
Weierstraÿ-Institutfür Angewandte Analysis und Stohastikim Forshungsverbund Berlin e.V.Preprint ISSN 0946 � 8633Smooth attratorsfor strongly damped wave equationsVittorino Pata1, Sergey Zelik2submitted: 6 June 2006
1 Dipartimento di Matematia �F.Brioshi�Politenio di MilanoVia Bonardi 920133 MilanoItalyE-Mail: pata�mate.polimi.it

2 Weierstraÿ-Institutfür Angewandte Analysis und StohastikMohrenstraÿe 3910117 BerlinGermanyE-Mail: zelik�wias-berlin.de
No. 1137Berlin 2006

W I A S

2000 Mathematis Subjet Classi�ation. 35B33, 35B40, 35L05, 35M10.Key words and phrases. Strongly damped wave equation, ritial and superritial growths,ompat global attrators, regularity.This work was partially supported by the Alexander von Humboldt Stiftung and the CRDF grantRUM1-2654-MO-05 and by the Weierstrass Postdotoral Fellowship Program.



Edited byWeierstraÿ-Institut für Angewandte Analysis und Stohastik (WIAS)Mohrenstraÿe 3910117 BerlinGermanyFax: + 49 30 2044975E-Mail: preprint�wias-berlin.deWorld Wide Web: http://www.wias-berlin.de/



Abstrat. This paper is onerned with the semilinear strongly damped waveequation
∂ttu − ∆∂tu − ∆u + ϕ(u) = f.The existene of ompat global attrators of optimal regularity is proved fornonlinearities ϕ of ritial and superritial growth.1. IntrodutionWe onsider the following initial and boundary value problem for a semilinearstrongly damped wave equation on a bounded domain Ω ⊂ R

3 with smooth bound-ary ∂Ω:(1.1) 









∂ttu− ∆∂tu− ∆u+ ϕ(u) = f,

u(0) = u0, ∂tu(0) = u1,

u|∂Ω = 0.Let us begin by mentioning some relevant physial appliations where this kind ofequation appears.
⋄ In spae dimensions one and two, (1.1) models the transversal vibrations of a ho-mogeneous string and the longitudinal vibrations of a homogeneous bar, respetively,subjet to visous e�ets. The term −∆∂tu indiates that the stress is proportionalnot only to the strain, as with the Hooke law, but also to the strain rate as in alinearized Kelvin-Voigt material.
⋄ In the three-dimensional ase, (1.1) desribes the variation from the on�gurationat rest of a homogeneous and isotropi linearly visoelasti solid with short memory,alled of rate-type (see [6℄), in presene of an external displaement-dependent fore
f−ϕ(u). If the body is also subjet to dynamial frition, the additional term β∂tu,with β > 0, appears in the left-hand side of the equation.
⋄ For α > 0 and β ≥ 0, we have the perturbed sine-Gordon equation

∂ttu− α∆∂tu− ∆u+ sin u+ β∂tu = f,desribing the evolution of the urrent u in a Josephson juntion (see [15℄). The pa-rameters α and β orrespond to loss e�ets, whereas f is the external urrent drivingthe devie. Although in the present paper we onsider for simpliity a nonlinearityindependent of ∂tu, we mention that the extra term β∂tu (with β positive, or evenslightly negative ompared to α) does not a�et at all the results that follow.
⋄ Another interesting example reads

∂ttu− α∆∂tu− ∆u+ |u|γu+ β∂tu = f, γ ≥ 0,whih is also a perturbed wave equation of Klein-Gordon type ourring in quantummehanis. 1



⋄ We �nally mention an (integro-di�erential) equation arising in the theory ofisothermal visoelastiity that has reently attrated some attention, namely,
∂ttu− k(0)∆u−

