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ABSTRACT. We analyze a differential system arising in the theory of isothermal
viscoelasticity. This system is equivalent to an integrodifferential equation of hy-
perbolic type with a cubic nonlinearity, where the dissipation mechanism is con-
tained only in the convolution integral, accounting for the past history of the
displacement. In particular, we consider here a convolution kernel which entails
an extremely weak dissipation. In spite of that, we show that the related dynam-
ical system possesses a global attractor of optimal regularity.

1. INTRODUCTION

Let  C R? be a bounded domain with smooth boundary 9. For t € RT = (0, 00),
we consider the evolution system arising in the theory of isothermal viscoelasticity
19, 20]

Dt — A — / u(s)An(s)ds + g(w) = f,
0
aﬂ] = TT] + &u,

where u = u(t) : Q x [0,00) = R, n =n'(s) : 2 x [0,00) x R* - R and T" = —04,
supplemented with the boundary and initial conditions

{U(t)\aﬂ — 1']g0 = '(0) = 0,

(1.1)

- u0) =0, O(0) = v, 1P(s) = m(s)

Here, g : R — R is a nonlinear term of (at most) cubic growth satisfying some
dissipativity conditions, f : 2 — R is an external force, whereas the memory kernel p
is an absolutely continuous summable decreasing (thus nonnegative) function defined
on R*. Problem (1.1)-(1.2) is cast in the so-called memory setting (see |5, 6]), and
is equivalent to the integrodifferential equation

O — (14 ¢)Au + /OOO p(s)Au(t — s)ds + g(u) = f,

where ¢ = [ ju(s)ds > 0, with boundary condition u(t)|sge = 0 and initial con-
ditions u(0) = wg, u(t) = ug — no(—t), for t < 0, and Ju(0) = vy. We address
the reader to [11] for more details on the equivalence of the two formulations. It is
known that (1.1)-(1.2) generates a dissipative dynamical system S(t) on the phase
space Hj(Q) x L*(2) x L7 (R*; Hj(2)), the so-called history space, since the vari-
able n contains the information on the past history of the system. The asymptotic
behavior of S(t) has been investigated quite extensively. For instance, if the first
equation contains an extra term of the form O,u (physically, a dynamical friction),
then S(t) has a global attractor of optimal regularity |1, 3, 18|. When this term does
not appear, as in our case, the existence of the global attractor and its regularity
can still be proved, although the dissipation is contained in the memory term only
[4, 10]. Clearly, this situation requires a more careful analysis, the dissipation being
much weaker. However, all the above results (as well as all the results on the as-
ymptotic behavior of dynamical systems arising from equations with memory) have
been proved under the apparently unavoidable condition

(1.3) 1 (5) + 5p(s) < 0,



for some § > 0 and (almost) every s € R*. Indeed, even in the linear homogeneous
case, (1.3) seemed to play an essential role in establishing exponential stability (see
[8, 15, 16]). It is readily seen that (1.3) is equivalent to

p(s +0) < e *p(s),

for every o > 0 and (almost) every s € RT. On the other hand, [2]| proves that a
necessary condition in order to have exponential stability in the linear homogeneous
case (and, consequently, in order for S(t) to possess at least an absorbing set) is

(1.4) (s + ) < Ce™p(s),

for some C' > 1, § > 0, every ¢ > 0 and (almost) every s € RT. Nonetheless,
between (1.3) and (1.4), there is quite an elbowroom. In particular, (1.3) does not
hold when g is too flat (which corresponds to having zones of very low, or even
null, dissipation). An interesting situation from the physical viewpoint, that might
not comply with (1.3), but obviously fits (1.4), occurs when u eventually vanishes.
Along this direction, the very recent article [17], focused on the linear homogeneous
case, shows that exponential stability is still present when (1.4) holds, but (1.3) is
heavily violated. Here, we are able to translate the semigroup approach of [17] in
terms of suitable energy functionals, so to extend the analysis to the nonlinear case.
This is not, in general, a straightforward fact: there are linear systems (in particular,
the one associated with our problem) which can be tackled via semigroup methods,
but whose nonlinear counterparts require the introduction of ad hoc, and often
quite subtle, techniques. In the present work, we establish the existence of a global
attractor of optimal regularity for S(¢) when g fulfills the necessary condition (1.4),
but under much weaker hypotheses than (1.3). Besides, contrary to [4], the kernel
will be allowed to blow up at zero. For instance, we can consider the weakly singular
kernel
ke—OéS
p(s) = PSR

with £ > 0 and «,3 > 0, which has been successfully used to fit experimental
data for some real materials. To the best of our knowledge, this is the first result
of this kind for nonlinear systems with memory. In fact, this approach can be
successfully applied to other low-dissipative models with memory, such as reaction-
diffusion equations with a Gurtin-Pipkin conduction law [12].

