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ABSTRACT. A weakly damped wave equation in the three-dimensional (3-D) space
with a damping coefficient depending on the displacement is studied. This equa-
tion is shown to generate a dissipative semigroup in the energy phase space, which
possesses finite-dimensional global and exponential attractors in a slightly weaker
topology.

1. INTRODUCTION

Let Q C R3 be a bounded domain with smooth boundary 92. We consider the
following initial-boundary value problem for a weakly damped wave equation with
a nonlinear damping coefficient:

Opu + o(u)ou — Au + p(u) = f,
(1.1) uw(0) = up, Ou(0) = uy,
u‘ag = 0.

The external force f € L*(Q) is independent of time, while the nonlinearity ¢ €
C?(R), with (0) = 0, is subject to the conditions

(1.2) " ()] < e(1+ Jul).
(1.3) ¢'(u) = —c,
(1.4) lim inf plu) > =\,

lu|—oc0 U

where ¢ > 0 and A\; > 0 is the first eigenvalue of —A on L?*(Q) with Dirichlet
boundary conditions. As far as the damping coefficient is concerned, we assume
that o € C'(R) with

(1.5) o(u) > o9 >0,
(1.6) o' (w)] < e(1 + [ul).

Problem (1.1) is related to the semilinear reaction-diffusion equation with memory,
where the classical Fourier’s constitutive law is replaced by the Gurtin-Pipkin’s one
[15], namely,

(1.7) Oy — /OOO k(s)Au(t — s)ds + p(u) = f.

Here, the memory kernel k is a positive decreasing function, and u(t) is supposed
to be a given datum for ¢ < 0, where it need not fulfill the equation. If k is of
exponential type, that is, k(s) = e~! exp[—s/e], where € > 0 is the relazation time,
then (1.7) can be transformed into the partial differential equation

e0pu + [1 + ¢ (u)]0u — Au + p(u) = f,

simply by adding (1.7) and its time-derivative multiplied by . Note that, for £ small
enough, the function 14’ (u) fulfills assumptions (1.5)-(1.6). This equation is quite
interesting from a physical viewpoint, for instance, to describe the flow of viscoelastic
fluids (see [5, 13, 16, 19]). Wave equations with a nonlinear damping of the form
o(0yu) have also been considered in the literature (see |9, 10, 11, 12]). However,



the nonlinearity o(u)d;u considered in the present work produces an equation which
is essentially different. Indeed, the term o(u)0yu is much more difficult to handle
than o(dyu), and the methods developed to treat the latter nonlinearity simply do
not work in our situation. In particular, in contrast to the previous theory where
the Lipschitz continuity in the phase space is immediate and the further regularity
of solutions easily achievable (at least under suitable growth restrictions), with the
term o(u)0yu one does not even have the plain continuity of the semigroup in the
phase space, and any additional regularity seems to be out of reach, unless o is
constant.

The asymptotic behavior of this kind of dissipative systems is well described by the
existence of a global attractor, namely, the unique invariant compact sets which
(uniformly) attracts bounded sets of initial data |1, 21|. The global attractor, how-
ever, does not provide an actual control of the convergence rate of trajectories and
might be unstable with respect to perturbations. A more suitable object to have
an effective control on the longterm dynamics is the exponential attractor [6, 7|.
Contrary to the global one, the exponential attractor is not unique (thus, in some
sense, is an artificial object), and it is only semi-invariant. However, it has the ad-
vantage of being stable with respect to perturbations, and it provides an exponential
convergence rate which can be explicitly computed.

The 1-D and 2-D analogues of (1.1) have been investigated in the recent papers
|14, 20|, where the existence of strongly continuous semigroups possessing global
and exponential attractors of optimal regularity has been proven. The analysis in
the one-dimensional case |[14] heavily leant on the embedding H}(Q)) — L>(Q),
which is false in higher dimensions. In fact, in [14] the strong positivity condition
(1.5) can even be weakened, requiring in place that o(u) > 0 for every u. On the
contrary, in the two-dimensional case, considered in [20], one can no longer appeal
to the continuous embedding HJ(Q2) — L>*(Q), and the analysis becomes more
complicated. Nevertheless, the above embedding is “almosttrue, in the sense that
H}(Q) — LP(Q) for all p < co. Thus, 2-D looks like a border (critical) case and,
using sharp interpolation inequalities along with a rather delicate splitting of the
equation into an exponentially decaying and a compact part, it is possible to develop
a complete theory, which includes global existence of strong solutions, regularity and
finite-dimensionality of the attractors, existence of exponential attractors.

