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Abstra
t. This paper is 
on
erned with the semilinear strongly damped waveequation
∂ttu − ∆∂tu − ∆u + ϕ(u) = f.The existen
e of 
ompa
t global attra
tors of optimal regularity is proved fornonlinearities ϕ of 
riti
al and super
riti
al growth.1. Introdu
tionWe 
onsider the following initial and boundary value problem for a semilinearstrongly damped wave equation on a bounded domain Ω ⊂ R

3 with smooth bound-ary ∂Ω:(1.1) 









∂ttu− ∆∂tu− ∆u+ ϕ(u) = f,

u(0) = u0, ∂tu(0) = u1,

u|∂Ω = 0.Let us begin by mentioning some relevant physi
al appli
ations where this kind ofequation appears.
⋄ In spa
e dimensions one and two, (1.1) models the transversal vibrations of a ho-mogeneous string and the longitudinal vibrations of a homogeneous bar, respe
tively,subje
t to vis
ous e�e
ts. The term −∆∂tu indi
ates that the stress is proportionalnot only to the strain, as with the Hooke law, but also to the strain rate as in alinearized Kelvin-Voigt material.
⋄ In the three-dimensional 
ase, (1.1) des
ribes the variation from the 
on�gurationat rest of a homogeneous and isotropi
 linearly vis
oelasti
 solid with short memory,
alled of rate-type (see [6℄), in presen
e of an external displa
ement-dependent for
e
f−ϕ(u). If the body is also subje
t to dynami
al fri
tion, the additional term β∂tu,with β > 0, appears in the left-hand side of the equation.
⋄ For α > 0 and β ≥ 0, we have the perturbed sine-Gordon equation

∂ttu− α∆∂tu− ∆u+ sin u+ β∂tu = f,des
ribing the evolution of the 
urrent u in a Josephson jun
tion (see [15℄). The pa-rameters α and β 
orrespond to loss e�e
ts, whereas f is the external 
urrent drivingthe devi
e. Although in the present paper we 
onsider for simpli
ity a nonlinearityindependent of ∂tu, we mention that the extra term β∂tu (with β positive, or evenslightly negative 
ompared to α) does not a�e
t at all the results that follow.
⋄ Another interesting example reads

∂ttu− α∆∂tu− ∆u+ |u|γu+ β∂tu = f, γ ≥ 0,whi
h is also a perturbed wave equation of Klein-Gordon type o

urring in quantumme
hani
s. 1



⋄ We �nally mention an (integro-di�erential) equation arising in the theory ofisothermal vis
oelasti
ity that has re
ently attra
ted some attention, namely,
∂ttu− k(0)∆u−

∫ ∞

0

k′(s)∆u(t− s)ds+ ϕ(u) = f,where k is a 
onvex de
reasing smooth kernel su
h that k(0) > k(∞) > 0, typi
ally,
k(s) = k(∞) + e−εs, with ε > 0. The fun
tion u(t) for t ≤ 0 (the so-
alled pasthistory) is a pres
ribed datum. Performing an integration by parts, the equationturns into

∂ttu− k(∞)∆u−
∫ ∞

0

[

k(s) − k(∞)
]

∆∂tu(t− s)ds+ ϕ(u) = f.Of parti
ular interest is the 
ase where the system has a very rapidly fading memory:in the limiting situation when k(s) − k(∞) is the Dira
 mass at zero, possiblymultiplied by a positive 
onstant α, we re
over
∂ttu− α∆∂tu− k(∞)∆u+ ϕ(u) = f.Although this limiting pro
edure is formal, the �
loseness� between the integro-di�erential problem and its limiting equation (1.1) 
an be estimated in a rigorousway (see [5℄ and the referen
es therein).Problem (1.1) has been investigated quite extensively by several authors in the lastyears (see e.g. [3, 4, 7, 9, 13, 16, 17, 19, 21℄), with parti
ular regard to its asymptoti
s.The global existen
e and dissipativity of strong solutions (belonging to the regularphase spa
e [H2(Ω) ∩H1