∫ ∞

0

k′(s)∆u(t− s)ds+ ϕ(u) = f,where k is a onvex dereasing smooth kernel suh that k(0) > k(∞) > 0, typially,
k(s) = k(∞) + e−εs, with ε > 0. The funtion u(t) for t ≤ 0 (the so-alled pasthistory) is a presribed datum. Performing an integration by parts, the equationturns into

∂ttu− k(∞)∆u−
∫ ∞

0

[

k(s) − k(∞)
]

∆∂tu(t− s)ds+ ϕ(u) = f.Of partiular interest is the ase where the system has a very rapidly fading memory:in the limiting situation when k(s) − k(∞) is the Dira mass at zero, possiblymultiplied by a positive onstant α, we reover
∂ttu− α∆∂tu− k(∞)∆u+ ϕ(u) = f.Although this limiting proedure is formal, the �loseness� between the integro-di�erential problem and its limiting equation (1.1) an be estimated in a rigorousway (see [5℄ and the referenes therein).Problem (1.1) has been investigated quite extensively by several authors in the lastyears (see e.g. [3, 4, 7, 9, 13, 16, 17, 19, 21℄), with partiular regard to its asymptotis.The global existene and dissipativity of strong solutions (belonging to the regularphase spae [H2(Ω) ∩H1

0(Ω)] ×H1
0 (Ω)) has been established in [13℄ (see also [14℄),without any growth restrition on the nonlinearity ϕ. On the other hand, under theadditional growth restrition

|ϕ′(u)| ≤ c
(

1 + |u|p
)

, p ≤ 4,equation (1.1) is also well-posed in the natural energy phase spae H1
0 (Ω) × L2(Ω),i.e. the assoiated weak energy solution exists globally and is unique. The growthrate p = 4 is ritial, sine for p > 4 well-posedness in H1

0 (Ω) × L2(Ω) is lost. Theexistene of a ompat global attrator and its smoothness for weak energy solutionswhen p = 4 is a deliate question (in the subritial ase it is well known, and an beobtained by the standard bootstrapping tehnique, see e.g. [13℄). Indeed, even theexistene of a global attrator for that ase has been ahieved only quite reently in[4, 12, 17℄ and, to the best of our knowledge, the question of its additional regularityremained open. In partiular, it was not lear whether or not the global attratorassoiated with weak energy solutions oinides with the analogous one for strongsolutions. Clearly, this lak of regularity prevented a more aurate analysis of thelongterm dynamis.The aim of the present work is to give a positive answer to the above regularityquestion for the ase p = 4. The main di�ulty here is that the lassial Babin-Vishik method [2℄ of proving the regularity of attrators (based on the nonlineardeomposition and the existene of a dissipation integral), suessfully employed forthe weakly damped hyperboli equation, does not work for the strongly dampedone. Indeed, the presene of the strong damping term ∆∂tu breaks the simplerelation between the spatial regularity of ∂ttu and ∆u in the wave equation, whih2



is ruial in the Babin-Vishik tehnique. Thus, a new approah is required. Weexploit the fat that, along with its hyperboli properties, the onsidered equationunveils a peuliar paraboli nature. In partiular, despite it does not possess a�ompleteÿmoothing property on �nite time-intervals (like paraboli equations), itexhibits a partial smoothing, preisely, of the funtions ∂tu and ∂ttu. Based on thisrather simple observation, we redue the analysis of the initial equation (1.1) to thefollowing purely hyperboli nonautonomous problem:(1.2) −∆∂tu− ∆u+ ϕ(u) = g,with g(t) = f − ∂ttu(t), whih is essentially simpler than (1.1) and possesses aonvenient splitting for proving the regularity (see Setion 4). Quite surprisingly, ouranalysis makes no use of ompliated arguments, suh as bootstrapping, frationalpower operators or analyti semigroup theory. In fat, all we need are suitableenergy estimates. Moreover, the method allows us also to treat (with very minorhanges) the nonautonomous ase where the external fore f depends expliitly on
t.The paper is organized as follows. In Setion 2, for the reader's onveniene, we reallthe standard theory of strong solutions, and we verify the existene of a ompatglobal attrator in the regular phase spae. In Setion 3, we redue the analysis ofthe asymptoti regularity of solutions to equation (1.1) to the analogous problemfor the simpli�ed equation (1.2), taking advantage of the partial smoothing propertymentioned above. Finally, the asymptoti regularity of solutions for this auxiliaryequation is studied in Setion 4.Notation. We denote by Hs = D((−∆)s/2), s ∈ R, the sale of Hilbert spaesgenerated by −∆ with Dirihlet boundary onditions on (L2(Ω), 〈·, ·〉, ‖ · ‖). Inpartiular,

