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Abstrat. A weakly damped wave equation in the three-dimensional (3-D) spaewith a damping oe�ient depending on the displaement is studied. This equa-tion is shown to generate a dissipative semigroup in the energy phase spae, whihpossesses �nite-dimensional global and exponential attrators in a slightly weakertopology. 1. IntrodutionLet Ω ⊂ R3 be a bounded domain with smooth boundary ∂Ω. We onsider thefollowing initial-boundary value problem for a weakly damped wave equation witha nonlinear damping oe�ient:(1.1) 









∂ttu+ σ(u)∂tu− ∆u+ ϕ(u) = f,

u(0) = u0, ∂tu(0) = u1,

u|∂Ω = 0.The external fore f ∈ L2(Ω) is independent of time, while the nonlinearity ϕ ∈
C2(R), with ϕ(0) = 0, is subjet to the onditions

|ϕ′′(u)| ≤ c
(

1 + |u|
)

,(1.2)
ϕ′(u) ≥ −c,(1.3)

lim inf
|u|→∞

ϕ(u)

u
> −λ1,(1.4)where c ≥ 0 and λ1 > 0 is the �rst eigenvalue of −∆ on L2(Ω) with Dirihletboundary onditions. As far as the damping oe�ient is onerned, we assumethat σ ∈ C1(R) with

σ(u) ≥ σ0 > 0,(1.5)
|σ′(u)| ≤ c(1 + |u|).(1.6)Problem (1.1) is related to the semilinear reation-di�usion equation with memory,where the lassial Fourier's onstitutive law is replaed by the Gurtin-Pipkin's one[15℄, namely,(1.7) ∂tu−

∫ ∞

0

k(s)∆u(t− s)ds+ ϕ(u) = f.Here, the memory kernel k is a positive dereasing funtion, and u(t) is supposedto be a given datum for t ≤ 0, where it need not ful�ll the equation. If k is ofexponential type, that is, k(s) = ε−1 exp[−s/ε], where ε > 0 is the relaxation time,then (1.7) an be transformed into the partial di�erential equation
ε∂ttu+ [1 + εϕ′(u)]∂tu− ∆u+ ϕ(u) = f,simply by adding (1.7) and its time-derivative multiplied by ε. Note that, for ε smallenough, the funtion 1+εϕ′(u) ful�lls assumptions (1.5)-(1.6). This equation is quiteinteresting from a physial viewpoint, for instane, to desribe the �ow of visoelasti�uids (see [5, 13, 16, 19℄). Wave equations with a nonlinear damping of the form

σ(∂tu) have also been onsidered in the literature (see [9, 10, 11, 12℄). However,1



the nonlinearity σ(u)∂tu onsidered in the present work produes an equation whihis essentially di�erent. Indeed, the term σ(u)∂tu is muh more di�ult to handlethan σ(∂tu), and the methods developed to treat the latter nonlinearity simply donot work in our situation. In partiular, in ontrast to the previous theory wherethe Lipshitz ontinuity in the phase spae is immediate and the further regularityof solutions easily ahievable (at least under suitable growth restritions), with theterm σ(u)∂tu one does not even have the plain ontinuity of the semigroup in thephase spae, and any additional regularity seems to be out of reah, unless σ isonstant.The asymptoti behavior of this kind of dissipative systems is well desribed by theexistene of a global attrator, namely, the unique invariant ompat sets whih(uniformly) attrats bounded sets of initial data [1, 21℄. The global attrator, how-ever, does not provide an atual ontrol of the onvergene rate of trajetories andmight be unstable with respet to perturbations. A more suitable objet to havean e�etive ontrol on the longterm dynamis is the exponential attrator [6, 7℄.Contrary to the global one, the exponential attrator is not unique (thus, in somesense, is an arti�ial objet), and it is only semi-invariant. However, it has the ad-vantage of being stable with respet to perturbations, and it provides an exponentialonvergene rate whih an be expliitly omputed.The 1-D and 2-D analogues of (1.1) have been investigated in the reent papers[14, 20℄, where the existene of strongly ontinuous semigroups possessing globaland exponential attrators of optimal regularity has been proven. The analysis inthe one-dimensional ase [14℄ heavily leant on the embedding H1
0 (Ω) →֒ L∞(Ω),whih is false in higher dimensions. In fat, in [14℄ the strong positivity ondition(1.5) an even be weakened, requiring in plae that σ(u) > 0 for every u. On theontrary, in the two-dimensional ase, onsidered in [20℄, one an no longer appealto the ontinuous embedding H1

0 (Ω) →֒ L∞(Ω), and the analysis beomes moreompliated. Nevertheless, the above embedding is �almosttrue, in the sense that
H1