The present work is focused on the analysis of the most relevant three-dimensional
case. In contrast to the former situations, the embedding HJ(Q2) — L>(Q) is
now far from being true, and the equation becomes “supercritical”, showing many
features similar to those of wave equations with fast growing nonlinearities (see
e.g. [23]). In particular, it seems extremely difficult to verify the global existence
of more regular solutions (even in the case of globally bounded ¢ and o), and
essential problems with the energy equality arise. However, the main difference
with respect to the case of a fast growing ¢ and a constant ¢ is uniqueness. Indeed,
exploiting some monotonicity arguments, it is possible (analogously to the 2-D case
[20]) to establish the uniqueness of solutions, and even the Lipschitz continuity of the
semigroup associated with (1.1) in a weaker energy space. We should remark that
the strategy adopted to treat the 3-D case is quite different from the one employed



for the corresponding 1-D and 2-D cases. Indeed, here we cannot obtain the existence
of regular (exponentially) attracting sets. So, we first prove the existence of a weak
attractor, and, in the case when ¢ is globally bounded, we obtain the existence of
the strong global attractor via the energy equality method. Finally, if the growths
of the functions ¢ and o are slightly slower than in (1.2) and (1.6), we construct an
exponential attractor which (exponentially) attracts bounded subsets of the phase
space in a weaker topology, and which has finite fractal dimension there. The
construction used here is, in fact, some modification/generalization of the so-called
method of [-trajectories, which is known to be very effective for problems with
lack of regularity (see [4, 17, 18, 24| and references therein). Thus, we succeed in
constructing a finite-dimensional exponential attractor (in a weaker topology) in
spite of the lack of compactness of the global attractor in the original topology.
Still, in the 3-D case some questions remain open, such as the regularity and the
finite dimensionality of the strong global attractor.

The paper is organized as follows. The existence and uniqueness of appropriate weak
energy solutions of (1.1) and their dissipativity is verified in Section 2, where we
also prove the energy equality under the additional assumption that o(u) is globally
bounded. In Section 3 we establish the existence of a weak attractor and, when the
energy equality holds, the existence of a strong global attractor. Section 4 deals
with exponential attractors.

Notation. We denote by (-,-) and || - || the inner product and the norm in L?(2).
Naming, for s € R, H, = domain[(—A)*?] (with Dirichlet boundary conditions)
we introduce the Hilbert spaces H, = H,.1 X Hy, endowed with the usual inner
products and norms. Throughout the paper, the symbols ) and ¢ will stand for a
generic monotonically increasing positive function and a generic positive constant,
respectively. We shall tacitly make use of the Poincaré, Young and Hélder inequal-
ities, along with the continuous embedding H; — LP(Q2), for every p € [1,6]. Also,
we shall employ the following functionals, related with ¢ and o, namely,

o) = [ ey = [ ol Y@= [ oty
0 0 0
Finally, for any given function u(t), we write for short &,(t) = (u(t), Qu(t)).

We conclude the section by reporting two technical results which will be needed in
the course of the investigation. The first one is a modified version of the Gronwall
lemma (see [2| for a proof).

Lemma 1.1. Let E: Hy — R satisfy

Blcl, —m < E(C) < QUIcll) +m, V¢ € Ho,

for some 3> 0 and m > 0. Let now & € C(RT,Hy) be given. Suppose that the map
t— E(&(t)) is continuously differentiable and fulfills the differential inequality

d
)+ <l < k.
for some e >0 and k > 0. Then, there is to = Q(||£(0) |2, + k) > 0 such that

1) Ie < Q(E+m+ 671, V>t
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Lemma 1.2. Let ¢ € L3*9(Q), 6 > 0, be such that Vi) € L¥?(Q). Then, the
multiplication by 1 is well-defined as an operator from H_, to H_y for some o =
0(8) € (0,1/2), and the following estimate holds:

[Yulla, < cllulla,, — YueH,,
for some ¢ = c([[¢]|gas, | V]| Lar2).

for every v € Hy. Indeed, due to the assumptions on ¢ and the embedding H; —
L5(€2), we have

Proof. 1t is simpler to verify the equivalent conjugate inequality ||Yv| g, < c||v| #,,

[oollzr@) + V@) Lo < ellvllm,

with % = ﬁ + % < % Then, the required estimate is an immediate corollary of the
interpolation inequality
1—
lwllg, < cllwlpIVwllfes — Yw € Hy,
1— 5 . s
where % = TQ + % or, equivalently, 0 = 355 (see e.g. [22]). O

2. WELL-POSEDNESS AND DISSIPATIVITY

To begin our analysis, we recall the definition of a weak energy solution.