H0 = L2(Ω), H1 = H1
0 (Ω), H2 = H2(Ω) ∩H1

0 (Ω).Then, we introdue the produt Hilbert spaes
H = H1 ×H0 and V = H2 ×H0.Naming λ1 > 0 the �rst eigenvalue of −∆,

‖w‖Hs = ‖(−∆)s/2w‖ ≥ λ1
−s/2‖w‖, ∀s ≥ 0, ∀w ∈ Hs.We shall often make use, without expliit mention, of this inequality, as well as ofthe Young and the Hölder inequalities. Throughout the paper, c and Q stand fora generi positive onstant and a generi positive inreasing funtion, respetively,depending only on Ω (hene of λ1) and ϕ. Moreover, for any funtion z(t), we writefor short ξz(t) = (z(t), ∂tz(t)).We also refer the reader to the lassial texts [2, 10, 11, 18℄ for a detailed presentationof the theory of attrators for dynamial systems.3



2. Strong Solutions and the Assoiated Global AttratorGeneral assumptions. We take f ∈ H0 independent of time. Besides, we require
ϕ ∈ C1(R), with ϕ(0) = 0, be suh that(2.1) lim inf

|r|→∞
ϕ′(r) > −λ1, ∀r ∈ R.In partiular, (2.1) implies that(2.2) ϕ′(r) ≥ −ℓ, ∀r ∈ R.for some ℓ ≥ λ1.Remark 2.1. Notie that no growth restritions on ϕ are made.We set

Φ(u) =

∫

Ω

(
∫ u(x)

0

ϕ(y)dy

)

dx,whih is easily seen to satisfy the inequalities
Φ(u) ≥ −ϑ

2
‖u‖2 − c,(2.3)

〈ϕ(u), u〉 ≥ Φ(u) − ϑ

2
‖u‖2 − c ≥ −ϑ‖u‖2 − c,(2.4)for some ϑ < λ1.Under the above assumption, we haveTheorem 2.2. Problem (1.1) generates a strongly ontinuous semigroup S(t) onthe phase spae V. Moreover, the following dissipative estimate holds:(2.5) ‖ξu(t)‖V ≤ Q(‖ξu(0)‖V)e−νt +Q(‖f‖),for every t ≥ 0 and some ν > 0.Proof. We shall limit ourselves to show the above dissipative estimate. Then, theexistene of a solution an be obtained in a standard way, by means of a Galerkinapproximation sheme. As far as uniqueness is onerned, it follows quite diretlynoting that

‖ϕ(u1) − ϕ(u2)‖ ≤ Q(‖∆u1‖ + ‖∆u2‖
)

‖u1 − u2‖,for all u1, u2 ∈ H2, due to the ontinuous embedding H2 →֒ C(Ω).In order to prove (2.5), we need the followingLemma 2.3. Introduing the energy funtional
E(ξu(t)) = ‖ξu(t)‖2