0(Ω)] ×H1
0 (Ω)) has been established in [13℄ (see also [14℄),without any growth restri
tion on the nonlinearity ϕ. On the other hand, under theadditional growth restri
tion

|ϕ′(u)| ≤ c
(

1 + |u|p
)

, p ≤ 4,equation (1.1) is also well-posed in the natural energy phase spa
e H1
0 (Ω) × L2(Ω),i.e. the asso
iated weak energy solution exists globally and is unique. The growthrate p = 4 is 
riti
al, sin
e for p > 4 well-posedness in H1

0 (Ω) × L2(Ω) is lost. Theexisten
e of a 
ompa
t global attra
tor and its smoothness for weak energy solutionswhen p = 4 is a deli
ate question (in the sub
riti
al 
ase it is well known, and 
an beobtained by the standard bootstrapping te
hnique, see e.g. [13℄). Indeed, even theexisten
e of a global attra
tor for that 
ase has been a
hieved only quite re
ently in[4, 12, 17℄ and, to the best of our knowledge, the question of its additional regularityremained open. In parti
ular, it was not 
lear whether or not the global attra
torasso
iated with weak energy solutions 
oin
ides with the analogous one for strongsolutions. Clearly, this la
k of regularity prevented a more a

urate analysis of thelongterm dynami
s.The aim of the present work is to give a positive answer to the above regularityquestion for the 
ase p = 4. The main di�
ulty here is that the 
lassi
al Babin-Vishik method [2℄ of proving the regularity of attra
tors (based on the nonlinearde
omposition and the existen
e of a dissipation integral), su

essfully employed forthe weakly damped hyperboli
 equation, does not work for the strongly dampedone. Indeed, the presen
e of the strong damping term ∆∂tu breaks the simplerelation between the spatial regularity of ∂ttu and ∆u in the wave equation, whi
h2



is 
ru
ial in the Babin-Vishik te
hnique. Thus, a new approa
h is required. Weexploit the fa
t that, along with its hyperboli
 properties, the 
onsidered equationunveils a pe
uliar paraboli
 nature. In parti
ular, despite it does not possess a�
ompleteÿmoothing property on �nite time-intervals (like paraboli
 equations), itexhibits a partial smoothing, pre
isely, of the fun
tions ∂tu and ∂ttu. Based on thisrather simple observation, we redu
e the analysis of the initial equation (1.1) to thefollowing purely hyperboli
 nonautonomous problem:(1.2) −∆∂tu− ∆u+ ϕ(u) = g,with g(t) = f − ∂ttu(t), whi
h is essentially simpler than (1.1) and possesses a
onvenient splitting for proving the regularity (see Se
tion 4). Quite surprisingly, ouranalysis makes no use of 
ompli
ated arguments, su
h as bootstrapping, fra
tionalpower operators or analyti
 semigroup theory. In fa
t, all we need are suitableenergy estimates. Moreover, the method allows us also to treat (with very minor
hanges) the nonautonomous 
ase where the external for
e f depends expli
itly on
t.The paper is organized as follows. In Se
tion 2, for the reader's 
onvenien
e, we re
allthe standard theory of strong solutions, and we verify the existen
e of a 
ompa
tglobal attra
tor in the regular phase spa
e. In Se
tion 3, we redu
e the analysis ofthe asymptoti
 regularity of solutions to equation (1.1) to the analogous problemfor the simpli�ed equation (1.2), taking advantage of the partial smoothing propertymentioned above. Finally, the asymptoti
 regularity of solutions for this auxiliaryequation is studied in Se
tion 4.Notation. We denote by Hs = D((−∆)s/2), s ∈ R, the s
ale of Hilbert spa
esgenerated by −∆ with Diri
hlet boundary 
onditions on (L2(Ω), 〈·, ·〉, ‖ · ‖). Inparti
ular,

H0 = L2(Ω), H1 = H1
0 (Ω), H2 = H2(Ω) ∩H1

0 (Ω).Then, we introdu
e the produ
t Hilbert spa
es
H = H1 ×H0 and V = H2 ×H0.Naming λ1 > 0 the �rst eigenvalue of −∆,

