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Abstra
t. A weakly damped wave equation in the three-dimensional (3-D) spa
ewith a damping 
oe�
ient depending on the displa
ement is studied. This equa-tion is shown to generate a dissipative semigroup in the energy phase spa
e, whi
hpossesses �nite-dimensional global and exponential attra
tors in a slightly weakertopology. 1. Introdu
tionLet Ω ⊂ R3 be a bounded domain with smooth boundary ∂Ω. We 
onsider thefollowing initial-boundary value problem for a weakly damped wave equation witha nonlinear damping 
oe�
ient:(1.1) 









∂ttu+ σ(u)∂tu− ∆u+ ϕ(u) = f,

u(0) = u0, ∂tu(0) = u1,

u|∂Ω = 0.The external for
e f ∈ L2(Ω) is independent of time, while the nonlinearity ϕ ∈
C2(R), with ϕ(0) = 0, is subje
t to the 
onditions

|ϕ′′(u)| ≤ c
(

1 + |u|
)

,(1.2)
ϕ′(u) ≥ −c,(1.3)

lim inf
|u|→∞

ϕ(u)

u
> −λ1,(1.4)where c ≥ 0 and λ1 > 0 is the �rst eigenvalue of −∆ on L2(Ω) with Diri
hletboundary 
onditions. As far as the damping 
oe�
ient is 
on
erned, we assumethat σ ∈ C1(R) with

σ(u) ≥ σ0 > 0,(1.5)
|σ′(u)| ≤ c(1 + |u|).(1.6)Problem (1.1) is related to the semilinear rea
tion-di�usion equation with memory,where the 
lassi
al Fourier's 
onstitutive law is repla
ed by the Gurtin-Pipkin's one[15℄, namely,(1.7) ∂tu−

∫ ∞

0

k(s)∆u(t− s)ds+ ϕ(u) = f.Here, the memory kernel k is a positive de
reasing fun
tion, and u(t) is supposedto be a given datum for t ≤ 0, where it need not ful�ll the equation. If k is ofexponential type, that is, k(s) = ε−1 exp[−s/ε], where ε > 0 is the relaxation time,then (1.7) 
an be transformed into the partial di�erential equation
ε∂ttu+ [1 + εϕ′(u)]∂tu− ∆u+ ϕ(u) = f,simply by adding (1.7) and its time-derivative multiplied by ε. Note that, for ε smallenough, the fun
tion 1+εϕ′(u) ful�lls assumptions (1.5)-(1.6). This equation is quiteinteresting from a physi
al viewpoint, for instan
e, to des
ribe the �ow of vis
oelasti
�uids (see [5, 13, 16, 19℄). Wave equations with a nonlinear damping of the form

σ(∂tu) have also been 
onsidered in the literature (see [9, 10, 11, 12℄). However,1



the nonlinearity σ(u)∂tu 
onsidered in the present work produ
es an equation whi
his essentially di�erent. Indeed, the term σ(u)∂tu is mu
h more di�
ult to handlethan σ(∂tu), and the methods developed to treat the latter nonlinearity simply donot work in our situation. In parti
ular, in 
ontrast to the previous theory wherethe Lips
hitz 
ontinuity in the phase spa
e is immediate and the further regularityof solutions easily a
hievable (at least under suitable growth restri
tions), with theterm σ(u)∂tu one does not even have the plain 
ontinuity of the semigroup in thephase spa
e, and any additional regularity seems to be out of rea
h, unless σ is
onstant.The asymptoti
 behavior of this kind of dissipative systems is well des
ribed by theexisten
e of a global attra
tor, namely, the unique invariant 
ompa
t sets whi
h(uniformly) attra
ts bounded sets of initial data [1, 21℄. The global attra
tor, how-ever, does not provide an a
tual 
ontrol of the 
onvergen
e rate of traje
tories andmight be unstable with respe
t to perturbations. A more suitable obje
t to havean e�e
tive 
ontrol on the longterm dynami
s is the exponential attra
tor [6, 7℄.Contrary to the global one, the exponential attra
tor is not unique (thus, in somesense, is an arti�
ial obje
t), and it is only semi-invariant. However, it has the ad-vantage of being stable with respe
t to perturbations, and it provides an exponential
onvergen
e rate whi
h 
an be expli
itly 
omputed.The 1-D and 2-D analogues of (1.1) have been investigated in the re
ent papers[14, 20℄, where the existen
e of strongly 
ontinuous semigroups possessing globaland exponential attra
tors of optimal regularity has been proven. The analysis inthe one-dimensional 
ase [14℄ heavily leant on the embedding H1
0 (Ω) →֒ L∞(Ω),whi
h is false in higher dimensions. In fa
t, in [14℄ the strong positivity 
ondition(1.5) 
an even be weakened, requiring in pla
e that σ(u) > 0 for every u. On the
ontrary, in the two-dimensional 
ase, 
onsidered in [20℄, one 
an no longer appealto the 
ontinuous embedding H1

0 (Ω) →֒ L∞(Ω), and the analysis be
omes more
ompli
ated. Nevertheless, the above embedding is �almosttrue, in the sense that
H1