H + |Φ(u(t))|,we have the estimate
‖ξu(t)‖2

H +

∫ ∞

t

‖∇∂tu(τ)‖2dτ ≤ cE(ξu(0))e−εt +Q(‖f‖),for every t ≥ 0 and some ε > 0. 4



Proof. Here, as well as in the sequel, we perform formal multipliations, whih arejusti�ed within the Galerkin approximation sheme. Passing to the limit, the boundsthat we �nd for the approximants ontinue to hold for the solution. Multiplying (1.1)by ∂tu, we have
d

dt

(

‖∇u‖2 + ‖∂tu‖2 + 2Φ(u) − 2〈f, u〉
)

+ 2‖∇∂tu‖2 = 0.A further multipliation by εu, with ε > 0 to be determined later, yields
d

dt

(

ε‖∇u‖2 + 2ε〈∂tu, u〉
)

+ 2ε‖∇u‖2 − 2ε‖∂tu‖2 + 2ε〈ϕ(u), u〉 − 2ε〈f, u〉 = 0.Introduing the funtional
Λ0 = (1 + ε)‖∇u‖2 + ‖∂tu‖2 + 2Φ(u) + 2ε〈∂tu, u〉 − 2〈f, u〉,we obtain, thanks to (2.4),

d

dt
Λ0 + εΛ0 + ‖∇∂tu‖2 + Γ ≤ cε.where

Γ = ε(1 − ε)‖∇u‖2 − εϑ‖u‖2 + (λ1 − 3ε)‖∂tu‖2 − 2ε2〈∂tu, u〉.Thus, setting ε small enough suh that Γ ≥ 0, we end up with(2.6) d

dt
Λ0 + εΛ0 + ‖∇∂tu‖2 ≤ cε,and the Gronwall lemma yields
Λ0(t) ≤ Λ0(0)e−εt + c.Due to (2.3), it is apparent that

Λ0 ≥ ̺‖ξu‖2
H −Q(‖f‖),for some ̺ > 0; besides,

Λ0 ≤ cE(ξu) +Q(‖f‖).Therefore, we are led to the inequality
‖ξu(t)‖2

H ≤ cE(ξu(0))e−εt +Q(‖f‖).Finally, setting ε = 0 in (2.6), and integrating on (t,∞), we prove the remainingpart of the laim. �Consider now the funtional
Λ1 =

1

2
‖∆u‖2 − 〈∂tu,∆u〉.A multipliation of (1.1) by −∆u together with (2.2) entail

d

dt
Λ1 + Λ1 +

1

2
‖∆u‖2 = ‖∇∂tu‖2 − 〈ϕ′(u)∇u,∇u〉 − 〈∂tu,∆u〉 − 〈f,∆u〉

≤ 1

2
‖∆u‖2 + c

(

‖∇u‖2 + ‖∇∂tu‖2 + ‖f‖2
)

.Hene, by the Gronwall lemma and Lemma 2.3, we �nd
Λ1(t) ≤ Λ1(0)e−t + cE(ξu(0))e−νt +Q(‖f‖),5



for some ν > 0. Here, we used the inequality
∫ t

0

e−(t−τ)‖∇∂tu(τ)‖2dτ ≤ e−t

∫ ∞

0

‖∇∂tu(τ)‖2dτ+

∫ t

0

e−(t−τ)

(
∫ ∞

τ

‖∇∂tu(s)‖2ds

)

dτ,that is readily obtained integrating by parts. Applying again Lemma 2.3, and notingthat
E(ξu(0)) ≤ Q(‖ξu(0)‖V),we get the desired dissipative estimate in V. �The main result of this setion isTheorem 2.4. The semigroup S(t) on V possesses a (unique) ompat global at-trator AV ⊂ V. Moreover, AV is a bounded subset of H2 ×H2.Proof. We deompose the solution u as
u = v + w + (−∆)−1f,where v, w are the solutions to the problems











∂ttv − ∆∂tv − ∆v = 0,

ξv(0) = (u0, u1),

v|∂Ω = 0,and










∂ttw − ∆∂tw − ∆w + ϕ(u) = 0,

ξw(0) = (0, 0),

w|∂Ω = 0.Then, we haveLemma 2.5. The inequality
‖ξv(t)‖V ≤ Q(‖ξu(0)‖V)e−νtholds for every t ≥ 0 and some ν > 0.Proof. Argue exatly as in Theorem 2.2 (with v in plae of u), noting that now

