth such
that w = u o -y belongs to the Sobolev space H* with s < "‘%1 If up, = w07t
(i.e. un 0y = w,), where w, is a high order interpolation of the approximate
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values wn(t;) = €;, 7 = 1,...,n—1, obtained by solving (6), then the Sobolev norm
l|lw — Unl||1 can be estimated by Cn2+¢=* with e sufficiently small.

In Section 6 another transformation is used, namely, a cos—transformation like
that used for the numerical solution of first-kind integral equations with logarithmic
kernel (c.f. Sect. 3.8 in [16]). The quadrature method derived with the help of this
transformation is shown to be stable, too. Here the proof reduces to the case of the
unit circle. The stability of this method is easier to prove than that of the method
with v defined by (2) and the order of the convergence is higher, since there is no
bound for s from above. However the techniques used in Sections 2-5 and 7 apply
to the case of more general integral equations on the interval or on the polygon
provided the asymptotic behaviour of the solution near to the endpoints or corner
points, respectively, is known.

In the Appendix some technical lemmas are proved.

Here we acknowledge the useful advices of A. Rathsfeld and thank him.

2 The discretisation of the hypersingular inte-
gral equation

Consider the hypersingular integral equation on the interval I = [0,1],

(Du)(t) —pf/ E Tzlzd'r—f(t),tef.

By [13], [2] and [3], the mapping

D: Hy(I) — H_y(I)
is bijective and continuous. Here the space H %(I ) is defined by
Hy(I) = {ulr : w € Hy(R),ulr\s = 0}

and equipped with the norm of Hy (IR). The space H_ L (I) is defined as the dual
space of H L (I ) with respect to the L,-scalar product (see [3]).

Remark 2.1 Foru € Hé(JR) with ulp\1 = 0, there holds

lwlli=lwl, + vl



with

Gl = [T P,

y |?
_ | u(e) — u(y) I tue) P
= /0/ Z—y P dzdy +20m(1_w)d,

and || u |y~ uly.
The proof is well known and not hard.

Remark 2.2 Let f € C* and u be the solution of Equation (1). Then there holds
u(t) = t7(1 — )2 gl(t) with gl(t) smooth.

The statement of Remark 2.2 will be frequently used in the subsequent Sections
and will be proved in the appendix. For the case f ¢ C* a statement about the
asymptotics can be found in [6].

In order to get a refinement of the grid near the end points of the interval I we
will apply a transformation of coordinates. Consider the transformation function
v : I — I of R.Kress [9] given by (2) and (3). The condition « > £ is necessary to
guarantee the monotonicity of v. The stronger condition o > 2 Wlll be needed in
the proof of stability.

By [7] it is possible to apply the usual rules of transformation for the finite part
integral in (1) if t € (0,1). Thus (1) is equivalent to (4). Now we set

o= s en)
Mero) = oy G

With this notation Equation (4) is equivalent to

Au(s)=p . [ 1 l ’”E"S)Ph(s, o)do = g(s). (7)

We shall deduce a quadrature method for Equation (7). To this end we use the well
known quadrature rule (5). Obviously, there holds

f/ o — lzh(sada—pf/ | +/ |w( 7) ~(h(s,0) = 1)do

(8)
Now we continue the function w to a function on R by setting w(t) := 0 for all
t ¢ [0,1]. Note that w remains smooth since u(s) has the end-point asymptotics

s§(1 - s)% and s is replaced by s = y(o) with y(0) ~ 0%(1—0)*, a being sufficiently
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large. The first integral on the right-hand side of (8) is a finite part integral. At
the point s = #;, 1 <k <n —1 we can compute it by using the regularisation

Pf/ IU dar=pf/ ]a—tk|2da

/°° w(a) — w(tk) — w'(tk)(a — tk) do
|0‘ —_ tklz
g — tk
o — t|?

+w(tk)p f. / dcr + w'(te)p. f. / do.

Now there holds
oo 1
p.f. /;w mdd = 0,

o 1
p.f./ do = 0.
-ooG'—tk
Thus with & = w(t;),7=1,...,n—1,and §{; = 0,7 < 0 or j > n, we obtain

w(o) & 1 > 12

do ~ _ -

pi | mar =T Rt = T-aPn
I= mo i=k+1mod2

© ti—t 2

L R ufa

j=—oo

j=k+1imod2

Now we compute the sums in the following way

ko 1 2 i 2n X 4n
,-;w |t; — tel?n j-_-z_:w i -k ,Z: 7’
j=k+1mod2 j=k+1mod2 j odd
ol 4n A w2 nn?
= (2] — 1)2 8 2"’
§ u-m2 . f 2 &t
j=—oo lt; — tel2n e Ik i '
j=k+1mod2 j=k+1mod2 j od
Finally, we arrive at
w(o) nol 1 2 nw?
— _do ~ —_—f — — . . 9
pf / |U—tk‘2 ; lt_y _tklznf.‘l 2 f ( )
j=k+1mod2

Now we consider the second part of the sum in (8). First define

h(s,o)—1

o —sf?

l(s,0):= (10)



The function I(t, o) is continuous, because
"y " 2
lnnl(tk, o) = 19%(t) 1 (7'(t) , k=1,...,n—1.
sz, 5 (te) & \(ae)
Thus

w(o)
o] |G’ - ik|2

(h(o, tx) ——’1) do = /01 w(o) Utk o)do ~

n~1 2 n—1 2 ( ,_Yl(t )7I(tk) 1
~ 2 Ut 13)E; = el ; _ .
TR R e T e i e
Ji=k+1imod2 i=k+1mod2 )

Combining this with (9), we get the quadrature method (6) for the approximate
solution of (7).

Now we define an approximate solution w, for w by
SIWC |
= Z£j¢j (3), (11)
7=1

where qﬁ(d) denotes the interpolation basis of piecewise polynomials of degree d,
ie. ¢(d)(t ) = ks, ¢( ) is continuous and the restriction of ¢( ) to the interval
[, —(knil)] is a polynomial of the degree d for k = 0,...,2 — 1. Here we choose n
such that § € IN. If d = 1 we write ¢; instead of ¢§1). There holds

n(s—’:—l), se["_—1 L

n i nd
¢j(3) = n(l—;i - 3)’ s € {ﬁ: ]%'1'];
0,  else.

Remark 2.3 The linear spline functwns are the simplest splines with ¢; € H L and
pjoyt € H1

The proof of g;oyt € H L can be found in the appendix.

Let us denote the matrix of the linear system of equations (6) by An, i.e.

= n(h(tk,t;)ar—;)x 311; ' (12)
with
_7;_2 ) k = 0)
ay = ]—,f‘lg , ks odd,
0, = else.



We shall interprete this matrix A, as an operator from the discrete space of finite se-
quences equipped with the norm induced by A L, « into its dual space. The definition
of these discrete spaces is given in the next sectlon

3 The discrete spaces h%a s h_1

Proving the stability for the operator sequences A, means that we have to show
the invertibility of the operators A, and the uniform boundedness of their inverses.
The operators A, have to be considered from the discrete space of finite sequences
equipped with the norm induced by H L . intoits dual space. It will be easier to prove
the stability by using some equlvalent norms of these spaces. Before introducing
these norms we mention some properties of the transformation . The properties
1.-8. are easy consequences of the definitions of v, v and h. A comment on the
proof of property 9 can be found in the appendix.

Remark 3.1 There holds

1.v0)=0, v(l)=1, v(3)=3, v(s)=1-v(l-s), and v is strictly
monotonically increasing.

