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1 Introduction

Nanostructures are one of the basic features of quantum electronic semicon-
ductor devices. In order to cover quantum effects in semiconductor device
simulation, one has to compute the states of the acting electrons and one has
to incorporate adequate information about these electronic states into the
device simulation tools, which usually operate on a semi-classical level.

In semiconductor devices one basically distinguishes three spatial scales:
the atomistic scale of the bulk semiconductor materials (sub-Å), the scale
of the interaction zone at the interface between two semiconductor materials
together with the scale of the resulting size quantization (nanometer) and the
scale of the device itself (micrometer).

At the ab-initio level, the many-body Schrödinger equation for the elec-
trons in the potential of the nuclei gives a complete description of the elec-
tronic structure for a semiconductor bulk material. The electrons present in
semiconductor materials can be subdivided into two classes: the core electrons
and the valence electrons. On the energy scale, the core electrons have much
lower levels than the valence electrons. This allows to decouple them from the
valence electrons. Together with the nuclei, they form the ionic cores. The
valence electrons are responsible for the chemical bonds and for many elec-
tronical and optical properties. The electronic states of the valence electrons
can be described with high accuracy in the framework of density functional
theory. This approach results in a one-particle Schrödinger equation on the
atomistic scale with a potential given by the ionic cores and the mean field
contribution of the interaction between the valence electrons.

The prototype semiconductor nanostructure is a quantum well structure
which consists of a stack of different semiconductor materials grown on a
substrate, see Fig. 2. The thickness of these layers usually ranges from 2
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Fig. 1. Schema of a SMQW laser diode by HHI, Berlin. Holes injected from the
p-contact and electrons injected from the n-contact recombine in the optical active
region. The optical active region consisting of six quantum wells is enlarged on the
right. Ec and Ev are the band edge profiles for the electrons and holes. The quantum
confinement of the electrons and holes within the wells is indicated.

to 20 nm, defining the nanoscale. The characteristic feature of the material
interface between two layers is the abrupt change of the parameters of the
crystal (chemical composition, band structure) on a distance of the same order
of magnitude as the lattice constant. Basically, this leads to a coupling of
the electronic states of the different materials meeting at the interface. The
variation of material properties across nanoscale heterostructures induces size-
quantization.

The nanostructure is in the focus of the envelope function approximation,
which can be understood as a homogenization method with Bloch waves. It
leads to k·p multi-band Schrödinger-type equations with position-dependent
effective mass tensor and band-edge profile, which are state of the art for the
description of electronic states in semiconductor nanostructures.

Figure 1 shows the essential components of an edge-emitting strained mul-
tiple quantum well (SMQW) semiconductor laser diode, the optical active zone
of which is a stack of quantum wells separated by barriers from a different
material. The transversal simulation of such a laser deals with a cross section
measuring up to several microns in diameter. Semi-classical models working
on the device scale such as drift-diffusion equations are state of the art for
the simulation of the electronic behavior of many microelectronic devices. For
opto-electronic devices based on nanostructures they can be applied success-
fully, supposed the constitutive laws in these semi-classical models take into
account quantum effects from smaller scale models for the embedded nanos-
tructure [BGK00, BHK03, BKKR03, BGH05].

The present paper focuses on the two scale transitions inherent in the hi-
erarchy of scales in the device. In section 2, we start with the description of
the band structure of the bulk material by k·p Hamiltonians on the atomistic
scale. Section 3 describes how the envelope function approximation allows
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Fig. 2. Quantum well: one-dimensional semiconductor nanostructure consisting of
two semiconductor materials A and B and two planar material interfaces. The unit
cell for a binary semiconductor with zinc-blende crystallographic structure like gal-
lium arsenide is displayed.

to construct kp Schrödinger operators describing the electronic states at the
nanoscale which are closely related to the k·p Hamiltonians from section 2.
Special emphasis is placed on the possible existence of spurious modes in the
k·p Schrödinger model on the nanoscale which are inherited from anomalous
band bending on the atomistic scale. Section 4 is devoted to the mathemat-
ical analysis of these multi-band k·p Schrödinger operators. Besides of the
confirmation of the main facts about the band structure usually taken for
granted, key results are conditions on the coefficients of the k·p Schrödinger
operator for the nanostructure, which exclude spurious modes and an esti-
mate of the size of the band gap. Section 5 gives an overview of properties of
the electronic band structure of strained quantum wells. Further, the assump-
tion of flat-band conditions across the nanostructure allows for upscaling of
quantum calculations to state equations for semi-classical models. In section 6
we demonstrate this approach for parameters such as the quantum corrected
band-edges, the effective density of states, the optical response, and the opti-
cal peak gain. Section 7 is devoted to the application of the k·p Schrödinger
theory to low gap quantum wells, a case where a proper rescaling of the optical
matrix element is necessary to avoid spurious modes. In Section 8 we discuss
the application of the k·p Schrödinger models to biased quantum wells, the
operation mode of electro-optic modulators.