ϕ = 0 and f = 0. �Lemma 2.6. The inequality
‖ξw(t)‖H3×H2

≤ Q(‖ξu(0)‖V)e−νt +Q(‖f‖).holds for every t ≥ 0 and some ν > 0.Proof. Thanks to estimate (2.5) and the assumption ϕ(0) = 0, we know that
ϕ(u(t)) ∈ H1 and

‖∇ϕ(u(t))‖2 ≤ Q(‖ξu(0)‖V)e−2νt +Q(‖f‖).For 0 < ε < 1/(2λ1 + 1) to be �xed, let us set
Λ2 = (1 + ε)‖∇∆w‖2 + ‖∆∂tw‖2 − 2ε〈∇∂tw,∇∆w〉.6



Multiplying the equation by ∆2∂tw + ε∆2w, we have
d

dt
Λ2 + 2ε‖∇∆w‖2 + 2(1 − ε)‖∇∆∂tw‖2 = 2ε〈∇ϕ(u),∇∆w〉+ 2〈∇ϕ(u),∇∆∂tw〉.Controlling the right-hand side as

2ε〈∇ϕ(u),∇∆w〉+ 2〈∇ϕ(u),∇∆∂tw〉 ≤ ε‖∇∆w‖2 + ‖∇∆∂tw‖2 + c‖∇ϕ(u)‖2,we are led to the di�erential inequality
d

dt
Λ2(t) + ε‖ξw(t)‖2

H3×H2
≤ Q(‖ξu(0)‖V)e−2νt +Q(‖f‖).Choosing ε small enough suh that

1

2
Λ2 ≤ ‖ξw(t)‖2

H3×H2
≤ 2Λ2,the laim follows from an appliation of the Gronwall lemma. �Let us summarize the results we obtained. Theorem 2.2 gives the existene ofa bounded absorbing set BV ⊂ V for S(t). Lemma 2.5 and Lemma 2.6 showthat the solution ξu with initial data ξu(0) ∈ BV deomposes into the sum ofa uniformly exponentially deaying term and a term belonging to ζ + B0, where

ζ = ((−∆)−1f, 0) ∈ H2 ×Hs for every s, and B0 is a ball of H3 ×H2. In partiular,
ζ + B0 is a ompat (exponentially) attrating set for S(t) on V. This, by stan-dard methods of the theory of attrators, yields the existene of the global attrator
AV ∈ ζ + B0. �Remark 2.7. Under our hypotheses, the obtained regularity of AV is optimal. Onthe other hand, it an be improved up to where the regularity of ϕ and f permit.Indeed, if f and ϕ are smoother, di�erentiating the equation with respet to tand arguing in a standard way (namely, applying the tehniques above to the newequation), we an prove that the attrator is more regular as well. In partiular, if
ϕ ∈ C∞(R) and f ∈ C∞(Ω), then AV ∈ C∞(Ω) × C∞(Ω).3. Asymptoti Regularity of Weak Energy SolutionsIn this setion, in addition to the previous onditions on f and ϕ, we assume that
ϕ satis�es the (ritial) growth ondition(3.1) |ϕ′′(r)| ≤ c

(

1 + |r|3
)

, ∀r ∈ R.With these further assumptions, S(t) is a strongly ontinuous semigroup on thephase spae H as well [3, 4℄. The papers [4, 17℄ provide the existene of a globalompat attrator AH for S(t), but no regularity results are given. Here, we provethe followingTheorem 3.1. The attrator AH of the semigroup S(t) on H is a bounded subsetof H2 ×H1.In partiular, this means that AH and AV oinide, so that AH in fat inherits theregularity of AV (that is, H2 ×H2 at least).7