0 (Ω) →֒ Lp(Ω) for all p < ∞. Thus, 2-D looks like a border (
riti
al) 
ase and,using sharp interpolation inequalities along with a rather deli
ate splitting of theequation into an exponentially de
aying and a 
ompa
t part, it is possible to developa 
omplete theory, whi
h in
ludes global existen
e of strong solutions, regularity and�nite-dimensionality of the attra
tors, existen
e of exponential attra
tors.The present work is fo
used on the analysis of the most relevant three-dimensional
ase. In 
ontrast to the former situations, the embedding H1
0 (Ω) →֒ L∞(Ω) isnow far from being true, and the equation be
omes �super
riti
al�, showing manyfeatures similar to those of wave equations with fast growing nonlinearities (seee.g. [23℄). In parti
ular, it seems extremely di�
ult to verify the global existen
eof more regular solutions (even in the 
ase of globally bounded ϕ and σ), andessential problems with the energy equality arise. However, the main di�eren
ewith respe
t to the 
ase of a fast growing ϕ and a 
onstant σ is uniqueness. Indeed,exploiting some monotoni
ity arguments, it is possible (analogously to the 2-D 
ase[20℄) to establish the uniqueness of solutions, and even the Lips
hitz 
ontinuity of thesemigroup asso
iated with (1.1) in a weaker energy spa
e. We should remark thatthe strategy adopted to treat the 3-D 
ase is quite di�erent from the one employed2



for the 
orresponding 1-D and 2-D 
ases. Indeed, here we 
annot obtain the existen
eof regular (exponentially) attra
ting sets. So, we �rst prove the existen
e of a weakattra
tor, and, in the 
ase when σ is globally bounded, we obtain the existen
e ofthe strong global attra
tor via the energy equality method. Finally, if the growthsof the fun
tions ϕ and σ are slightly slower than in (1.2) and (1.6), we 
onstru
t anexponential attra
tor whi
h (exponentially) attra
ts bounded subsets of the phasespa
e in a weaker topology, and whi
h has �nite fra
tal dimension there. The
onstru
tion used here is, in fa
t, some modi�
ation/generalization of the so-
alledmethod of l-traje
tories, whi
h is known to be very e�e
tive for problems withla
k of regularity (see [4, 17, 18, 24℄ and referen
es therein). Thus, we su

eed in
onstru
ting a �nite-dimensional exponential attra
tor (in a weaker topology) inspite of the la
k of 
ompa
tness of the global attra
tor in the original topology.Still, in the 3-D 
ase some questions remain open, su
h as the regularity and the�nite dimensionality of the strong global attra
tor.The paper is organized as follows. The existen
e and uniqueness of appropriate weakenergy solutions of (1.1) and their dissipativity is veri�ed in Se
tion 2, where wealso prove the energy equality under the additional assumption that σ(u) is globallybounded. In Se
tion 3 we establish the existen
e of a weak attra
tor and, when theenergy equality holds, the existen
e of a strong global attra
tor. Se
tion 4 dealswith exponential attra
tors.Notation. We denote by 〈·, ·〉 and ‖ · ‖ the inner produ
t and the norm in L2(Ω).Naming, for s ∈ R, Hs = domain[(−∆)s/2
] (with Diri
hlet boundary 
onditions)we introdu
e the Hilbert spa
es Hs = Hs+1 × Hs, endowed with the usual innerprodu
ts and norms. Throughout the paper, the symbols Q and c will stand for ageneri
 monotoni
ally in
reasing positive fun
tion and a generi
 positive 
onstant,respe
tively. We shall ta
itly make use of the Poin
aré, Young and Hölder inequal-ities, along with the 
ontinuous embedding H1 →֒ Lp(Ω), for every p ∈ [1, 6]. Also,we shall employ the following fun
tionals, related with ϕ and σ, namely,

Φ(u) =

∫ u

0

ϕ(y)dy, Σ(u) =

∫ u

0

σ(y)dy, Υ(u) =

∫ u

0

yσ(y)dy.Finally, for any given fun
tion u(t), we write for short ξu(t) = (u(t), ∂tu(t)).We 
on
lude the se
tion by reporting two te
hni
al results whi
h will be needed inthe 
ourse of the investigation. The �rst one is a modi�ed version of the Gronwalllemma (see [2℄ for a proof).Lemma 1.1. Let E : H0 → R satisfy
β‖ζ‖2

H0
−m ≤ E(ζ) ≤ Q(‖ζ‖H0

) +m, ∀ζ ∈ H0,for some β > 0 and m ≥ 0. Let now ξ ∈ C(R+,H0) be given. Suppose that the map
t 7→ E(ξ(t)) is 
ontinuously di�erentiable and ful�lls the di�erential inequality

d

dt
E(ξ) + ε‖ξ‖2

H0
≤ k,for some ε > 0 and k > 0. Then, there is t0 = Q(‖ξ(0)‖H0

+ k) ≥ 0 su
h that
‖ξ(t)‖H0

≤ Q
(

k +m+ β−1), ∀t ≥ t0.3



Lemma 1.2. Let ψ ∈ L3+δ(Ω), δ > 0, be su
h that ∇ψ ∈ L3/2(Ω). Then, themultipli
ation by ψ is well-de�ned as an operator from H−̺ to H−1 for some ̺ =
̺(δ) ∈ (0, 1/2), and the following estimate holds:

‖ψu‖H−1
≤ c‖u‖H−̺, ∀u ∈ H−̺,for some c = c(‖ψ‖L3+δ , ‖∇ψ‖L3/2).Proof. It is simpler to verify the equivalent 
onjugate inequality ‖ψv‖H̺ ≤ c‖v‖H1

,for every v ∈ H1. Indeed, due to the assumptions on ψ and the embedding H1 →֒
L6(Ω), we have

‖ψv‖Lp(Ω) + ‖∇(ψv)‖L6/5 ≤ c‖v‖H1
,with 1

p
= 1

3+δ
+ 1

6
< 1

2
. Then, the required estimate is an immediate 
orollary of theinterpolation inequality
‖w‖H̺ ≤ c‖w‖1−̺