2.0(s) = ~6(; = A -2 + 2, v(s) = V(1 -s), ¥(0) = (1) =
3—2 (%) =2, v ~ C and v’ is monotonically decreasmg on [0,3] and
monotomcally increasing on [1,1]

8. Ifs€0,2] thenv(s) ~s. If s€[3,1] then 1 —v(s) ~ 1 —s.

4. 7(0) =0, 4(1) =1, 4(3) = %, 4(s) = 1—y(1—s) and v is strictly monotonically
increasing.

5. () ~ 55 if s € [0,3], (s) ~ (L= 5)* if s € [3,1] and

oy — @ (8)(w(s))* (w1 — s))*
7= [(v(s))™ + (v(1 — s5))2]?

6. There holds ;&;%14%({—’%5 ~ 1. Therefore if s € [0,2] then -

120/ 1
s € [3,n] then 7075 ~ =05

av(s)* (1l — s)* 2" (s)v(s)v(l — s) + (o — 1)(1 — 2v(s))]
[v(s)* +v(1 — )]

>0, 0<s<l1.

~ 1 and if

n 7(3/7*)

T ys) =

+2a(a — Dw(s)* (1l — s)*"1'(s)?(v(1 — 8)> 1 —v(s)>"1)
[v(s)™ + v(1 — )2

and if s € [0,6(c)] then ¥ >0, 1if s € [1 —6a)l] then 4" < 0, with

§(c) € (0, 3] Ifa < 28, then we can chqose §(a) = 3.
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8. Ifse [ﬂzﬂ,l - 5—(251] then 4'(s) ~ 1.

9. There holds h(s,0) <1 and h(s,s)=1.

Now we study the mapping properties of the operators and the spaces, in which
the operators are actmg, more precisely. The operator D is a bijective and continu-
ous mapping between H: (I ) and H __(I ) which are dual spaces with respect to the

L,-scalar product. Then the operator A transformed according to (7) is a bijective
and continuous mapping in the transformed spaces,

Az Hy (1) — H_y (1)
Here the spaces Hy ,(I) and H_y ,(I) are defined in a natural way by
Hy (1) ={¢:¢(t) =4(1(1)), ¥ € (D)},
H_y (1) :={6: 4(t) =d(v()v'(t),% € H_(I)}

and the norms are given by |¢|%’a = ]¢|% and [$|_;_,a = |1I;|_%, respectively.

Because of

[ #0uis)ds = [ saoNbitrln()ds = [ pls)n(s)ds,

the spaces I':Tx (1) and H_j (I) are dual with respect to the Lj-scalar product.

The operator A w > g is mapping from H L o(I) into the space dual with respect
to the Lj-scalar product.

We shall consider the approximate operators A, in discrete spaces, using the the-
ory of Vainikko [18]. We define a system of discrete spaces
(En)nen by Ep = = {{¢;}721} equipped with the norm

& 5z le. = || Z§J¢JHHL Ko

1=1
Let P = (pn)nenv be a sequence of operators
P Hyo(I) = Eay pa() = {6(t:)}351 ‘ (13)
For each fixed n there holds

n—-1 % n—-1
% (; |€j|2) ~ 11 &idill ..

=1



Thus we denote the finite l;-space by lo(n) := {{¢;}}=1}, and equip it with the norm

”{{7 1“12(11) =7 (Z |€le) )

7=1

and the scalar product

[y

n—

({63 ?_—:11: {’71 _7__1 = ':-_ZE_: fJ"?J"

Now it make sense to define the second system of discrete spaces
(Fa)nenv by Fn:={{¢;}}=1} equipped with the norm, which is dual to the norm of
E,, with respect to the l;(n)-scalar product. Analogously, we set @ = (gn)new with

gn: Hoy o(I) = Fny  an(8) := {$(t5)}320- (14)
The approximate operators A, are mapping in theses dual discrete spaces
An: E, — F,.

Theorem 3.1 There holds

311

IH6:HE ~ X f,+z———ez+ 5 Dt e-er

1i=1
t§lmod2

= <Bn{f,-‘},{f,~}>,;(n> SR (15)

. where B, 1s a positive selfadjoint matriz. Additionally, there holds

€ ey ~ [1Y/Batéi} -

The proof of this theorem requires a lot of cumbersome technical computations. It
- can be found in the appendix.

4 The stability of the quadrature method

With the help of Theorem 3.1 we are able to show the stability of sequence A,. Note
that the matrices —A, and B, have a similar structure and differ only in the main
diagonal:

—A, = n(—h(tx, tj)ak—j)z,;in



and

B = n(—h(tk, t;)ae—;)km + n(6k5ka)k oy (debh )k 52
+n(a05k,j);cl,;i17

where

)
C =
) n-k?

n—1 1
dr, = 2 h(tg, t;)——.
L= 2 Mg

j#kmod2

IH Eal
Eo
IN
w3
[
—

-
v
03

The mapping properties of v/B, are a direct consequence of Theorem 3.1:

\/EZ : Ep — lp(n),
\/B: tly(n) - F,

are isombrph mappings and their norms are independend of n.

Now the mapping A4, : E, — F, is invertible if and only if
Al .= —A, : E, — F, is invertible. Furthermore, B, is positive and selfadjoint.
Thus A} : E, — F, is invertible if and only if /B, 'A!v/B, ! is invertible in

l5(n). The last assertion is equivalent to the relation

(VB 4/B.7)  ~ (6o

for all ¢ = {¢;}721 € lo(n) which is equivalent to the followmg one

(A;f,f>lz(n) ~ ( n‘f E lz(n) Z 61 +Z -—-l&

iZimod2

Thus the stability of the quadrature method follows directly from the subsequent
theorem. A
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Theorem 4.1 There holds

——1

(46,0 ~ 3 f,+2 e S Dt e

li=1
iZimod2

Proof: Using h(z,y) = h(y, z) and a;—; = a;_; we obtain

(ALé, E)iyn) = Z h(— )az-ift&'

li=1

- - 3 4 Dacat - 58 - 56

1;61

-1 1 n—1 l 7, 1 n—1 . , .
_Z (a0+ Zh '7;" ; aj_; + = Eh(— )a,_> 61
1;6! »#z

=1 i=1
£l

i, 1 , ot I i \
= Zh;;az 5l -6 -2 00+Zh;;“l~i ¢

nl I 1 1
= z:l h(;’;)ll—lf( +ZRz§z,
iZlmod2

Wifh
1

l 1
E}Z)u—zp

R—-———ZZh

;§lmod2

It remains to show that R; ~ — + = L Because of h <1 (see Sect.3) we have

7 — l 1 1
B 2 Zi n n)| I—i|?
i#Zlmod2

- Y st Y o
.i=—oo ( i=n
iZlmod2 tilmodz

( _ i, 3) >0.
=1 nn

iilmodz

Thus there holds

1 1 ety 2 I 4
Rz~7+m+ > m(l—h(;:;))

i#Zlmod2



What remains to show is the estimate

=, 1 1

: . < — -

Z 2rl:3—c(l)+0(n*l)’
1

i;z:odz
o= 1 — h(_l_ )
T (I—q)e n'n’)

Using the definition of the function A we get

3| -

(v(&) =) = v (52 |
(v(E) = (&) (1 -y

For the denominator we have

(rhy -2 @) o= ([ o Shar) 22

T =

n n n?

Furthermore there holds

—z)) [—1

n n

A=) =2y = [

NC
ff ”( + un(’

—5) - ()|

))dvudu( ;z)z

=7(

and thus

(B =) - ()

Tii = =

=)

- L [t
—( >7"(,i+uv(—))dvudu

—/1/1 ”(1;-+uv(l—_j-))dvudu/ / 'y"(£+uv( -

= ) ’)"( // —I—uv(—))dvudu

12

))dvudu

(16)



== [»y"<§+uv(l;i>> —7"(i+uv<"‘l

))dvudu / / -I—uv(

'y"( + uv(—))dvudu

))] dvudu

))dvudu
e
+7(— / / / 7"'—+uvw(—))dvuduwdw
-—// ”( —|—uv( dvudu//’y"( +uv(—))dvudu

We arrive at

flz

(9L + h(isty)dn)”

1
T = 3
n?

(17)

Now we have to distinguish several cases. Choose a positive number € < 1.

