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ABSTRACT. This paper is concerned with the semilinear strongly damped wave
equation

Opu — Adyu — Au+ o(u) = f.
The existence of compact global attractors of optimal regularity is proved for
nonlinearities ¢ of critical and supercritical growth.

1. INTRODUCTION

We consider the following initial and boundary value problem for a semilinear
strongly damped wave equation on a bounded domain Q0 C R? with smooth bound-
ary 0€):

Opu — Adyu — Au+ (u) = f,
(1.1) u(0) = ug, wu(0) = uy,
u‘ag =0.

Let us begin by mentioning some relevant physical applications where this kind of
equation appears.

o In space dimensions one and two, (1.1) models the transversal vibrations of a ho-
mogeneous string and the longitudinal vibrations of a homogeneous bar, respectively,
subject to viscous effects. The term —Ad,u indicates that the stress is proportional
not only to the strain, as with the Hooke law, but also to the strain rate as in a
linearized Kelvin-Voigt material.

o In the three-dimensional case, (1.1) describes the variation from the configuration
at rest of a homogeneous and isotropic linearly viscoelastic solid with short memory,
called of rate-type (see |6]), in presence of an external displacement-dependent force
f—p(u). If the body is also subject to dynamical friction, the additional term S0,u,
with 3 > 0, appears in the left-hand side of the equation.

o For a« > 0 and 8 > 0, we have the perturbed sine-Gordon equation
O — aAOyu — Au + sinu + fou = f,

describing the evolution of the current u in a Josephson junction (see [15|). The pa-
rameters a and (3 correspond to loss effects, whereas f is the external current driving
the device. Although in the present paper we consider for simplicity a nonlinearity
independent of J;u, we mention that the extra term 5d;u (with (§ positive, or even
slightly negative compared to «) does not affect at all the results that follow.

© Another interesting example reads

Opu — aAdyu — Au + |u|"u + Bou = f, v >0,

which is also a perturbed wave equation of Klein-Gordon type occurring in quantum
mechanics.



o We finally mention an (integro-differential) equation arising in the theory of
isothermal viscoelasticity that has recently attracted some attention, namely,

Oyu — k(0)Au — /000 K (s)Au(t — s)ds + p(u) = f,

where k is a convex decreasing smooth kernel such that k(0) > k(co) > 0, typically,
k(s) = k(oo) + e=°*, with & > 0. The function wu(t) for t < 0 (the so-called past
history) is a prescribed datum. Performing an integration by parts, the equation
turns into

Ou — k(o0)Au — /OOO [k(s) — k(c0)] Adwu(t — s)ds + p(u) = f.

Of particular interest is the case where the system has a very rapidly fading memory:
in the limiting situation when k(s) — k(oo) is the Dirac mass at zero, possibly
multiplied by a positive constant «, we recover

Opu — aAdyu — k(oco)Au + p(u) = f.

Although this limiting procedure is formal, the “closeness” between the integro-
differential problem and its limiting equation (1.1) can be estimated in a rigorous
way (see [5] and the references therein).

Problem (1.1) has been investigated quite extensively by several authors in the last
years (see e.g. [3,4,7,9,13,16, 17, 19, 21|), with particular regard to its asymptotics.
The global existence and dissipativity of strong solutions (belonging to the regular
phase space [H%(Q) N Hi(Q2)] x H3(Q)) has been established in |13| (see also |14]),
without any growth restriction on the nonlinearity . On the other hand, under the
additional growth restriction

Wl <e(l+ul"), p<4,

equation (1.1) is also well-posed in the natural energy phase space H}(Q) x L?*(Q),
i.e. the associated weak energy solution exists globally and is unique. The growth
rate p = 4 is critical, since for p > 4 well-posedness in Hj(Q) x L*() is lost. The
existence of a compact global attractor and its smoothness for weak energy solutions
when p = 4 is a delicate question (in the subcritical case it is well known, and can be
obtained by the standard bootstrapping technique, see e.g. [13|). Indeed, even the
existence of a global attractor for that case has been achieved only quite recently in
|4, 12, 17| and, to the best of our knowledge, the question of its additional regularity
remained open. In particular, it was not clear whether or not the global attractor
associated with weak energy solutions coincides with the analogous one for strong
solutions. Clearly, this lack of regularity prevented a more accurate analysis of the
longterm dynamics.