Lp ‖∇w‖̺

L6/5, ∀w ∈ H̺,where 1
2

= 1−̺
p

+ 5̺
6
or, equivalently, ̺ = δ

3+2δ
(see e.g. [22℄). �2. Well-Posedness and DissipativityTo begin our analysis, we re
all the de�nition of a weak energy solution.De�nition 2.1. A fun
tion u(t) is a weak energy solution to (1.1) if, for any T > 0,

ξu ∈ L∞([0, T ],H0),
√

σ(u) ∂tu ∈ L2([0, T ], H0),and (1.1) holds in the sense of distributions.Due to the growth restri
tions on ϕ and σ, it is apparent that ϕ(u) ∈ L2([0, T ], H0)and σ(u)∂tu ∈ L2([0, T ], H−1). Consequently, ∂ttu ∈ L2([0, T ], H−1) and equation(1.1) is understood as an equality in L2([0, T ], H−1). Moreover, standard argumentsshow that ξu ∈ Cw([0, T ],H0). Hen
e, the initial 
onditions are well de�ned.The next proposition proves the Lips
hitz 
ontinuity in a weaker energy spa
e. Asa byprodu
t, we obtain the uniqueness of a weak energy solution. This Lips
hitz
ontinuity turns out to be the main te
hni
al tool in our analysis of the equation.Proposition 2.2. Let u1 and u2 be two weak energy solutions to (1.1). Then, forevery t > 0, the following estimate holds:
‖ξu1(t) − ξu2(t)‖H−1

≤ cect‖ξu1(0) − ξu2(0)‖H−1
,where c ≥ 0 depends only on the energy norms of the initial data ξu1(0) and ξu2(0).Proof. The argument is the same as the analogous one developed in [20℄ for the2-D 
ase. However, in order to make this paper self-
ontained, we report it in fulldetail. Let u1, u2 be two weak solutions to (1.1) su
h that ‖ξuj(t)‖H0

≤ R for every
t ∈ [0, T ], for some R ≥ 0, and denote ū = u1 − u2. De�ning wj(t) =

∫ t

0
uj(τ)dτand w̄ = w1 −w2, integrating equation (1.1) for uj (j = 1, 2) on [0, t] and taking thedi�eren
e yields(2.1) ∂ttw̄ + Σ(u1) − Σ(u2) − ∆w̄ = F +G,4



where we put
F (t) = −

∫ t

0

[

ϕ(u1(τ)) − ϕ(u2(τ))
]

dτ, G = Σ(u1(0)) − Σ(u2(0)) + ∂tū(0).Note that, on a

ount of (1.2) and (1.6), all the terms of (2.1) belong at least to
L2([0, T ], H−1). Hen
e, their produ
t with ∂tw̄ = ū ∈ L∞([0, T ], H1) is well de�ned.Taking this produ
t, and observing that 〈Σ(u1) − Σ(u2), ū〉 ≥ 0, we get

1

2

d

dt
‖ξw̄‖

2
H0

≤
d

dt
〈F, w̄〉 +

d

dt
〈G, w̄〉 − 〈∂tF, w̄〉.Integrating on [0, T ], we are led to

‖ξw̄(T )‖2
H0

≤ ‖ū(0)‖2 + 2〈F (T ), w̄(T )〉 + 2〈G, w̄(T )〉 − 2

∫ T

0

〈∂tF (t), w̄(t)〉dt

≤
1

2
‖ξw̄(T )‖2

H0
+ 4‖F (T )‖2

H−1
+ ‖ū(0)‖2 + 4‖G‖2

H−1

+ 2

∫ T

0

‖∂tF (t)‖H−1
‖ξw̄(t)‖H0

dt.Using now the growth restri
tions (1.2) and (1.6) on ϕ and σ, we easily see that
4‖F (T )‖2

H−1
≤ Q(R)T

∫ T

0

‖ū(t)‖2dt ≤ Q(R)T

∫ T

0

‖ξw̄(t)‖2
H0
dt,

‖ū(0)‖2 + 4‖G‖2
H−1

≤ Q(R)‖ξū(0)‖2
H−1

,

‖∂tF (t)‖H−1
≤ Q(R)‖ū(t)‖ ≤ Q(R)‖ξw̄(t)‖H0

.Therefore, we end up with
‖ξw̄(T )‖2

H0
≤ Q(R)‖ξū(0)‖2

H−1
+Q(R)(1 + T )

∫ T

0

‖ξw̄(t)‖2
H0
dt,and from the Gronwall lemma we 
on
lude that

‖ū(T )‖2 ≤ ‖ξw̄(T )‖2
H0

≤ Q(R)eQ(R)T‖ξū(0)‖2
H−1

.Finally, from (2.1), we read that
‖∂tū‖H−1

= ‖∂ttw̄‖H−1
≤ ‖Σ(u1) − Σ(u2)‖H−1

+ ‖∇w̄‖ + ‖F‖H−1
+ ‖G‖H−1

,whi
h, due to the above estimates and the inequality ‖Σ(u1)−Σ(u2)‖H−1
≤ Q(R)‖ū‖,furnishes

‖∂tū(T )‖2
H−1

≤ Q(R)eQ(R)T ‖ξū(0)‖2
H−1

.To 
omplete the proof it is enough to note that, if ‖ξuj(0)‖H0
≤ R, then the uniformestimates provided in the subsequent Theorem 2.3 ensure that ‖ξuj(t)‖H0

≤ Q(R)for all t > 0. �The next theorem provides the existen
e of a weak solution together with the dissi-pative estimate. 5



Theorem 2.3. There exists a (unique) weak energy solution of (1.1). This solutionsatis�es the dissipative estimate(2.2) ‖ξu(t)‖H0
≤ Q(‖ξu(0)‖H0

