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Abstra
t. We analyze a di�erential system arising in the theory of isothermalvis
oelasti
ity. This system is equivalent to an integrodi�erential equation of hy-perboli
 type with a 
ubi
 nonlinearity, where the dissipation me
hanism is 
on-tained only in the 
onvolution integral, a

ounting for the past history of thedispla
ement. In parti
ular, we 
onsider here a 
onvolution kernel whi
h entailsan extremely weak dissipation. In spite of that, we show that the related dynam-i
al system possesses a global attra
tor of optimal regularity.1. Introdu
tionLet Ω ⊂ R
3 be a bounded domain with smooth boundary ∂Ω. For t ∈ R

+ = (0,∞),we 
onsider the evolution system arising in the theory of isothermal vis
oelasti
ity[9, 20℄(1.1) 





∂ttu− ∆u−
∫ ∞

0

µ(s)∆η(s)ds+ g(u) = f,

∂tη = Tη + ∂tu,where u = u(t) : Ω × [0,∞) → R, η = ηt(s) : Ω × [0,∞) × R
+ → R and T = −∂s,supplemented with the boundary and initial 
onditions(1.2) {

u(t)|∂Ω = ηt|∂Ω = ηt(0) = 0,

u(0) = u0, ∂tu(0) = v0, η0(s) = η0(s).Here, g : R → R is a nonlinear term of (at most) 
ubi
 growth satisfying somedissipativity 
onditions, f : Ω → R is an external for
e, whereas the memory kernel µis an absolutely 
ontinuous summable de
reasing (thus nonnegative) fun
tion de�nedon R
+. Problem (1.1)-(1.2) is 
ast in the so-
alled memory setting (see [5, 6℄), andis equivalent to the integrodi�erential equation

∂ttu− (1 + ς)∆u+

∫ ∞

0

µ(s)∆u(t− s)ds+ g(u) = f,where ς =
∫ ∞

0
µ(s)ds > 0, with boundary 
ondition u(t)|∂Ω = 0 and initial 
on-ditions u(0) = u0, u(t) = u0 − η0(−t), for t < 0, and ∂tu(0) = v0. We addressthe reader to [11℄ for more details on the equivalen
e of the two formulations. It isknown that (1.1)-(1.2) generates a dissipative dynami
al system S(t) on the phasespa
e H1

0 (Ω) × L2(Ω) × L2
µ(R+;H1

0 (Ω)), the so-
alled history spa
e, sin
e the vari-able η 
ontains the information on the past history of the system. The asymptoti
behavior of S(t) has been investigated quite extensively. For instan
e, if the �rstequation 
ontains an extra term of the form ∂tu (physi
ally, a dynami
al fri
tion),then S(t) has a global attra
tor of optimal regularity [1, 3, 18℄. When this term doesnot appear, as in our 
ase, the existen
e of the global attra
tor and its regularity
an still be proved, although the dissipation is 
ontained in the memory term only[4, 10℄. Clearly, this situation requires a more 
areful analysis, the dissipation beingmu
h weaker. However, all the above results (as well as all the results on the as-ymptoti
 behavior of dynami
al systems arising from equations with memory) havebeen proved under the apparently unavoidable 
ondition(1.3) µ′(s) + δµ(s) ≤ 0,1



for some δ > 0 and (almost) every s ∈ R
+. Indeed, even in the linear homogeneous
ase, (1.3) seemed to play an essential role in establishing exponential stability (see[8, 15, 16℄). It is readily seen that (1.3) is equivalent to

µ(s+ σ) ≤ e−δσµ(s),for every σ ≥ 0 and (almost) every s ∈ R
+. On the other hand, [2℄ proves that ane
essary 
ondition in order to have exponential stability in the linear homogeneous
ase (and, 
onsequently, in order for S(t) to possess at least an absorbing set) is(1.4) µ(s+ σ) ≤ Ce−δσµ(s),for some C ≥ 1, δ > 0, every σ ≥ 0 and (almost) every s ∈ R

+. Nonetheless,between (1.3) and (1.4), there is quite an elbowroom. In parti
ular, (1.3) does nothold when µ is too �at (whi
h 
orresponds to having zones of very low, or evennull, dissipation). An interesting situation from the physi
al viewpoint, that mightnot 
omply with (1.3), but obviously �ts (1.4), o

urs when µ eventually vanishes.Along this dire
tion, the very re
ent arti
le [17℄, fo
used on the linear homogeneous
ase, shows that exponential stability is still present when (1.4) holds, but (1.3) isheavily violated. Here, we are able to translate the semigroup approa
h of [17℄ interms of suitable energy fun
tionals, so to extend the analysis to the nonlinear 
ase.This is not, in general, a straightforward fa
t: there are linear systems (in parti
ular,the one asso
iated with our problem) whi
h 
an be ta
kled via semigroup methods,but whose nonlinear 
ounterparts require the introdu
tion of ad ho
, and oftenquite subtle, te
hniques. In the present work, we establish the existen
e of a globalattra
tor of optimal regularity for S(t) when µ ful�lls the ne
essary 
ondition (1.4),but under mu
h weaker hypotheses than (1.3). Besides, 
ontrary to [4℄, the kernel µwill be allowed to blow up at zero. For instan
e, we 
an 
onsider the weakly singularkernel
µ(s) =