‖w‖Hs = ‖(−∆)s/2w‖ ≥ λ1
−s/2‖w‖, ∀s ≥ 0, ∀w ∈ Hs.We shall often make use, without expli
it mention, of this inequality, as well as ofthe Young and the Hölder inequalities. Throughout the paper, c and Q stand fora generi
 positive 
onstant and a generi
 positive in
reasing fun
tion, respe
tively,depending only on Ω (hen
e of λ1) and ϕ. Moreover, for any fun
tion z(t), we writefor short ξz(t) = (z(t), ∂tz(t)).We also refer the reader to the 
lassi
al texts [2, 10, 11, 18℄ for a detailed presentationof the theory of attra
tors for dynami
al systems.3



2. Strong Solutions and the Asso
iated Global Attra
torGeneral assumptions. We take f ∈ H0 independent of time. Besides, we require
ϕ ∈ C1(R), with ϕ(0) = 0, be su
h that(2.1) lim inf

|r|→∞
ϕ′(r) > −λ1, ∀r ∈ R.In parti
ular, (2.1) implies that(2.2) ϕ′(r) ≥ −ℓ, ∀r ∈ R.for some ℓ ≥ λ1.Remark 2.1. Noti
e that no growth restri
tions on ϕ are made.We set

Φ(u) =

∫

Ω

(
∫ u(x)

0

ϕ(y)dy

)

dx,whi
h is easily seen to satisfy the inequalities
Φ(u) ≥ −ϑ

2
‖u‖2 − c,(2.3)

〈ϕ(u), u〉 ≥ Φ(u) − ϑ

2
‖u‖2 − c ≥ −ϑ‖u‖2 − c,(2.4)for some ϑ < λ1.Under the above assumption, we haveTheorem 2.2. Problem (1.1) generates a strongly 
ontinuous semigroup S(t) onthe phase spa
e V. Moreover, the following dissipative estimate holds:(2.5) ‖ξu(t)‖V ≤ Q(‖ξu(0)‖V)e−νt +Q(‖f‖),for every t ≥ 0 and some ν > 0.Proof. We shall limit ourselves to show the above dissipative estimate. Then, theexisten
e of a solution 
an be obtained in a standard way, by means of a Galerkinapproximation s
heme. As far as uniqueness is 
on
erned, it follows quite dire
tlynoting that

‖ϕ(u1) − ϕ(u2)‖ ≤ Q(‖∆u1‖ + ‖∆u2‖
)

‖u1 − u2‖,for all u1, u2 ∈ H2, due to the 
ontinuous embedding H2 →֒ C(Ω).In order to prove (2.5), we need the followingLemma 2.3. Introdu
ing the energy fun
tional
E(ξu(t)) = ‖ξu(t)‖2

H + |Φ(u(t))|,we have the estimate
‖ξu(t)‖2

H +

∫ ∞

t

‖∇∂tu(τ)‖2dτ ≤ cE(ξu(0))e−εt +Q(‖f‖),for every t ≥ 0 and some ε > 0. 4



Proof. Here, as well as in the sequel, we perform formal multipli
ations, whi
h arejusti�ed within the Galerkin approximation s
heme. Passing to the limit, the boundsthat we �nd for the approximants 
ontinue to hold for the solution. Multiplying (1.1)by ∂tu, we have
d

dt

(

‖∇u‖2 + ‖∂tu‖2 + 2Φ(u) − 2〈f, u〉
)

+ 2‖∇∂tu‖2 = 0.A further multipli
ation by εu, with ε > 0 to be determined later, yields
d

dt

(

ε‖∇u‖2 + 2ε〈∂tu, u〉
)