The aim of the present work is to give a positive answer to the above regularity
question for the case p = 4. The main difficulty here is that the classical Babin-
Vishik method [2] of proving the regularity of attractors (based on the nonlinear
decomposition and the existence of a dissipation integral), successfully employed for
the weakly damped hyperbolic equation, does not work for the strongly damped
one. Indeed, the presence of the strong damping term AQd,u breaks the simple
relation between the spatial regularity of dyu and Aw in the wave equation, which



is crucial in the Babin-Vishik technique. Thus, a new approach is required. We
exploit the fact that, along with its hyperbolic properties, the considered equation
unveils a peculiar parabolic nature. In particular, despite it does not possess a
“completeffmoothing property on finite time-intervals (like parabolic equations), it
exhibits a partial smoothing, precisely, of the functions d,u and Jyu. Based on this
rather simple observation, we reduce the analysis of the initial equation (1.1) to the
following purely hyperbolic nonautonomous problem:

(1.2) —Adiu — Au+ ¢(u) =g,

with ¢g(t) = f — Ouu(t), which is essentially simpler than (1.1) and possesses a
convenient splitting for proving the regularity (see Section 4). Quite surprisingly, our
analysis makes no use of complicated arguments, such as bootstrapping, fractional
power operators or analytic semigroup theory. In fact, all we need are suitable
energy estimates. Moreover, the method allows us also to treat (with very minor
changes) the nonautonomous case where the external force f depends explicitly on
t.

The paper is organized as follows. In Section 2, for the reader’s convenience, we recall
the standard theory of strong solutions, and we verify the existence of a compact
global attractor in the regular phase space. In Section 3, we reduce the analysis of
the asymptotic regularity of solutions to equation (1.1) to the analogous problem
for the simplified equation (1.2), taking advantage of the partial smoothing property
mentioned above. Finally, the asymptotic regularity of solutions for this auxiliary
equation is studied in Section 4.

Notation. We denote by H, = D((—A)*?), s € R, the scale of Hilbert spaces
generated by —A with Dirichlet boundary conditions on (L?(Q2),(-,-),] - [|). In
particular,

Hy=L*Q), Hy=H)Q),  Hy=HQ)NH).
Then, we introduce the product Hilbert spaces
‘H=H, x Hy and Y = Hy X H,.
Naming A\; > 0 the first eigenvalue of —A,
lwlla, = 1(=2)"2wl| = M~ |w],  Vs>0,Vw € H,.

We shall often make use, without explicit mention, of this inequality, as well as of
the Young and the Holder inequalities. Throughout the paper, ¢ and @ stand for
a generic positive constant and a generic positive increasing function, respectively,
depending only on € (hence of A\;) and . Moreover, for any function z(t), we write

for short &,(t) = (2(t), 0¢2()).

We also refer the reader to the classical texts |2, 10, 11, 18] for a detailed presentation
of the theory of attractors for dynamical systems.



2. STRONG SOLUTIONS AND THE ASSOCIATED GLOBAL ATTRACTOR
General assumptions. We take f € H; independent of time. Besides, we require
¢ € C'(R), with ¢(0) = 0, be such that
(2.1) liminf ¢'(r) > — Ay, Vr € R.

|r|—o0
In particular, (2.1) implies that
(2.2) o'(r) > 4, vr e R.
for some ¢ > \;.

Remark 2.1. Notice that no growth restrictions on ¢ are made.

q)(U):/Q(/OU(I)@(y)dy)dx,

which is easily seen to satisfy the inequalities

We set

v 2
(23) O(u) = S ul* —

0
(2.4) (p(u),u) = O(u) — §IIUII2 —c > =Vul]® — ¢,
for some ¥ < \;.
Under the above assumption, we have

Theorem 2.2. Problem (1.1) generates a strongly continuous semigroup S(t) on
the phase space V. Moreover, the following dissipative estimate holds:

(2:5) 1€y < QUIELO)[[v)e™" + QAN

for every t > 0 and some v > 0.