ke−αs

s1−β
,with k ≥ 0 and α, β > 0, whi
h has been su

essfully used to �t experimentaldata for some real materials. To the best of our knowledge, this is the �rst resultof this kind for nonlinear systems with memory. In fa
t, this approa
h 
an besu

essfully applied to other low-dissipative models with memory, su
h as rea
tion-di�usion equations with a Gurtin-Pipkin 
ondu
tion law [12℄.Plan of the paper. In the next Se
tion 2, we write the assumptions on f , g and

µ. In Se
tion 3, we formulate the main theorem, whi
h is proved in Se
tion 4. Theremaining se
tions are devoted to the proofs of Lemma 4.3 and Lemma 4.4 appearingis Se
tion 4.Notation. We 
onsider the positive operator A = −∆ a
ting on (L2(Ω), 〈·, ·〉, ‖ · ‖)with domain D[A] = H2(Ω) ∩ H1
0 (Ω). For r ∈ R, we denote by Hr = D[Ar/2] thes
ale of Hilbert spa
es generated by A, with the usual inner produ
ts 〈·, ·〉D[Ar/2] =

〈Ar/2·, Ar/2·〉, and by Mr = L2
µ(R+;H1+r) the Hilbert spa
e of square summablefun
tions on R

+ with values in H1+r, with respe
t to the measure µ(s)ds. To2



a

ount for the boundary 
onditions on η, we view T = −∂s as the linear operatorwith domain
D[T ] =

{

ψ = ψ(s) ∈ M0 : ∂sψ ∈ M0, ψ(0) = 0
}

,where ∂s is the distributional derivative with respe
t to the internal variable s. Then,
T is the in�nitesimal generator of the right-translation semigroup R(t) onM0 a
tingas

[R(t)ψ](s) =

{

0, 0 < s ≤ t,

ψ(s− t), s > t.Finally, we introdu
e the produ
t Hilbert spa
es
Hr = H1+r ×Hr ×Mr.Throughout the paper, c ≥ 0 will denote a generi
 
onstant (whose value may varyeven within the same formula). Any further dependen
e of c on other quantities willbe spe
i�ed on o

urren
e. Also, we shall often ta
itly use the Poin
aré, the Youngand the Hölder inequalities, as well as the usual Sobolev embeddings.2. General AssumptionsCon
erning the nonlinearity and the external for
e, we take f ∈ H0 independent oftime, and g ∈ C2(R), with g(0) = 0, su
h that the following growth and dissipation
onditions are satis�ed:

|g′′(u)| ≤ c
(

1 + |u|
)

,(2.1)
lim inf
|u|→∞

g(u)

u
> −λ,(2.2)where λ > 0 is the �rst eigenvalue of A. Following [4℄, we de
ompose g into the sum

g = g0 + g1, where g0, g1 ∈ C2(R) ful�ll
|g′′0(u)| ≤ c(1 + |u|),(2.3)
g0(u)u ≥ 0,(2.4)
g′0(0) = 0,(2.5)
|g′1(u)| ≤ c.(2.6)Setting G(u) =

∫ u

0
g(y)dy and G0(u) =

∫ u

0
g0(y)dy, it follows from (2.1)-(2.4) that

−(1 −̟)‖A1/2u‖2 − c ≤ 2〈G(u), 1〉 ≤ c(1 + ‖A1/2u‖4),(2.7)
0 ≤ 2〈G0(u), 1〉 ≤ c(1 + ‖A1/2u‖4),(2.8)for every u ∈ H1 and some ̟ > 0. Con
erning instead the memory kernel, weassume that µ : R

+ → [0,∞) is absolutely 
ontinuous, summable and nonin
reasing.In parti
ular, µ is di�erentiable almost everywhere with µ′ ≤ 0, and it is possiblyunbounded in a neighborhood of zero. Without loss of generality, we may (and do)assume that
∫ ∞

0

µ(s)ds = 1.3



This, together with the above assumptions on f and g, is enough to show thatproblem (1.1)-(1.2) generates a strongly 
ontinuous semigroup S(t) on the phasespa
e H0 (see [4, 18℄). For further 
onvenien
e, we re
all that the third 
omponentof the solution S(t)(u0, v0, η0) = (u(t), ∂tu(t), η
t) has the expli
it representation [18℄(2.9) ηt(s) =