Definition 2.1. A function u(t) is a weak energy solution to (1.1) if, for any 7" > 0,

£, € L*°([0,T), Ho), Vo(u)dwu € L*([0,T), Hy),
and (1.1) holds in the sense of distributions.

Due to the growth restrictions on ¢ and o, it is apparent that ¢(u) € L([0,T], Hy)
and o(u)0u € L*([0,T), H_;). Consequently, Oyu € L*([0,T], H_;) and equation
(1.1) is understood as an equality in L*([0,T], H_;). Moreover, standard arguments
show that &, € Cy([0,T], Hy). Hence, the initial conditions are well defined.

The next proposition proves the Lipschitz continuity in a weaker energy space. As
a byproduct, we obtain the uniqueness of a weak energy solution. This Lipschitz
continuity turns out to be the main technical tool in our analysis of the equation.

Proposition 2.2. Let u' and u? be two weak energy solutions to (1.1). Then, for
every t > 0, the following estimate holds:

1€t (8) = &u2 ()]l-y < ce™|[€ur(0) = Eu2(0) Iy
where ¢ > 0 depends only on the energy norms of the initial data &,1(0) and &,2(0).

Proof. The argument is the same as the analogous one developed in [20] for the
2-D case. However, in order to make this paper self-contained, we report it in full
detail. Let u',u? be two weak solutions to (1.1) such that ||, (t)]3, < R for every
t € [0, 7], for some R > 0, and denote @ = u' — u?. Defining w/(t) = [, u/(7)dr

and w = w!' —w?, integrating equation (1.1) for v’ (j = 1,2) on [0, ¢] and taking the
difference yields
(2.1) Oy + B(u') — B(u?) — Aw = F + G,



where we put

F(t) = —/0 [p(u'(7)) = p(u*(7))]dr, G =X(u'(0)) = X(u*(0)) + 0,u(0).

Note that, on account of (1.2) and (1.6), all the terms of (2.1) belong at least to
L*([0,T], H_y). Hence, their product with 8tw =ue€ L°°([0 T), Hy) is well defined.
Taking this product, and observing that (X(u') — X(u?),u) > 0, we get

d d

1d _
S Slallt, < S(F@) + 2 (Gm) — (OF, @)

Integrating on [0, 77, we are led to
T
1€a(T) 17, < [@(0)II* + 2(F(T), ®(T)) + 2(G, w(T)) — 2/0 (OF (1), w(t))dt
1
< S1€a(D + AIED)IE, + [aO)]” + 4G,

T
2 / 10 F(0)] 1 [ (8) 4y .
0

Using now the growth restrictions (1.2) and (1.6) on ¢ and o, we easily see that

LR, < QR)T / la)|dt < Q(R)T / €alt) 2, d,
JaO)? + 41G1% . < QURIEO)Z ..
10 F®) s, < QR[] < QR)|€n(t) 11

Therefore, we end up with

I16a(T) 3, < Q(R)IIE(0)II7,_, + QR)(1+T) /OT I1€a(t) 117, dt,
and from the Gronwall lemma we conclude that
la(T)I* < 1€a(T) I3, < QUR)ECDT ()3,
Finally, from (2.1), we read that
0l = 10wl < 52(w') = S(u?)la_, + IVol + [ Flla, + 1Gla_..

which, due to the above estimates and the inequality || S(u!)—2(u?)||z_, < Q(R)||ul,
furnishes

0TI, < Q(R)eX DT Ea(0)I3, -

To complete the proof it is enough to note that, if ||£,;(0)||=, < R, then the uniform
estimates provided in the subsequent Theorem 2.3 ensure that [|€,(¢)|n, < Q(R)
for all ¢ > 0. UJ

The next theorem provides the existence of a weak solution together with the dissi-
pative estimate.



Theorem 2.3. There exists a (unique) weak energy solution of (1.1). This solution
satisfies the dissipative estimate

(2.2) 1€l < QUUEO) o)™ + QUIFID,

and the enerqgy inequality

(23)  I€u(®)ll3, +2(P(u(t)), 1) — 2(f, u(t)) + 2/0 (o (u(7))Ou(T), du(r))dr
< [1€u(0) 34, + 2(®(u(0)), 1) — 2{f, u(0)).