0 (Ω) →֒ Lp(Ω) for all p < ∞. Thus, 2-D looks like a border (ritial) ase and,using sharp interpolation inequalities along with a rather deliate splitting of theequation into an exponentially deaying and a ompat part, it is possible to developa omplete theory, whih inludes global existene of strong solutions, regularity and�nite-dimensionality of the attrators, existene of exponential attrators.The present work is foused on the analysis of the most relevant three-dimensionalase. In ontrast to the former situations, the embedding H1
0 (Ω) →֒ L∞(Ω) isnow far from being true, and the equation beomes �superritial�, showing manyfeatures similar to those of wave equations with fast growing nonlinearities (seee.g. [23℄). In partiular, it seems extremely di�ult to verify the global existeneof more regular solutions (even in the ase of globally bounded ϕ and σ), andessential problems with the energy equality arise. However, the main di�erenewith respet to the ase of a fast growing ϕ and a onstant σ is uniqueness. Indeed,exploiting some monotoniity arguments, it is possible (analogously to the 2-D ase[20℄) to establish the uniqueness of solutions, and even the Lipshitz ontinuity of thesemigroup assoiated with (1.1) in a weaker energy spae. We should remark thatthe strategy adopted to treat the 3-D ase is quite di�erent from the one employed2



for the orresponding 1-D and 2-D ases. Indeed, here we annot obtain the existeneof regular (exponentially) attrating sets. So, we �rst prove the existene of a weakattrator, and, in the ase when σ is globally bounded, we obtain the existene ofthe strong global attrator via the energy equality method. Finally, if the growthsof the funtions ϕ and σ are slightly slower than in (1.2) and (1.6), we onstrut anexponential attrator whih (exponentially) attrats bounded subsets of the phasespae in a weaker topology, and whih has �nite fratal dimension there. Theonstrution used here is, in fat, some modi�ation/generalization of the so-alledmethod of l-trajetories, whih is known to be very e�etive for problems withlak of regularity (see [4, 17, 18, 24℄ and referenes therein). Thus, we sueed inonstruting a �nite-dimensional exponential attrator (in a weaker topology) inspite of the lak of ompatness of the global attrator in the original topology.Still, in the 3-D ase some questions remain open, suh as the regularity and the�nite dimensionality of the strong global attrator.The paper is organized as follows. The existene and uniqueness of appropriate weakenergy solutions of (1.1) and their dissipativity is veri�ed in Setion 2, where wealso prove the energy equality under the additional assumption that σ(u) is globallybounded. In Setion 3 we establish the existene of a weak attrator and, when theenergy equality holds, the existene of a strong global attrator. Setion 4 dealswith exponential attrators.Notation. We denote by 〈·, ·〉 and ‖ · ‖ the inner produt and the norm in L2(Ω).Naming, for s ∈ R, Hs = domain[(−∆)s/2
] (with Dirihlet boundary onditions)we introdue the Hilbert spaes Hs = Hs+1 × Hs, endowed with the usual innerproduts and norms. Throughout the paper, the symbols Q and c will stand for ageneri monotonially inreasing positive funtion and a generi positive onstant,respetively. We shall taitly make use of the Poinaré, Young and Hölder inequal-ities, along with the ontinuous embedding H1 →֒ Lp(Ω), for every p ∈ [1, 6]. Also,we shall employ the following funtionals, related with ϕ and σ, namely,

Φ(u) =

∫ u

0

ϕ(y)dy, Σ(u) =

∫ u

0

σ(y)dy, Υ(u) =

∫ u

0

yσ(y)dy.Finally, for any given funtion u(t), we write for short ξu(t) = (u(t), ∂tu(t)).We onlude the setion by reporting two tehnial results whih will be needed inthe ourse of the investigation. The �rst one is a modi�ed version of the Gronwalllemma (see [2℄ for a proof).Lemma 1.1. Let E : H0 → R satisfy
β‖ζ‖2

H0
−m ≤ E(ζ) ≤ Q(‖ζ‖H0

) +m, ∀ζ ∈ H0,for some β > 0 and m ≥ 0. Let now ξ ∈ C(R+,H0) be given. Suppose that the map
t 7→ E(ξ(t)) is ontinuously di�erentiable and ful�lls the di�erential inequality

d

dt
E(ξ) + ε‖ξ‖2

H0
≤ k,for some ε > 0 and k > 0. Then, there is t0 = Q(‖ξ(0)‖H0

+ k) ≥ 0 suh that
‖ξ(t)‖H0

≤ Q
(

k +m+ β−1), ∀t ≥ t0.3



Lemma 1.2. Let ψ ∈ L3+δ(Ω), δ > 0, be suh that ∇ψ ∈ L3/2(Ω). Then, themultipliation by ψ is well-de�ned as an operator from H−̺ to H−1 for some ̺ =
̺(δ) ∈ (0, 1/2), and the following estimate holds:

‖ψu‖H−1
≤ c‖u‖H−̺, ∀u ∈ H−̺,for some c = c(‖ψ‖L3+δ , ‖∇ψ‖L3/2).Proof. It is simpler to verify the equivalent onjugate inequality ‖ψv‖H̺ ≤ c‖v‖H1

,for every v ∈ H1. Indeed, due to the assumptions on ψ and the embedding H1 →֒
L6(Ω), we have

‖ψv‖Lp(Ω) + ‖∇(ψv)‖L6/5 ≤ c‖v‖H1
,with 1

p
= 1

3+δ
+ 1

6
< 1

2
. Then, the required estimate is an immediate orollary of theinterpolation inequality
‖w‖H̺ ≤ c‖w‖1−̺

Lp ‖∇w‖̺

L6/5, ∀w ∈ H̺,where 1
2

= 1−̺
p

+ 5̺
6
or, equivalently, ̺ = δ

3+2δ
(see e.g. [22℄). �2. Well-Posedness and DissipativityTo begin our analysis, we reall the de�nition of a weak energy solution.De�nition 2.1. A funtion u(t) is a weak energy solution to (1.1) if, for any T > 0,