{

u(t) − u(t− s), 0 < s ≤ t,

η0(s− t) + u(t) − u0, s > t.We point out that, given u(t), the representation formula (2.9) depends only on thestru
ture of the se
ond equation of (1.1). When f = g = 0 (linear homogeneous
ase), the monotoni
ity of µ ensures that S(t) is a (linear) 
ontra
tion semigroup.Remark 2.1. In fa
t, as in [2, 17℄, we 
ould 
onsider without substantial 
hanges inthe subsequent analysis more general kernels, allowing µ to have a �nite number ofjumps, or even an in�nite number of jumps, provided that the points where µ hasjumps form an in
reasing sequen
e.De�nition 2.2. We say that µ is an admissible kernel if there exists Θ > 0 su
hthat(2.10) ∫ ∞

s

µ(σ)dσ ≤ Θµ(s), ∀s ∈ R
+.Remark 2.3. Note that, in view of the other assumptions on µ, 
onditions (1.4)and (2.10) are equivalent. Indeed, it is apparent that (1.4) implies (2.10) (just take

Θ = C/δ). Con
erning the reverse impli
ation, sin
e µ is positive and monotonenonin
reasing, we have, for every r > 0,
Θµ(s) ≥

∫ ∞

s

µ(σ)dσ ≥
∫ s+r

s

µ(σ)dσ ≥ rµ(s+ r).Hen
e, there exists ̺ < 1 and r > 0 su
h that
µ(s+ r) ≤ ̺µ(s).Due to the monotoni
ity of µ, the above inequality readily yields (1.4). Indeed,setting σ = nr + ϑ, with n ∈ N and ϑ ∈ [0, r), we get

µ(s+ σ) ≤ µ(s+ nr) ≤ ̺nµ(s) = en log ̺µ(s) ≤ Ce−δσµ(s),with C = 1/̺ and δ = −(log ̺)/r.Thus, µ is admissible if and only if the semigroup asso
iated with the linear homo-geneous system is exponentially stable (see [2℄).3. The Main TheoremOur main result reads as follows.Theorem 3.1 (Existen
e of the global attra
tor). Let µ be an admissible kernel.Assume in addition that(3.1) µ′(s) < 0, for a.e. s ∈ R
+.Then S(t) possesses a 
onne
ted global attra
tor A ⊂ H0 whi
h 
oin
ides with theunstable set of equilibria. 4



Corollary 3.2 (Regularity of the global attra
tor). The global attra
tor A is 
on-tained and bounded in H1. Moreover, 
alling Π the proje
tion of H onto M0, wehave the additional regularity
ΠA ⊂ D[T ], sup

η∈ΠA
‖Tη‖M0 <∞, sup

η∈ΠA, s∈R+

‖Aη(s)‖ <∞.Remark 3.3. Hypothesis (3.1) 
an be relaxed when the nonlinearity g is sub
riti
al,that is, if (2.1) is repla
ed by
|g′(u)| ≤ c(1 + |u|β), β < 2.More pre
isely, the above results hold true even if the set P0 = {s ∈ R

+ : µ′(s) = 0}has positive measure not ex
eeding a 
ertain limit whi
h depends on the physi
al
onstants of the system. The exa
t 
ondition is the same as the one required tohave exponential stability of the 
orresponding linear semigroup (see [17℄).Remark 3.4. If the �rst equation of (1.1) also 
ontains the dissipative term ∂tu,it is not hard to show, using the te
hniques of this paper, that Theorem 3.1 andCorollary 3.2 hold without hypothesis (3.1). Hen
e, in that situation, being anadmissible kernel is a ne
essary and su�
ient 
ondition in order for the relateddynami
al system S(t) to possess the global attra
tor.4. Proof of the Main Theorem4.1. The gradient system. We begin to establish the following fa
t.Proposition 4.1. The semigroup S(t) is a gradient system on H0 and the set S ofits equilibria is bounded in H0.Proof. The se
ond assertion is quite immediate. Indeed,
S =

{

(u0, 0, 0) ∈ H0 : Au0 + g(u0) = f
}

,whi
h is bounded on a

ount of the assumptions on f and g. We de�ne the fun
tion
L ∈ C(H0,R) as

L(p, q, ψ) = ‖(p, q, ψ)‖2
H0

+ 2〈G(p), 1〉 − 2〈f, p〉.We have to show that L is a Lyapunov fun
tion, namely,(i) L(z) → ∞ if and only if ‖z‖H0 → ∞,(ii) L(S(t)z) is nonin
reasing for any z ∈ H0,(iii) if L(S(t)z) = L(z) for all t > 0, then z is an equilibrium.Property (i) is apparent in light of (2.7). Indeed,(4.1) 1

c
‖z‖2

H0
− c ≤ L(z) ≤ c‖z‖4

H0
+ c, ∀z ∈ H0,for some c ≥ 1. Next, if z = (u0, v0, η0) is a su�
iently regular datum (in parti
ular,

η0 ∈ D[T ]), we have (see [4℄)
d

dt
L(S(t)z) =

∫ ∞

0

µ′(s)‖A1/2ηt(s)‖2ds.5



Hen
e, 
hoosing δ > 0 small enough su
h that the set N = {s ∈ R
+ : µ′(s)+δµ(s) ≤