Proof. We give below the formal derivation of the a priori estimates (2.2) and (2.3),
which can be justified in a standard way via a Galerkin approximation scheme.
Indeed, (2.3) can be formally obtained multiplying (1.1) by d;u and integrating on
[0,¢] x Q. In order to verify (2.2), for € € (0,1) to be fixed later, we introduce the
energy functional

(24)  E. = E.(&) = Gulli + 2(2(u), 1) + 2(T(u), 1) + 25(Qu, u) — 2(f, ).
Notice that, from (1.5), (Y(u),1) > 0. Thus, on account of (1.2), (1.6) and the
inequality

(2.5) [Vul* +2(®(u), 1) > 29[| Vul]* —¢, 7 >0,

which follows from the dissipativity assumption (1.4), we have the controls

Bll&ullr = QUIID < B- < Q(lI€ull) + QUIFID:
for some 3 € (0,1), provided that € is small enough. Multiplying (1.1) by dyu + eu,
we find

d
%Ee 4 2¢||Vu||* + 2(o (u)Oyu, Ou) — 2¢||0u||* + 2e(p(u), u) = 2e(f, u).

Using (1.4) and (1.5), we have the estimate
2|Vl + 2e{p(u), u) > 28| Vul]® — ¢,
2(a (u)Oyu, Oyu) — 2¢||Oul|* > Bel|Owul?,

if € is small enough. Thus, estimating the right-hand side of the differential equality
as
2e(f, u) < Be||Vull* + cll £,

we end up with the inequality

d
S . + Bell&ul, < QUL

Fixing now the parameter € in such a way that all the above relationships hold, we
deduce from Lemma 1.1 that, for every R > 0, there exists ty = to(R) such that

16u()lle < QUISID, V=10,

whenever |€,(0)|lxn, < R. Together with (2.3) and (2.5), this gives estimate (2.2)
and finishes the proof of the theorem. O

Thus, equation (1.1) generates a dissipative semigroup S(¢) in the phase space Hy
which is locally Lipschitz continuous in the H_; metric.



Corollary 2.4. The weak enerqgy solution of (1.1) possesses the dissipation integrals
Uo/o [Opu(t)|*dt < /0 (o (u(t))Opu(t), Opu(t))dt < Q(II€u(0)]l,) + QU1

Indeed, this follows immediately by passing to the limit ¢ — oo in (2.3) and using
(2.5).

Remark 2.5. It is worth emphasizing that we cannot directly multiply equation
(1.1) by Ou, since the terms of (1.1) belong to L*([0,T], H_), whereas dyu €
L>([0,T],Hy) only. In order to overcome this obstacle, one usually works with
the Galerkin approximate equations (which are smooth, so that this multiplication
makes sense) and verify estimates (2.2) and (2.3) first for the approximate Galerkin
solutions ux(t). Then, passing to the limit N — oo, one obtains the required in-
equalities for the limit solution u (see [1] for details). However, this limit procedure
gives only the energy inequality (2.3). In contrast to this, the energy equality is a
more delicate fact that should be verified independently (usually, stronger assump-
tions on the equation are required). We prove that under the assumption that o(u)
is uniformly bounded.

Corollary 2.6. Assume that o(u) < c for every uw € R. Then, strict equality in
(2.3) holds, namely,

(2.6)  [I€a(®)ll3, +2(@(u(t)), 1) — 2(f, u(t)) + 2/0 (o (u(7))dvu(r), du(r))dr
= [1€a(0) 3, + 2(®(u(0)), 1) — 2(f, u(0)).

Proof. Let Py : Hy — PyHy be the orthogonal projection in Hy onto the first N
eigenvectors of the Laplacian (equipped with Dirichlet boundary conditions), and let
u be the weak energy solution to (1.1). The function uy = Pyu obviously satisfies

Opun + Py(o(u)Ou) — Auy + Pyp(u) = Py f.
Multiplying this equation by d,uy, and integrating over [0,¢] x £, we get

€un (D)3, — 2(f, un(t)) + 2/0 {o(u(7))Opu(T), dun(T))dT + 2/0 {o(u(7)), Opun (7)) dr
= [18un (03, = 2(f, un(0))-