ξu ∈ L∞([0, T ],H0),
√

σ(u) ∂tu ∈ L2([0, T ], H0),and (1.1) holds in the sense of distributions.Due to the growth restritions on ϕ and σ, it is apparent that ϕ(u) ∈ L2([0, T ], H0)and σ(u)∂tu ∈ L2([0, T ], H−1). Consequently, ∂ttu ∈ L2([0, T ], H−1) and equation(1.1) is understood as an equality in L2([0, T ], H−1). Moreover, standard argumentsshow that ξu ∈ Cw([0, T ],H0). Hene, the initial onditions are well de�ned.The next proposition proves the Lipshitz ontinuity in a weaker energy spae. Asa byprodut, we obtain the uniqueness of a weak energy solution. This Lipshitzontinuity turns out to be the main tehnial tool in our analysis of the equation.Proposition 2.2. Let u1 and u2 be two weak energy solutions to (1.1). Then, forevery t > 0, the following estimate holds:
‖ξu1(t) − ξu2(t)‖H−1

≤ cect‖ξu1(0) − ξu2(0)‖H−1
,where c ≥ 0 depends only on the energy norms of the initial data ξu1(0) and ξu2(0).Proof. The argument is the same as the analogous one developed in [20℄ for the2-D ase. However, in order to make this paper self-ontained, we report it in fulldetail. Let u1, u2 be two weak solutions to (1.1) suh that ‖ξuj(t)‖H0

≤ R for every
t ∈ [0, T ], for some R ≥ 0, and denote ū = u1 − u2. De�ning wj(t) =

∫ t

0
uj(τ)dτand w̄ = w1 −w2, integrating equation (1.1) for uj (j = 1, 2) on [0, t] and taking thedi�erene yields(2.1) ∂ttw̄ + Σ(u1) − Σ(u2) − ∆w̄ = F +G,4



where we put
F (t) = −

∫ t

0

[

ϕ(u1(τ)) − ϕ(u2(τ))
]

dτ, G = Σ(u1(0)) − Σ(u2(0)) + ∂tū(0).Note that, on aount of (1.2) and (1.6), all the terms of (2.1) belong at least to
L2([0, T ], H−1). Hene, their produt with ∂tw̄ = ū ∈ L∞([0, T ], H1) is well de�ned.Taking this produt, and observing that 〈Σ(u1) − Σ(u2), ū〉 ≥ 0, we get

1

2

d

dt
‖ξw̄‖

2
H0

≤
d

dt
〈F, w̄〉 +

d

dt
〈G, w̄〉 − 〈∂tF, w̄〉.Integrating on [0, T ], we are led to

‖ξw̄(T )‖2
H0

≤ ‖ū(0)‖2 + 2〈F (T ), w̄(T )〉 + 2〈G, w̄(T )〉 − 2

∫ T

0

〈∂tF (t), w̄(t)〉dt

≤
1

2
‖ξw̄(T )‖2

H0
+ 4‖F (T )‖2

H−1
+ ‖ū(0)‖2 + 4‖G‖2

H−1

+ 2

∫ T

0

‖∂tF (t)‖H−1
‖ξw̄(t)‖H0

dt.Using now the growth restritions (1.2) and (1.6) on ϕ and σ, we easily see that
4‖F (T )‖2

H−1
≤ Q(R)T

∫ T

0

‖ū(t)‖2dt ≤ Q(R)T

∫ T

0

‖ξw̄(t)‖2
H0
dt,

‖ū(0)‖2 + 4‖G‖2
H−1

≤ Q(R)‖ξū(0)‖2
H−1

,

‖∂tF (t)‖H−1
≤ Q(R)‖ū(t)‖ ≤ Q(R)‖ξw̄(t)‖H0

.Therefore, we end up with
‖ξw̄(T )‖2

H0
≤ Q(R)‖ξū(0)‖2

H−1
+Q(R)(1 + T )

∫ T

0

‖ξw̄(t)‖2
H0
dt,and from the Gronwall lemma we onlude that

‖ū(T )‖2 ≤ ‖ξw̄(T )‖2
H0

≤ Q(R)eQ(R)T‖ξū(0)‖2
H−1

.Finally, from (2.1), we read that
‖∂tū‖H−1

= ‖∂ttw̄‖H−1
≤ ‖Σ(u1) − Σ(u2)‖H−1

+ ‖∇w̄‖ + ‖F‖H−1
+ ‖G‖H−1

,whih, due to the above estimates and the inequality ‖Σ(u1)−Σ(u2)‖H−1
≤ Q(R)‖ū‖,furnishes

‖∂tū(T )‖2
H−1

≤ Q(R)eQ(R)T ‖ξū(0)‖2
H−1

.To omplete the proof it is enough to note that, if ‖ξuj(0)‖H0
≤ R, then the uniformestimates provided in the subsequent Theorem 2.3 ensure that ‖ξuj(t)‖H0

≤ Q(R)for all t > 0. �The next theorem provides the existene of a weak solution together with the dissi-pative estimate. 5



Theorem 2.3. There exists a (unique) weak energy solution of (1.1). This solutionsatis�es the dissipative estimate(2.2) ‖ξu(t)‖H0
≤ Q(‖ξu(0)‖H0