0} has positive measure (here we are using (3.1)),
L(S(t)z) ≤ L(z) − δ

∫ t

0

∫

N

µ(s)‖A1/2ητ(s)‖2dsdτ, ∀t > 0.By density, the inequality holds for every z ∈ H0. In parti
ular, (ii) follows. Finally,if L(S(t)z) = L(z) for all t > 0, then ηt(s) = 0 for every t > 0 and every s ∈ N .From the representation formula (2.9), we learn that u(t) has period s, for every
s ∈ N . Sin
e N has positive measure, it follows that u(t) = u0, and therefore
∂tu(t) = v0 = 0. Using again (2.9), we get

ηt(s) =

{

0, 0 < s ≤ t,

η0(s− t), s > t.To prove (iii), we are left to show that η0 = 0. Indeed, the equality L(S(t)z) = L(z)now reads
∫ ∞

0

µ(s+ t)‖A1/2η0(s)‖2ds =

∫ ∞

0

µ(s)‖A1/2η0(s)‖2ds, ∀t > 0.Sin
e µ vanishes monotoni
ally at in�nity, taking the limit t→ ∞ in the right-handside and applying the dominated 
onvergen
e theorem, we 
on
lude that η0 = 0. �Remark 4.2. Note that we did not use (3.1) in its full strength. Indeed, to obtainthe desired 
on
lusion, it is enough to have a set of positive measure on whi
h µ isnot 
onstant (
f. Remark 2.1).4.2. The semigroup de
omposition. We de
ompose the solution S(t)z into thesum
S(t)z = D(t)z +K(t)z,where D(t)z = (v(t), ∂tv(t), ξ

t) and K(t)z = (w(t), ∂tw(t), ζ t) solve the problems


















∂ttv + Av +

∫ ∞

0

µ(s)Aξ(s)ds+ g0(v) = 0,

∂tξ = Tξ + ∂tv,

(v(0), ∂tv(0), ξ0) = zand


















∂ttw + Aw +

∫ ∞

0

µ(s)Aζ(s)ds+ g(u) − g0(v) = f,

∂tζ = Tζ + ∂tw,

(w(0), ∂tw(0), ζ0) = 0.Then, we haveLemma 4.3. There exist κ > 0 and an in
reasing nonnegative fun
tion Q su
h that
‖D(t)z‖H0 ≤ Q(‖z‖H0)e

−κt,for every t ≥ 0. 6



Lemma 4.4. Let B ⊂ H0. Assume that
sup
t≥0

sup
z∈B

‖S(t)z‖H0 = C <∞.Then, K(t)B ⊂ Hr, for every t ≥ 0 and every r ∈ [0, 1
2
), and there is M =

M(C, r) ≥ 0 su
h that
sup
t≥0

sup
z∈B

‖K(t)z‖Hr ≤M.Lemma 4.5. Let B ⊂ H1/3. Assume that
sup
t≥0

sup
z∈B

‖S(t)z‖H1/3
= C <∞.Then, K(t)B ⊂ H1, for every t ≥ 0, and there is M = M(C) ≥ 0 su
h that

sup
t≥0

sup
z∈B

‖K(t)z‖H1 ≤M.The proofs of the three above lemmata will be given in the following se
tions.Corollary 4.6. Let B ⊂ Hr, for some r ∈ (0, 1]. Assume that K(t)B ⊂ Hr, forevery t ≥ 0, and
sup
t≥0

sup
z∈B

‖K(t)z‖Hr = M <∞.Then, for every t ≥ 0, K(t)B belongs to the 
ompa
t set
KM

r =
{

z0 : ‖z0‖Hr ≤M, ‖∂sΠz0‖Mr−1 ≤M, ‖A(1+r)/2Πz0(s)‖ ≤ 2M, Πz0(0) = 0
}

.Proof. The 
ompa
tness of ΠKM
r in M0 (and, 
onsequently, the 
ompa
tness of KM

rin H0) is guaranteed by Lemma 5.5 of [18℄. From the analogue of (2.9) for ζ t, weknow that
ζ t(s) =

{

w(t) − w(t− s), 0 < s ≤ t,

w(t), s > t.This shows that ζ t(0) = 0 and ‖A(1+r)/2ζ t(s)‖ ≤ 2M . Besides,
∂sζ

t(s) =

{

∂tw(t− s), 0 < s ≤ t,

0, s > t.Hen
e, ‖Ar∂sζ
t(s)‖ ≤M , whi
h implies that ‖∂sζ

t‖Mr−1 ≤M . �4.3. Proof of Theorem 3.1. Sin
e S(t) is a gradient system and S is bounded in
H0, using a general argument that 
an be found in [13, 14℄ (see also the Appendix of[4℄), the existen
e of the (
onne
ted) global attra
tor A 
oin
iding with the unstableset of S is a
hieved if we show that(a) D(t) de
ays to zero uniformly on bounded sets,(b) for any given R > 0, there is a 
ompa
t set K = K(R) ⊂ H0 su
h that

K(t)z ∈ K for every t ≥ 0 and every z ∈ H0 of norm less than or equal to
R. 7



In that 
ase, A ⊂ K, for some R > 0 large enough. Point (a) is exa
tly the 
ontentof Lemma 4.3, whi
h says even more than is needed, sin
e the de
ay is of exponentialtype. Con
erning point (b), due to (4.1) and to the monotoni
ity of L along thetraje
tories, if ‖z‖H0 ≤ R, then ‖S(t)z‖H0 ≤ C, for some C = C(R). Hen
e, given
r ∈ (0, 1