Proof. We shall limit ourselves to show the above dissipative estimate. Then, the
existence of a solution can be obtained in a standard way, by means of a Galerkin
approximation scheme. As far as uniqueness is concerned, it follows quite directly
noting that

lo(u') — o(u?)]| < QUIAW | + [[Aw?[) u" — w7,
for all u!,u? € Hs, due to the continuous embedding Hy < C(Q).

In order to prove (2.5), we need the following

Lemma 2.3. Introducing the enerqy functional

E(&(t)) = lI&@®)l3 + [@(u(®)],

we have the estimate
[ AGIE +/t IVOu(r)|?dr < cE(£.(0))e™" + Q| f1),

for every t > 0 and some ¢ > 0.



Proof. Here, as well as in the sequel, we perform formal multiplications, which are
justified within the Galerkin approximation scheme. Passing to the limit, the bounds
that we find for the approximants continue to hold for the solution. Multiplying (1.1)
by O,u, we have

d

dt
A further multiplication by cu, with € > 0 to be determined later, yields

(IVall? + [[9pull? + 2@(w) — 2(f,u)) + 2/|VIul* = 0.

%(8”VUH2 + 2e(Opu, u)) + 22| Vul|* = 2e]|0pul)® + 2&(p(u), u) — 2&(f,u) = 0.
Introducing the functional
Ao = (1 +&)||[Vul® + ||0wu]]® + 28 (u) + 2e(Dpu, u) — 2(f, u),
we obtain, thanks to (2.4),

d
%Ao + el + ||[VOu|? +T < ce.

where
['=ce(l—2)||Vul]* — ed|ul* + (A1 — 3¢)||0wu||* — 2e*(Dyu, u).
Thus, setting € small enough such that I' > 0, we end up with

d
(2.6) %Ao +elg + ||VOu|]? < ce,

and the Gronwall lemma yields

Ao(t) < Ag(0)e ™" +c.
Due to (2.3), it is apparent that

Ao = oll€ullz, — QUIFID,

for some o > 0; besides,

Ao < cE(&) + QI f1])-

Therefore, we are led to the inequality

€117, < cE(&u(0))e™ + QUIFID-

Finally, setting ¢ = 0 in (2.6), and integrating on (t,00), we prove the remaining
part of the claim. O

Consider now the functional
1
A = §]|Au||2 — (Oyu, Auy).

A multiplication of (1.1) by —Awu together with (2.2) entail

d 1 ,
%Al + A+ §||Au||2 = ||V8w||2 — (¢ (u)Vu, Vu) — (Oyu, Au) — (f, Au)

1
< laul® + c(IVull® + [ Vaul* + [ £17)-
Hence, by the Gronwall lemma and Lemma 2.3, we find

Ai(t) < Ai(0)e™ + cE(&u(0)e™ + Q£
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for some v > 0. Here, we used the inequality

t o0 t o
[ e tvanm i <t [T ivaupar [ e ([T 9o P
0 0 0 "

that is readily obtained integrating by parts. Applying again Lemma 2.3, and noting
that

E(£.(0)) < QUI&u(0)[lv),

we get the desired dissipative estimate in V. 0

The main result of this section is

Theorem 2.4. The semigroup S(t) on V possesses a (unique) compact global at-
tractor Ay C V. Moreover, Ay, is a bounded subset of Hy X Hs.
Proof. We decompose the solution u as
u=v+w+(—A)"'f,
where v, w are the solutions to the problems
Oyv — Adyw — Av = 0,
£0(0) = (uo, ua),

Vo = Oa

and

&gtw — A@tw — Aw -+ (,O(U) = 0,
fw(()) = (070)a

’LU|aQ = 0.
Then, we have

Lemma 2.5. The inequality
I1€.®) [y < QUII€(0) [v)e™

holds for every t > 0 and some v > 0.

Proof. Argue exactly as in Theorem 2.2 (with v in place of u), noting that now
o =0and f=0. 0

Lemma 2.6. The inequality
€0 ()l mraxrz, < QUUIEL(O) )™ + QCILFI)-

holds for every t > 0 and some v > 0.