)e−t +Q(‖f‖),and the energy inequality
‖ξu(t)‖

2
H0

+ 2〈Φ(u(t)), 1〉 − 2〈f, u(t)〉 + 2

∫ t

0

〈σ(u(τ))∂tu(τ), ∂tu(τ)〉dτ(2.3)
≤ ‖ξu(0)‖2

H0
+ 2〈Φ(u(0)), 1〉 − 2〈f, u(0)〉.Proof. We give below the formal derivation of the a priori estimates (2.2) and (2.3),whih an be justi�ed in a standard way via a Galerkin approximation sheme.Indeed, (2.3) an be formally obtained multiplying (1.1) by ∂tu and integrating on

[0, t] × Ω. In order to verify (2.2), for ε ∈ (0, 1) to be �xed later, we introdue theenergy funtional(2.4) Eε = Eε(ξu) = ‖ξu‖
2
H0

+ 2〈Φ(u), 1〉+ 2ε〈Υ(u), 1〉+ 2ε〈∂tu, u〉 − 2〈f, u〉.Notie that, from (1.5), 〈Υ(u), 1〉 ≥ 0. Thus, on aount of (1.2), (1.6) and theinequality(2.5) ‖∇u‖2 + 2〈Φ(u), 1〉 ≥ 2γ‖∇u‖2 − c, γ > 0,whih follows from the dissipativity assumption (1.4), we have the ontrols
β‖ξu‖

2
H0

−Q(‖f‖) ≤ Eε ≤ Q(‖ξu‖H0
) +Q(‖f‖),for some β ∈ (0, 1), provided that ε is small enough. Multiplying (1.1) by ∂tu+ εu,we �nd

d

dt
Eε + 2ε‖∇u‖2 + 2〈σ(u)∂tu, ∂tu〉 − 2ε‖∂tu‖

2 + 2ε〈ϕ(u), u〉 = 2ε〈f, u〉.Using (1.4) and (1.5), we have the estimate
2ε‖∇u‖2 + 2ε〈ϕ(u), u〉 ≥ 2βε‖∇u‖2 − c,

2〈σ(u)∂tu, ∂tu〉 − 2ε‖∂tu‖
2 ≥ βε‖∂tu‖

2,if ε is small enough. Thus, estimating the right-hand side of the di�erential equalityas
2ε〈f, u〉 ≤ βε‖∇u‖2 + c‖f‖2,we end up with the inequality
d

dt
Eε + βε‖ξu‖

2
H0

≤ Q(‖f‖).Fixing now the parameter ε in suh a way that all the above relationships hold, wededue from Lemma 1.1 that, for every R ≥ 0, there exists t0 = t0(R) suh that
‖ξu(t)‖H0

≤ Q(‖f‖), ∀t ≥ t0,whenever ‖ξu(0)‖H0
≤ R. Together with (2.3) and (2.5), this gives estimate (2.2)and �nishes the proof of the theorem. �Thus, equation (1.1) generates a dissipative semigroup S(t) in the phase spae H0whih is loally Lipshitz ontinuous in the H−1 metri.6



Corollary 2.4. The weak energy solution of (1.1) possesses the dissipation integrals
σ0

∫ ∞

0

‖∂tu(t)‖
2dt ≤

∫ ∞

0

〈σ(u(t))∂tu(t), ∂tu(t)〉dt ≤ Q(‖ξu(0)‖H0
) +Q(‖f‖).Indeed, this follows immediately by passing to the limit t → ∞ in (2.3) and using(2.5).Remark 2.5. It is worth emphasizing that we annot diretly multiply equation(1.1) by ∂tu, sine the terms of (1.1) belong to L2([0, T ], H−1), whereas ∂tu ∈

L∞([0, T ], H0) only. In order to overome this obstale, one usually works withthe Galerkin approximate equations (whih are smooth, so that this multipliationmakes sense) and verify estimates (2.2) and (2.3) �rst for the approximate Galerkinsolutions uN(t). Then, passing to the limit N → ∞, one obtains the required in-equalities for the limit solution u (see [1℄ for details). However, this limit proeduregives only the energy inequality (2.3). In ontrast to this, the energy equality is amore deliate fat that should be veri�ed independently (usually, stronger assump-tions on the equation are required). We prove that under the assumption that σ(u)is uniformly bounded.Corollary 2.6. Assume that σ(u) ≤ c for every u ∈ R. Then, strit equality in(2.3) holds, namely,
‖ξu(t)‖

2
H0

+ 2〈Φ(u(t)), 1〉 − 2〈f, u(t)〉 + 2

∫ t

0

〈σ(u(τ))∂tu(τ), ∂tu(τ)〉dτ(2.6)
= ‖ξu(0)‖2

H0
+ 2〈Φ(u(0)), 1〉 − 2〈f, u(0)〉.Proof. Let PN : H0 → PNH0 be the orthogonal projetion in H0 onto the �rst Neigenvetors of the Laplaian (equipped with Dirihlet boundary onditions), and let

u be the weak energy solution to (1.1). The funtion uN = PNu obviously satis�es
∂ttuN + PN(σ(u)∂tu) − ∆uN + PNϕ(u) = PNf.Multiplying this equation by ∂tuN , and integrating over [0, t] × Ω, we get