)e−t +Q(‖f‖),and the energy inequality
‖ξu(t)‖

2
H0

+ 2〈Φ(u(t)), 1〉 − 2〈f, u(t)〉 + 2

∫ t

0

〈σ(u(τ))∂tu(τ), ∂tu(τ)〉dτ(2.3)
≤ ‖ξu(0)‖2

H0
+ 2〈Φ(u(0)), 1〉 − 2〈f, u(0)〉.Proof. We give below the formal derivation of the a priori estimates (2.2) and (2.3),whi
h 
an be justi�ed in a standard way via a Galerkin approximation s
heme.Indeed, (2.3) 
an be formally obtained multiplying (1.1) by ∂tu and integrating on

[0, t] × Ω. In order to verify (2.2), for ε ∈ (0, 1) to be �xed later, we introdu
e theenergy fun
tional(2.4) Eε = Eε(ξu) = ‖ξu‖
2
H0

+ 2〈Φ(u), 1〉+ 2ε〈Υ(u), 1〉+ 2ε〈∂tu, u〉 − 2〈f, u〉.Noti
e that, from (1.5), 〈Υ(u), 1〉 ≥ 0. Thus, on a

ount of (1.2), (1.6) and theinequality(2.5) ‖∇u‖2 + 2〈Φ(u), 1〉 ≥ 2γ‖∇u‖2 − c, γ > 0,whi
h follows from the dissipativity assumption (1.4), we have the 
ontrols
β‖ξu‖

2
H0

−Q(‖f‖) ≤ Eε ≤ Q(‖ξu‖H0
) +Q(‖f‖),for some β ∈ (0, 1), provided that ε is small enough. Multiplying (1.1) by ∂tu+ εu,we �nd

d

dt
Eε + 2ε‖∇u‖2 + 2〈σ(u)∂tu, ∂tu〉 − 2ε‖∂tu‖

2 + 2ε〈ϕ(u), u〉 = 2ε〈f, u〉.Using (1.4) and (1.5), we have the estimate
2ε‖∇u‖2 + 2ε〈ϕ(u), u〉 ≥ 2βε‖∇u‖2 − c,

2〈σ(u)∂tu, ∂tu〉 − 2ε‖∂tu‖
2 ≥ βε‖∂tu‖

2,if ε is small enough. Thus, estimating the right-hand side of the di�erential equalityas
2ε〈f, u〉 ≤ βε‖∇u‖2 + c‖f‖2,we end up with the inequality
d

dt
Eε + βε‖ξu‖

2
H0

≤ Q(‖f‖).Fixing now the parameter ε in su
h a way that all the above relationships hold, wededu
e from Lemma 1.1 that, for every R ≥ 0, there exists t0 = t0(R) su
h that
‖ξu(t)‖H0

≤ Q(‖f‖), ∀t ≥ t0,whenever ‖ξu(0)‖H0
≤ R. Together with (2.3) and (2.5), this gives estimate (2.2)and �nishes the proof of the theorem. �Thus, equation (1.1) generates a dissipative semigroup S(t) in the phase spa
e H0whi
h is lo
ally Lips
hitz 
ontinuous in the H−1 metri
.6



Corollary 2.4. The weak energy solution of (1.1) possesses the dissipation integrals
σ0

∫ ∞

0

‖∂tu(t)‖
2dt ≤

∫ ∞

0

〈σ(u(t))∂tu(t), ∂tu(t)〉dt ≤ Q(‖ξu(0)‖H0
) +Q(‖f‖).Indeed, this follows immediately by passing to the limit t → ∞ in (2.3) and using(2.5).Remark 2.5. It is worth emphasizing that we 
annot dire
tly multiply equation(1.1) by ∂tu, sin
e the terms of (1.1) belong to L2([0, T ], H−1), whereas ∂tu ∈

L∞([0, T ], H0) only. In order to over
ome this obsta
le, one usually works withthe Galerkin approximate equations (whi
h are smooth, so that this multipli
ationmakes sense) and verify estimates (2.2) and (2.3) �rst for the approximate Galerkinsolutions uN(t). Then, passing to the limit N → ∞, one obtains the required in-equalities for the limit solution u (see [1℄ for details). However, this limit pro
eduregives only the energy inequality (2.3). In 
ontrast to this, the energy equality is amore deli
ate fa
t that should be veri�ed independently (usually, stronger assump-tions on the equation are required). We prove that under the assumption that σ(u)is uniformly bounded.Corollary 2.6. Assume that σ(u) ≤ c for every u ∈ R. Then, stri
t equality in(2.3) holds, namely,
‖ξu(t)‖

2
H0

+ 2〈Φ(u(t)), 1〉 − 2〈f, u(t)〉 + 2

∫ t

0

〈σ(u(τ))∂tu(τ), ∂tu(τ)〉dτ(2.6)
= ‖ξu(0)‖2

H0
+ 2〈Φ(u(0)), 1〉 − 2〈f, u(0)〉.Proof. Let PN : H0 → PNH0 be the orthogonal proje
tion in H0 onto the �rst Neigenve
tors of the Lapla
ian (equipped with Diri
hlet boundary 
onditions), and let

u be the weak energy solution to (1.1). The fun
tion uN = PNu obviously satis�es
∂ttuN + PN(σ(u)∂tu) − ∆uN + PNϕ(u) = PNf.Multiplying this equation by ∂tuN , and integrating over [0, t] × Ω, we get