First let [ < ne. There holds '(z) ~ z* 1 if z € [0 7). Furthermore for those [
and arbitrary 7 we have ’

l

))dh > C (’ '“') | (18)

n

1 ! 3 —
!
—+h
/o 7 (n A n
To proof (18) we first remark, that if < [ then

[l eniShyans [ snd =ty

11 1\ 1 /1+3\*!
—_ > — N
o (st el

IfiZland%S%thenwehave—+h(‘ 1)< % and
1o 11 i—1
/ > %7(n+h( —))dh
11 -1\ I+1
- >
ZC’/%(n+h( )) dh C’(n)

In the case when 7 > [ and } <
For all h < h; we find

N [

*
n

L < 1, define the number k; by Ay := ;—ze <

1
i+h(Z
n n

)=(1_h);’+h%3(1_h)e+.h=h(1—e)+es

N =

13



Thus

[
0’772'
T Y Y R A P A R A
- /221- ;_}_(n) - 2 n ’

because
l 5 i—1 Zl_Hﬁ, if —h—lghShl
n n n 2 2

o (18) is true for all 2. Furthermore there holds

’Y”(w) S Cma-—Z’ ")/’”(:I:) S Gma—3,

and hence
1 i I+1 1+4)*7°
net m W<
e <o(H) T ey <o ()
Using (16) and (17) we see that
1+ ax—2 L+i a—2 I+i a—1 141 a—3
7‘1'<L0(n) (n) +(_:_) (_‘:—) ___C 2 C .
i — n2 (L‘t‘;)za_z (l _I_,L) (l + 7:)2

With the definition of r;; and R, we arrive at

1
R;—Z Z 7‘[,__0 Z (l+ )2_0“.

i=1
tzlmodz i#Zlmod2

The second case ! > n(1l — €) can be reduced to the first case | < ne with the
help of the relations

1z)=1-9(1-2), 7(z)=7(1-2)
’Y"(m) — “'7”(1 _ m)’ 7[//(:2) — ,Ylll(l’_ (E).

In the third case ne < I < n(l — €) it remains to show that R; < 2, because in
this case [ ~ n,n — | ~ n. The assertion B; < %C is true if the function

(v(2) = 1())* =¥ (z)y'(y)(= — y)?
(v(2) = 1(¥))*(z — y)?

14

Riy) =



is integrable for fixed z = £. Now Ri(y) can be transformed analogously to r;; and
we get ‘

Rz(y)
(R4 + by — z))dn)”

Ri(y) =

with

Riy) := /01 Y'(z + h(y — m))dh /01 /01 ¥'(y + w(z — y))dvudu

1 1 p1 .
+’Yl(y)/0 /0 /o ’7"'($+uvw(y—m))dvuduwdw

Lot d’d 1 o
—/(;‘/Ofy(y+uv(a:’—y)) vu u/o‘/ofy(w-l-uv(y—m)) vudu.

This term R;(y) is integrable if the numerator Ry(y) is integrable , because of

1
[ ve+hy-andhzc,  yepl
For y € Us(0) there holds

v'(y) ~ y* %" () ~ v

We see, that R)(y) is integrable if y?*~* is integrable. Obviously this is true if o > 2
This completes the proof of Theorem 4.1. ‘ |

5 The convergence of the quadrature method |

In this section we shall derive error estimations. First we remark that due to the
definition there holds

= ualls = o = walls (19)

where u is the solution of (1), w = uo+ is the solution of (7), wy is the approximate
solution of (7) defined by (6) and (11) and up 0y = w,. Furthermore there holds
K¢ = Plp,, where K& € L(H %’a) is the interpolation projector onto the contin-

— E, is the discretisation opera-

(»3

uous polynomial splines of degree d, p, : H L

tor defined by (13) and P2 : E, — H Lo is the prolongation operator defined by

PHEST = ;‘;11 €j¢§-d). So Equation (11) is equivalent to w, = Pp,, with
W, = {{;}721 defined by (6). Using the triangle inequality, we obtain
lu = unlly = llw = Pidnlls o < lw = Kqwlly o + |1 P2 (@0 — paw)lly - (20)

First we estimate || Kdw — w|| Lo To this end we use the following lemma:

15



Lemma 5.1 For allw € ﬂ;_ there holds [lw| , < Cllwll-

x

Proof: If u E.I‘-:T%,‘u(*/’(t)) = w(t) then ||wH%,a = [Juf|y. Thus we get

ol = [ [ I gy 1 [ B,

N R O S @)
= [ L e e sy +2 [

_// o ) y)lzh( ,y)d:z:dy+2/1 J(l(ilm)q(li)()f(—l_(m)))d

<C (/ /1 [w(Tm—;ul(zyde dy+2 [ J"(“i@' sds ) = Cluwll;,

with the properties 6 and 9 of Remark 3.1. Thus

lwlls

= [lully < Cllul)s

and. the lemma is proved. |
Due to [16], Sect.5.31 there holds
| Kt = w0 < [ Kofw — wlly < Cn~|fu]l, (21)

fwe H and 1 <s<d+1.

Now we consider the second term of the sum in (20).
Lemma 5.2 There holds
1225 0 < Cllels..
for all ¢ = {¢,} € E, with a constant C independend of n.

The proof can be found at the end of the appendix.

Using this lemma, we get
1P(dn ~ paw)]l1 o < CllGn — par]s,. (22)

From the Theorems 3.1 and 4.1 it follows that the sequence {A.}new,
A, € L(E,, F,) converges stably to A € L(H%,a, H__;_,a) in the sense of Vainikko [18],
l.e. A, LA A and there is a number ng such that

At € L(F,, E,) exists for all n > ny and the inverses are uniformly bounded.
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Hereby we use the following notation: We write A4, 9, A, if the convergence
llgnAz — Apz,||F, — O follows from ||ppz — z,|| — 0. The uniformly boundedness of

the inverses of A, and the convergence A, e, A follows from

(VBn 1AnV/Bn 1€,€) ~ (€,€) and the construction of A,. Thus the assumptions
of the convergence theorem in Sect.3 of [18] are fulfilled and there holds

6 — Pats||5, < CllAnpatw — gndu|r,. | (23)

The operators A and A, can be represented in the form A = D + I and
A, = D, + L, with

Dw(s) = /1

o lo—s?

o |o—sf?

Luw(s) = (A— Dyw(s) = b _wlo) (h(s,o) — )da = ‘/: w(o)l(s,o)do

k,j=1"

Dn=n(ar-i)ijey»  Ln=An— Dn=n(arj(h(ts, t;) — 1))
Obviously,
lgnAw — Anpowl|F, < |lgnDw = Doprw||p, + llgnLw — Lapnw||,.
(24)

Because we have to estimate the norm || - ||, but no explicit formula for that norm
is available, we shall use the following lemma.