We need now to pass to the limit N — oo in this equality. Since, by definition,
€u(t) € Hy for all ¢, then &, (t) — &,(t) and &, (0) — &,(0) in Ho. Hence, the pas-
sage to the limit is immediate for all the terms except the two integral ones appearing
in the left-hand side. For the first, we use the fact that o(u)d;u € L*([0,T], Hy) (here
the global boundedness of o(u) is needed) and dyuy — Oyu in that space. Finally, for
the second one, we note that ¢(u) € L*([0,T], Hy) (due to the growth restrictions)
and, consequently,

/0<90(u(7))73tuN(T)>dT—>/o<90(u(7))73tU(T)>dT=<<I>(U(t))71>—<<I>(u(0))71>7

which proves (2.6). O



The energy equality (2.6) can be rewritten in a more convenient differential form.
Indeed, introducing the energy functional

Ey = Ey(8&4) = l|ullr, +2(2(w), 1) — 2(f, u),

the integral equality (2.6) is equivalent to the fact that the function Ey(&,(t)) is
absolutely continuous as a function of ¢ and satisfies almost everywhere

(2.7) %Eo + 2(o(u)Oyu, Oyu) = 0.

This differential energy equality is crucial for the existence of a strong global attrac-
tor, as we will see in the next section.

3. WEAK AND STRONG GLOBAL ATTRACTORS

We now proceed to investigate the asymptotic properties of (1.1), using the notion
of a global attractor. We begin with the attractor in a weak topology.

Definition 3.1. A set A C H, is a weak global attractor of the semigroup S(t)
associated with equation (1.1) if

(i) A is weakly compact in Hy;
(ii) A is strictly invariant, that is, S(t)A = A;
(iii) A attracts in the weak topology the images of all bounded subsets of H,
namely, for every bounded subset B of Hy and every neighborhood O of A in
the weak topology of Hy, there exists T'= T (B, O) > 0 such that S(t)B C O,
for every t > T

In particular, the attraction in the weak topology of H, implies the attraction in
the strong topology of H_;.

The next proposition gives the existence of such a weak attractor.

Proposition 3.2. The semigroup S(t) associated with the wave equation (1.1) pos-
sesses a weak global attractor A in the sense of Definition 3.1. As usual, this at-
tractor is generated by all complete bounded trajectories of (1.1), that is, A = Kj—o,
where IC is the set of all weak energy solutions u(t) which are defined for all t € R
and bounded in the Ho-norm.

Proof. Due to the dissipative estimate (2.2), the ball By = {£ € Ho, [|{[ln, < R}
for a sufficiently large radius R is an absorbing set for S(¢) in Hy. Obviously, this
ball is compact in the weak topology of Hy. Thus, S(t) possesses a weakly compact
absorbing set. On the other hand, due to Proposition 2.2, for every fixed t > 0, the
map S(t) is continuous on By in the H_;-topology and, consequently, it is continuous
in the weak topology of Hy as well. The existence of a weak global attractor follows
now from the classical attractor’s existence theorem (see e.g. |3]). O

By means of standard energy methods (cf. [21]), we now show the existence of
a strong global attractor in the case where the energy equality (2.6) holds (for
instance, when o(u) is globally bounded).



Theorem 3.3. Assume that the energy equality (2.6) holds for every weak energy
solution. Then, the semigroup S(t) possesses a global attractor in the strong topology
of Ho (which, obviously, coincides with the weak attractor A constructed in the
previous proposition).

Proof. To prove the existence of the strong global attractor, it is sufficient to verify
that for every sequences ¢, (0) € By and ¢, — oo the associated sequence &,, (t,)
is precompact in Hy (see e.g. [1]). Let then &, (0) € By and ¢, — oo be arbitrary.
Without loss of generality, due to the previous proposition, we may assume that
Eu, (L) — & = (&1, &) weakly in Hy for some & € A. The proof is finished if we show
that &,, (t,) — & strongly in Hy. To this end, we use the simple observation that in
a Hilbert space the weak convergence together with the convergence of the norms
imply the strong convergence. Thus, we are left to prove that ||, (t:)]1e — 1€
To reach this aim, we shall use suitable energy equalities. The basic energy equality
(2.7) allows us to multiply directly equation (1.1) by d;u+¢cu. Indeed, the problematic
multiplication by dyu is justified by (2.7), whereas the multiplication by u is allowed
since u € L*°([0,T], Hy). Multiplying the initial equation (1.1) by this term, after
simple manipulations, we deduce the equality