Remark 3.2. Due to the obtained regularity, it is possible to prove the existeneof an exponential attrator of �nite fratal dimension for S(t) on H (f. [17℄). This,in turn, implies that AH has �nite fratal dimension.Remark 3.3. In fat, it is possible to show that Theorem 3.1 still holds if we replae(2.1) by the slightly weaker ondition (f. [1℄)(3.2) lim inf
|r|→∞

ϕ(r)

r
> −λ1, ∀r ∈ R.We will return on this later in Remark 4.4.We establish the proof of the theorem by means of several lemmas. First, we notiethat, due to the growth restrition (3.1), we have the inequality

E(ξu(0)) ≤ Q(‖ξu(0)‖H).Thus, we an rephrase Lemma 2.3 more onveniently asLemma 3.4. The inequality
‖ξu(t)‖2

H +

∫ ∞

t

‖∇∂tu(τ)‖2dτ ≤ Q(‖ξu(0)‖H)e−εt +Q(‖f‖)holds for every t ≥ 0 and some ε > 0.The next step amounts to �nding suitable regularity for the time-derivatives of u.Lemma 3.5. For every t > 0, we have the inequality
min{t, 1}‖∇∂tu(t)‖2 +

∫ t

0

min{τ, 1}‖∂ttu(τ)‖2dτ ≤ Q(‖ξu(0)‖H + ‖f‖).Proof. Denote
Λ3 = ‖∇∂tu‖2 + 2〈∇u,∇∂tu〉 + 2〈ϕ(u), ∂tu〉 − 2〈f, ∂tu〉.Observe that, from (3.1) and Lemma 3.4,(3.3) 1

2
‖∇∂tu‖2 −Q(‖ξu(0)‖H + ‖f‖) ≤ Λ3 ≤ Q(‖ξu(0)‖H + ‖f‖)‖∇∂tu‖2.Then, multiply (1.1) by ∂ttu, to obtain

d

dt
Λ3 + 2‖∂ttu‖2 = 2‖∇∂tu‖2 + 2〈ϕ′(u)∂tu, ∂tu〉Exploiting (3.1),

2〈ϕ′(u)∂tu, ∂tu〉 ≤ 2‖ϕ′(u)‖L3/2‖∂tu‖2
L6 ≤ c(1 + ‖∇u‖6)‖∇∂tu‖2.Therefore, using Lemma 3.4, we are led to(3.4) d

dt
Λ3 + 2‖∂ttu‖2 ≤ Q(‖ξu(0)‖H + ‖f‖)‖∇∂tu‖2.Assume �rst that t ∈ (0, 1]. Multiplying (3.4) by τ , and integrating in dτ on [0, t],gives

tΛ3(t) + 2

∫ t

0

τ‖∂ttu(τ)‖2dτ ≤ Q(‖ξu(0)‖H + ‖f‖)
∫ t

0

‖∇∂tu(τ)‖2dτ +

∫ t

0

Λ3(τ)dτ.8



Using again Lemma 3.4 together with (3.3), we �nally obtain the desired inequality(3.5) t

2
‖∇∂tu(t)‖2 + 2

∫ t

0

τ‖∂ttu(τ)‖2dτ ≤ Q(‖ξu(0)‖H + ‖f‖),whih is exatly what we wanted for t ∈ (0, 1]. If t > 1 we integrate (3.4) in dτ on
(1, t). This entails

Λ3(t) + 2

∫ t

1

‖∂ttu(τ)‖2dτ ≤ Q(‖ξu(0)‖H + ‖f‖) + Λ3(1)Substituting (3.3) and (3.5) in the above inequality yields(3.6) 1