2 Near-band-edge states in semiconductor bulk crystals

The key property of bulk semiconductor materials is, that the atoms form a
periodic Bravis lattice defined by its crystallographic unit cell, see Fig. 2 and
[Car96]. The electronic states of the valence electrons in a semiconductor are
essentially given by the solution of the eigenvalue problem for a Schrödinger
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operator

H = − ~2

2m0
∆+ Veff (r). (1)

m0 is the electron rest mass and Veff is the effective potential, consisting
of the potential of ionic cores (nuclei and core electrons) and the mean field
interaction between the valence electrons. This potential can be given by em-
pirical pseudopotential method (EPM) [CB66, CC76, Car96]. Alternatively,
density functional theory allows to obtain the electronic states by solving an
effective one-particle Schrödinger equation with a periodic potential.

Due to the translation invariance of the lattice periodic potential, the
eigenfunctions of the Schrödinger operator are Bloch waves

Ψ(r; k) = eikru(r; k), (2)

defined by a lattice periodic Bloch function u(r; k) depending on the real space
vector r = (x, y, z) and parametrically on the wave vector k = (kx, ky, kz),
Bloch theorem see [Blo32, Car96]. The Bloch waves as well as the corre-
sponding eigenvalue curves E(k) are periodic in the wave vector k. Thus, it
is sufficient (reduced zone scheme) to restrict the considerations to the first
Brillouin zone, the unit cell of the periodic lattice in the k space, see [Car96].

2.1 k·p equation for Bloch waves

The Bloch wave ansatz (2) leads to an eigenvalue problem for the Bloch func-
tion u(r; k) [Kan66, Kan82]. Including the spin degree of freedom by using a
two-component Bloch function one arrives at the at the k·p equation. Using
the notation of [Bah90] it reads as:

Hun(r; k) = En(k)un(r; k) (3)

with
H = H0 +Hk·p +Hk +Hso +Hkso

H0 = − ~2

2m0
∆+ Veff (x), Hk·p =

~
m0

k · p, Hk =
~2k2

2m0
,

Hso =
~

4m2
0c

2

(
(∇Veff )× p

)
· σ, Hkso =

~2

4m2
0c

2

(
(∇Veff )× k

)
· σ.

p denotes the quantum mechanical momentum operator defined by p = −i~∇.
σ = (σx, σy, σz) is the vector of the Pauli spin matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

Hso and Hkso describe the spin-orbit interaction.
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Fig. 3. Schematic of the band structure in a direct semiconductor material (the
lowest conduction band and the three topmost valence bands). Due to the Kramers
degeneracy (spin degeneracy) each state is doubly degenerate. For indirect semicon-
ductor materials the conduction band minimum is located outside the zone-center
k = 0 as indicated by the dashed line. Due to crystal symmetry there may exist
multiple equivalent band minima in this case, for instance, six in silicon.

The eigenvalue curves En(k) are the energy bands of the valence electrons
in a semiconductor material. Together they form the electronic band struc-
ture. The essential property of the band structure in a semiconductor is the
existence of a fundamental spectral gap. Energy bands below and above this
gap are valence bands and conduction bands, respectively. For the cases of in-
terest, the maximum Ev of the valence band is located at the Γ point, center
k = 0 of the Brillouin zone. In direct semiconductor materials such as gallium
arsenide, the minimum Ec of the conduction bands is also located at the Γ
point, whereas for indirect semiconductors such as silicon, it is located outside
the zone-center. The band-edges Ec and Ev define the band gap Eg = Ec−Ev.
Fig. 3 shows a schematic band diagram. In thermodynamic equilibrium, the
carriers occupy the states near the band extrema. In particular, the conduc-
tion band states are occupied by the free roaming electrons and the valence
band states are occupied by the positively charged holes. Therefore, for many
applications it is sufficient to confine the description of band structure to the
near-band-edge states.