+ 2ε‖∇u‖2 − 2ε‖∂tu‖2 + 2ε〈ϕ(u), u〉 − 2ε〈f, u〉 = 0.Introdu
ing the fun
tional
Λ0 = (1 + ε)‖∇u‖2 + ‖∂tu‖2 + 2Φ(u) + 2ε〈∂tu, u〉 − 2〈f, u〉,we obtain, thanks to (2.4),

d

dt
Λ0 + εΛ0 + ‖∇∂tu‖2 + Γ ≤ cε.where

Γ = ε(1 − ε)‖∇u‖2 − εϑ‖u‖2 + (λ1 − 3ε)‖∂tu‖2 − 2ε2〈∂tu, u〉.Thus, setting ε small enough su
h that Γ ≥ 0, we end up with(2.6) d

dt
Λ0 + εΛ0 + ‖∇∂tu‖2 ≤ cε,and the Gronwall lemma yields
Λ0(t) ≤ Λ0(0)e−εt + c.Due to (2.3), it is apparent that

Λ0 ≥ ̺‖ξu‖2
H −Q(‖f‖),for some ̺ > 0; besides,

Λ0 ≤ cE(ξu) +Q(‖f‖).Therefore, we are led to the inequality
‖ξu(t)‖2

H ≤ cE(ξu(0))e−εt +Q(‖f‖).Finally, setting ε = 0 in (2.6), and integrating on (t,∞), we prove the remainingpart of the 
laim. �Consider now the fun
tional
Λ1 =

1

2
‖∆u‖2 − 〈∂tu,∆u〉.A multipli
ation of (1.1) by −∆u together with (2.2) entail

d

dt
Λ1 + Λ1 +

1

2
‖∆u‖2 = ‖∇∂tu‖2 − 〈ϕ′(u)∇u,∇u〉 − 〈∂tu,∆u〉 − 〈f,∆u〉

≤ 1

2
‖∆u‖2 + c

(

‖∇u‖2 + ‖∇∂tu‖2 + ‖f‖2
)

.Hen
e, by the Gronwall lemma and Lemma 2.3, we �nd
Λ1(t) ≤ Λ1(0)e−t + cE(ξu(0))e−νt +Q(‖f‖),5



for some ν > 0. Here, we used the inequality
∫ t

0

e−(t−τ)‖∇∂tu(τ)‖2dτ ≤ e−t

∫ ∞

0

‖∇∂tu(τ)‖2dτ+

∫ t

0

e−(t−τ)

(
∫ ∞

τ

‖∇∂tu(s)‖2ds

)

dτ,that is readily obtained integrating by parts. Applying again Lemma 2.3, and notingthat
E(ξu(0)) ≤ Q(‖ξu(0)‖V),we get the desired dissipative estimate in V. �The main result of this se
tion isTheorem 2.4. The semigroup S(t) on V possesses a (unique) 
ompa
t global at-tra
tor AV ⊂ V. Moreover, AV is a bounded subset of H2 ×H2.Proof. We de
ompose the solution u as
u = v + w + (−∆)−1f,where v, w are the solutions to the problems











∂ttv − ∆∂tv − ∆v = 0,

ξv(0) = (u0, u1),

v|∂Ω = 0,and










∂ttw − ∆∂tw − ∆w + ϕ(u) = 0,

ξw(0) = (0, 0),

w|∂Ω = 0.Then, we haveLemma 2.5. The inequality
‖ξv(t)‖V ≤ Q(‖ξu(0)‖V)e−νtholds for every t ≥ 0 and some ν > 0.Proof. Argue exa
tly as in Theorem 2.2 (with v in pla
e of u), noting that now

ϕ = 0 and f = 0. �Lemma 2.6. The inequality
‖ξw(t)‖H3×H2

≤ Q(‖ξu(0)‖V)e−νt +Q(‖f‖).holds for every t ≥ 0 and some ν > 0.Proof. Thanks to estimate (2.5) and the assumption ϕ(0) = 0, we know that
ϕ(u(t)) ∈ H1 and

‖∇ϕ(u(t))‖2 ≤ Q(‖ξu(0)‖V)e−2νt +Q(‖f‖).For 0 < ε < 1/(2λ1 + 1) to be �xed, let us set
Λ2 = (1 + ε)‖∇∆w‖2 + ‖∆∂tw‖2 − 2ε〈∇∂tw,∇∆w〉.6