Lemma 5.3 Let M be an arbitrary but fized real positive number and let
a < M. Then there holds

¥l < CllY i
for all ¢ = {h;}75 ey

Proof: Due to Sobolev’s embedding theorem the mapping £ : H L - Ly 1s

continuous. Thus by duahty, the mapping E : Ly — H_1 is continuous for q= MAL

-1
Let g € Lo be an arb1trary function. Using the deﬁmtmn of H_ i ~Lo We get

-1 -1

1
'7,0'7_1 L

goy
v ort,

goy
~ |y oqT

<Clgoy7 |z

l9ll-1,a

L
2

17



From the properties of v we see that

g 1
o Ao ERAT - RICE
1 g-1 1 Ty
=/0 ﬁ =/0 v’tt)' #=0

since o < M. We arrive at

1910 < Cllg 047 Izes = Cllgllze.
By duality we get

[fllze € Cllflls (25)

for arbitrary f € H L Using the norm equivalence of Theorem 3.1 we find

Ya'

u’fgf,-as,-uh < oY 645l

j=1

= Cll{&15 e
< C”\/_;{fj}jz_llllz(")'

On the other side there holds

u Z £l ~ i"i 6] = 14E1 22 o

Thus we get

&3 I < CllYBa{s 3z o (26)

Furthermore we obtain

1¥llr = ||\/‘ 11/)th(n)< sup (/Ba ™%, Mix(m)

77 Ilz(n)_
= sup (1/’34)12(11) < sup (¢7C>lz(n) < C”¢”’m
[[VBntlly(n) <1 (¢l (ny <€
and the lemma is proved. ' [ |

Choose now a sufficiently large number M and assume o < M. Remind that

h(o,t)—1 _ V(EN'(e) 1
lo =t (@) =y(@)* ot}

l(o,t) =

18



Now we can estimate

lgnLw = Lapawllr. £ CllgnLw — Lnpnwlii,,

n-1
1 ) n-1
= C {/ 'w(a)l(a, tk)dO'— ; Z w(tj)l(tj,tk)}
0 -
jEkiI:.nodZ k=1 l'oo
< C (@t -2 3 z |
 te)do — = £:)(t,t
< 0 mp |[w@lond =2 5 w(slitn)
‘ j=k+1lmod2
< Cn™ sup  |i(,te)wlwy < On™? sup [|I(-, t)w|lws (27)
=1,...,n—1 0<t<l

if 0 < s < $ and w € W;. Here W7 denotes the Sobolev space of power 1 and order
s (cf. Triebel [17]). The last estimate is true, because w and its derivativs up to the
“order $ are periodic and the rectangle rule over a periodic interval approximates

the integral of a function with arbitrarily high order. More exactly, there holds the

following lemma, which can be found in [4], pp.109-110.

Lemma 5.4 Let s > 0. If f € W and f)(0) = fO)(1) for r < s, then

3 <.

< Cn”|fllwy, b=

=0

1 n-1 1

' JROLED O

The function I(t,0)w(c) and its derivatives up to the order s are periodic func-

tions of o if 5 < 2, because (%)kl(t,-) is bounded for any fixed ¢t € (0,1),

w(o) ~ o% in a neighbourhood of 0, w(c) ~ (1 — 0)? in a neighbourhood of 1,
and thus w(*)(0) = w(*)(1) if s < 2. Consequently we get Equation (27).

' It remains to examine whether the norms ||I(, t)wHWf are uniformly bounded or

not. :

k
Lemma 5.5 The mapping o — oF+%(1 — o)k+2 (5‘%—) [(o,t) 1is uniformly bounded
with respect to t for an arbitrary integer k.

Proof: First let £ = 0. Then we have

_1 t=0,
72 )
"(e)y'(2) .
(o, t) = |_;’(o,)_‘.yy(t)|21" |a—1t|2» , t#0;1,
t=1.

~GF

Using the Lagrange form of the remainder of the Taylor’s series, we get

1e) L (o)) |
I(o,t) > 67(0—)——1 (W) ift — o #0.

19



Obviously the function (1 — o)?0?%(o,t) is uniformly bounded with respect to ¢ if
o & U(0) UU1). If o € Ue(0) then (1 — 0)?0?i(0,t) is uniformly bounded with
respect to ¢, |t —o| > §, because the denominater contains ¢t — o and y(t) —y(o), v is
monotone  and  continuous  and  the  numerator is = bounded.
If o € U(0),|t — o] < § then [l(o,t) — limy_sI(o,t)] < C and
(1 — 0)%0%(0,t) < C, since /() ~ o*7, 4"(0) ~ 0*72, 4"(c) ~ ¢*3 and thus

o? <%'%(f)l — 3 (74(;)1) > < Const. lf o € U (1) then the uniformly boundedness of
(1 — 0)?0?%(0,t) can be deduced analogously.

Now let &k = 1. Then there holds

-2 t=0,
4 V(W) _ o TEPY(E)
5o P8 = R@)=0F ~ 2RI + s 1701
t=1.

e

Using the Lagrange form of the remainder of Taylor’s series again we get

8, 1) (@ .,
i(o,1) (7,(U)> £t 00,

34(c) 2
Combining this assertion with v/(¢) ~ 0*71, 4"(0) ~ 072, 4"(c) ~ 0*~* and
¥Y®(g) ~ o** for ¢ € U(0), we get the uniform boundedness of
(1 — 0)*0%Z1(0,t) analogously to the proof of the uniform boundedness of
(1 — 0)%0?l(0,t) . By further differentiations of the formula for I(c,t) we get the
assertion of the lemma. B

a—-3

On the other hand the solution w(o) of Equation (7) has an end point behaviour
like w(o) = o0%(1 — o)%gl(0) with smooth gl since the solution u(c) of Equa-
tion (1) can be written in the form u(c) = o3 (1 — o)7gl(c) (see remark 2.2) and
w(o) = u(y(o)). This fact together with Lemma 5.5 implies that

sup [[I(¢, - Jw||ws < oo (28)
0<i<1

for any s sat1sfy1ng 0 < s < £ —1. Indeed, consider, for example, the function
w(o) = 0% and suppose s is an mteger Then

(5@5)3(1(‘7’0“2) = ZC ( ) (0, £)o 8~

(Zc (2) o)

The last function is integrableif $ —s —2> —1,ie,s <% —1. If s > 0 is not an
integer, then another stralghtfo;:ward argumentation including the special definition

20



of the norm in W; leads to the same result. Toghether with the estimate (27) we
arrive at

lgnLw — Loppw||s, < Cn™*,  0<s< g— 1. (29)

It remains to estimate ||gonDw — Dpp,wl|F,. Using Sobolev’s embedding theorem
and Lemma 5.3, we get
llgnDw — annw”F,; < CllgnDw — Drnprwli,,
< CO||PugnDw — P, D,pwl|L.,
C||KnDw — P,Dpppw|L.,
< C||KEDRw — PEDEpRy| A (30)

il

with

Pn({é] ?_—11 = Z £J¢J’ tj =

7=1

l

where 1); is the smoothest interpolation spline of order d with respect to the partition
178

PRI ) = S &

J=-—00

= ¢l f = {fti)}2 o>

Kn ‘= LInPn = Lfnfn, KR:ZPRp,,}?:Pqu,

f(o)
DRf(e) = pf- [ e

DE .= N (ak—;5)p j=—oo = nC(a),

n

with
-, k=0, _
ag = I-kll,— , kisodd |, a(t) = a(e”*) = —7|s|; =7 < s < 7.
0, else.

Here C(a) denotes the convolution matrix generated by the Fourier coefficients of a.
The spline order d is only of technical importance in the proof. It can be choosen
large enough. Here the estimate is true for arbitrary d. The operators K, and
KZE are the interpolation projectors onto the space of smoothest splines of order
d. The last estimate in (30) is true, because K,Dw — P,D,p,w is a projection of
KEDRy PRannw in Ly,
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Lemma 5.6 If 5 8 « s < d+2 and if € is arbitrarily small but ﬁzed then there is a
constant C > 0 such that

| K DRf — PEDRp fllay,, < Cn3*e| £,
for any f € H,(R).