Plan of the paper. In the next Section 2, we write the assumptions on f, ¢ and
. In Section 3, we formulate the main theorem, which is proved in Section 4. The
remaining sections are devoted to the proofs of Lemma 4.3 and Lemma 4.4 appearing
is Section 4.

Notation. We consider the positive operator A = —A acting on (L*(Q), (-, ), || )
with domain D[A] = H*(Q) N H (). For r € R, we denote by H, = D[A"/?] the
scale of Hilbert spaces generated by A, with the usual inner products (-, '>D[A7"/2] =
(Ar/2. A2 and by M, = L2(R*; Hy,,) the Hilbert space of square summable
functions on R with values in Hp,,, with respect to the measure pu(s)ds. To



account for the boundary conditions on 7, we view T = —0J, as the linear operator
with domain

= {v =(s) € Mo : 0, € Mo, ¥(0) =0},

where O, is the distributional derivative with respect to the internal variable s. Then,
T is the infinitesimal generator of the right-translation semigroup R(¢) on M, acting
as

0, 0<s<t,

P(s —t), s> t.

Finally, we introduce the product Hilbert spaces
H, = Hl-‘,—r x H, X Mr-

Throughout the paper, ¢ > 0 will denote a generic constant (whose value may vary
even within the same formula). Any further dependence of ¢ on other quantities will
be specified on occurrence. Also, we shall often tacitly use the Poincaré, the Young
and the Holder inequalities, as well as the usual Sobolev embeddings.

2. GENERAL ASSUMPTIONS

Concerning the nonlinearity and the external force, we take f € Hy independent of
time, and g € C?(R), with ¢g(0) = 0, such that the following growth and dissipation
conditions are satisfied:

(2.1) 19" (w)] < e(1+ Jul),
(u)

(2.2) lim inf 2%

lu|—oc0 U

> A,

where A > 0 is the first eigenvalue of A. Following |4|, we decompose g into the sum
g = go + g1, where go, g1 € C*(R) fulfill

(2.3) 190 (w)] < (1 + [ul),

(2.4) go(w)u = 0,

(2.5) 90(0) =0,

(2.6) |gi(u)| <c

Setting G(u) = [ g(y)dy and Go(u) = [, go(y)dy, it follows from (2.1)-(2.4) that
27) —<1 — @) AP — e < 2(G), 1) < et + |4 ),

(2.8) 0 < 2(Go(u), 1) < c(1 + [[A7?ul"),

for every w € H; and some w > 0. Concerning instead the memory kernel, we
assume that g : RT™ — [0, 00) is absolutely continuous, summable and nonincreasing.
In particular, u is differentiable almost everywhere with g/ < 0, and it is possibly
unbounded in a neighborhood of zero. Without loss of generality, we may (and do)

assume that
/ w(s)ds = 1.
0
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This, together with the above assumptions on f and g, is enough to show that
problem (1.1)-(1.2) generates a strongly continuous semigroup S(¢) on the phase
space Hy (see [4, 18]). For further convenience, we recall that the third component
of the solution S(¢)(ug, vo, n0) = (u(t), dyu(t),n") has the explicit representation [18]

o Ju(t) —u(t —s), 0<s<t,
(2.9) 1(s) = {770(5 —t) +u(t) — uo, s>t

We point out that, given u(t), the representation formula (2.9) depends only on the
structure of the second equation of (1.1). When f = g = 0 (linear homogeneous
case), the monotonicity of p ensures that S(t) is a (linear) contraction semigroup.

Remark 2.1. In fact, as in [2, 17|, we could consider without substantial changes in
the subsequent analysis more general kernels, allowing p to have a finite number of
jumps, or even an infinite number of jumps, provided that the points where p has
jumps form an increasing sequence.