2
), applying Lemma 4.4 (with B equal to the ball of H0 of radius R), itfollows that ‖K(t)z‖Hr ≤M . Therefore, by Corollary 4.6 (with B equal to the ballof Hr of radius M), we 
on
lude that K(t)z ∈ KM

r .4.4. Proof of Corollary 3.2. At this point, we know (in parti
ular) that A isbounded in H1/3. Besides, A is fully invariant for S(t), namely, S(t)A = A, forevery t ≥ 0. Hen
e, for every z ∈ A and every t ≥ 0, there exists zt ∈ A su
hthat z = D(t)zt +K(t)zt. An appli
ation of Lemma 4.3 and Lemma 4.5 entails theboundedness of A in H1. Finally, Corollary 4.6 yields the desired regularity. Indeed,
ΠKM

1 ⊂ D[T ].Remark 4.7. In fa
t, by Lemma 4.3 and a slight modi�
ation of Lemma 4.4 andLemma 4.5, together with the transitivity of the exponential attra
tion property [7℄,one 
an show the existen
e of a regular exponentially attra
ting set and, in turn,of an exponential attra
tor of �nite fra
tal dimension, whose basin of exponentialattra
tion is the whole phase spa
e H0. As a byprodu
t, the global attra
tor A has�nite fra
tal dimension as well. It is also worth observing that the regularity of A
an be in
reased up to where f and g permit.5. Some Auxiliary Fun
tionalsWe begin with some preliminary work in order to be in a position to prove Lemma 4.3,Lemma 4.4 and Lemma 4.5. We introdu
e the probability measure µ̂ on R
+ as

µ̂(P ) =

∫

P

µ(s)ds,for any (measurable) set P ⊂ R
+. For any δ > 0, we 
onsider the sets

Pδ =
{

s ∈ R
+ : µ′(s) + δµ(s) > 0

} and Nδ =
{

s ∈ R
+ : µ′(s) + δµ(s) ≤ 0

}

.Clearly, Pδ ∪Nδ = R
+ (ex
ept, possibly, a nullset). Besides, on a

ount of (3.1),

lim
δ→0

µ̂(Pδ) = 0.Then, for ψ ∈ M0, we denote
Pδ[ψ] =

∫

Pδ

µ(s)‖A1/2ψ(s)‖2ds and Nδ[ψ] =

∫

Nδ

µ(s)‖A1/2ψ(s)‖2ds.Observe that Pδ[ψ]+Nδ[ψ] = ‖ψ‖2
M0

. In order to deal with the (possible) singularityof µ(s) at zero, given any ν ∈ (0, 1
2
), we 
hoose s∗ = s∗(ν) > 0 su
h that

∫ s∗

0

µ(s)ds ≤ ν

2
,and we introdu
e the fun
tion ω : R

+ → R
+ as

ω(s) = µ(s∗)χ(0,s∗](s) + µ(s)χ(s∗,∞)(s),8



where χ denotes the 
hara
teristi
 fun
tion. Finally, we de�ne the fun
tionals on
H0

Φ1(p, q, ψ) = −
∫ ∞

0

ω(s)〈q, ψ(s)〉ds,

Φ2(p, q, ψ) = 〈q, p〉,

Ψ(p, q, ψ) =

∫ ∞

0

(
∫ ∞

s

µ(σ)χPδ
(σ)dσ

)

‖A1/2(ψ(s) − p)‖2ds,and the fun
tional
Φ(p, q, ψ) = Φ1(p, q, ψ) + (1 − 2ν)Φ2(p, q, ψ).In light of (2.10), it is readily seen that(5.1) 0 ≤ |Φ1(p, q, ψ)| + |Φ2(p, q, ψ)|+ Ψ(p, q, ψ) ≤ c‖(p, q, ψ)‖2

H0
.We now 
onsider the system(5.2) 





∂ttp+ Ap+

∫ ∞

0

µ(s)Aψ(s)ds+ k = 0,

∂tψ = Tψ + ∂tp,where k = k(p, t) is a suitable nonlinearity. Observe that (5.2) may not generatea strongly 
ontinuous semigroup on H0. Assuming that (p, ∂tp, ψ) is a su�
ientlyregular global solution to (5.2) (in parti
ular, ψ ∈ D[T ]), we haveLemma 5.1. The following inequality holds:
d

dt
Φ1(p, ∂tp, ψ) ≤ 2

√
ν ‖A1/2p‖2 − (1 − ν)‖∂tp‖2

− µ(s∗)

λν

∫ ∞

0

µ′(s)‖A1/2ψ(s)‖2ds+ (2µ̂(Pδ) +
√
ν )Pδ[ψ] +

3

ν
Nδ[ψ]