Proof: It is well known that the vector (e‘if")?o o (-7 < ¢ < 7)is an eigenvec-
J=-

tor of the convolution operator C(a) = (ak_j):"j=_°° corresponding to the eigenvalue
a(e®) = —x|¢|. Furthermore, for gé(t) := e™*!, we obtain
) g

phgt = {e’if%}:‘;_m
and

C(a)pPyt = a(e')pPet.
Obviously we have also

PRnC(a)pRgt = na(e's)PRpR gt = na(eS) KRyt
Let F' denote the usual Fourier transform

(FNO = 7= [ 1
Then there holds

16 = == [~ (PP
and therefore

PEnC(@)elf = —= [~ (PO (PEnC(apl) e

= o= [ (PrEmaet Kot

On the other hand there holds

(D*)0) = == [ —t sigale)(F1) O (1)

(c.f. [11]) and thus
(KRDRf)(t) = 7}5—; [ ~mesign(€)(F (€N KRS )ik,
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Consequently we get
PEnC(@)elf — KEDRF() = 2= [ ) FAENKE) Dk,

with r,(¢) = na.(e"%) + m|¢|. There holds

NGIET |
Tn - 'n,l 1 ) _ =" (3]‘)
To see (31) we have to distinguish two cases. If |¢] < n7 then na(eii) = —x|¢|

and thus r,(¢§) = 0. If |{] > nr then Ina.(e"i)| < 7 < 7r(5>l and
m|é] < (%)1_2 A Obviously there holds

ni—1

|PEnC(a)plf - KS?DRf(t)Hm~+ <

< (KR - L) f- [ X F RO O, +

1
_ 13
= /_m rol€)(F £)(€)g° (£)de ey, (32)
where L2 denotes the orthoprojection onto the spline space lin{i;}% 32 - Using

(31), we get the following estimate for the second term of the sum

o= [T m©) (DO eIy, < NEDEENT+E

1

Crr(FAEWITE

<
< O flay,y,, < Cndt| fla, (33)

+]2~+e -
Withl::s—%—e.-

From [16], Section 2, we see that for % +€<s; <d+ 1 there holds
I(kE-18) 4= [ rn(f)<Ff><e>gfdanL+, <
< ot [T (PO ],

O”n’-l-e—a1 “(Ff (£ rn(£ \/ 1+ 62 lle

1 81 +1
< CnEtR|(FAEY1I+E In
< Ond | fllm,, = a7 fllm, (34)

IA

for all s = s, + 1 with % < s < d +2. This completes the proof of the lemma. @
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Note that the estimate (30) is true for arbitrary d and using Lemma 5.6 we arrive
at

llgn Dw — annw“Fn < Cn';"l'e_’”wHH” (35)

if 2 < sand w € H,. From the estimates (20), (21), (22), (23), (24) ,(29) and (35)
we obtain the following theorem:

Theorem 5.1 Let 0 < s < min{d,$ — 1}. Ifu is the solution of Equation (1), w
the solution of (7), w, the solution of the quadrature equation (6) defined by (11)
and u, 1= w, 0 ¥y~ !, then there holds

= wally = o = waly . < On~, (36)
ifwé€H s+dte for some positive e.

Remark 5.1 If f is sufficiently smooth, then there holds w € H, for s < 5.

This is an easy consequence of the definition of w and Remark 2.2.

6 Another quadrature method for the hypersm—
gular integral equation

In this section we shall propose another quadrature method for the Equation (1),
using a cos-transformation. We shall proceed like in Sect 3.8. of [16], where the
numerical solution of first—kind integral equations with logarithmic kernel is treated.

First recall the hypersingular integral equation :

Now we change the variables with another transformation function ~;:

1 —cosms

1(s) := — s €0, 1]

Similar to Section 2 we get that Equation (1) is equivalent to

wis) e [Flem@e) o
Aw(s) = | (o) = 1i(s)P (0)do =g(s), (37)

with ,
w(s) :=u(m(s)),  9(s) = f(m(s)nls)-
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There holds

Y (s)vi(e)  «* sinmosinws

- 2 - r COS TS—CO8 T 2

I71(e) = m(s)] # femonaere)
72 sinmosinms

2

2 1 1
4 2 2 : sinz'rr-‘—';l )
1o

)= [T (G~ ) ol = o9, (3)

2

4 sin® 74=2 sin? 7r—+—
T

Thus

Analogously to Section 2 we can deduce the quadrature method for n even

= 2 n()n(s) n?

g{tx) = . ¢x
(8 :Z; nm(t) —n(te)?” 2
j=k+1mod2 .
= 1 1 n?
- _1Z=; % SiIl2 Wilg;z'_tj_ - sinzvrf‘—‘%i 6] - _2—_£k ) (39)
j=k+1mod2

withk=1,...,n—1.

v (s)i (o)

The kernel function FT(L%—L#T@W of A is 2-periodic and odd with respect to each

variable over the interval [—1,1]. For real ¢, let H* denote the Sobolev space of
2-periodic functions (distributions). We will especially be interested in the subspace
H! of odd functions;

H.={f € H': f(—s) = —f(s)}.
There holds
(Acw)lon) = A(wlpa),  w € H, (40)

where

Ayw(s =7 / w(a) —5——do. (‘41)

1SlIl T2

This can be seen in the following way

_ w(o)
Aow(s) = 4 /1 51n2(7r-—")d0
7 1 w(o) 7 1 w(—o)
S R G =) g
4 Jo sin2(7r"2"’) T4 Jo sn ) 7

- 7“:;/01 (sinZ(vlr%) B sin”(vlr’—’éz)) wloldy = duls)
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since w 1s odd.

An easy computation shows that A, maps odd functions into odd functions and
even functions into even functions.

We continue g to an odd function on [—1,1] by g(—s) := —g(s) and set
€_r:=—¢k=1,...,n—1, which corresponds to an odd continuation of w. Then
the quadrature method (39) is equivalent to

n—1 2 2

7"

ty) = 42

g( k) j;n 27‘&5111 7rtk 26] 6 ky | ( )
i=k+1lmod2

0250.

with k =1—mn,...,n—1; k # 0. The restriction k # 0 can be omitted, because
9(0) = f(7(0))y1(0) = 0 and the sum of the right-hand side of (42) is zero if k = 0,
because of ¢; = —¢_;.

Furthermore there holds

w2 1 w(o)

w(o)
Asw(s) = 4 Jasin?rse T ) /1 1 —cosm(s — o) do, (43)

2

and thereby A, is the hypersingular integral operator on the unit circle (c.f.[8]).
Stability and error estimates for the following quadrature method applied to this
hypersingular integral are proved in [8]:

. n—1 2 2

ate) = ¥ = gt~ 5

t
Paryll 21 sin 1r"—’-

j=k+1mod2
n-1 71,2 1 mrz ’
= = . | 44
jﬂz_n n 1 —cosm(tr — zﬁj)£J 2 S (44)

j=k+1mod2
n—1
0= > &
j=1l-n
with kK =1—mn,...,n — 1. In the papers of Kress [10] and Proessdorf and Saranen
[15] it is shown that the product integration formula leads to the same quadrature
method. The quadrature methods (42) and (44) differ from each other only by the
one—dimensional functional, which guarantees the uniqueness of the solution. So we

get the stability of (42) and of (39) by pertubation theorems (c.f. [11]). For the

quadrature method (44) the following convergence estimate is proved in [8]
lw = wall, <Cn" s, [lw —wally < Cn"Jlwll,, (45)

provided w € H, and s > £, s > r > 1. Repeating the arguments of [8] we get the
same convergence estimate for (42) and for (39). Thus

= ally = lw = wally o < Jlw = wally < On' ],

iwaH,ands>%.
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7 Appendix

In this section we shall give the missing technical proofs.