‖ξuN
(t)‖2

H0
− 2〈f, uN(t)〉 + 2

∫ t

0

〈σ(u(τ))∂tu(τ), ∂tuN(τ)〉dτ + 2

∫ t

0

〈ϕ(u(τ)), ∂tuN(τ)〉dτ

= ‖ξuN
(0)‖2

H0
− 2〈f, uN(0)〉.We need now to pass to the limit N → ∞ in this equality. Sine, by de�nition,

ξu(t) ∈ H0 for all t, then ξuN
(t) → ξu(t) and ξuN

(0) → ξu(0) in H0. Hene, the pas-sage to the limit is immediate for all the terms exept the two integral ones appearingin the left-hand side. For the �rst, we use the fat that σ(u)∂tu ∈ L2([0, T ], H0) (herethe global boundedness of σ(u) is needed) and ∂tuN → ∂tu in that spae. Finally, forthe seond one, we note that ϕ(u) ∈ L2([0, T ], H0) (due to the growth restritions)and, onsequently,
∫ t

0

〈ϕ(u(τ)), ∂tuN(τ)〉dτ →

∫ t

0

〈ϕ(u(τ)), ∂tu(τ)〉dτ = 〈Φ(u(t)), 1〉 − 〈Φ(u(0)), 1〉,whih proves (2.6). �7



The energy equality (2.6) an be rewritten in a more onvenient di�erential form.Indeed, introduing the energy funtional
E0 = E0(ξu) = ‖ξu‖

2
H0

+ 2〈Φ(u), 1〉 − 2〈f, u〉,the integral equality (2.6) is equivalent to the fat that the funtion E0(ξu(t)) isabsolutely ontinuous as a funtion of t and satis�es almost everywhere(2.7) d

dt
E0 + 2〈σ(u)∂tu, ∂tu〉 = 0.This di�erential energy equality is ruial for the existene of a strong global attra-tor, as we will see in the next setion.3. Weak and Strong Global AttratorsWe now proeed to investigate the asymptoti properties of (1.1), using the notionof a global attrator. We begin with the attrator in a weak topology.De�nition 3.1. A set A ⊂ H0 is a weak global attrator of the semigroup S(t)assoiated with equation (1.1) if(i) A is weakly ompat in H0;(ii) A is stritly invariant, that is, S(t)A = A;(iii) A attrats in the weak topology the images of all bounded subsets of H0,namely, for every bounded subset B of H0 and every neighborhood O of A inthe weak topology ofH0, there exists T = T (B,O) ≥ 0 suh that S(t)B ⊂ O,for every t ≥ T .In partiular, the attration in the weak topology of H0 implies the attration inthe strong topology of H−1.The next proposition gives the existene of suh a weak attrator.Proposition 3.2. The semigroup S(t) assoiated with the wave equation (1.1) pos-sesses a weak global attrator A in the sense of De�nition 3.1. As usual, this at-trator is generated by all omplete bounded trajetories of (1.1), that is, A = K|t=0,where K is the set of all weak energy solutions u(t) whih are de�ned for all t ∈ Rand bounded in the H0-norm.Proof. Due to the dissipative estimate (2.2), the ball B0 =

{

ξ ∈ H0, ‖ξ‖H0
≤ R

}for a su�iently large radius R is an absorbing set for S(t) in H0. Obviously, thisball is ompat in the weak topology of H0. Thus, S(t) possesses a weakly ompatabsorbing set. On the other hand, due to Proposition 2.2, for every �xed t ≥ 0, themap S(t) is ontinuous on B0 in theH−1-topology and, onsequently, it is ontinuousin the weak topology of H0 as well. The existene of a weak global attrator followsnow from the lassial attrator's existene theorem (see e.g. [3℄). �By means of standard energy methods (f. [21℄), we now show the existene ofa strong global attrator in the ase where the energy equality (2.6) holds (forinstane, when σ(u) is globally bounded).8



Theorem 3.3. Assume that the energy equality (2.6) holds for every weak energysolution. Then, the semigroup S(t) possesses a global attrator in the strong topologyof H0 (whih, obviously, oinides with the weak attrator A onstruted in theprevious proposition).Proof. To prove the existene of the strong global attrator, it is su�ient to verifythat for every sequenes ξun(0) ∈ B0 and tn → ∞ the assoiated sequene ξun(tn)is preompat in H0 (see e.g. [1℄). Let then ξun(0) ∈ B0 and tn → ∞ be arbitrary.Without loss of generality, due to the previous proposition, we may assume that
ξun(tn) → ξ = (ξ1, ξ2) weakly in H0 for some ξ ∈ A. The proof is �nished if we showthat ξun(tn) → ξ strongly in H0. To this end, we use the simple observation that ina Hilbert spae the weak onvergene together with the onvergene of the normsimply the strong onvergene. Thus, we are left to prove that ‖ξun(tn)‖H0

→ ‖ξ‖H0
.To reah this aim, we shall use suitable energy equalities. The basi energy equality(2.7) allows us to multiply diretly equation (1.1) by ∂tu+εu. Indeed, the problematimultipliation by ∂tu is justi�ed by (2.7), whereas the multipliation by u is allowedsine u ∈ L∞([0, T ], H1). Multiplying the initial equation (1.1) by this term, aftersimple manipulations, we dedue the equality(3.1) d

dt
Eε(ξu) + 2εEε(ξu) + 2〈[σ(u) − 2ε]∂tu, ∂tu〉 = Lε(ξu),with Eε(ξu) as in (2.4), where we put