Multiplying the equation by ∆2∂tw + ε∆2w, we have
d

dt
Λ2 + 2ε‖∇∆w‖2 + 2(1 − ε)‖∇∆∂tw‖2 = 2ε〈∇ϕ(u),∇∆w〉+ 2〈∇ϕ(u),∇∆∂tw〉.Controlling the right-hand side as

2ε〈∇ϕ(u),∇∆w〉+ 2〈∇ϕ(u),∇∆∂tw〉 ≤ ε‖∇∆w‖2 + ‖∇∆∂tw‖2 + c‖∇ϕ(u)‖2,we are led to the di�erential inequality
d

dt
Λ2(t) + ε‖ξw(t)‖2

H3×H2
≤ Q(‖ξu(0)‖V)e−2νt +Q(‖f‖).Choosing ε small enough su
h that

1

2
Λ2 ≤ ‖ξw(t)‖2

H3×H2
≤ 2Λ2,the 
laim follows from an appli
ation of the Gronwall lemma. �Let us summarize the results we obtained. Theorem 2.2 gives the existen
e ofa bounded absorbing set BV ⊂ V for S(t). Lemma 2.5 and Lemma 2.6 showthat the solution ξu with initial data ξu(0) ∈ BV de
omposes into the sum ofa uniformly exponentially de
aying term and a term belonging to ζ + B0, where

ζ = ((−∆)−1f, 0) ∈ H2 ×Hs for every s, and B0 is a ball of H3 ×H2. In parti
ular,
ζ + B0 is a 
ompa
t (exponentially) attra
ting set for S(t) on V. This, by stan-dard methods of the theory of attra
tors, yields the existen
e of the global attra
tor
AV ∈ ζ + B0. �Remark 2.7. Under our hypotheses, the obtained regularity of AV is optimal. Onthe other hand, it 
an be improved up to where the regularity of ϕ and f permit.Indeed, if f and ϕ are smoother, di�erentiating the equation with respe
t to tand arguing in a standard way (namely, applying the te
hniques above to the newequation), we 
an prove that the attra
tor is more regular as well. In parti
ular, if
ϕ ∈ C∞(R) and f ∈ C∞(Ω), then AV ∈ C∞(Ω) × C∞(Ω).3. Asymptoti
 Regularity of Weak Energy SolutionsIn this se
tion, in addition to the previous 
onditions on f and ϕ, we assume that
ϕ satis�es the (
riti
al) growth 
ondition(3.1) |ϕ′′(r)| ≤ c

(

1 + |r|3
)

, ∀r ∈ R.With these further assumptions, S(t) is a strongly 
ontinuous semigroup on thephase spa
e H as well [3, 4℄. The papers [4, 17℄ provide the existen
e of a global
ompa
t attra
tor AH for S(t), but no regularity results are given. Here, we provethe followingTheorem 3.1. The attra
tor AH of the semigroup S(t) on H is a bounded subsetof H2 ×H1.In parti
ular, this means that AH and AV 
oin
ide, so that AH in fa
t inherits theregularity of AV (that is, H2 ×H2 at least).7



Remark 3.2. Due to the obtained regularity, it is possible to prove the existen
eof an exponential attra
tor of �nite fra
tal dimension for S(t) on H (
f. [17℄). This,in turn, implies that AH has �nite fra
tal dimension.Remark 3.3. In fa
t, it is possible to show that Theorem 3.1 still holds if we repla
e(2.1) by the slightly weaker 
ondition (
f. [1℄)(3.2) lim inf
|r|→∞

ϕ(r)

r
> −λ1, ∀r ∈ R.We will return on this later in Remark 4.4.We establish the proof of the theorem by means of several lemmas. First, we noti
ethat, due to the growth restri
tion (3.1), we have the inequality

E(ξu(0)) ≤ Q(‖ξu(0)‖H).Thus, we 
an rephrase Lemma 2.3 more 
onveniently asLemma 3.4. The inequality
‖ξu(t)‖2