7.1. First we shall prove that ¢x(y7'(t)) € I:T%(I). Obviously it remains to show
$1(77H(2)) € ﬁ%(I) , that means

/-1( >/ T (M (E) = ny(s))? dtds+/7—l(%)wdt<oo.

(t — s)? t

Using the properties of v (see Remark 3.1), we obtain

T (1), [ (ns)?
/o Ty %= 7(3)7(s)d3
] g2 s

162 1
~ —ds = = < o0.
/oss g <

Furthermore there holds

/'“ )/ T (@) =y TN (s)? L

(t —s)?

R o[w 2 1 / (t"s)z
= /0 /0 w1 () oy o ryyrdtds

_ / - / " n2h(s,t)dtds < C,
0 0

because h is bounded and hence the assertion is proved. B

7.2. Further we shall give an argumentation for property 9 in Remark 3.1, i.e.
for the assertion h(s,0) <1, s,0 € [0,1]. In the case of §(s) = s* there holds

aZSa—lo_a—l(s _ 0.)2

h(sa 0) = (s“ — o,a)g

Setting z = £ we get

a2 a—-l(l _ :E)Z ‘ma—-l

(1 —gz=)? (fol(w + A(1 — m))““ldh)z-

h(s,0) = h(z) =

On the other hand,
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/:(::: +h(1 - z))*1dh =

= ff(w +h(1—2))*dh+ /:(m +h(1 —z))*"dh

/5 ((w +h(1=2))* 4 (2 + (1 - h)(1 m))é-1> dh. (46)

Using the well known inequality a® + b* > 2(ab)? with z > 0, we find that
(z+h(1- e)* 4 (z+ (1 = h)(1 —2z))*t > (47)
>z + A1 —2))F (z+ (1 - R)1 —2))T.
Furthermore there holds
(z+hl—z))(z+(1-h)(1—2))=z+h(l-h)(z* -2z +1) >z,
and thus
(z+h(1—2)F (4 (1 -h)(1—2z)F >z (48)
By (46), (47) and (48) it follows that

a—1

! a-—1 ! a=l =
/O(m+h(1—z)) dhzz/% s dh = o5

and thus

wa—l

R T vy

For the transformation + introduced in (2) the proof is more complicated.

7.3. Now we pass to the proof of Remark 2.2, i.e. we prove that the solution
u of the hypersingular integral equation on the interval can be written in the form
u(t) = t2(1 — t)7gl(t) with gl € C*. Like in Sect. 6 we transform Equation
(1) setting t = 1 (s) = l;cci;—(ﬁ to get Equation (37). The relation (41) holds
provided w € Hf is odd. The mapping properties of operator Aq can be found in
[8]. In particular we get w € C* if g € C™, where g is defined on [—1,1] by odd
continuation. Now g € C* follows from f € C® in the following way:

= [(0) ,

t€0,1],

k=0
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and thus

~ 1 (0) )

Using that g and v; are odd and 1, is even, we get

oo (k)
o) = (-3 kfo)w—t»k

l(tzf Do), tel-1,0.

We arrive at ¢ € C*. Using the definitions of v; and g it can be seen that the odd
continuation of g is 2—peridic with all derivativs. Thus w € C*. Now there holds

u(t) = w(yyH(t)) = w ( arccos(l - 2t)>
Because u(0) = u(1) = 0, w is odd and arccos(l — 2t) = t3(1 — t)3gly(t) with

gly € O™ the assertion u(t) = t3(1 — t)3 gl(t) is proved. |

7.4. Now we give the proof of the main theorem of Section 3. First we use the
definitions of the norms in E, and H La and the definition of the linear splines ¢;

to evaluate ||{;}|z.:

h(z,y)dzdy

165, = /01 /0 (S8 Gi(a) - fm(y))

(z - y)2

. /0 (22 (=)’

=) vl
B i+l pl4+l s“ ,y) ‘
- i,l= o/: / y)2 )d d (49)
1+1 l(&(l +1-— :c) + &z —0)° Zvdz
+ ;fz n Y(E)(1 —(E)) il

with
sii(zyy) =G+ 1 —a)+ Gpa(e — 1) — &G+ - y) = &y — ).

We set

1l Sz,(w,y (2, Y - |
/ / b ) dady. (50)
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First we consider the second term of the sum (49). Because of 7—"(;-%’(1-)%2—"(:% ~ 1 (ct.
prop.6 of Remark 3.1) there holds

W1+l —a) tbne =)’ @,
-/z n Y(ZH)A=7(3) e

/H'l (GU+1-2)+&a(z = 1))’ d
! nZ(l - £)

LetlSlS%—l.Sincel—i—~1iff<%,weha.ve

/“’1 (fz(l +1—2)+ &z = 1)) d
! nf(l-2)

~ f’ —(g,(z+1—m)+&+1(w—l))d
/ le—m)+€z+1$) dz

1
1
%%(fz + & + Géi) ~ (512 + &)

~~

If ] =0 then

2,,2

g 2 [* 2
/(;a:(l—f)dm éli/oa:d:c &1

Analogously we obtain

WG4 l—a) bz =07, 1 . .
J ST R A A

if2 <1< n— 1. We arrive at

ST ST ETMCET) JPEN S
L[ e e £ 16+ S 6

Now we investigate S;;. Without loss of generality let 2 < [. Before studying S;;
we prove the following lemma. ‘

Lemma 7.1 Ift,s €[0,1],1<3,l<n-2, |[—1i|>2 then
h(l,i)fvh(-——l“,’“). (52)
n n n n
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In order to prove this lemma we recall the definition of A and consider several terms
of the product

7'(@)7'(y) (= —y)?
(v(z) —(y))?

First let 1 < 1,4 < %3 —1, |l —1] > 2. Furthermore assume % < §(a) with §(a)
being choosen as in Remark 3.1 . By considering the denominator and using the
monotonicity of -y, we see that

(5 —CE) () -G
v B =v(E) T b)) =)
() —(})

h(:p,y) =

< 14 -
| () = (52)
19/(42
<1 +-7(11‘2),
2v'(%%)
because 7’ is konvex in [0, §()]. Further we have
V(L) u(HE)E T u(l et fy(iR)e 4 y(nsliZye) ®
T~ T (g )
+1ya-1
< 'U(l-n) 2:1—122(&—1)’
< g

because v(z) < 1, v(l—%2) > 1 and (%)a_l < v(z)*+v(l —z)* < 1. Since
I > 142 >3 and using the properties of v (see Remark 3.1), we get

We arrive at

(5D -8 L
1) -vE) ~

provided /41 < §(a)n. Let now [ > é(a)n — 1. Then there holds

Y4 - ) -
YE) =v(E) T ) -3)
(5 —y(3)
(&) —(E2)
l’)"(fl)
2’7'(52)SC’

1+

1+
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because ' ~ 1 on the interval (5—(25), 1- i(zgl)

To get the estimate from below we have to distinguish two cases again.

1 < §(a)n — 2 then

(B — () | () - ()

YE) =) T ) -qd)
7(3) — ()
v(E) - (%)
1D — 5(3)
v(E2) —4(2)
Y(ENL +4"(6)i 5
/(__-I-_)Z _|_,.),/I(£ )n%’

1+

v

1-—

with ¢ € [£, 22] and ¢, € [, #£2] | For the reciprocal value there holds
T(EDZ +4"(6) % 2 v"(&1)
<2+4= <0,
Y(5H)a + (@) ny (52~

because %-T'((E}lﬂ)l is bounded (see the formula of 4" in Remark 3.1).