Lε(ξu) = −2ε〈ϕ(u), u〉+ 4ε〈Φ(u), 1〉 + 4ε2〈Υ(u), 1〉 + 4ε2〈u, ∂tu〉 − 2ε〈f, u〉,and we �x ε > 0 enough small suh that σ(u)−2ε > 0. Then, the weak onvergeneof ξun(tn) to ξ = (ξ1, ξ2), together with the growth restritions on ϕ and σ and theompatness of the embedding H1 →֒ L4(Ω), lead to
〈Φ(un(tn)), 1〉 → 〈Φ(ξ1), 1〉, 〈Υ(un(tn)), 1〉 → 〈Υ(ξ1), 1〉, 〈un(tn), ∂tun(tn)〉 → 〈ξ1, ξ2〉.Hene, in order to verify the required onvergene of the norms, it is su�ient tohek the onvergene of the energy funtionals

Eε(ξun(tn)) → Eε(ξ).To this aim, we introdue the shifted funtions ũn(t) = un(t+ tn), whih solve
{

∂ttũn + σ(ũn)∂tũn − ∆ũn + ϕ(ũn) = f,

ũn(−tn) = un(0), ∂tũn(−tn) = ∂tun(0),and Eε(ξũn(0)) = Eε(ξun(tn)). Sine ξun(0) ∈ B0, the dissipative estimate (2.2)implies that the solutions ξũn(t) are uniformly bounded in L∞([−tn,∞),H0). More-over, ξũn being preompat in Cloc(R,H−1), without loss of generality we may assumethat, for every t ∈ R, ξũn(t) onverges weakly in H0 to some solution ξu(t) ∈ A (herewe have impliitly used the fat that tn → ∞). Obviously, ξu(0) = ξ. So, we needto prove that(3.2) Eε(ξũn(0)) → Eε(ξu(0)).9



First, note that the established weak onvergene ξũn(t) → ξu(t) and the bounded-ness in H0 together with the ompat embedding H1 →֒ L4(Ω) imply(3.3) Lε(ξũn(t)) → Lε(ξu(t)), ∀t ∈ R,

|Lε(ξũn(t))| ≤ c.Integrating now the energy equality (3.1) for ũn(t) on [−tn, 0], we get
Eε(ξũn(0)) + 2

∫ 0

−tn

e2εt〈[σ(ũn(t)) − 2ε]∂tũn(t), ∂tũn(t)〉dt

= Eε(ξũn(−tn))e−2εtn +

∫ 0

−tn

e2εtLε(ξũn(t))dt.Furthermore, using (3.3) and the fat that that tn → ∞ and ξũn(−tn) remainsbounded, we dedue from the last equality that
lim

n→∞

(

Eε(ξũn(0)) + 2

∫ 0

−tn

e2εt〈[σ(ũn(t) − 2ε]∂tũn(t), ∂tũn(t)〉dt

)

=

∫ 0

−∞

e2εtLε(ξu(t))dt.Comparing this result with the analogous energy equality for the limit solution ξu(t),we onlude that
lim

n→∞

(

Eε(ξũn(0)) + 2

∫ 0

−tn

e2εt〈[σ(ũn(t)) − 2ε]∂tũn(t), ∂tũn(t)〉dt

)(3.4)
= Eε(ξu(0)) + 2

∫ 0

−∞

e2εt〈[σ(u(t)) − 2ε]∂tu(t), ∂tu(t)〉dt.On the other hand, sine ‖ξ‖H ≤ lim infn→∞ ‖ξn‖H for any weakly onvergent se-quene ξn → ξ in a re�exive spae H , we have
Eε(ξu(0)) ≤ lim inf

n→∞
Eε(ξũn(0))and

∫ 0

−∞

e2εt〈[σ(u(t))−2ε]∂tu(t), ∂tu(t)〉dt ≤ lim inf
n→∞

∫ 0

−tn

e2εt〈[σ(ũn(t)−2ε]∂tũn(t), ∂tũn(t)〉dt.Indeed, the term 〈[σ(ũn) − 2ε]∂tũn, ∂tũn〉 an be written in the form ‖∂tΨ(ũn)‖2,with Ψ(v) =
∫ v

0

√

σ(y) − 2ε dy. It remains to note that the last two inequalities,together with (3.4), imply the required energy onvergene (3.2). �4. Finite-Dimensionality and Exponential Attratorsin the Subritial CaseIn the �nal setion, we prove our main theorem on the existene of the weak exponen-tial attrator in the subritial ase. To be more preise, in addition to (1.2)-(1.6),we require that(4.1) |σ(u)|+ |ϕ′(u)| ≤ c(1 + |u|2−δ),for some δ ∈ (0, 2].Our onstrution of an exponential attrator is based on the following abstratresult. 10



Proposition 4.1. Let H, V, V1 be Banah spaes suh that the embedding V1 →֒ Vis ompat. Let B be a losed bounded subset of H, and let S : B → B be a map.Assume also that there exists a uniformly Lipshitz ontinuous map T : B → V1,i.e.
‖Tb1 − Tb2‖V1

≤ L‖b1 − b2‖H , ∀b1, b2 ∈ B,for some L ≥ 0, suh that(4.2) ‖Sb1 − Sb2‖H ≤ ϑ‖b1 − b2‖H +K‖Tb1 − Tb2‖V , ∀b1, b2 ∈ B,for some ϑ < 1/2 and K ≥ 0. Then, there exists a (disrete) exponential attrator
Md ⊂ B whih satis�es the following properties:(i) semi-invariane: SMd ⊂ Md;(ii) ompatness: Md is ompat in H;(iii) exponential attration: distH(SnB,Md) ≤ Ce−ωn for all n ∈ N and for some