Proof. Thanks to estimate (2.5) and the assumption ¢(0) = 0, we know that
o(u(t)) € Hy and

IVeu®)I* < QUIE0) )™ + QUILI.
For 0 <& < 1/(2A\1 + 1) to be fixed, let us set

Ay = (1+8)||[VAw|]* + |Adww]|]* — 2e(VOw, VAw).
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Multiplying the equation by A20,w + eA%w, we have

d
EAQ + 22| VAw|? + 2(1 — €)|| VAQw||? = 2e(Vp(u), VAW) + 2(Vp(u), VAdw).

Controlling the right-hand side as
2¢(Veo(u), VAw) + 2(Vp(u), VAGuw) < | VAw||* + [[VAGw]||* + c||[Ve(u)|?,
we are led to the differential inequality

d

() + el €O lliraxm, < QUIEO) V)™ + QUL

Choosing ¢ small enough such that

1
§A2 S ||€w(t)||%l3><H2 S 2A2’

the claim follows from an application of the Gronwall lemma. 0

Let us summarize the results we obtained. Theorem 2.2 gives the existence of
a bounded absorbing set By, C V for S(¢). Lemma 2.5 and Lemma 2.6 show
that the solution &, with initial data &,(0) € By decomposes into the sum of
a uniformly exponentially decaying term and a term belonging to ¢ + By, where
(= ((=A)7'f,0) € Hy x H, for every s, and By is a ball of Hy x H,. In particular,
¢ + By is a compact (exponentially) attracting set for S(¢) on V. This, by stan-
dard methods of the theory of attractors, yields the existence of the global attractor
Ay € ( + By. U

Remark 2.7. Under our hypotheses, the obtained regularity of A, is optimal. On
the other hand, it can be improved up to where the regularity of ¢ and f permit.
Indeed, if f and ¢ are smoother, differentiating the equation with respect to ¢
and arguing in a standard way (namely, applying the techniques above to the new
equation), we can prove that the attractor is more regular as well. In particular, if

e € C*°(R) and f € C(Q), then Ay, € C*(Q2) x C=(9Q).

3. ASYMPTOTIC REGULARITY OF WEAK ENERGY SOLUTIONS

In this section, in addition to the previous conditions on f and ¢, we assume that
¢ satisfies the (critical) growth condition

(3.1) " (r)| < e(1+|r]), Vr € R.

With these further assumptions, S(¢) is a strongly continuous semigroup on the
phase space ‘H as well |3, 4|. The papers [4, 17| provide the existence of a global
compact attractor Ay for S(t), but no regularity results are given. Here, we prove
the following

Theorem 3.1. The attractor Ay of the semigroup S(t) on H is a bounded subset
Of H2 X Hl-

In particular, this means that A, and Ay, coincide, so that Ay in fact inherits the
regularity of Ay, (that is, Hy X Hy at least).



Remark 3.2. Due to the obtained regularity, it is possible to prove the existence
of an exponential attractor of finite fractal dimension for S(¢) on H (cf. [17]). This,
in turn, implies that A has finite fractal dimension.

Remark 3.3. In fact, it is possible to show that Theorem 3.1 still holds if we replace
(2.1) by the slightly weaker condition (cf. |1])

(3.2) liminfM > =)\, Vr € R.

[r|—c0 T

We will return on this later in Remark 4.4.

We establish the proof of the theorem by means of several lemmas. First, we notice
that, due to the growth restriction (3.1), we have the inequality

E(£.(0)) < QUII€(0)[[2)-

Thus, we can rephrase Lemma 2.3 more conveniently as

Lemma 3.4. The inequality
1€ (1113, +/t IVOu(r)|*dr < Q([1€u(0)]l7)e™" + QU fI)

holds for every t > 0 and some € > 0.

The next step amounts to finding suitable regularity for the time-derivatives of u.