H +

∫ ∞

t

‖∇∂tu(τ)‖2dτ ≤ Q(‖ξu(0)‖H)e−εt +Q(‖f‖)holds for every t ≥ 0 and some ε > 0.The next step amounts to �nding suitable regularity for the time-derivatives of u.Lemma 3.5. For every t > 0, we have the inequality
min{t, 1}‖∇∂tu(t)‖2 +

∫ t

0

min{τ, 1}‖∂ttu(τ)‖2dτ ≤ Q(‖ξu(0)‖H + ‖f‖).Proof. Denote
Λ3 = ‖∇∂tu‖2 + 2〈∇u,∇∂tu〉 + 2〈ϕ(u), ∂tu〉 − 2〈f, ∂tu〉.Observe that, from (3.1) and Lemma 3.4,(3.3) 1

2
‖∇∂tu‖2 −Q(‖ξu(0)‖H + ‖f‖) ≤ Λ3 ≤ Q(‖ξu(0)‖H + ‖f‖)‖∇∂tu‖2.Then, multiply (1.1) by ∂ttu, to obtain

d

dt
Λ3 + 2‖∂ttu‖2 = 2‖∇∂tu‖2 + 2〈ϕ′(u)∂tu, ∂tu〉Exploiting (3.1),

2〈ϕ′(u)∂tu, ∂tu〉 ≤ 2‖ϕ′(u)‖L3/2‖∂tu‖2
L6 ≤ c(1 + ‖∇u‖6)‖∇∂tu‖2.Therefore, using Lemma 3.4, we are led to(3.4) d

dt
Λ3 + 2‖∂ttu‖2 ≤ Q(‖ξu(0)‖H + ‖f‖)‖∇∂tu‖2.Assume �rst that t ∈ (0, 1]. Multiplying (3.4) by τ , and integrating in dτ on [0, t],gives

tΛ3(t) + 2

∫ t

0

τ‖∂ttu(τ)‖2dτ ≤ Q(‖ξu(0)‖H + ‖f‖)
∫ t

0

‖∇∂tu(τ)‖2dτ +

∫ t

0

Λ3(τ)dτ.8



Using again Lemma 3.4 together with (3.3), we �nally obtain the desired inequality(3.5) t

2
‖∇∂tu(t)‖2 + 2

∫ t

0

τ‖∂ttu(τ)‖2dτ ≤ Q(‖ξu(0)‖H + ‖f‖),whi
h is exa
tly what we wanted for t ∈ (0, 1]. If t > 1 we integrate (3.4) in dτ on
(1, t). This entails

Λ3(t) + 2

∫ t

1

‖∂ttu(τ)‖2dτ ≤ Q(‖ξu(0)‖H + ‖f‖) + Λ3(1)Substituting (3.3) and (3.5) in the above inequality yields(3.6) 1

2
‖∇∂tu(t)‖2 + 2

∫ t

1

‖∂ttu(τ)‖2dτ ≤ Q(‖ξu(0)‖H + ‖f‖).The 
on
lusion follows 
olle
ting (3.5)-(3.6) �Lemma 3.6. For every t > 0, we have the inequality
min{t2, 1}‖∂ttu(t)‖ ≤ Q(‖ξu(0)‖H + ‖f‖).Proof. Set q = ∂tu, and di�erentiate (1.1) with respe
t to time. This yields

∂ttq − ∆∂tq − ∆q + ϕ′(u)∂tu = 0.We denote
Λ4 = ‖∇q‖2 + ‖∂tq‖2.Observe that, 
olle
ting Lemma 3.4 and Lemma 3.5, we know that(3.7) ∫ t

0

min{τ, 1}Λ4(τ)dτ ≤ Q(‖ξu(0)‖H + ‖f‖).Then, multiplying the above equation by ∂tq, we obtain
d

dt
Λ4 + 2‖∇∂tq‖2 = −2〈ϕ′(u)∂tu, ∂tq〉.In a similar fashion as in the previous lemma, we estimate the right-hand side as