‖ξuN
(t)‖2

H0
− 2〈f, uN(t)〉 + 2

∫ t

0

〈σ(u(τ))∂tu(τ), ∂tuN(τ)〉dτ + 2

∫ t

0

〈ϕ(u(τ)), ∂tuN(τ)〉dτ

= ‖ξuN
(0)‖2

H0
− 2〈f, uN(0)〉.We need now to pass to the limit N → ∞ in this equality. Sin
e, by de�nition,

ξu(t) ∈ H0 for all t, then ξuN
(t) → ξu(t) and ξuN

(0) → ξu(0) in H0. Hen
e, the pas-sage to the limit is immediate for all the terms ex
ept the two integral ones appearingin the left-hand side. For the �rst, we use the fa
t that σ(u)∂tu ∈ L2([0, T ], H0) (herethe global boundedness of σ(u) is needed) and ∂tuN → ∂tu in that spa
e. Finally, forthe se
ond one, we note that ϕ(u) ∈ L2([0, T ], H0) (due to the growth restri
tions)and, 
onsequently,
∫ t

0

〈ϕ(u(τ)), ∂tuN(τ)〉dτ →

∫ t

0

〈ϕ(u(τ)), ∂tu(τ)〉dτ = 〈Φ(u(t)), 1〉 − 〈Φ(u(0)), 1〉,whi
h proves (2.6). �7



The energy equality (2.6) 
an be rewritten in a more 
onvenient di�erential form.Indeed, introdu
ing the energy fun
tional
E0 = E0(ξu) = ‖ξu‖

2
H0

+ 2〈Φ(u), 1〉 − 2〈f, u〉,the integral equality (2.6) is equivalent to the fa
t that the fun
tion E0(ξu(t)) isabsolutely 
ontinuous as a fun
tion of t and satis�es almost everywhere(2.7) d

dt
E0 + 2〈σ(u)∂tu, ∂tu〉 = 0.This di�erential energy equality is 
ru
ial for the existen
e of a strong global attra
-tor, as we will see in the next se
tion.3. Weak and Strong Global Attra
torsWe now pro
eed to investigate the asymptoti
 properties of (1.1), using the notionof a global attra
tor. We begin with the attra
tor in a weak topology.De�nition 3.1. A set A ⊂ H0 is a weak global attra
tor of the semigroup S(t)asso
iated with equation (1.1) if(i) A is weakly 
ompa
t in H0;(ii) A is stri
tly invariant, that is, S(t)A = A;(iii) A attra
ts in the weak topology the images of all bounded subsets of H0,namely, for every bounded subset B of H0 and every neighborhood O of A inthe weak topology ofH0, there exists T = T (B,O) ≥ 0 su
h that S(t)B ⊂ O,for every t ≥ T .In parti
ular, the attra
tion in the weak topology of H0 implies the attra
tion inthe strong topology of H−1.The next proposition gives the existen
e of su
h a weak attra
tor.Proposition 3.2. The semigroup S(t) asso
iated with the wave equation (1.1) pos-sesses a weak global attra
tor A in the sense of De�nition 3.1. As usual, this at-tra
tor is generated by all 
omplete bounded traje
tories of (1.1), that is, A = K|t=0,where K is the set of all weak energy solutions u(t) whi
h are de�ned for all t ∈ Rand bounded in the H0-norm.Proof. Due to the dissipative estimate (2.2), the ball B0 =

{

ξ ∈ H0, ‖ξ‖H0
≤ R

}for a su�
iently large radius R is an absorbing set for S(t) in H0. Obviously, thisball is 
ompa
t in the weak topology of H0. Thus, S(t) possesses a weakly 
ompa
tabsorbing set. On the other hand, due to Proposition 2.2, for every �xed t ≥ 0, themap S(t) is 
ontinuous on B0 in theH−1-topology and, 
onsequently, it is 
ontinuousin the weak topology of H0 as well. The existen
e of a weak global attra
tor followsnow from the 
lassi
al attra
tor's existen
e theorem (see e.g. [3℄). �By means of standard energy methods (
f. [21℄), we now show the existen
e ofa strong global attra
tor in the 
ase where the energy equality (2.6) holds (forinstan
e, when σ(u) is globally bounded).8



Theorem 3.3. Assume that the energy equality (2.6) holds for every weak energysolution. Then, the semigroup S(t) possesses a global attra
tor in the strong topologyof H0 (whi
h, obviously, 
oin
ides with the weak attra
tor A 
onstru
ted in theprevious proposition).Proof. To prove the existen
e of the strong global attra
tor, it is su�
ient to verifythat for every sequen
es ξun(0) ∈ B0 and tn → ∞ the asso
iated sequen
e ξun(tn)is pre
ompa
t in H0 (see e.g. [1℄). Let then ξun(0) ∈ B0 and tn → ∞ be arbitrary.Without loss of generality, due to the previous proposition, we may assume that
ξun(tn) → ξ = (ξ1, ξ2) weakly in H0 for some ξ ∈ A. The proof is �nished if we showthat ξun(tn) → ξ strongly in H0. To this end, we use the simple observation that ina Hilbert spa
e the weak 
onvergen
e together with the 
onvergen
e of the normsimply the strong 
onvergen
e. Thus, we are left to prove that ‖ξun(tn)‖H0

→ ‖ξ‖H0
.To rea
h this aim, we shall use suitable energy equalities. The basi
 energy equality(2.7) allows us to multiply dire
tly equation (1.1) by ∂tu+εu. Indeed, the problemati
multipli
ation by ∂tu is justi�ed by (2.7), whereas the multipli
ation by u is allowedsin
e u ∈ L∞([0, T ], H1). Multiplying the initial equation (1.1) by this term, aftersimple manipulations, we dedu
e the equality(3.1) d

dt
Eε(ξu) + 2εEε(ξu) + 2〈[σ(u) − 2ε]∂tu, ∂tu〉 = Lε(ξu),with Eε(ξu) as in (2.4), where we put