(3.1) %Ea(fu) +2eE. (&) + 2([o(u) — 2¢|0su, Opu) = L.(&,),

with F.(§,) as in (2.4), where we put
Le(&u) = —2¢(o(u), u) + 4e(P(u), 1) 4+ 4e*(T (u), 1) + 4e*(u, Opu) — 2e(f, u),

and we fix € > 0 enough small such that o(u) —2¢ > 0. Then, the weak convergence
of &, (tn) to & = (&1, &), together with the growth restrictions on ¢ and o and the
compactness of the embedding H, — L*(Q), lead to

(@(un(tn)), 1) = (&), 1), (Tlun(tn)), 1) = (Y1), 1), (un(tn), dun(tn)) — (&1, &2)-

Hence, in order to verify the required convergence of the norms, it is sufficient to
check the convergence of the energy functionals

Ee(u, (tn)) — EL(8)-

To this aim, we introduce the shifted functions @, (t) = u,(t + t,), which solve

8ttﬂn + J(an>8tan — A’ljn + (p(ﬂn) = f,
i (—tn) = un(0),  Dyiin(—ty) = Dy (0),

and F.(&;,(0)) = E-(&.,(tn)). Since &,,(0) € By, the dissipative estimate (2.2)
implies that the solutions &, (¢) are uniformly bounded in L>°([—t,,, 00), Hp). More-
over, &, being precompact in Co.(R, H_1), without loss of generality we may assume
that, for every t € R, &, (t) converges weakly in Hy to some solution &,(t) € A (here
we have implicitly used the fact that ¢, — oo). Obviously, &,(0) = £. So, we need
to prove that

9



First, note that the established weak convergence &;, (t) — &,(t) and the bounded-
ness in ‘Hy together with the compact embedding H; — L*(Q) imply

Le(8a, (1) = Le(&u(t),  VEER,

|L€ (éﬂn (t))l <ec

Integrating now the energy equality (3.1) for @,(¢) on [—t,,0], we get
0

B (0)+2 [ (lo(a,(t) ~ 2010, (0) 0 (1)

—tn

(3.3)

0

= B(€a, (—ta))e " / 2L (€, (1))t

_tn
Furthermore, using (3.3) and the fact that that ¢, — oo and &, (—t,) remains
bounded, we deduce from the last equality that
0

lim (Eg(gﬂn(o»w / [0 (n (£) —25]8tﬁn(t),8tan(t)>dt) - / =L (E4(1))dt.

n— o0
—tn —00

Comparing this result with the analogous energy equality for the limit solution &,(¢),
we conclude that
0
(3.4) lim (Ee(fﬁn (0)) + 2/ e* [0 (T, (1)) — 2€]0yiin (1), 8t11n(t))dt)
n—00 —t,

0

= B.(£,(0)) + 2 / (o (u(t)) — 2¢]0u(t), Byu(t))dt.

— 0o
On the other hand, since [|£||g < liminf, . ||&.]| g for any weakly convergent se-
quence &, — £ in a reflexive space H, we have

and
/_ ([0 (u(t))~2¢]0pu(t), dyu(t))dt < lim inf /_ t ([0 (w0 (1) —2¢]0yin (t), Dytin (t)) dlt.

Indeed, the term ([o(a,) — 2¢|0sty,, Osti,) can be written in the form |0, (a,)||?,
with U(v) = [ v/o(y) —2edy. It remains to note that the last two inequalities,
together with (3.4), imply the required energy convergence (3.2). OJ

4. FINITE-DIMENSIONALITY AND EXPONENTIAL ATTRACTORS
IN THE SUBCRITICAL CASE

In the final section, we prove our main theorem on the existence of the weak exponen-
tial attractor in the subcritical case. To be more precise, in addition to (1.2)-(1.6),
we require that

(4.1) o ()] + [ (u)] < e+ [u*),
for some 0 € (0, 2].