2.2 Eight-band k·p Hamiltonian for near band-edge states

Basically, any Bloch function u(r, k) can be represented in terms of the zone-
center solutions uΓ

n (r) = un(r, k = 0):

un(r, k) =
∑
n′

Cn′(k)uΓ
n′(r)

The first d near-band-edge states uΓ
n labeled n = 1, . . . , d form the set of

class-A bands. All remaining states, labeled class-B, are assumed to have only
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a small influence on the near band-edge states. Typical number of class-A
bands are 1, 4, 6 or 8 [Kan82, Bas88, Chu95, Bah90, MGO94]. The class-B
bands are far away from the band-edges Ec and Ev and thus have only a small
contribution to a state un(r, k) of class-A near zone-center. This gives rise to
the representation

un(r, k) ≈
d∑

n′=1

cn′(k)uΓ
n′(r), for n = 1. · · · , d, (4)

Taking into account remote band effects arising from the influence of the class-
B states by means of Löwdins perturbation scheme one arrives at a nonlinear
eigenvalue problem for the class-A bands, see [Kan66, Kan82]. A suitable
linearization of this problem provides the corresponding Hamiltonian.

In the following we regard eight class-A bands consisting of the lowest con-
duction band and the three topmost valence bands, all doubly degenerate, see
Fig. 3. For materials with diamond or zinc-blende crystallographic structure
the space of class-A bands is spanned by S ↑, X ↑, Y ↑, Z ↑, S ↓, X ↓, Y ↓,
Z ↓, where ↑ and ↓ indicate spin up and spin down, respectively. Following
the notation of [EW96], the Hamiltonian reads as:

H8×8(k) =
(
K(k) + i ·Gz + E Γ

Γ̄ K(k)− i ·Gz + E

)
(5)

where the k·p matrix is given by

K(k) =


A · k2 iP0kx iP0ky iP0kz

−iP0kx (L−M)k2
x +Mk2 Nkxky Nkxkz

−iP0ky Nkxky Lk2
y +M(k2

x + k2
z) Nkykz

−iP0kx Nkxkz Nkykz Lk2
z +M(k2

x + k2
y)



Gz =
∆so

3


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 , Γ =
∆so

3


0 0 0 0
0 0 0 1
0 0 0 −i
0 −1 i 0



E =


Eg 0 0 0
0 −∆so/3 0 0
0 0 −∆so/3 0
0 0 0 −∆so/3


As their influence is usually neglected, the matrix elements describing the
influence of bulk inversion asymmetry of potential Veff and the influence of
k dependent spin-orbit interaction have been omitted, see [Kan82, Bah90].

The parameters of the Hamiltonian are the (parabolic) conduction band
mass mc, the Luttinger parameters γL

1 , γ
L
2 , γ

L
3 describing the the heavy hole

masses in different crystallographic directions, the band gap energy Eg, the
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spin-orbit split-off energy ∆so, and the momentum matrix element P0. These
parameters define the coefficients of the Hamiltonian by

L = − ~2

2m0
(γL

1 +4γL
2 )+

P 2
0

Eg
,M = − ~2

2m0
(γL

1 −2γL
2 ), N = −6

~2

2m0
γL
3 +

P 2
0

Eg
(7)

A =
~2

2m0

m0

mc
− P 2

0

Eg + 2/3∆so

Eg(Eg +∆so)
. (8)

P0 is defined by the Bloch functions S and X

P0
def= −i

~
m0

∫
unit cell

S̄(r)
~
i
∂

∂x
X(r) dr, (9)

and is a measure for the coupling between the conduction bands and the
valence bands. It is also known as the optical matrix element, which plays a
role in the calculation of the strength of optical transitions. Usually it is given
by an energy parameter

Ep =
2m0

~2
P 2

0 . (10)

It is possible to obtain the parameters Eg,∆so, mc, γL
1 ,γL

2 , γL
3 and Ep of the

Hamiltonian from experimentally determined properties of the bulk material.
There exists a compilation [VMRM01] of these band parameters for the 12
major III-V binary semiconductor materials and their ternary and quaternary
alloys.

In the literature, also simplified k·p Hamiltonians for the valence bands
are used. They include the four-band Luttinger-Kohn Hamiltonian for heavy
holes and light holes and six-band valence band Hamiltonians [Bas88, Chu95,
Car96]. For semiconductors with wurtzite crystallographic structure such as
gallium nitride k·p Hamiltonians have been established as well [CC96].