Definition 2.2. We say that p is an admissible kernel if there exists © > 0 such
that

(2.10) /OO p(o)do < Ouls), Vs € R,

Remark 2.3. Note that, in view of the other assumptions on pu, conditions (1.4)
and (2.10) are equivalent. Indeed, it is apparent that (1.4) implies (2.10) (just take
© = (/). Concerning the reverse implication, since p is positive and monotone
nonincreasing, we have, for every r > 0,

00 s+r
Ou(s) > / p(o)do > / p(o)do > ru(s+r).
Hence, there exists ¢ < 1 and r > 0 such that

pu(s +1) < op(s).
Due to the monotonicity of u, the above inequality readily yields (1.4). Indeed,
setting o = nr + 9, with n € N and 9 € [0,7), we get

p(s +0) < s +nr) < o"u(s) = e eu(s) < Ce™*p(s),
with C'=1/p and § = —(log o) /7.

Thus, p is admissible if and only if the semigroup associated with the linear homo-
geneous system is exponentially stable (see |2]).

3. THE MAIN THEOREM

Our main result reads as follows.

Theorem 3.1 (Existence of the global attractor). Let u be an admissible kernel.
Assume in addition that

(3.1) w(s) <0, for a.e. s € R,

Then S(t) possesses a connected global attractor A C Hy which coincides with the
unstable set of equilibria.



Corollary 3.2 (Regularity of the global attractor). The global attractor A is con-
tained and bounded in Hy. Moreover, calling 11 the projection of H onto Mg, we
have the additional reqularity

IMA CDIT],  sup [[Tnllm, < oo, sup  [[An(s)|| < oo.
nell A nellA, seR+

Remark 3.3. Hypothesis (3.1) can be relaxed when the nonlinearity g is subcritical,
that is, if (2.1) is replaced by

1g'(w)] < e(1 4+ |ul?), B < 2.

More precisely, the above results hold true even if the set Py = {s € R" : p/(s) = 0}
has positive measure not exceeding a certain limit which depends on the physical
constants of the system. The exact condition is the same as the one required to
have exponential stability of the corresponding linear semigroup (see [17]).

Remark 3.4. If the first equation of (1.1) also contains the dissipative term 0Oyu,
it is not hard to show, using the techniques of this paper, that Theorem 3.1 and
Corollary 3.2 hold without hypothesis (3.1). Hence, in that situation, being an
admissible kernel is a necessary and sufficient condition in order for the related
dynamical system S(t) to possess the global attractor.

4. PROOF OF THE MAIN THEOREM

4.1. The gradient system. We begin to establish the following fact.

Proposition 4.1. The semigroup S(t) is a gradient system on Hy and the set S of
its equilibria is bounded in Hy.

Proof. The second assertion is quite immediate. Indeed,
S = {(uo,0,0) € Hy : Aug + g(ug) = f},

which is bounded on account of the assumptions on f and g. We define the function

L € C(Hop,R) as
L(p.q,¥) = (p, ¢, )3, +2(G(p), 1) — 2(f, p).

We have to show that £ is a Lyapunov function, namely,

(i) L£(z) — oo if and only if ||z]|3, — oo,
(ii) £(S(t)z) is nonincreasing for any z € Ho,
(iii) if £(S(t)z) = L(z) for all ¢ > 0, then z is an equilibrium.

Property (i) is apparent in light of (2.7). Indeed,
1
(4.1) E”ZH%O —c < L(2) < |2ll3, + Vz € Hy,

for some ¢ > 1. Next, if z = (ug, vg, 7o) is a sufficiently regular datum (in particular,
no € D[T]), we have (see [4])

%5(5(’%) = /OOO 1 (s)|| A0 (s) | ds.
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Hence, choosing 0 > 0 small enough such that the set N = {s € R" : p/(s)+0u(s) <
0} has positive measure (here we are using (3.1)),

L(5(t)2) // WAY?9"(s)||?dsdr, ¥t > 0.

By density, the inequality holds for every z € Hy. In particular, (ii) follows. Finally,
if L(S(t)z) = L(z) for all ¢ > 0, then n'(s) = 0 for every ¢t > 0 and every s € N.
From the representation formula (2.9), we learn that u(¢) has period s, for every
s € N. Since N has positive measure, it follows that u(t) = ug, and therefore
Oyu(t) = vg = 0. Using again (2.9), we get

: 0, 0<s<t,
(s) =
no(s — 1), s >t.