Lε(ξu) = −2ε〈ϕ(u), u〉+ 4ε〈Φ(u), 1〉 + 4ε2〈Υ(u), 1〉 + 4ε2〈u, ∂tu〉 − 2ε〈f, u〉,and we �x ε > 0 enough small su
h that σ(u)−2ε > 0. Then, the weak 
onvergen
eof ξun(tn) to ξ = (ξ1, ξ2), together with the growth restri
tions on ϕ and σ and the
ompa
tness of the embedding H1 →֒ L4(Ω), lead to
〈Φ(un(tn)), 1〉 → 〈Φ(ξ1), 1〉, 〈Υ(un(tn)), 1〉 → 〈Υ(ξ1), 1〉, 〈un(tn), ∂tun(tn)〉 → 〈ξ1, ξ2〉.Hen
e, in order to verify the required 
onvergen
e of the norms, it is su�
ient to
he
k the 
onvergen
e of the energy fun
tionals

Eε(ξun(tn)) → Eε(ξ).To this aim, we introdu
e the shifted fun
tions ũn(t) = un(t+ tn), whi
h solve
{

∂ttũn + σ(ũn)∂tũn − ∆ũn + ϕ(ũn) = f,

ũn(−tn) = un(0), ∂tũn(−tn) = ∂tun(0),and Eε(ξũn(0)) = Eε(ξun(tn)). Sin
e ξun(0) ∈ B0, the dissipative estimate (2.2)implies that the solutions ξũn(t) are uniformly bounded in L∞([−tn,∞),H0). More-over, ξũn being pre
ompa
t in Cloc(R,H−1), without loss of generality we may assumethat, for every t ∈ R, ξũn(t) 
onverges weakly in H0 to some solution ξu(t) ∈ A (herewe have impli
itly used the fa
t that tn → ∞). Obviously, ξu(0) = ξ. So, we needto prove that(3.2) Eε(ξũn(0)) → Eε(ξu(0)).9



First, note that the established weak 
onvergen
e ξũn(t) → ξu(t) and the bounded-ness in H0 together with the 
ompa
t embedding H1 →֒ L4(Ω) imply(3.3) Lε(ξũn(t)) → Lε(ξu(t)), ∀t ∈ R,

|Lε(ξũn(t))| ≤ c.Integrating now the energy equality (3.1) for ũn(t) on [−tn, 0], we get
Eε(ξũn(0)) + 2

∫ 0

−tn

e2εt〈[σ(ũn(t)) − 2ε]∂tũn(t), ∂tũn(t)〉dt

= Eε(ξũn(−tn))e−2εtn +

∫ 0

−tn

e2εtLε(ξũn(t))dt.Furthermore, using (3.3) and the fa
t that that tn → ∞ and ξũn(−tn) remainsbounded, we dedu
e from the last equality that
lim

n→∞

(

Eε(ξũn(0)) + 2

∫ 0

−tn

e2εt〈[σ(ũn(t) − 2ε]∂tũn(t), ∂tũn(t)〉dt

)

=

∫ 0

−∞

e2εtLε(ξu(t))dt.Comparing this result with the analogous energy equality for the limit solution ξu(t),we 
on
lude that
lim

n→∞

(

Eε(ξũn(0)) + 2

∫ 0

−tn

e2εt〈[σ(ũn(t)) − 2ε]∂tũn(t), ∂tũn(t)〉dt

)(3.4)
= Eε(ξu(0)) + 2

∫ 0

−∞

e2εt〈[σ(u(t)) − 2ε]∂tu(t), ∂tu(t)〉dt.On the other hand, sin
e ‖ξ‖H ≤ lim infn→∞ ‖ξn‖H for any weakly 
onvergent se-quen
e ξn → ξ in a re�exive spa
e H , we have
Eε(ξu(0)) ≤ lim inf

n→∞
Eε(ξũn(0))and

∫ 0

−∞

e2εt〈[σ(u(t))−2ε]∂tu(t), ∂tu(t)〉dt ≤ lim inf
n→∞

∫ 0

−tn

e2εt〈[σ(ũn(t)−2ε]∂tũn(t), ∂tũn(t)〉dt.Indeed, the term 〈[σ(ũn) − 2ε]∂tũn, ∂tũn〉 
an be written in the form ‖∂tΨ(ũn)‖2,with Ψ(v) =
∫ v

0

√

σ(y) − 2ε dy. It remains to note that the last two inequalities,together with (3.4), imply the required energy 
onvergen
e (3.2). �4. Finite-Dimensionality and Exponential Attra
torsin the Sub
riti
al CaseIn the �nal se
tion, we prove our main theorem on the existen
e of the weak exponen-tial attra
tor in the sub
riti
al 
ase. To be more pre
ise, in addition to (1.2)-(1.6),we require that(4.1) |σ(u)|+ |ϕ′(u)| ≤ c(1 + |u|2−δ),for some δ ∈ (0, 2].Our 
onstru
tion of an exponential attra
tor is based on the following abstra
tresult. 10



Proposition 4.1. Let H, V, V1 be Bana
h spa
es su
h that the embedding V1 →֒ Vis 
ompa
t. Let B be a 
losed bounded subset of H, and let S : B → B be a map.Assume also that there exists a uniformly Lips
hitz 
ontinuous map T : B → V1,i.e.
‖Tb1 − Tb2‖V1