−2〈ϕ′(u)∂tu, ∂tq〉 ≤ 2‖ϕ′(u)‖L3/2‖∂tu‖L6‖∂tq‖L6

≤ 2‖∇∂tq‖2 +Q(‖ξu(0)‖H + ‖f‖)‖∇∂tu‖2.Therefore, we 
ome to the di�erential inequality(3.8) d

dt
Λ4 ≤ Q(‖ξu(0)‖H + ‖f‖)‖∇∂tu‖2.If t ∈ (0, 1], we multiply (3.8) by τ 2, and integrate in dτ on [0, t]. This, on a

ountof Lemma 3.4 and (3.7), yields
t2Λ4(t) ≤ Q(‖ξu(0)‖H + ‖f‖),whi
h in turn gives(3.9) t2‖∂tq(t)‖2 ≤ Q(‖ξu(0)‖H + ‖f‖).If t > 1 we integrate (3.8) in dτ on (1, t), to get(3.10) ‖∂tq(t)‖2 ≤ Λ4(t) ≤ Q(‖ξu(0)‖H + ‖f‖) + Λ4(1) ≤ Q(‖ξu(0)‖H + ‖f‖).Putting together (3.9)-(3.10), the proof is �nished. �9



Con
lusion of the proof of Theorem 3.1. Lemma 3.4 ensures the existen
e of abounded absorbing set BH ⊂ H for the semigroup S(t) on H. We now rewrite (1.1)as
−∆∂tu− ∆u+ ϕ(u) = h,having set

h = f − ∂ttu.In view of Lemma 3.6, for a �xed t∗ > 0 (for instan
e, t∗ = 1),
sup
t≥t∗

‖h(t)‖ ≤ Q(‖ξu(0)‖H + ‖f‖).Therefore, applying Theorem 4.3 of the next se
tion, and re
alling Lemma 3.4, welearn that u = v + w, with
‖∇v(t)‖ ≤ Q(‖ξu(0)‖H + ‖f‖)e−νt and ‖∆w(t)‖ ≤ Q(‖ξu(0)‖H + ‖f‖),for every t ≥ t∗. Besides, from Lemma 3.5,

‖∇∂tu(t)‖ ≤ Q(‖ξu(0)‖H + ‖f‖),for every t ≥ t∗. In parti
ular, for all initial data ξu(0) ∈ BH, we have that
‖∇v(t)‖ ≤ ce−νt, ‖∆w(t)‖ ≤ c, ‖∇∂tu(t)‖ ≤ c,for every t ≥ t∗, where the 
onstant c ≥ 0 depends only on ‖f‖ and the size of BH.Hen
e, 
alling B1 the ball of H2 ×H1 of radius c√2, we 
on
lude that

distH(S(t)BH,B1) ≤ ce−νt, ∀t ≥ t∗,where distH denotes the usual Hausdor� semidistan
e in H. In other words, B1 is a
ompa
t (exponentially) attra
ting set. So, by standard arguments, the semigroup
S(t) a
ting on H possesses a 
ompa
t global attra
tor AH ⊂ B1. �4. An Auxiliary EquationWe 
on
lude the paper examining the following hyperboli
 equation:(4.1) {

−∆∂tu− ∆u+ ϕ(u) = h,

u|∂Ω = 0.Here, the assumptions on ϕ are as in Se
tion 3, whereas h ∈ L∞([t∗,∞), H0), forsome t∗ ∈ R. For every u0 ∈ H1, (4.1) possesses a unique solution u ∈ C([t∗,∞), H1)su
h that u(t∗) = u0. Besides, u 
ontinuously depends on the initial datum u0 onevery �nite time-interval.Remark 4.1. In fa
t, using maximal monotone operator theory, we 
an establishexisten
e and 
ontinuous dependen
e results for equation (4.1) even without thegrowth restri
tion (3.1) (assuming only (2.1)), and the results that follow 
an beproven true also in that 
ase. Indeed, rewriting the equation as
∂tu+ Au = ℓ(−∆)−1u+ (−∆)−1h,where Au = u+(−∆)−1ϕ(u)+ℓ(−∆)−1u, with ℓ as in (2.2), the operator A is easilyseen to be maximal monotone on H1. 10