Lemma 3.5. For every t > 0, we have the inequality
t
min{t, 1}[|Vo,u(t)||* +/ min{r, 1}[|0yu(r)|*dr < Q([|€.(0)[l5 + | FII)-
0

Proof. Denote
A3 = || VOul]* + 2(Vu, Vou) + 2(p(u), du) — 2({f, dyu).
Observe that, from (3.1) and Lemma 3.4,

1
(33)  IVOul” = QUIEO)l + 1) < As < Q& (0) 1 + [IFIDIIVIrull*,

Then, multiply (1.1) by dyu, to obtain

d /
%Ag + 2| 0su* = 2||VOwu||* + 2(¢ (u)dsu, Ou)

Exploiting (3.1),
2" (w)Opu, D) < 2] () o2 | OpullZe < (L + (V|| *)][V Dyu 2.
Therefore, using Lemma 3.4, we are led to
(3.4) %A:a + 2/ 0uu])* < Q&) [l + I FIDIIVIyu]|*.
Assume first that ¢t € (0,1]. Multiplying (3.4) by 7, and integrating in dr on [0, ],
gives
t

FAa(t) + 2 / () Pdr < QUIEO) ] + A1) / IV ou(r)|dr + / As(r)dr.

8



Using again Lemma 3.4 together with (3.3), we finally obtain the desired inequality

35 §IVouOF +2 [ o) Pdr < QUEO) I+ 1),

which is exactly what we wanted for ¢ € (0,1]. If ¢ > 1 we integrate (3.4) in d7 on
(1,¢). This entails

As(t) + 2/1 10au()[I*dr < Q(UIEu(0) ]l + [IF1) + As(1)

Substituting (3.3) and (3.5) in the above inequality yields

1 t
(3.6) SIVau(@)|” + 2/1 10au()PdT < QII€u(0) [l + [LF1)-
The conclusion follows collecting (3.5)-(3.6) O

Lemma 3.6. For every t > 0, we have the inequality
min{t*, 1}[[9uu(t)|| < Q1€ (0)ll2 + [ £1])-

Proof. Set ¢ = O,u, and differentiate (1.1) with respect to time. This yields
Owq — ANOyqg — Aq + ¢’ (u)dyu = 0.

We denote
Ay = [Vl + 110uq]*.

Observe that, collecting Lemma 3.4 and Lemma 3.5, we know that

(3.7) /0 min{7, 1}Ay(m)dr < Q(II€.(0)[|3 + [ fI])-

Then, multiplying the above equation by d;q, we obtain

d /

In a similar fashion as in the previous lemma, we estimate the right-hand side as
—2(¢'(u) O, rq) < 2[1 (u)|l sz | Ol 1| Oeal| o
< 2[[Vasql* + QUUI&0) [l + 1INV Oeu]|*.

Therefore, we come to the differential inequality

d

(3-8) 2 < QUIEO) e + L DNV e

If t € (0,1], we multiply (3.8) by 72, and integrate in dr on [0,¢]. This, on account
of Lemma 3.4 and (3.7), yields

t*A4(t) < QI&u(0) I + I 1D,

which in turn gives

(3.9) l10a@®)* < QUUIE0) Il + I F1D)-
If ¢ > 1 we integrate (3.8) in d7 on (1,t), to get

(3.10)  [12eq()II* < Aa(t) < QUELO)ll2¢ + 1) + Aa(1) < QCUELO)ll¢ + I £1])-
Putting together (3.9)-(3.10), the proof is finished. O

9



Conclusion of the proof of Theorem 3.1. Lemma 3.4 ensures the existence of a
bounded absorbing set By, C H for the semigroup S(t) on H. We now rewrite (1.1)
as

—Adiu — Au+ p(u) = h,
having set

h = f—@ttu.

In view of Lemma 3.6, for a fixed t, > 0 (for instance, t, = 1),

sup [|R(O)] < QClI€u(0)llr + I1711)-

Therefore, applying Theorem 4.3 of the next section, and recalling Lemma 3.4, we
learn that v = v 4+ w, with