+

∫

Pδ

µ(s)〈A1/2p, A1/2ψ(s)〉ds+

∫ ∞

0

ω(s)〈k, ψ(s)〉ds.The last term 
an be 
onveniently estimated as
∫ ∞

0

ω(s)〈k, ψ(s)〉ds ≤ ‖k‖‖ψ‖M−1.Lemma 5.2. The following inequality holds:
d

dt
Φ2(p, ∂tp, ψ) ≤ −(1 − ν)‖A1/2p‖2 + ‖∂tp‖2 +

1

ν
Nδ[ψ]

−
∫

Pδ

µ(s)〈A1/2p, A1/2ψ(s)〉ds− 〈k, p〉.The proofs of Lemma 5.1 and Lemma 5.2 
an be found in [17℄, where the samefun
tionals have been introdu
ed to treat the linear homogeneous 
ase. Colle
tingthe above results, and observing that(5.3) ∫

Pδ

µ(s)〈A1/2p, A1/2ψ(s)〉ds ≤ αµ̂(Pδ)‖A1/2p‖2 +
1

4α
Pδ[ψ], ∀α > 0,we readily obtain 9



Lemma 5.3. The following inequality holds:
d

dt
Φ(p, ∂tp, ψ) ≤ −(1 − 6

√
ν )‖A1/2p‖2 − ν‖∂tp‖2 − µ(s∗)

λν

∫ ∞

0

µ′(s)‖A1/2ψ(s)‖2ds

+ 2(µ̂(Pδ) +
√
ν )Pδ[ψ] +

4

ν
Nδ[ψ] + ‖k‖‖ψ‖M−1 − (1 − 2ν)〈k, p〉.Finally, we haveLemma 5.4. The following inequality holds:

d

dt
Ψ(p, ∂tp, ψ) ≤ −1

2
Pδ[ψ] + 2µ̂(Pδ)‖A1/2p‖2.Proof. Using the equality ∂tψ = Tψ + ∂tp,

d

dt
Ψ(p, ∂tp, ψ) = 2

∫ ∞

0

(
∫ ∞

s

µ(σ)χPδ
(σ)dσ

)

〈A1/2Tψ(s), A1/2(ψ(s) − p)〉ds

= 2

∫ ∞

0

(
∫ ∞

s

µ(σ)χPδ
(σ)dσ

)

d

ds
〈A1/2ψ(s), A1/2p〉ds

−
∫ ∞

0

(
∫ ∞

s

µ(σ)χPδ
(σ)dσ

)

d

ds
‖A1/2ψ(s)‖2ds.An integration by parts then yields

d

dt
Ψ(p, ∂tp, ψ) = −Pδ[ψ] + 2

∫

Pδ

µ(s)〈A1/2ψ(s), A1/2p〉ds,and, using (5.3), the 
on
lusion follows. �Remark 5.5. The above results 
ontinue to hold with (Ar/2p, Ar/2∂tp, A
r/2ψ) in pla
eof (p, ∂tp, ψ). The only di�eren
e is that the terms ‖k‖‖ψ‖M−1 and 〈k, p〉 must berepla
ed by ‖k‖‖Arψ‖M−1 and 〈k, Arp〉, respe
tively.6. Proof of Lemma 4.3Here and in the sequel, all the estimates are performed within a suitable regulariza-tion s
heme. We de�ne L0 ∈ C(H0,R) as

L0(p, q, ψ) = ‖(p, q, ψ)‖2
H0

+ 2〈G0(p), 1〉.For every δ > 0, we have
d

dt
L0(D(t)z) =

∫ ∞

0

µ′(s)‖A1/2ξt(s)‖2ds ≤ 0.We now 
hoose an arbitrary z su
h that ‖z‖H0 ≤ R. Throughout the end of theproof, the generi
 
onstant c ≥ 0 may depend (in
reasingly) onR. Hen
e, on a

ountof (2.3)-(2.5),
‖D(t)z‖2

H0
≤ L0(D(t)z) ≤ c‖D(t)z‖2

H0
.10



Let ε ∈ (0, 1
2
) to be spe
i�ed later, and put ν = ε2 (this �xes the 
orresponding s∗).Then, sele
t δ > 0 small enough su
h that µ(s∗) ≤ λ/δ and µ̂(Pδ) ≤ ε2. Finally,setting (p(t), ∂tp(t), ψ

t) = D(t)z and k = g0(v) in (5.2), introdu
e the fun
tional
E(t) =

1

δ
L0(D(t)z) + ε3Φ(D(t)z) +

ε2

4
Ψ(D(t)z).For ε small enough,(6.1) 1

2
‖D(t)z‖2

H0
≤ E(t) ≤ c‖D(t)z‖2

H0
.With the above 
hoi
e of ν and δ, exploiting Lemma 5.3 and Lemma 5.4, and notingthat 〈g0(v), v〉 ≥ 0, we obtain the di�erential inequality

d

dt
E ≤ −ε3

(1

2
− 6ε

)

‖A1/2v‖2 − ε5‖∂tv‖2 − ε2
(1

8
− 4ε2

)

Pδ[ξ]