To prove (iii), we are left to show that 1y = 0. Indeed, the equality £L(S(t)z) = L(z)
now reads

/ u(8+t)||z41/2no(8)!|2d3:/ ()| A ne(s)|ds, vt > 0.
0 0

Since p vanishes monotonically at infinity, taking the limit ¢ — oo in the right-hand
side and applying the dominated convergence theorem, we conclude that ny =0. U

Remark 4.2. Note that we did not use (3.1) in its full strength. Indeed, to obtain
the desired conclusion, it is enough to have a set of positive measure on which y is
not constant (cf. Remark 2.1).

4.2. The semigroup decomposition. We decompose the solution S(t)z into the
sum

S(t)z = D(t)z + K(t)z,
where D(t)z = (v(t), Qv (t),&") and K (t)z = (w(t), dyw(t), ") solve the problems

Onv + Av + /OOO p(s)AE(s)ds + go(v) = 0,
& =TE+ O,
(v(0), 9rv(0),¢°) =
and .
O+ A+ [ (s) AG(s)ds + 9000 = ulv) = 1.
(¢ =T¢+ Jw,
(w(0), 9w (0),¢°) =

Then, we have
Lemma 4.3. There exist K > 0 and an increasing nonnegative function ) such that

D)2l < Q2w )e ™™,
for every t > 0.



Lemma 4.4. Let B C Hy. Assume that

supsup [|[S(t)z||x, = C < 0.
t>0 zeB

Then, K(t)B C H,, for every t > 0 and every r € [0,%), and there is M =
M(C,r) > 0 such that

sup sup | K (1)]l, < M.
t>0 z€B

Lemma 4.5. Let B C Hy/3. Assume that

sup sup [|S(t)z|y, ,, = C < o0.
t>0 z€B

Then, K(t)B C Hy, for every t > 0, and there is M = M(C) > 0 such that

sup sup || K (t)z||n, < M.
t>0 zeB

The proofs of the three above lemmata will be given in the following sections.

Corollary 4.6. Let B C H,, for some r € (0,1]. Assume that K(t)B C 'H,, for
every t > 0, and

supsup || K (t)z|ly, = M < oo.
t>0 zeB

Then, for every t > 0, K(t)B belongs to the compact set

K = {0 ¢ Nzl < M, 00020, < M, AT 2Tz (s)]| < 20, Tz0(0) = 0},

Proof. The compactness of IIKCM in M, (and, consequently, the compactness of KM
in Hp) is guaranteed by Lemma 5.5 of [18]. From the analogue of (2.9) for ¢, we
know that

w(t), s>t

() = {w(t) —w(t-s), 0<s<t

This shows that ¢?(0) = 0 and [|A0+)/2¢t(s)|| < 2M. Besides,

ow(t — s), 0<s<t,
asc%s):{ot( ) oo

Hence, ||A"0,('(s)|| < M, which implies that ||0sC||m,_, < M. O

4.3. Proof of Theorem 3.1. Since S(¢) is a gradient system and S is bounded in
Ho, using a general argument that can be found in [13, 14| (see also the Appendix of
|4]), the existence of the (connected) global attractor A coinciding with the unstable
set of § is achieved if we show that

(a) D(t) decays to zero uniformly on bounded sets,

(b) for any given R > 0, there is a compact set = K(R) C Hp such that
K(t)z € K for every t > 0 and every z € Hy of norm less than or equal to
R.



In that case, A C IC, for some R > 0 large enough. Point (a) is exactly the content
of Lemma 4.3, which says even more than is needed, since the decay is of exponential
type. Concerning point (b), due to (4.1) and to the monotonicity of £ along the
trajectories, if ||z||3, < R, then [|S(t)z||x, < C, for some C' = C(R). Hence, given
r e (0, %), applying Lemma 4.4 (with B equal to the ball of Hy of radius R), it
follows that || K (t)z|x, < M. Therefore, by Corollary 4.6 (with B equal to the ball
of H, of radius M), we conclude that K (t)z € M.

4.4. Proof of Corollary 3.2. At this point, we know (in particular) that A is
bounded in H;/3. Besides, A is fully invariant for S(¢), namely, S(t)A = A, for
every t > 0. Hence, for every z € A and every t > 0, there exists z; € A such
that z = D(t)z; + K(t)z;. An application of Lemma 4.3 and Lemma 4.5 entails the
boundedness of A in H;. Finally, Corollary 4.6 yields the desired regularity. Indeed,
1KY c DIT).