Our construction of an exponential attractor is based on the following abstract
result.
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Proposition 4.1. Let H,V, V| be Banach spaces such that the embedding Vi, — V
is compact. Let B be a closed bounded subset of H, and let S : B — B be a map.
Assume also that there exists a uniformly Lipschitz continuous map T : B — Vi,
i.€.

| Tby — Thellv, < L||by — b2||m, Vb, by € B,
for some L > 0, such that
(42) ||Sb1—Sb2HH Sﬁ”bl—bQHH—i-KHTbl —Tbg“v, Vbl,bQ S B,

for some ¥ < 1/2 and K > 0. Then, there exists a (discrete) exponential attractor
Mgy C B which satisfies the following properties:

(i) semi-invariance: SMg C My;

(ii) compactness: Mg is compact in H;

(iii) exponential attraction: disty(S"B, Mq4) < Ce™*" for alln € N and for some
w >0 and C > 0, where disty denotes the standard Hausdorff semidistance
between sets in H;

(iv) finite-dimensionality: Mgy has finite fractal dimension in H.

Moreover, the constants w, C and the fractal dimension of Mgy can be explicitly

expressed in terms of L, K, U, ||B||g and the Kolmogorov’s k-entropy of the compact
embedding Vi — V', for some k = k(L, K, 7).

We recall that the Kolmogorov’s k-entropy of the compact embedding V; — V is
the logarithm of the minimum number of balls of radius x in V' necessary to cover
the unit ball of V.

The proof of this proposition in the particular instance when H = V; and T is the
identity map is given in [7]. The general proof repeats word by word this particular
case and so thus omitted (see also [4, §|).

We are now ready to state and prove

Theorem 4.2. Assuming (4.1) in addition to the general hypotheses, the semigroup
S(t) associated with (1.1) possesses a weak exponential attractor M in the following
sense:

(i) M is bounded in Hy and compact in H_q;

(i1) M is semi-invariant: S(t)yM C M, t > 0;

(iii) M attracts the images of bounded (in Hy) subsets exponentially in the metric
of H_1, i.e. there exist w > 0 and a monotone function Q) such that, for every
bounded set B C Hy,

disty,_, (S()B, M) < Q(IBllwo)e™", vVt =0.

(iv) M has the finite fractal dimension in H_;.
Proof. We first recall that, due the dissipative estimate (2.2), the semigroup S(t)

possesses an absorbing ball By in the phase space Hy. Thus, it is sufficient to
construct the exponential attractor for the restriction of this semigroup on By only.

In order to apply Proposition 4.1 to our situation, we need to verify the proper
estimate for the difference of solutions, which is done in the following lemma.
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Lemma 4.3. Let the above assumptions hold, and let u' and u® be two weak energy
solutions of (1.1) such that &,;(0) € By. Then

(4.3) 1€ () = & (@)llrey < Me™[|€2(0) = Eu2(0) |2y + K [Ju' —u?|| 2 0.0,6,)-
for some v >0, o€ (0,1/2), M >0 and K >0, all independent of t and u’.
Proof. For a € (0,1) to be fixed later, let v/(t) = f(f e ="yI(7)dr. Then, v/ =

O’ + av’? and v7(0) = 0. Multiplying the equations for uw/(7) by e~ and
integrating in 7 over [0, t], after simple transformations, we arrive at

O’ (1) + (0 (£)) — Ao (1) + / e o8 (1)) dr = ¢ R(E (0) 4~ (1),

where we set

pa(w) = p(w) —aX(w)  and  R(&,(0)) = 9w’ (0) — au’ (0) + Z(u(0)).

1

Then, the difference v = v! — v? solves

(4.4)
A (t) + [B(u' (1)) = B(u*(1))] — Av(t) + /0 e oo (ul (7)) = palu®(7)))dT

= e [R(£,1(0)) — R(£,2(0))].

Multiplying the equation by 9,0 + av = u! —u* € L>®°(R", H,), and noting that
Y (w) > o9, with standard computations, we get

(45) 2 peu 1) + 20 VR0 + 2000 — A5 + 4oy (7(2), H2(1)) < I(0)
with
B(&(6) = [160(8) %, + 2040(2), B,0(8) — 2~ (R(£,1(0)) — R(,2(0)), 2(0))
o / &) (a4 (7)) — a(u?(r)), B()d,

and
J(t) = 2(pa(u' (1)) — pa(u?(t)), 0(t)) — 4a /0 e oo (ul(7)) = palu®(7)), 0(1))dT
+dae™(R(£,1(0)) — R(£:2(0)), 0(1)).