+
(1

δ
− εµ(s∗)

λ

)

∫ ∞

0

µ′(s)‖A1/2ξ(s)‖2ds+ 4εNδ[ξ] + ε3‖g0(v)‖‖ξ‖M−1.Observe that
(1

δ
− εµ(s∗)

λ

)

∫ ∞

0

µ′(s)‖A1/2ξ(s)‖2ds+ 4εNδ[ξ] ≤
1

2δ

∫ ∞

0

µ′(s)‖A1/2ξ(s)‖2ds+ 4εNδ[ξ]

≤ −
(1

2
− 4ε

)

Nδ[ξ],while
ε3‖g0(v)‖‖ξ‖M−1 ≤ cε3‖A1/2v‖‖ξ‖M0 ≤

ε3

4
‖A1/2v‖2 + cε3Nδ[ξ] + cε3Pδ[ξ].Hen
e,

d

dt
E ≤ −ε3

(1

4
− 6ε

)

‖A1/2v‖2 − ε5‖∂tv‖2 − ε2
(1

8
− cε

)

Pδ[ξ] −
(1

2
− cε

)

Nδ[ξ].It is then 
lear that, up to taking ε small enough (depending on c), we obtain
d

dt
E(t) + ε5‖D(t)z‖2

H0
≤ 0,whi
h, together with (6.1) and the Gronwall lemma, yield the desired 
on
lusion.Noti
e that the obtained de
ay rate κ depends on c (and thus on R). However, usingthe semigroup properties, it is immediate to show that it 
an be �xed independentlyof R, provided that we enlarge Q(R) a

ordingly.7. Proofs of Lemma 4.4 and Lemma 4.5The proofs of the lemmata lean on the existen
e of a (weak) dissipation integral.Namely,Lemma 7.1. Assume that the hypotheses of Lemma 4.4 hold. Then, for every ε > 0and every t ≥ τ ≥ 0,

∫ t

τ

‖∂tu(y)‖dy ≤ ε(t− τ) +K,for some K = K(C, ε) ≥ 0. 11



Proof. In this proof, the generi
 
onstant c will depend on the bound C of the normof S(t)z in H0. For any �xed ε > 0 (without loss of generality, we assume that
ε ≤ 1/2), 
hoose ν = ε2 and δ > 0 su
h that µ(s∗) ≤ λ/δ and µ̂(Pδ) ≤ ε2. It isapparent that

∫

Pδ

µ(s)〈A1/2u,A1/2η(s)〉ds ≤ cεand
‖g(u) − f‖‖η‖M−1 ≤

1

ε2
Nδ[η] + cε.Then, setting (p(t), ∂tp(t), ψ

t) = S(t)z and k = g(u) − f in (5.2), in view ofLemma 5.1 and Remark 5.5, the fun
tional Φ1(S(t)z) satis�es the inequality
d

dt
Φ1 ≤ −1

2
‖∂tu‖2 − µ(s∗)

λε2

∫ ∞

0

µ′(s)‖A1/2η(s)‖2ds+
4

ε2
Nδ[η] + cε.Finally, we de�ne

E(t) =
1

δ
L(S(t)z) + ε4Φ1(S(t)z),where L is the Lyapunov fun
tion introdu
ed above. Due to (5.1), we have |E| ≤ c/δ.Reasoning as in the proof of Lemma 4.3, if ε is small enough (whi
h is 
learly not a
onstraint in view of our aim), we obtain

d

dt
E +

ε4

2
‖∂tu‖2 ≤ cε5.Integrating this inequality over (τ, t), and subsequently applying the Hölder inequal-ity, we rea
h the desired 
on
lusion. �7.1. Proof of Lemma 4.4. Again, the generi
 
onstant c appearing below willdepend on the bound C of the norm of S(t)z in H0. For r ∈ [0, 1

2
), we introdu
e thefun
tional

Qr(t) = ‖K(t)z‖2
Hr

+ 2〈g(u(t)) − g0(v(t)) − f, Arw(t)〉,whi
h satis�es the estimates
1

2
Qr(t) − c ≤ ‖K(t)z‖2

Hr
≤ 2Qr(t) + cand the di�erential equality

d

dt
Qr −

∫ ∞

0

µ′(s)‖A(1+r)/2ζ(s)‖2ds

= 2〈[g′0(u) − g′0(v)]∂tu,A
rw〉 + 2〈g′0(v)∂tw,A

rw〉 + 2〈g′1(u)∂tu,A
rw〉.By virtue of (2.3), (2.5)-(2.6) and the 
ontinuous embedding Hα →֒ L6/(3−2α)(Ω),we obtain the following estimates:

2〈[g′0(u) − g′0(v)]∂tu,A
rw〉 ≤ c(1 + ‖u‖L6 + ‖v‖L6)‖∂tu‖‖w‖L6/(1−2r)‖Arw‖L6/(1+2r)

(7.1)
≤ c‖∂tu‖‖A(1+r)/2w‖2,12



2〈g′0(v)∂tw,A
rw〉 ≤ c‖|v| + |v|2‖L3‖∂tw‖L6/(3−2r)‖Arw‖L6/(1+2r)(7.2)