Remark 4.7. In fact, by Lemma 4.3 and a slight modification of Lemma 4.4 and
Lemma 4.5, together with the transitivity of the exponential attraction property |7],
one can show the existence of a regular exponentially attracting set and, in turn,
of an exponential attractor of finite fractal dimension, whose basin of exponential
attraction is the whole phase space Hy. As a byproduct, the global attractor A has
finite fractal dimension as well. It is also worth observing that the regularity of A
can be increased up to where f and g permit.

5. SOME AUXILIARY FUNCTIONALS

We begin with some preliminary work in order to be in a position to prove Lemma 4.3,
Lemma 4.4 and Lemma 4.5. We introduce the probability measure i on RT as

i(P) = [ wts)as.
P
for any (measurable) set P C R*. For any § > 0, we consider the sets
Ps={seR":p/(s)+0u(s) >0} and  Ny={seR":p/(s)+du(s) <0}
Clearly, Ps U Ns = R™ (except, possibly, a nullset). Besides, on account of (3.1),
lim /i(F5) = 0.
Then, for ¥ € M, we denote
Pulol = [ w4 and Nilw] = [ (o)A ) s
[ 9

Observe that Ps[1)]+Ns[1)] = |[1)]|34,- In order to deal with the (possible) singularity

of 1u(s) at zero, given any v € (0, 1), we choose s, = s,(v) > 0 such that

/ " (s)ds <

and we introduce the function w : Rt — R as

w(s) = p(8)X(0.5.1(8) + 14(8)X (51.00) (),

Y

SRIAN
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where x denotes the characteristic function. Finally, we define the functionals on

Ho
3 (p,q, ) = — / " o(s) g, (s))ds,
®*(p, q,¢) = {q,p),

vpa0) = | ( / u(a)xP5<a>da)||A1/2<w<s> ~p)Pds,
and the functional

®(p.q. %) = ' (p,q. ) + (1 = 21)2(p, ¢. ).
In light of (2.10), it is readily seen that

(5.1) 0 <[ (p, ¢, %) + |2°(p, g, )| + U(p g, ) < cll(p:a, )15,
We now consider the system
Oup + Ap + / p(s)A(s)ds + k =0,
0
O =Ty + O,

where k = k(p,t) is a suitable nonlinearity. Observe that (5.2) may not generate
a strongly continuous semigroup on Hy. Assuming that (p, d;p, 1) is a sufficiently
regular global solution to (5.2) (in particular, ¢» € D[T]), we have

(5.2)

Lemma 5.1. The following inequality holds:
d
— @ (p, 8ip, ) < 2V | AP = (1 = v)|[0rp|?

dt
- MS/*) /OOO 1 (8)|| AY%4p(s)||*ds + (2f1(Ps) + /v ) Ps[v] + %MM

; / () (AV2p, AV2(s))ds + / " (s) (b, (s)) ds.

The last term can be conveniently estimated as

| et ionds < [kl
Lemma 5.2. The following inequality holds:

d 1
(0. 0p, ) < =(1 = V)| A2p|* + |0p]]* + ~ N[

dt
- /p p(s) (A 2p, AV2(s))ds — (k, p).

The proofs of Lemma 5.1 and Lemma 5.2 can be found in [17|, where the same
functionals have been introduced to treat the linear homogeneous case. Collecting
the above results, and observing that

(5.3) / ,u(s)(Al/zp, Al/Qw(s))ds < a,&(P(;)HAl/Zsz + %Pg[w], Ya > 0,
Ps o

we readily obtain



Lemma 5.3. The following inequality holds:

d s«) [0,
S0l 0) < —(1 = 6DV vl — L [T sy avuas
0

24P + V7 )Pal] + NGlu] + K, — (1= 20) (k).

Finally, we have

Lemma 5.4. The following inequality holds:

d 1 .
S (0,0, ¥) < —5Polv] + 20(P)]| AV

Proof. Using the equality 0,0 = T + Oyp,
d o0 o0
200w =2 [ ([ o) (o) ) (AT, A 0(6) - s
o0 o0 d
=2 [ [ utontorin) A o), A s

([ sonnionta) 1A u P

An integration by parts then yields

U0.0p.0) = Palu] +2 [ (A2l A 2p)ds,
Ps

and, using (5.3), the conclusion follows. O

Remark 5.5. The above results continue to hold with (A™/2p, A™/20,p, A™/?¢) in place
of (p,0yp, ). The only difference is that the terms ||k|||[¢|| s, and (k, p) must be
replaced by [|E[|[|A"[[ar_, and (k, A"p), respectively.