≤ L‖b1 − b2‖H , ∀b1, b2 ∈ B,for some L ≥ 0, su
h that(4.2) ‖Sb1 − Sb2‖H ≤ ϑ‖b1 − b2‖H +K‖Tb1 − Tb2‖V , ∀b1, b2 ∈ B,for some ϑ < 1/2 and K ≥ 0. Then, there exists a (dis
rete) exponential attra
tor
Md ⊂ B whi
h satis�es the following properties:(i) semi-invarian
e: SMd ⊂ Md;(ii) 
ompa
tness: Md is 
ompa
t in H;(iii) exponential attra
tion: distH(SnB,Md) ≤ Ce−ωn for all n ∈ N and for some

ω > 0 and C ≥ 0, where distH denotes the standard Hausdor� semidistan
ebetween sets in H;(iv) �nite-dimensionality: Md has �nite fra
tal dimension in H.Moreover, the 
onstants ω, C and the fra
tal dimension of Md 
an be expli
itlyexpressed in terms of L, K, ϑ, ‖B‖H and the Kolmogorov's κ-entropy of the 
ompa
tembedding V1 →֒ V , for some κ = κ(L,K, ϑ).We re
all that the Kolmogorov's κ-entropy of the 
ompa
t embedding V1 →֒ V isthe logarithm of the minimum number of balls of radius κ in V ne
essary to 
overthe unit ball of V1.The proof of this proposition in the parti
ular instan
e when H = V1 and T is theidentity map is given in [7℄. The general proof repeats word by word this parti
ular
ase and so thus omitted (see also [4, 8℄).We are now ready to state and proveTheorem 4.2. Assuming (4.1) in addition to the general hypotheses, the semigroup
S(t) asso
iated with (1.1) possesses a weak exponential attra
tor M in the followingsense:(i) M is bounded in H0 and 
ompa
t in H−1;(ii) M is semi-invariant: S(t)M ⊂ M, t ≥ 0;(iii) M attra
ts the images of bounded (in H0) subsets exponentially in the metri
of H−1, i.e. there exist ω > 0 and a monotone fun
tion Q su
h that, for everybounded set B ⊂ H0,

distH−1
(S(t)B,M) ≤ Q(‖B‖H0

)e−ωt, ∀t ≥ 0.(iv) M has the �nite fra
tal dimension in H−1.Proof. We �rst re
all that, due the dissipative estimate (2.2), the semigroup S(t)possesses an absorbing ball B0 in the phase spa
e H0. Thus, it is su�
ient to
onstru
t the exponential attra
tor for the restri
tion of this semigroup on B0 only.In order to apply Proposition 4.1 to our situation, we need to verify the properestimate for the di�eren
e of solutions, whi
h is done in the following lemma.11



Lemma 4.3. Let the above assumptions hold, and let u1 and u2 be two weak energysolutions of (1.1) su
h that ξuj(0) ∈ B0. Then(4.3) ‖ξu1(t) − ξu2(t)‖H−1
≤Me−νt‖ξu1(0) − ξu2(0)‖H−1

+K‖u1 − u2‖L2([0,t],H−̺).for some ν > 0, ̺ ∈ (0, 1/2), M ≥ 0 and K ≥ 0, all independent of t and uj.Proof. For α ∈ (0, 1) to be �xed later, let vj(t) =
∫ t

0
e−α(t−τ)uj(τ)dτ . Then, uj =

∂tv
j + αvj and vj(0) = 0. Multiplying the equations for uj(τ) by e−α(t−τ) andintegrating in τ over [0, t], after simple transformations, we arrive at

∂ttv
j(t)+Σ(uj(t))−∆vj(t)+

∫ t

0

e−α(t−τ)ϕα(uj(τ))dτ = e−αtR(ξuj(0))+
1

α
(1−e−αt)f,where we set

ϕα(w) = ϕ(w) − αΣ(w) and R(ξuj(0)) = ∂tu
j(0) − αuj(0) + Σ(uj(0)).Then, the di�eren
e v̄ = v1 − v2 solves

∂ttv̄(t) + [Σ(u1(t)) − Σ(u2(t))] − ∆v̄(t) +

∫ t

0

e−α(t−τ)[ϕα(u1(τ)) − ϕα(u2(τ))]dτ

(4.4)
= e−αt[R(ξu1(0)) − R(ξu2(0))].Multiplying the equation by ∂tv̄ + αv̄ = u1 − u2 ∈ L∞(R+, H1), and noting that

Σ′(w) ≥ σ0, with standard 
omputations, we get(4.5) d

dt
E(ξv̄(t)) + 2α‖∇v̄(t)‖2 + 2(σ0 − α)‖∂tv̄(t)‖

2 + 4ασ0〈v̄(t), ∂tv̄(t)〉 ≤ J(t),with
E(ξv(t)) = ‖ξv̄(t)‖

2
H0

+ 2α〈v̄(t), ∂tv̄(t)〉 − 2e−αt〈R(ξu1(0)) − R(ξu2(0)), v̄(t)〉

+ 2

∫ t

0

e−α(t−τ)〈ϕα(u1(τ)) − ϕα(u2(τ)), v̄(t)〉dτ,and
J(t) = 2〈ϕα(u1(t)) − ϕα(u2(t)), v̄(t)〉 − 4α

∫ t

0

e−α(t−τ)〈ϕα(u1(τ)) − ϕα(u2(τ)), v̄(t)〉dτ

+ 4αe−αt〈R(ξu1(0)) −R(ξu2(0)), v̄(t)〉.Besides, analogously to Proposition 2.2, we have
‖R(ξu1(0)) − R(ξu2(0))‖H−1

≤ c‖ξu1(0) − ξu2(0)‖H−1
.Consequently, the fun
tion J in the right-hand side of (4.5) 
an be estimated via