≤ c‖A1/2v‖‖Ar/2∂tw‖‖A(1+r)/2w‖,and(7.3) 2〈g′1(u)∂tu,A
rw〉 ≤ c‖∂tu‖‖Arw‖ ≤ c‖∂tu‖ + c‖∂tu‖‖A(1+r)/2w‖2.Thus, we readily obtain

d

dt
Qr −

∫ ∞

0

µ′(s)‖A(1+r)/2ζ(s)‖2ds ≤ h + hQr,where we put
h(t) = c‖∂tu‖ + c‖A1/2v‖.For ε ∈ (0, 1

2
), we 
hoose ν = ε2 and δ > 0 su
h that µ(s∗) ≤ λ/δ and µ̂(Pδ) ≤ ε2.Setting (p(t), ∂tp(t), ψ

t) = Ar/2K(t)z (here, Ar/2 is in fa
t the diagonal matrix whoseentries are Ar/2) and k = g(u) − g0(v) − f in (5.2), we 
onsider the fun
tional
Υr(t) = Φ(Ar/2K(t)z) + Ψ(Ar/2K(t)z).Applying Lemma 5.3 and Lemma 5.4, together with Remark 5.5 and the immediate
ontrol

‖g(u) − g0(v) − f‖‖Arζ‖M−1 − (1 − 2ε2)〈g(u) − g0(v) − f, Arw〉

≤ 1

2
‖A(1+r)/2w‖2 +

1

4
Pδ[A

r/2ζ ] + Nδ[A
r/2ζ ] + c,we obtain

d

dt
Υr ≤ −ε2

(

‖A(1+r)/2w‖2 + ‖Ar/2∂tw‖2 + Pδ[A
r/2ζ ]

)

− µ(s∗)

λε2

∫ ∞

0

µ′(s)‖A(1+r)/2ζ(s)‖2ds+
5

ε2
Nδ[A

r/2ζ ] + c,provided that ε is small enough. Finally, we introdu
e the energy
Wr(t) =

1

δ
Qr(t) + ε3Υr(t),whi
h ful�lls the inequalities (again, if ε is small enough)

1

c
Wr(t) − c ≤ ‖K(t)z‖2

Hr
≤ cWr(t) + c,for some c ≥ 1 depending on ε. Thus, we rea
h the desired 
on
lusion if we showthat Wr(t) is bounded for all times. In light of the previous 
omputations, we have

d

dt
Wr ≤ −ε5

(

‖A(1+r)/2w‖2 + ‖Ar/2∂tw‖2 + Pδ[A
r/2ζ ]

)

+ 5εNδ[A
r/2ζ ]

+
(

1 − εδµ(s∗)

λ

)

∫ ∞

0

µ′(s)‖A(1+r)/2ζ(s)‖2ds+ h+ hWr + c.It is then apparent that, provided that we �x ε small, we end up with the inequality
d

dt
Wr + βWr ≤ h + hWr + c,13



for some β > 0. Observe also that, by virtue of Lemma 4.3 and Lemma 7.1,
∫ t

τ

h(y)dy ≤ β

2
(t− τ) + c.Sin
e Wr(0) = 0, the 
on
lusion follows from a Gronwall-type lemma (see e.g. [4℄).7.2. Proof of Lemma 4.5. We basi
ally repeat the proof of Lemma 4.4, setting

r = 1. In this 
ase, the generi
 
onstant c appearing below will depend on the bound
C of the norm of S(t)z in H1/3. The only di�eren
e here is how we rea
h the 
ontrol(7.1), whereas (7.2)-(7.3) remain the same (for r = 1). Sin
e

|g′0(u) − g′0(v)| ≤ c|w|(1 + |u| + |w|),exploiting the Agmon inequality
‖w‖L∞ ≤ c‖A1/2w‖1/2‖Aw‖1/2 ≤ c‖Aw‖1/2and the embeddings H4/3 →֒ L9(Ω) and H1/3 →֒ L18/7(Ω), we are led to

2〈[g′0(u) − g′0(v)]∂tu,Aw〉 ≤ c‖∂tu‖‖w‖L∞‖Aw‖ + c‖u‖L9‖∂tu‖L18/7‖w‖L∞‖Aw‖
+ c‖w‖2/3

L6 ‖∂tu‖L18/7‖w‖4/3
L∞‖Aw‖

≤ c‖Aw‖3/2 + c‖Aw‖5/3

≤ γ‖Aw‖2 +
c

γ5
,for every γ ∈ (0, 1). Thus, for any given γ ∈ (0, 1), we 
on
lude that

d

dt
Q1 −

∫ ∞

0

µ′(s)‖A(1+r)/2ζ(s)‖2ds ≤ γ‖Aw‖2 + h+ hQ1 +
c

γ5
.We 
an now pro
eed exa
tly as in the proof of Lemma 4.4. Note that the term

γ‖Aw‖2 is easily 
ontrolled, upon �xing γ small enough.Referen
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