6. PROOF OF LEMMA 4.3

Here and in the sequel, all the estimates are performed within a suitable regulariza-
tion scheme. We define Ly € C'(Hy, R) as

Lo(pa: %) = (p, 4, )34, +2(Go(p), 1).

For every 0 > 0, we have

d

GED0) = [T ) Pds <o

We now choose an arbitrary z such that ||z][, < R. Throughout the end of the
proof, the generic constant ¢ > 0 may depend (increasingly) on R. Hence, on account
of (2.3)-(2.5),

ID(#)2[l7, < Lo(D(t)2) < e[| D(t)2]l3,-

10



Let € € (0, %) to be specified later, and put v = 2 (this fixes the corresponding s.).
Then, select 6 > 0 small enough such that p(s,) < A/§ and fi(Ps) < 2. Finally,
setting (p(t), Oyp(t), ") = D(t)z and k = go(v) in (5.2), introduce the functional

E(t) = %ﬁo(D(t)z) +30(D(t)z) + 6ZQ\II(D(t)z)
For € small enough,
(6.1) SID(0)2I, <€) < e DI,

With the above choice of v and ¢, exploiting Lemma 5.3 and Lemma 5.4, and noting
that (go(v),v) > 0, we obtain the differential inequality

d 1 1
bo 3L 12, 12 _ 5 o ofL o
E< —¢ <2 65>||A v||* = e°||ow]|* — € <8 4e )735[5]

dt
+ (G- | A s) s + 42N+ Han(w) el

Observe that
1 \ >~ L[~
(5—5“(5)) / W) IAYE(s)Pds +4eNGle] < 55 [ p ()| AV2(S) Pds + 4G )

< —(% —4e) M3,

while

3
£
EllgoElmy < e[| A0l mg < L IAY20]* + c* N[g] + ™ Pfe].

Hence,
T < (T 6e) | A — gl — (5 — e2)Pole) — (5 - e2 ) NGl
dt” ~ 4 ! 8 2 '
It is then clear that, up to taking e small enough (depending on ¢), we obtain
d
SEW) + D)z, <0

which, together with (6.1) and the Gronwall lemma, yield the desired conclusion.
Notice that the obtained decay rate k depends on ¢ (and thus on R). However, using
the semigroup properties, it is immediate to show that it can be fixed independently
of R, provided that we enlarge Q(R) accordingly.

7. PROOFS OF LEMMA 4.4 AND LEMMA 4.5

The proofs of the lemmata lean on the existence of a (weak) dissipation integral.
Namely,

Lemma 7.1. Assume that the hypotheses of Lemma 4.4 hold. Then, for everye > 0
and everyt > 17 >0,

t
[ 1oty < <t - 1)+ &,
for some K = K(C,e) > 0.

11



Proof. In this proof, the generic constant ¢ will depend on the bound C' of the norm
of S(t)z in Hy. For any fixed ¢ > 0 (without loss of generality, we assume that
e < 1/2), choose v = % and § > 0 such that u(s,) < A\/d and a(P5) < &% It is
apparent that

/ () (AY2u, AY?n(s))ds < ce
P

and

1
lg(w) = Fllllnllaey < ZNs[n] + ce.
Then, setting (p(t),Op(t),v') = S(t)z and k = g(u) — f in (5.2), in view of
Lemma 5.1 and Remark 5.5, the functional ®'(S(¢)z) satisfies the inequality
d o1 1 2 pls) [7 1/2 2 4
G0 < —glaal? = 55 [T a5 s + Sl + e

Finally, we define

E(t) = %E(S(t)z) +BL(S(1)2),

where £ is the Lyapunov function introduced above. Due to (5.1), we have |E] < ¢/4.
Reasoning as in the proof of Lemma 4.3, if € is small enough (which is clearly not a
constraint in view of our aim), we obtain

d el

—E+ —||Ou]* < £

ZE+ 0l <
Integrating this inequality over (7,t), and subsequently applying the Holder inequal-
ity, we reach the desired conclusion. 0]

7.1. Proof of Lemma 4.4. Again, the generic constant ¢ appearing below will
depend on the bound C of the norm of S(t)z in Hy. For r € [0, 3), we introduce the
functional

Qi (t) = 1K (123, +2(g(u(t)) — go(v(1)) — f, A"w(?)),

which satisfies the estimates
1
5 &(t) —e< IK(t)2F, <2Q.(t) +c

and the differential equality
G0 [ At Pas
= 2([go(u) — g0(v)]0u, A"w) + 2(gy(v)dw, A"w) + 2(g; (u) O, A"w).