Besides, analogously to Proposition 2.2, we have

[ R(£42(0)) = R(&u2(0))[[ -, < cl[£u1(0) = &u2(0) |3, -
Consequently, the function J in the right-hand side of (4.5) can be estimated via

J(t) < C[e‘atll&l(o) = &a2(0)[3, + llpalu’ (£)) = wa(u® (),

+ / e (12 (7)) — pu (W) 4, d7| + 0l (1)1,

for some ¢ = ¢(a) > 0. On the other hand, it is clear that the quadratic form (with
respect to v and 0;0) in the left-hand side of (4.5) is positively defined if « is small
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enough. Thus, fixing a suitable a and using the above estimates, we transform (4.5)
into

d
%E(fﬁ(t)) +vE(&(t))

< c[e—atngul(()) = &2(0)3, + lleal' () = palw? )7,

+ [ e I palul (7)) = euleF ],

for some strictly positive v < /2. Applying the Gronwall lemma, we infer

1650134, < ce™[1€ur(0) — &2 (0) I3, +C/O e palu' (7)) = palw? (1), dr.

where ¢ and v are independent of t and &,;. Finally, as in Proposition 2.2, we can
express the H_j-norm of &,1(¢) — &,2(t) in terms of the Ho-norm of &, (t) — &,2(1),
using equation (4.4), deducing that

t

1€ur (1) =82 ()17, < ce™ (18w (0)—=Eu2(0) I3, +c /O e lpa (ut (7)) —pa(w? (7)) |7, dr.
In order to complete the lemma, we only need to verify that
(4.6) lea(! (7)) = a(w?(7)llz_, < cllu’(T) —w*(T)Il3,
for some ¢ € (0,1/2) and some ¢ > 0, both independent of /(7). Indeed,
pa(u' (1)) = pa(u?(1)) = (1) (u' () — u?(7))

with (1) = fol ¢! (sul(T) + (1 — s)u?(7))ds. Moreover, using (1.2), (1.6) and the
fact that the w/(7) are uniformly bounded in H;, we find that Vi (7) is uniformly
bounded in L32(Q) and, from assumption (4.1), we obtain also that ¢ (7) is uni-
formly bounded in L3*9(Q). Thus, Lemma 1.2 entails (4.6). O

It is now not difficult to finish the proof of the theorem, using the abstract scheme
of Proposition 4.1. As usual, we first construct the exponential attractor My of
the discrete map S(7) on By (the above constructed absorbing ball in H,), for
a sufficiently large T,. Indeed, it follows from the dissipative estimate (2.2) that
S(T) : By — By, provided that T, is large enough. Then, we apply Proposition 4.1
on the set B = By with H = H_; and S = S(T5), with T, large enough so that By
is invariant and, in addition, Me "7 = < 1/2 (see (4.3)). Besides, with reference
to Proposition 4.1, let

Vi ={ue L*([0,T.], Ho), Qu € L*([0,T.],H.1)} € V =L*([0,T.],H_,).

Finally, define the operator T : By — V; to be the solving operator for (1.1) on the
time-interval [0, 7,], namely,

T, (0) = w.
Due to Proposition 2.2, we have the global Lipschitz continuity of T from By to
Vi, and Lemma 4.3 gives us the basic estimate (4.2) for the map S(7%). Therefore,
the assumptions of Proposition 4.1 are verified and, consequently, the map S(7%)
possesses an exponential attractor Mgy on By.
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The required exponential attractor for the semigroup S(t¢) (with continuous time)
can be now constructed by the standard formula

M= ] St)Ma.
t€[0,T%]

Indeed, since the H_;-norm of dyu and the Hy-norm of 0;u are globally bounded
if £,(0) € By, then the semigroup S(t) is also uniformly Lipschitz continuous with
respect to t € [0, 7] in the H_;-norm. Then, the finite-dimensionality of M follows
from the analogous finite-dimensionality of Mg, and the remaining properties of M
are immediate. This completes the proof of Theorem 4.2. [

Remark 4.4. Since an exponential attractor always contains the global one, the
theorem implies, in particular, that the fractal dimension of the global attractor A of
Proposition 3.2 is finite in H_; as well. In fact, due to interpolation, this dimension
is finite in ‘H_, for every a < 0.

Some open questions. In contrast to the one and the two-dimensional cases
(where we have a complete theory, due to [14] and |20]), the situation with the 3-D
case remains essentially less clear. In particular, the following important questions
remain open:

e Global existence of strong solutions (belonging to H;) and the H;-regularity
of the attractor A.
e Finite-dimensionality of the global attractor in the critical case (§ = 0 in

(4.1)).
e Energy equality and compactness of the global attractor in the original topol-
ogy of Hy when o(u) is not globally bounded.
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