2
‖∇∂tu(t)‖2 + 2

∫ t

1

‖∂ttu(τ)‖2dτ ≤ Q(‖ξu(0)‖H + ‖f‖).The onlusion follows olleting (3.5)-(3.6) �Lemma 3.6. For every t > 0, we have the inequality
min{t2, 1}‖∂ttu(t)‖ ≤ Q(‖ξu(0)‖H + ‖f‖).Proof. Set q = ∂tu, and di�erentiate (1.1) with respet to time. This yields

∂ttq − ∆∂tq − ∆q + ϕ′(u)∂tu = 0.We denote
Λ4 = ‖∇q‖2 + ‖∂tq‖2.Observe that, olleting Lemma 3.4 and Lemma 3.5, we know that(3.7) ∫ t

0

min{τ, 1}Λ4(τ)dτ ≤ Q(‖ξu(0)‖H + ‖f‖).Then, multiplying the above equation by ∂tq, we obtain
d

dt
Λ4 + 2‖∇∂tq‖2 = −2〈ϕ′(u)∂tu, ∂tq〉.In a similar fashion as in the previous lemma, we estimate the right-hand side as

−2〈ϕ′(u)∂tu, ∂tq〉 ≤ 2‖ϕ′(u)‖L3/2‖∂tu‖L6‖∂tq‖L6

≤ 2‖∇∂tq‖2 +Q(‖ξu(0)‖H + ‖f‖)‖∇∂tu‖2.Therefore, we ome to the di�erential inequality(3.8) d

dt
Λ4 ≤ Q(‖ξu(0)‖H + ‖f‖)‖∇∂tu‖2.If t ∈ (0, 1], we multiply (3.8) by τ 2, and integrate in dτ on [0, t]. This, on aountof Lemma 3.4 and (3.7), yields
t2Λ4(t) ≤ Q(‖ξu(0)‖H + ‖f‖),whih in turn gives(3.9) t2‖∂tq(t)‖2 ≤ Q(‖ξu(0)‖H + ‖f‖).If t > 1 we integrate (3.8) in dτ on (1, t), to get(3.10) ‖∂tq(t)‖2 ≤ Λ4(t) ≤ Q(‖ξu(0)‖H + ‖f‖) + Λ4(1) ≤ Q(‖ξu(0)‖H + ‖f‖).Putting together (3.9)-(3.10), the proof is �nished. �9



Conlusion of the proof of Theorem 3.1. Lemma 3.4 ensures the existene of abounded absorbing set BH ⊂ H for the semigroup S(t) on H. We now rewrite (1.1)as
−∆∂tu− ∆u+ ϕ(u) = h,having set

h = f − ∂ttu.In view of Lemma 3.6, for a �xed t∗ > 0 (for instane, t∗ = 1),
sup
t≥t∗

‖h(t)‖ ≤ Q(‖ξu(0)‖H + ‖f‖).Therefore, applying Theorem 4.3 of the next setion, and realling Lemma 3.4, welearn that u = v + w, with
‖∇v(t)‖ ≤ Q(‖ξu(0)‖H + ‖f‖)e−νt and ‖∆w(t)‖ ≤ Q(‖ξu(0)‖H + ‖f‖),for every t ≥ t∗. Besides, from Lemma 3.5,

‖∇∂tu(t)‖ ≤ Q(‖ξu(0)‖H + ‖f‖),for every t ≥ t∗. In partiular, for all initial data ξu(0) ∈ BH, we have that
‖∇v(t)‖ ≤ ce−νt, ‖∆w(t)‖ ≤ c, ‖∇∂tu(t)‖ ≤ c,for every t ≥ t∗, where the onstant c ≥ 0 depends only on ‖f‖ and the size of BH.Hene, alling B1 the ball of H2 ×H1 of radius c√2, we onlude that

distH(S(t)BH,B1) ≤ ce−νt, ∀t ≥ t∗,where distH denotes the usual Hausdor� semidistane in H. In other words, B1 is aompat (exponentially) attrating set. So, by standard arguments, the semigroup
S(t) ating on H possesses a ompat global attrator AH ⊂ B1. �4. An Auxiliary EquationWe onlude the paper examining the following hyperboli equation:(4.1) {