Vo)l < QUIE(O) I + IfIDe™  and  JAw(®)]| < QII€(0)ll2 + [L£1),

for every t > t,. Besides, from Lemma 3.5,

IVOu(t)| < QUIS(0)I2 + I[£1),
for every ¢t > t,. In particular, for all initial data £,(0) € By, we have that
IVo@)| <ce™,  JAw®)[<e,  [Vou@) <,

for every t > t,., where the constant ¢ > 0 depends only on || f|| and the size of By.
Hence, calling B, the ball of Hy x H; of radius C\/i, we conclude that

dlStH(S(t)B'Ha Bl) < Ce_yt> Vit > t*>

where disty, denotes the usual Hausdorff semidistance in ‘H. In other words, B; is a
compact (exponentially) attracting set. So, by standard arguments, the semigroup
S(t) acting on H possesses a compact global attractor Ay C B;. O

4. AN AUXILIARY EQUATION

We conclude the paper examining the following hyperbolic equation:

{—A@tu — Au+ p(u) = h,

4.1
( ) Ulpn = 0.

Here, the assumptions on ¢ are as in Section 3, whereas h € L*([t.,00), Hy), for
some t, € R. For every ug € Hy, (4.1) possesses a unique solution v € C([t., 00), Hy)
such that u(t,) = wuy. Besides, u continuously depends on the initial datum wuy on
every finite time-interval.

Remark 4.1. In fact, using maximal monotone operator theory, we can establish
existence and continuous dependence results for equation (4.1) even without the
growth restriction (3.1) (assuming only (2.1)), and the results that follow can be
proven true also in that case. Indeed, rewriting the equation as

Ou+ Au = ((=A)u+ (=A) A,

where Au = u+ (—A)"Yo(u) +£(—A) " u, with £ as in (2.2), the operator A is easily
seen to be maximal monotone on H;.

10



As we saw in the previous section, equation (4.1) reproduces the hyperbolic features
of the original problem (1.1). We begin to establish a first uniform estimate.

Lemma 4.2. The inequality
V)] < el Vult) e + QP L i o) o)

holds for every t > t, and some € > 0.
Proof. A multiplication of (4.1) by u leads to
%HVUW +2[|Vull* + 2{p(w), u) = 2(h, u).
Using (2.4), we obtain the inequality
SVl 4 22| Tul? < e(1 + 1),
for some € > 0, and the claim follows from the Gronwall lemma. O

The result we need is the following.

Theorem 4.3. The solution u to (4.1) can be decomposed into the sum u = v + w,
where

Vo) < [IVu(t.)|e ")
and
[Aw(t)]| < el Vu(t) e + Q|| Lo (it 00).110)):

for every t > t, and some v > 0.

Proof. We define

P(r) = o(r) + fr,
with ¢ as in (2.2). Thus, ¢/(r) > 0 for every r € R. Then, we consider the splitting
u = v + w, where v and w are the solutions to the equations

—Adw — Av + ¢(u) — Y (w) =0,
(4.2) v(t.) = u(ts),
vjpa =0,

and

—Adyw — Aw + Y(w) = lu + h,
Wipn = 0.

Multiplying (4.2) by v, from the monotonicity of ¢ we readily get the inequality
d
Vel +2[vel* <o,

which entails
Vo) < [Vu(ty)[le ), VE>t,.

11



Next, we multiply (4.3) by —Aw. Appealing again to the monotonicity of ¢, we
obtain the inequality

P + 2w < ~2u, Aw) — 2(h, Au)

< [ Awl® + e(flul® + [I]%)-

Therefore, using the control provided by Lemma 4.2, we conclude that, for every
t>t,,

d Coe(t—
ZAw®I + |Aw@)* < el Vu(t.)|Pe™ C1) 1+ QU (5. 000, o) )
Applying the Gronwall lemma, we finally have

[Aw(t)|] < | Vu(t.) e ) + QIR Lot 00, o) )+
for all ¢ > t, and some v > 0. This finishes the proof. O

Remark 4.4. Theorem 4.3 establishes the existence of an exponentially attracting
ball in Hy, which is all we need to complete the proof of Theorem 3.1. This fact
can also be proved assuming condition (3.2) in place of (2.1) (in that case, the
growth condition (3.1) is essential). The proof is more complicated, and it requires
a different splitting of u along with an ad hoc argument, devised in [20], and the
transitivity property of exponential attraction, introduced and proved in [8|. Once
one has Theorem 4.3, arguing as in [17], all the results of Section 3 can be shown to
hold.
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