ω > 0 and C ≥ 0, where distH denotes the standard Hausdor� semidistanebetween sets in H;(iv) �nite-dimensionality: Md has �nite fratal dimension in H.Moreover, the onstants ω, C and the fratal dimension of Md an be expliitlyexpressed in terms of L, K, ϑ, ‖B‖H and the Kolmogorov's κ-entropy of the ompatembedding V1 →֒ V , for some κ = κ(L,K, ϑ).We reall that the Kolmogorov's κ-entropy of the ompat embedding V1 →֒ V isthe logarithm of the minimum number of balls of radius κ in V neessary to overthe unit ball of V1.The proof of this proposition in the partiular instane when H = V1 and T is theidentity map is given in [7℄. The general proof repeats word by word this partiularase and so thus omitted (see also [4, 8℄).We are now ready to state and proveTheorem 4.2. Assuming (4.1) in addition to the general hypotheses, the semigroup
S(t) assoiated with (1.1) possesses a weak exponential attrator M in the followingsense:(i) M is bounded in H0 and ompat in H−1;(ii) M is semi-invariant: S(t)M ⊂ M, t ≥ 0;(iii) M attrats the images of bounded (in H0) subsets exponentially in the metriof H−1, i.e. there exist ω > 0 and a monotone funtion Q suh that, for everybounded set B ⊂ H0,

distH−1
(S(t)B,M) ≤ Q(‖B‖H0

)e−ωt, ∀t ≥ 0.(iv) M has the �nite fratal dimension in H−1.Proof. We �rst reall that, due the dissipative estimate (2.2), the semigroup S(t)possesses an absorbing ball B0 in the phase spae H0. Thus, it is su�ient toonstrut the exponential attrator for the restrition of this semigroup on B0 only.In order to apply Proposition 4.1 to our situation, we need to verify the properestimate for the di�erene of solutions, whih is done in the following lemma.11



Lemma 4.3. Let the above assumptions hold, and let u1 and u2 be two weak energysolutions of (1.1) suh that ξuj(0) ∈ B0. Then(4.3) ‖ξu1(t) − ξu2(t)‖H−1
≤Me−νt‖ξu1(0) − ξu2(0)‖H−1

+K‖u1 − u2‖L2([0,t],H−̺).for some ν > 0, ̺ ∈ (0, 1/2), M ≥ 0 and K ≥ 0, all independent of t and uj.Proof. For α ∈ (0, 1) to be �xed later, let vj(t) =
∫ t

0
e−α(t−τ)uj(τ)dτ . Then, uj =

∂tv
j + αvj and vj(0) = 0. Multiplying the equations for uj(τ) by e−α(t−τ) andintegrating in τ over [0, t], after simple transformations, we arrive at

∂ttv
j(t)+Σ(uj(t))−∆vj(t)+

∫ t

0

e−α(t−τ)ϕα(uj(τ))dτ = e−αtR(ξuj(0))+
1

α
(1−e−αt)f,where we set

ϕα(w) = ϕ(w) − αΣ(w) and R(ξuj(0)) = ∂tu
j(0) − αuj(0) + Σ(uj(0)).Then, the di�erene v̄ = v1 − v2 solves

∂ttv̄(t) + [Σ(u1(t)) − Σ(u2(t))] − ∆v̄(t) +

∫ t

0

e−α(t−τ)[ϕα(u1(τ)) − ϕα(u2(τ))]dτ

(4.4)
= e−αt[R(ξu1(0)) − R(ξu2(0))].Multiplying the equation by ∂tv̄ + αv̄ = u1 − u2 ∈ L∞(R+, H1), and noting that

Σ′(w) ≥ σ0, with standard omputations, we get(4.5) d

dt
E(ξv̄(t)) + 2α‖∇v̄(t)‖2 + 2(σ0 − α)‖∂tv̄(t)‖

2 + 4ασ0〈v̄(t), ∂tv̄(t)〉 ≤ J(t),with
E(ξv(t)) = ‖ξv̄(t)‖

2
H0

+ 2α〈v̄(t), ∂tv̄(t)〉 − 2e−αt〈R(ξu1(0)) − R(ξu2(0)), v̄(t)〉

+ 2

∫ t

0

e−α(t−τ)〈ϕα(u1(τ)) − ϕα(u2(τ)), v̄(t)〉dτ,and
J(t) = 2〈ϕα(u1(t)) − ϕα(u2(t)), v̄(t)〉 − 4α

∫ t

0

e−α(t−τ)〈ϕα(u1(τ)) − ϕα(u2(τ)), v̄(t)〉dτ

+ 4αe−αt〈R(ξu1(0)) −R(ξu2(0)), v̄(t)〉.Besides, analogously to Proposition 2.2, we have
‖R(ξu1(0)) − R(ξu2(0))‖H−1

≤ c‖ξu1(0) − ξu2(0)‖H−1
.Consequently, the funtion J in the right-hand side of (4.5) an be estimated via