−∆∂tu− ∆u+ ϕ(u) = h,

u|∂Ω = 0.Here, the assumptions on ϕ are as in Setion 3, whereas h ∈ L∞([t∗,∞), H0), forsome t∗ ∈ R. For every u0 ∈ H1, (4.1) possesses a unique solution u ∈ C([t∗,∞), H1)suh that u(t∗) = u0. Besides, u ontinuously depends on the initial datum u0 onevery �nite time-interval.Remark 4.1. In fat, using maximal monotone operator theory, we an establishexistene and ontinuous dependene results for equation (4.1) even without thegrowth restrition (3.1) (assuming only (2.1)), and the results that follow an beproven true also in that ase. Indeed, rewriting the equation as
∂tu+ Au = ℓ(−∆)−1u+ (−∆)−1h,where Au = u+(−∆)−1ϕ(u)+ℓ(−∆)−1u, with ℓ as in (2.2), the operator A is easilyseen to be maximal monotone on H1. 10



As we saw in the previous setion, equation (4.1) reprodues the hyperboli featuresof the original problem (1.1). We begin to establish a �rst uniform estimate.Lemma 4.2. The inequality
‖∇u(t)‖ ≤ c‖∇u(t∗)‖e−ε(t−t∗) +Q(‖h‖L∞([t∗,∞),H0))holds for every t ≥ t∗ and some ε > 0.Proof. A multipliation of (4.1) by u leads to

d

dt
‖∇u‖2 + 2‖∇u‖2 + 2〈ϕ(u), u〉 = 2〈h, u〉.Using (2.4), we obtain the inequality
d

dt
‖∇u‖2 + 2ε‖∇u‖2 ≤ c

(

1 + ‖h‖2
)

,for some ε > 0, and the laim follows from the Gronwall lemma. �The result we need is the following.Theorem 4.3. The solution u to (4.1) an be deomposed into the sum u = v + w,where
‖∇v(t)‖ ≤ ‖∇u(t∗)‖e−(t−t∗)and

‖∆w(t)‖ ≤ c‖∇u(t∗)‖e−ν(t−t∗) +Q(‖h‖L∞([t∗,∞),H0)),for every t ≥ t∗ and some ν > 0.Proof. We de�ne
ψ(r) = ϕ(r) + ℓr,with ℓ as in (2.2). Thus, ψ′(r) ≥ 0 for every r ∈ R. Then, we onsider the splitting

u = v + w, where v and w are the solutions to the equations(4.2) 









−∆∂tv − ∆v + ψ(u) − ψ(w) = 0,

v(t∗) = u(t∗),

v|∂Ω = 0,and(4.3) 









−∆∂tw − ∆w + ψ(w) = ℓu+ h,

w(t∗) = 0,

w|∂Ω = 0.Multiplying (4.2) by v, from the monotoniity of ψ we readily get the inequality
d

dt
‖∇v‖2 + 2‖∇v‖2 ≤ 0,whih entails

‖∇v(t)‖ ≤ ‖∇u(t∗)‖e−(t−t∗), ∀t ≥ t∗.11



Next, we multiply (4.3) by −∆w. Appealing again to the monotoniity of ψ, weobtain the inequality
d

dt
‖∆w‖2 + 2‖∆w‖2 ≤ −2ℓ〈u,∆w〉 − 2〈h,∆w〉

≤ ‖∆w‖2 + c
(

‖u‖2 + ‖h‖2
)

.Therefore, using the ontrol provided by Lemma 4.2, we onlude that, for every
t ≥ t∗,

d

dt
‖∆w(t)‖2 + ‖∆w(t)‖2 ≤ c‖∇u(t∗)‖2e−2ε(t−t∗) +Q(‖h‖L∞([t∗,∞),H0)).Applying the Gronwall lemma, we �nally have
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