By virtue of (2.3), (2.5)-(2.6) and the continuous embedding H® — L5/G=22)(Q)),

we obtain the following estimates:

(7.1)

2([90() = go(v)]0ru, A"w) < (1 + [|ull e + [[vll L) |Ovullllw]l posc-2n [ A"w] posa-2n
< c|Qul[| AT w2,

12



(7.2) 2(go(v)0rw, A™w) < c[|v] + [v]*[| s | Opwl| posis—2r) | A™w]| Lorcasan
< | AV20||[| A2 AU ]
and
(7.3) 2{g1 (u) O, A"w) < cl|Opul|| A™wl| < cl|dull + cllOpul| AT 2w 2.

Thus, we readily obtain
d [ee]
G0 = [T H1ASE )P ds < bt hQ,
0

where we put

h(t) = cl|dpul] + c|| A?v].
For ¢ € (0,3), we choose v = €? and § > 0 such that p(s,) < A/d and fi(P) < €2
Setting (p(t), dip(t), ¥') = AT/2K(t)z (here, A™/? is in fact the diagonal matrix whose
entries are A”/?) and k = g(u) — go(v) — f in (5.2), we consider the functional

T, (t) = ®(A2K (t)z) + U(A2K(t)z).

Applying Lemma 5.3 and Lemma 5.4, together with Remark 5.5 and the immediate
control

lg(u) = go(v) = FINIA"Claa-y — (1 = 26%)(g(u) — go(v) — f, A"w)
< %HA(H?”)/%,UH2 + %%[AT/?(] + N5[A2(] + ¢,

we obtain

d
gﬁfr < _52<||A(1+r)/2w||2 + ||Ar/28tw||2 +736[Ar/2<]>

* >~ / T 5 r
- | 1A ) s+ SAG(AT

provided that e is small enough. Finally, we introduce the energy

W,(t) = %Qru) +&%7,.(t),

which fulfills the inequalities (again, if € is small enough)
1
“Wh(t) — e < [IK(0)2]l5, < W (t) +¢,

for some ¢ > 1 depending on £. Thus, we reach the desired conclusion if we show
that W,.(t) is bounded for all times. In light of the previous computations, we have
d

W < —55(]|A(1+”/2w]|2 + AP0 + 'Pg[ATﬂd) + 5eNG[AT/2(]

s (1= D) [ A () s + e s
0

It is then apparent that, provided that we fix £ small, we end up with the inequality

d
%Wr_l_ﬁwrgh‘l’hwr_l_@
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for some 3 > 0. Observe also that, by virtue of Lemma 4.3 and Lemma 7.1,

/t h(y)dy < g(t —7)+c.

Since W,.(0) = 0, the conclusion follows from a Gronwall-type lemma (see e.g. [4]).

7.2. Proof of Lemma 4.5. We basically repeat the proof of Lemma 4.4, setting
r = 1. In this case, the generic constant ¢ appearing below will depend on the bound
C of the norm of S(t)z in Hy /3. The only difference here is how we reach the control
(7.1), whereas (7.2)-(7.3) remain the same (for » = 1). Since

190(w) — go(0)] < clwl(1+ [u] + |wl),
exploiting the Agmon inequality
loll e < el A2l Aw||Y? < cf| Aw]|
and the embeddings H*/3 < L?(Q) and H'/3 «— L'¥/7(Q), we are led to
2([go(u) = go(v)]0wu, Aw) < cl|Oull|lwl|z~ [ Aw]l + cllul o |Osul| sz [|w]] Lo | Aw]|
o cllwll 10l oo [l 2 Aw]
< cf| Awl[*? + ¢ Aw|?
<l 4wl + =,
for every 7 € (0,1). Thus, for any given v € (0,1), we conclude that
G0 [ WA ds < Al Awl? + b b0+ 5.

We can now proceed exactly as in the proof of Lemma 4.4. Note that the term
v||Awl|? is easily controlled, upon fixing v small enough.
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