As we saw in the previous se
tion, equation (4.1) reprodu
es the hyperboli
 featuresof the original problem (1.1). We begin to establish a �rst uniform estimate.Lemma 4.2. The inequality
‖∇u(t)‖ ≤ c‖∇u(t∗)‖e−ε(t−t∗) +Q(‖h‖L∞([t∗,∞),H0))holds for every t ≥ t∗ and some ε > 0.Proof. A multipli
ation of (4.1) by u leads to

d

dt
‖∇u‖2 + 2‖∇u‖2 + 2〈ϕ(u), u〉 = 2〈h, u〉.Using (2.4), we obtain the inequality
d

dt
‖∇u‖2 + 2ε‖∇u‖2 ≤ c

(

1 + ‖h‖2
)

,for some ε > 0, and the 
laim follows from the Gronwall lemma. �The result we need is the following.Theorem 4.3. The solution u to (4.1) 
an be de
omposed into the sum u = v + w,where
‖∇v(t)‖ ≤ ‖∇u(t∗)‖e−(t−t∗)and

‖∆w(t)‖ ≤ c‖∇u(t∗)‖e−ν(t−t∗) +Q(‖h‖L∞([t∗,∞),H0)),for every t ≥ t∗ and some ν > 0.Proof. We de�ne
ψ(r) = ϕ(r) + ℓr,with ℓ as in (2.2). Thus, ψ′(r) ≥ 0 for every r ∈ R. Then, we 
onsider the splitting

u = v + w, where v and w are the solutions to the equations(4.2) 









−∆∂tv − ∆v + ψ(u) − ψ(w) = 0,

v(t∗) = u(t∗),

v|∂Ω = 0,and(4.3) 









−∆∂tw − ∆w + ψ(w) = ℓu+ h,

w(t∗) = 0,

w|∂Ω = 0.Multiplying (4.2) by v, from the monotoni
ity of ψ we readily get the inequality
d

dt
‖∇v‖2 + 2‖∇v‖2 ≤ 0,whi
h entails

‖∇v(t)‖ ≤ ‖∇u(t∗)‖e−(t−t∗), ∀t ≥ t∗.11



Next, we multiply (4.3) by −∆w. Appealing again to the monotoni
ity of ψ, weobtain the inequality
d

dt
‖∆w‖2 + 2‖∆w‖2 ≤ −2ℓ〈u,∆w〉 − 2〈h,∆w〉

≤ ‖∆w‖2 + c
(

‖u‖2 + ‖h‖2
)

.Therefore, using the 
ontrol provided by Lemma 4.2, we 
on
lude that, for every
t ≥ t∗,

d

dt
‖∆w(t)‖2 + ‖∆w(t)‖2 ≤ c‖∇u(t∗)‖2e−2ε(t−t∗) +Q(‖h‖L∞([t∗,∞),H0)).Applying the Gronwall lemma, we �nally have

‖∆w(t)‖ ≤ c‖∇u(t∗)‖e−ν(t−t∗) +Q(‖h‖L∞([t∗,∞),H0)),for all t ≥ t∗ and some ν > 0. This �nishes the proof. �Remark 4.4. Theorem 4.3 establishes the existen
e of an exponentially attra
tingball in H2, whi
h is all we need to 
omplete the proof of Theorem 3.1. This fa
t
an also be proved assuming 
ondition (3.2) in pla
e of (2.1) (in that 
ase, thegrowth 
ondition (3.1) is essential). The proof is more 
ompli
ated, and it requiresa di�erent splitting of u along with an ad ho
 argument, devised in [20℄, and thetransitivity property of exponential attra
tion, introdu
ed and proved in [8℄. On
eone has Theorem 4.3, arguing as in [17℄, all the results of Se
tion 3 
an be shown tohold.A
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