If > 420 then

016w Bl (G- BRSG (€) BleL G-)

Y(H)-vE) T D) -(E)
! y
B LTI
7'(€2)(1 —7)
with & € [22, 1], & € [£,L]). The last estimate is true, because 552 > 1

4’ ~ 1 on’the interval (—-(2—), 1- 429‘-)) We arrive at

. : 2
(=) ~ (2 -2
Furthermore there holds
G2~ (55
n n n n ’
because of |l —z| > 2. Now it remains to consider the term

w’(%)z(v<i>) ( =) '(’i—*)(ﬂb)z
TG (w(d) ("-’)) o(dy  \f(E)
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with f(t) = (v())* + (v(1 — ?))*. Because of (%)a—l < f(t) £1, v ~ 1,
v(’—‘#),v(ﬁ'—nl:i) ~ 1 and v(z—ii) ~ %i, v(}‘) ~ ’% we get

V() (et
I( ) Je—1 :

Obviously

a—1 a-1
L (T ()

a—1
Ja—1 - [a—1 S 2 :

. We arrive at

Y~ (55)

With (53), (54) and (55) we obtain (52) in the case 1 < [, < 2 —1, |l—4|>2.
The case § < 1,2 <n -2, |l —i| > 2 runs analogously. ‘

Con51der the last case 1 < 1,4 <n—2, [I—1]>2,2<2—-1,1>2 In this
case there hold also (54) and (55). Using (53) separately for the intervals (0, 1] and
[2,1), we have

AW a2 = () -3 4 4(3) -

)

~ 1) = 1G) +1G) ~ 1) =) D)

So assertion ‘(53) is true in this case, too. The formula (52) follows from (53), (54)
and (55). This completes the proof of the lemma. B

Now we continue the proof of the theorem. First let 1 < [,7 < n — 2,
|l — %] > 2. Using Lemma 7.1, and the definition of Si; , we see

S ~ h(_ /H-l /H s“(w’y)

w2

~ M— %l fﬂf sti(z,y)dzdy,

since (—I%y)—, ~ (T—%f With the definition of s;; we compute
il pltl 1 '
[ [ stde,y)dady = 3 (& + & + € + €+ o + Eikinn)

__-;- (fifl + &1 + fl+1€i + fi+1€l+1) .
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This is a quadratic form with zero in ¢ = & = €141 = &i+1 and therewith equivalent
to the following quadratic form with zero in &; = & = €141 = &it1t

i+l pl4+1
./,- -/l szi(may)dmdy ~ (fl - &)2 + (€l+1 — fg)z—}—

+(& = Eip1)? + (g1 — &)
Thus weget for 1 < [,i<n-—2, |l—4|>2

1
(-

BE (&= &) + (b4 = &)° : , (56)

n

l 1
St~ h(—, )

+(& = &)+ (b1 — Ein)?).

Now we consider the second case 1 <1,1<n—-2, |l—i|< 2. Before estimating
S1: in this case in more detail we prove the following lemma.

Lemma 7.2 Ifmye 1 22l] |z —y| < 2 then h(z,y) ~ L.

n? n

Without loss of generality let z > y.
If = y then there holds A(z,y) = 1 (see the definition of h)
Let now z # y. Then there holds

YEW @) e —v) _ (=)' )
(7(2) = 1))’ (&)’

witha ¢ € [y, z]. Becauseof z,y € [%,221] |z—y| < Zthereisanlwith1 <[ <n—4
such that

h(z,y) =

LeysecostR
n n
Analogously to (55) we get

(D) ~ (@)~ (0) ~ 7 (6)

and we arrive at the assertion h(z,y) ~ 1. ' [ |

Using the definition of S;; and the last lemma we obtain

Sy~ (& — &41)? (57)
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provided 1 <i=1<n-2.
Now let 2 <l =1+1<mn-—2. Using the deﬁmtlon of S;; and the last lemma again,
we get

! 41 Sh(:B, y)
Sti-1 f_I/ @ __y)zd zdy

512(3 —4In2)+ (£I+1 + 512—1)(1 —In2) +§-1641(1 —21n 2)
+(&bpr + &&-1)(—3 + 41n 2).

This is a quadratic form with zero in ¢ = &1 = €1 and therewith equivalent to
the following quadratic form with zero in & = &41 = €1-1:

St1-1 ~ (El - 51—1)2 + (& — b1 )2 . (58)

Let 2 = 0. For the present con51derat1on let I > 2. Then there holds = )2 < —4—

for all y € [0,1],= € [I,I 4 1]. Using this property and h(z,y) < 1, we have

1t (G4 1 —2) + b = 1) — &y)’°
0 < Sip< /0 /l (z —y)? dzdy

< 5 [ [ 60 -2+ sz - ta0)" dody
4 (1,5, .2 9 1
= 5 (58 + &+ 8 + k) - 566+ )

< —g—(ff + &y + ED)

Let now 7 = 0 and | = 1. Using h(z,y) < 1 again, we get

=)
IA

12 (g(2—az)+&(z—1) - fly)z
< fo f1 o dids
= €(3-4In2)+&(1 —1n2) + &6(-3 +41n2)
< C(&+8).

We arrive at
n—1 1 %‘_1
0<2510<C(Z fz>_ (Z fz'*'szt) (59)
Analogously we show that

0<Y S < C (’i: ﬁf?) < (Z 78+ Z _"‘fz) : (60)
=1

=1
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From (49), (50), (51), (56), (57), (58) , (59) and (60) it follows that

”{5.7}H12E‘“ ~ Z fz ‘*‘Z _lfz +Z(fl b41)°
+ lz 1l|2(( l—'fi)z'}'(fl_&-*-l)z
T2
+(b — &)+ (€t+1 —éir1)?)
%‘1 n—1
~ Z 51 + Z —“'fz + Z(fl 101)?
n-1 1 'I,
T2 M) 1,2(& &),
limtj>2

because for |l — 1| > 2 there holds
h(zs 2) ~ AL ) ~ h(;

nln

~ = 11-1|2 ~ 1z—£i1|2 and
w1 Usmg h(l 1)~ 1 we get

n’n

EHE, ~ z s,+z————-f,+z (DR — &

1,i=1

il
——1

~ Z fz"’z _lfz

2y
21 22
i ,Zl h(n n [ 22
t#1

|2 Q(ley €atv1, E2i, §2z+1)
with
q(bar, bary1, Eaiy Eai1) = (€t — €2)° + (€at — E2i1)* + (Cai1 — &2:)°

+(€a141 — §2i+1)2-

Obviously  gq(éar, &at41, €2iy €2i41)  is @  quadratic form with zero in
én = Cuy1 = &u = &gy and thus equivalent to the quadratic form

(€21 — €nir1)® + (a1 — €2:)% + (ar — &aur1)? + (€2i — €2iy1)?. Using this equivalence,

we see that

514

M, ~ % 5,+z Lar 3ol 1”2( %

l,i=1
iZlmod2

3 (Z B2 Iz) (& — &)
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Furthermore there holds

and we arrive at

I~ X WS D G Dt

Li=1
-.;'Elmod2

which completes the proof of the theorem, because the second assertion follows
immediately by duality. g

7.5. Last we give the proof of Lemma 5.2, i.e we show that

1P€lls . < Cli¢ll,

for all ¢ = {¢,} € E,. By definition of P? and of the norm there holds

1P = 1% s,

7=1

n— _§5n-1¢ 4(d) 2
- / i 600(e) - Ti 600 ) o )dody

(z —y)?
( "'1€z¢§d)( )2
/o - @) %
i+l pl41 sh
-z / / y)z )d dy (61)
ol (Ekep(z) &gy’ (‘73))2 'E
Y ey e
with
siale,y) = Y &) - Y &8P )
keD(l) jeD(i)

and D(l) := {d(1),d(l) +1,...,(1) + d}, where d(l) is defined by d(l) € Z,
d(l) <1< d(l)+d, d(I) = 0 mod d. The interpolation polynomials d~>£d) are polyno-
mials in [d(k), d(k) + d] with c‘;'S;cd)(j) = b ;. We set