J(t) ≤ c
[

e−αt‖ξu1(0) − ξu2(0)‖2
H−1

+ ‖ϕα(u1(t)) − ϕα(u2(t))‖2
H−1

+

∫ t

0

e−α(t−τ)‖ϕα(u1(τ)) − ϕα(u2(τ))‖2
H−1

dτ
]

+ α‖ξv̄(t)‖
2
H0
,for some c = c(α) ≥ 0. On the other hand, it is 
lear that the quadrati
 form (withrespe
t to v̄ and ∂tv̄) in the left-hand side of (4.5) is positively de�ned if α is small12



enough. Thus, �xing a suitable α and using the above estimates, we transform (4.5)into
d

dt
E(ξv̄(t)) + νE(ξv̄(t))

≤ c
[

e−αt‖ξu1(0) − ξu2(0)‖2
H−1

+ ‖ϕα(u1(t)) − ϕα(u2(t))‖2
H−1

+

∫ t

0

e−α(t−τ)‖ϕα(u1(τ)) − ϕα(u2(τ))‖2
H−1

dτ
]

,for some stri
tly positive ν < α/2. Applying the Gronwall lemma, we infer
‖ξv̄(t)‖

2
H0

≤ ce−νt‖ξu1(0)− ξu2(0)‖2
H−1

+ c

∫ t

0

e−ν(t−τ)‖ϕα(u1(τ))− ϕα(u2(τ))‖2
H−1

dτ,where c and ν are independent of t and ξuj . Finally, as in Proposition 2.2, we 
anexpress the H−1-norm of ξu1(t) − ξu2(t) in terms of the H0-norm of ξv1(t) − ξv2(t),using equation (4.4), dedu
ing that
‖ξu1(t)−ξu2(t)‖2

H−1
≤ ce−νt‖ξu1(0)−ξu2(0)‖2

H−1
+c

∫ t

0

e−ν(t−τ)‖ϕα(u1(τ))−ϕα(u2(τ))‖2
H−1

dτ.In order to 
omplete the lemma, we only need to verify that(4.6) ‖ϕα(u1(τ)) − ϕα(u2(τ))‖H−1
≤ c‖u1(τ) − u2(τ)‖2

H−̺for some ̺ ∈ (0, 1/2) and some c ≥ 0, both independent of uj(τ). Indeed,
ϕα(u1(τ)) − ϕα(u2(τ)) = ψ(τ)(u1(τ) − u2(τ))with ψ(τ) =

∫ 1

0
ϕ′

α(su1(τ) + (1 − s)u2(τ))ds. Moreover, using (1.2), (1.6) and thefa
t that the uj(τ) are uniformly bounded in H1, we �nd that ∇ψ(τ) is uniformlybounded in L3/2(Ω) and, from assumption (4.1), we obtain also that ψ(τ) is uni-formly bounded in L3+δ(Ω). Thus, Lemma 1.2 entails (4.6). �It is now not di�
ult to �nish the proof of the theorem, using the abstra
t s
hemeof Proposition 4.1. As usual, we �rst 
onstru
t the exponential attra
tor Md ofthe dis
rete map S(T∗) on B0 (the above 
onstru
ted absorbing ball in H0), fora su�
iently large T∗. Indeed, it follows from the dissipative estimate (2.2) that
S(T∗) : B0 → B0, provided that T∗ is large enough. Then, we apply Proposition 4.1on the set B = B0 with H = H−1 and S = S(T∗), with T∗ large enough so that B0is invariant and, in addition, Me−νT∗ = ϑ < 1/2 (see (4.3)). Besides, with referen
eto Proposition 4.1, let

V1 =
{

u ∈ L2([0, T∗], H0), ∂tu ∈ L2([0, T∗], H−1)
}

⋐ V = L2([0, T∗], H−̺).Finally, de�ne the operator T : B0 → V1 to be the solving operator for (1.1) on thetime-interval [0, T∗], namely,
Tξu(0) = u.Due to Proposition 2.2, we have the global Lips
hitz 
ontinuity of T from B0 to

V1, and Lemma 4.3 gives us the basi
 estimate (4.2) for the map S(T∗). Therefore,the assumptions of Proposition 4.1 are veri�ed and, 
onsequently, the map S(T∗)possesses an exponential attra
tor Md on B0.13



The required exponential attra
tor for the semigroup S(t) (with 
ontinuous time)
an be now 
onstru
ted by the standard formula
M =

⋃

t∈[0,T∗]

S(t)Md.Indeed, sin
e the H−1-norm of ∂ttu and the H0-norm of ∂tu are globally boundedif ξu(0) ∈ B0, then the semigroup S(t) is also uniformly Lips
hitz 
ontinuous withrespe
t to t ∈ [0, T∗] in the H−1-norm. Then, the �nite-dimensionality of M followsfrom the analogous �nite-dimensionality of Md, and the remaining properties of Mare immediate. This 
ompletes the proof of Theorem 4.2. �Remark 4.4. Sin
e an exponential attra
tor always 
ontains the global one, thetheorem implies, in parti
ular, that the fra
tal dimension of the global attra
tor A ofProposition 3.2 is �nite in H−1 as well. In fa
t, due to interpolation, this dimensionis �nite in H−α for every α < 0.Some open questions. In 
ontrast to the one and the two-dimensional 
ases(where we have a 
omplete theory, due to [14℄ and [20℄), the situation with the 3-D
ase remains essentially less 
lear. In parti
ular, the following important questionsremain open:
• Global existen
e of strong solutions (belonging to H1) and the H1-regularityof the attra
tor A.
• Finite-dimensionality of the global attra
tor in the 
riti
al 
ase (δ = 0 in(4.1)).
• Energy equality and 
ompa
tness of the global attra
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