J(t) ≤ c
[

e−αt‖ξu1(0) − ξu2(0)‖2
H−1

+ ‖ϕα(u1(t)) − ϕα(u2(t))‖2
H−1

+

∫ t

0

e−α(t−τ)‖ϕα(u1(τ)) − ϕα(u2(τ))‖2
H−1

dτ
]

+ α‖ξv̄(t)‖
2
H0
,for some c = c(α) ≥ 0. On the other hand, it is lear that the quadrati form (withrespet to v̄ and ∂tv̄) in the left-hand side of (4.5) is positively de�ned if α is small12



enough. Thus, �xing a suitable α and using the above estimates, we transform (4.5)into
d

dt
E(ξv̄(t)) + νE(ξv̄(t))

≤ c
[

e−αt‖ξu1(0) − ξu2(0)‖2
H−1

+ ‖ϕα(u1(t)) − ϕα(u2(t))‖2
H−1

+

∫ t

0

e−α(t−τ)‖ϕα(u1(τ)) − ϕα(u2(τ))‖2
H−1

dτ
]

,for some stritly positive ν < α/2. Applying the Gronwall lemma, we infer
‖ξv̄(t)‖

2
H0

≤ ce−νt‖ξu1(0)− ξu2(0)‖2
H−1

+ c

∫ t

0

e−ν(t−τ)‖ϕα(u1(τ))− ϕα(u2(τ))‖2
H−1

dτ,where c and ν are independent of t and ξuj . Finally, as in Proposition 2.2, we anexpress the H−1-norm of ξu1(t) − ξu2(t) in terms of the H0-norm of ξv1(t) − ξv2(t),using equation (4.4), deduing that
‖ξu1(t)−ξu2(t)‖2

H−1
≤ ce−νt‖ξu1(0)−ξu2(0)‖2

H−1
+c

∫ t

0

e−ν(t−τ)‖ϕα(u1(τ))−ϕα(u2(τ))‖2
H−1

dτ.In order to omplete the lemma, we only need to verify that(4.6) ‖ϕα(u1(τ)) − ϕα(u2(τ))‖H−1
≤ c‖u1(τ) − u2(τ)‖2

H−̺for some ̺ ∈ (0, 1/2) and some c ≥ 0, both independent of uj(τ). Indeed,
ϕα(u1(τ)) − ϕα(u2(τ)) = ψ(τ)(u1(τ) − u2(τ))with ψ(τ) =

∫ 1

0
ϕ′

α(su1(τ) + (1 − s)u2(τ))ds. Moreover, using (1.2), (1.6) and thefat that the uj(τ) are uniformly bounded in H1, we �nd that ∇ψ(τ) is uniformlybounded in L3/2(Ω) and, from assumption (4.1), we obtain also that ψ(τ) is uni-formly bounded in L3+δ(Ω). Thus, Lemma 1.2 entails (4.6). �It is now not di�ult to �nish the proof of the theorem, using the abstrat shemeof Proposition 4.1. As usual, we �rst onstrut the exponential attrator Md ofthe disrete map S(T∗) on B0 (the above onstruted absorbing ball in H0), fora su�iently large T∗. Indeed, it follows from the dissipative estimate (2.2) that
S(T∗) : B0 → B0, provided that T∗ is large enough. Then, we apply Proposition 4.1on the set B = B0 with H = H−1 and S = S(T∗), with T∗ large enough so that B0is invariant and, in addition, Me−νT∗ = ϑ < 1/2 (see (4.3)). Besides, with refereneto Proposition 4.1, let

V1 =
{

u ∈ L2([0, T∗], H0), ∂tu ∈ L2([0, T∗], H−1)
}

⋐ V = L2([0, T∗], H−̺).Finally, de�ne the operator T : B0 → V1 to be the solving operator for (1.1) on thetime-interval [0, T∗], namely,
Tξu(0) = u.Due to Proposition 2.2, we have the global Lipshitz ontinuity of T from B0 to

V1, and Lemma 4.3 gives us the basi estimate (4.2) for the map S(T∗). Therefore,the assumptions of Proposition 4.1 are veri�ed and, onsequently, the map S(T∗)possesses an exponential attrator Md on B0.13



The required exponential attrator for the semigroup S(t) (with ontinuous time)an be now onstruted by the standard formula
M =

⋃

t∈[0,T∗]

S(t)Md.Indeed, sine the H−1-norm of ∂ttu and the H0-norm of ∂tu are globally boundedif ξu(0) ∈ B0, then the semigroup S(t) is also uniformly Lipshitz ontinuous withrespet to t ∈ [0, T∗] in the H−1-norm. Then, the �nite-dimensionality of M followsfrom the analogous �nite-dimensionality of Md, and the remaining properties of Mare immediate. This ompletes the proof of Theorem 4.2. �Remark 4.4. Sine an exponential attrator always ontains the global one, thetheorem implies, in partiular, that the fratal dimension of the global attrator A ofProposition 3.2 is �nite in H−1 as well. In fat, due to interpolation, this dimensionis �nite in H−α for every α < 0.Some open questions. In ontrast to the one and the two-dimensional ases(where we have a omplete theory, due to [14℄ and [20℄), the situation with the 3-Dase remains essentially less lear. In partiular, the following important questionsremain open:
• Global existene of strong solutions (belonging to H1) and the H1-regularityof the attrator A.
• Finite-dimensionality of the global attrator in the ritial ase (δ = 0 in(4.1)).
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