T +1 ‘
o= H/ " olde), (=, )dady. (62)

n:-—y)2
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First we consider the second term of the sum (61). Because of _ﬁ%é(}@—,%) 1
(property 6 in Remark 3.1), we have

- 2 | | . 2

| (ZkeD(z) €k¢’§cd)($)) z ey (EkeD(l) fk¢§cd)(93))
— "(\dz ~ d
B T T R O M -

Let 1 <1< % —1. Then we obviously have

/IH-l (ZkeD(z) fquf)(m))zdm < C_/ll+1 (ZkED(z) £k4"5£d)(z))2

nZ(1— =) z de
1 pl+t (d) 2
< C-
- /’ (kEED:(l)E ¢ )
I+ 2
< l/ 1 (Z §k+d(z)¢ () )
< CT;; Ehva(t)- | (63)

If { =0 then

)
/0 (Zk—ifffli () )> dz <CZ§1¢’

n=
n

because 7 / <2and -"———) is a polynom of degreed —1>1fork=1,...,d (ci.
deﬁmtlon of $?). With (63) we get

n_ - 2 n

20 i (Ten bedi (o)) 21,
i LA )

=0 ! m(]' - ;) =0 l

Analogously there holds

~ . 2
-1 41 (ZkeD(l) fk¢§cd)(m)) L e
/z ;’f(n—-m) dmsczg’ln_lél-

=2
and thus
=1 i1 (EkeD(z)fkfﬁﬁ,d)(m)) =
< g2 2] 4
LI T ese N e (6)
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Consider now the first term of the right-hand side of (61), which will be de-

noted by ¥"7i., Sii. To estimate Si; we distinguish several cases. First let
I#imod2 :

1<,i<n-2,|l—1|> 2. Using the Lemma 7.1, we see that
) /*“ /‘“ sti(z ,y)
(z -
1+1 l+1
- —) l—-Z / / :ydmdy)

since —t~ ~ 5. With the definition of s;; we compute
e ~ T P

i+l pll
/ / si(z,y)dzdy =
i J ’

2
i+1-d(i) pl+1-d(l) d )
=/ /, (Z §k+d(l)¢k (‘U Z§j+d(i)¢§-d)(y)) dzdy.

i—d(4) —d(l) o
Because of
9(a) = Ez;k(m —7)
izo (k=3)’
and

5 =130

=1

we get

d i d )
> Ertaq) ()~ €j+d(i)¢§-d)(y) =

k=0 7=0

d i d i
> (Ertany — fd(z))¢§=d)(w) - Z(£j+d(i) - fa(z))d)gd)(y )+ (Gapy — €awy)s
k=1 j=1

and therewith

/i+1.—d(i) /ll+1 d(l) (Z §k+d(l)¢k (z) Z£J+d(t)¢ )(y)) dzdy <

i—d(3) —d(1) =0
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< ((éd(z) —&an))’

i+1-d(i) pl+1-d(l) ,. 2
- @D (1)) dzd
-I—Z(fk+d(z) any)? / “© -/ll—d(l) (g&k (;I;)> zdy
i+1-d(i) pl+1-d(l) ,. 2 )
o — 2 () dnd
+;§(6j+d@) 20) /i—d(i) ./z_d(,) (d’, (y)) zdy)

d d
< C ((fd(z) —ba))? + Y (Erapy — &ay)® + D (Eiwdg) — §d(z))2) -
k=1 7=1
Thus
d .
S < Ch( , )(l Y ((fd(z) La))® + D (Eraqy — Eay)*+ (65)
k=1

d
+ Z(‘fj-i-d(i) - &)’ )

ifll—4>21<i<n-—2

Ifz—Ol>2then )2<f42—andthus

2
I+1-d(l)
- 12/ /z+ (k 0§k+d(z)¢k )(w) = Z&d)(d)(y ) dzdy

d(l) j=1
C d d .
APEIES A )
k=0 i=1
Analogously there holds
Sin1 < (Z fk+d(z) + Z f) (67)
Jj=n—d

Now we consider the second case |l — | < 9. Using the property 9 in Remark
3.1, i.e. h(z,y) <1, we get

t+1 1+1 312 (m y
— " dxd;
<c[] v,

(z —y)?

in this case. Usmg (;50 (:c) =1-Y¢, gb(d)( ) , we obtain

+1-d() /t+1—d(t) (Sheo brrary (30(=) - 3°)))
l

dzd
1-d(l) —d(1) (z—y)? vy

=
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/z+1-d(z) /1;1_4(1) (2hes (beraqy — tany) (80(z) ~ 43§cd)(y)))2

% 1-d(l) 1-d(1) (z —y)? A dzdy
d 2\ pl4l-d(l) pl4i- d(l)( z) — ¢y ))
< C (; (€k+d(z) - fd(z)) ) ‘/l—d(l) /l-—d(l) @y dady
d 2
< C (Z (£k+d(z) - 5:1(1)) ) ; (68)
k=1

because for k € {1,...,d} there holds

k=1

~ d-1 k . .
¢§cd)(m) (d)(y) Z Ck(:nk _ yk) =(z — y)k_zo (Ck ;m.?yk—.?) ’

with ¢ € € some complex numbers.

Let now 2 <2=1+4+1<n —2. Additionally let [ + 1 # 0 mod (d). Then d(I) =
d(l + 1). Using the definition of S;; as well as Lemma 7.2 and the representation
(d)(:c) =1-%%, <,z~5§cd)(az), we get analogously to the case 1 = [

ey o (oo by (B7(0) - #70))”

dzd
1-d(l) 1+1-d(l) (z—y)? y

Stit1 =

/H“W{f““m(ZL1GMMY-&W>@9@0—$@@»Y
l

= dzd.
~d)  Ji+1-d0) (z—y)? o
d
< (Z (£k+d(z) - £d(z)) ) (69)
k_.

Let now 2 < 2 = 1l +1 £ n—-2and Il +1 = 0mod(d). Then
d)=14+1-d,d({l+1)=1+1 and we find «

3 D)
S = /1 /0 Zk__dfk+l+1¢k (93) Z,_ofa+l+1¢, (y)) dzdy

(z—y)?

_ / / Zk__d(§k+z+1 — &)B¢ Em): )2,—1(§J+z+1 - Et+1)¢(d)(y)) dody
+1 — §i41 53 ———— ;- dzd
< (k;d(§k++ €r1)’ / ./1 (m Y
( )
+Z(€J+l+l 141) / / ((i_:;)))z dz dy)
< C ( Z (fk+z+1 - fl+1)2 + Z (fj+l+1 - fl+1)2) ’ (70)
k=—d 3=1 :
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because for k € {1,...,d} there holds

_/ /1 :;k)_(y))z dzdy < 0/01 /—01 - fy)zdmdy <C

Using the estimates (65), (66), (67), (68), (69) and (70) and the fact that, analo-
gously to the considerations in the proof of Theorem (3.1), quadratic formulas with
the same zeros are equivalent, we arrive at

nz—:lsz,i < (_Z_l fz'l'z

1,l=0

n—1 l
h{—

* z,iz=1 (n
iZimod2

Together with (61) and (64) we get that

i1 .
’ﬁ)l_i_llz(f' - &) )

P2 o <c(i 5,+Z—~£,+ ZV_) —-_;”2(&—&)2).

lLi=1
1§lmod2

Finally from Theorem 3.1 the assertion “Pd§|| L < C)lé|lz, follows.

o —
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