2.3 Anomalous band bending

The reciprocal masses A and L on the diagonal of (5) depend on the ratio
ζ = Ep/Eg. For ζ > ζcrit one of them changes the sign. For large wave
vectors k parallel to one of the axis in the k space, these diagonal k2 terms
dominate the behavior of the energy bands. Thus, for ζ > ζcrit the energy
dispersion becomes anomalous in the sense that e.g. for A < 0 the bending
of the conduction bands becomes negative, see Fig. 5. It is known, that this
behavior of the band structure can lead to the formation of spurious modes,
if k·p method is applied to heterostructures, see section 3.4 and [For97, Sol03,
MGO94].

2.4 Modification of the band structure by mechanical strain

If a semiconductor material is grown on a substrate with a different lattice
constant, e.g. indium gallium arsenide on gallium arsenide, we observe me-
chanical strain induced by the lattice mismatch between the two crystals.
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Basically, this mechanical strain leads to a shift of band-edges Ec, Ev result-
ing in an altered band gap Eg and to a splitting of the heavy hole and light
hole bands at the Γ point. Additionally, it has an impact on the anisotropy
of the effective mass tensor and the warping of the band structure [CC92].

The influence of strain ε can be included in the k·p Hamiltonian by adding
the Pikus-Bir deformation interaction matrix D(ε) defined by deformation
potentials [BP74, Bah90, Chu95, EW96].

2.5 Mixed crystal systems

So far, our considerations apply to elementary semiconductors like silicon or
binary semiconductors such as gallium arsenide or indium phosphite. Mixed
crystal systems are alloys of binary semiconductors. They are of particular
interest, because they allow for band gap engineering in the case of ternary
compounds like In1−xGaxAs and additionally for design of the mechanical
strain in the case of quaternary materials like In1−xGaxAsyP1−y. Though
strictly speaking, the basic assumptions of a periodic crystal lattice do not
hold for these materials, they can be treated by similar methods assuming the
so-called virtual crystal approximation.

Within the kp framework the band structure of mixed crystal systems can
be described by the same Hamiltonian used for the elementary and binary
semiconductors. Their parameters can be obtained by interpolation of those
of the binary constituents. Often linear interpolation according to the mole
fraction x yields a sufficient approximation. For some parameters such as the
band gap energy Eg this interpolation has to include a bowing parameter. All
the related data can be found in [VMRM01].

3 Envelope function approximation for layered
semiconductor nanostructures

We have discussed the modeling of the band structure of bulk materials by
k·p Hamiltonians. Now, this approach is extended to layered semiconductor
nanostructures like quantum wells, multiple quantum wells (see Fig. 2) and
double barrier structures [Sin93], [Bas88], [Chu95]. For these heterostructures,
the translation invariance is broken and the microscopic potential Veff can-
not be periodic in all space directions. Nevertheless, the heterostructure is
a crystalline solid and the atoms form an approximate Bravis lattice. The
microscopic potential now consists of a oscillatory part, which corresponds
to the potential of the ionic cores, and a globally slowly varying part, which
corresponds to the composition of the heterostructure from different bulk ma-
terials, see Fig. 4.
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3.1 Envelope function approximation of the wavefunctions

This obvious two-scale nature of the microscopic potential and of the corre-
sponding microscopic wave function encourages to treat this problem as a mul-
tiscale problem. After first heuristic approaches to this problem, see G. Bas-
tard [Bas88], the first rigourous approach was made by Burt [Bur92, Bur94],
who showed, that it is possible to derive a theory for the slowly-variing part
of the wave functions, the envelope functions, in terms of the atomistic scale.
This approach leads to a k·p Hamiltonian for the envelope functions.

A
 A
 A
 A
B
 B
 B
 B


V(z)


a
0


z

A
A


(r)
Ψ


n


n

u   (r)


||
F(z,k  )


Fig. 4. Schematic view of the microscopic potential V (z), the atomistic wave
function Ψ , the Bloch waves un(r) and the envelope function F (z; k‖) in a one-
dimensional heterostructure consisting of atoms of type A and B. The lattice con-
stant is a0 (typically 0.5 nm). un(r) is highly oscillatory on the sub-Å-scale.

For layered nanostructures, the crystal remains periodic in the in-plane
directions r‖ = (x, y), perpendicular to the growth direction z. This choice
of the coordinate system corresponds to epitaxially grown nanostructures on
[001] oriented substrates. As in bulk k·p theory, we approximate the electronic
state in the nanostructure in the subspace spanned by d lattice periodic, zone-
center Bloch functions uΓ

n (r), n = 1, . . . , d of class-A. However, we replace the
coefficients cn in (4) by the envelope functions Fn(z; k‖) depending on the
reduced wave vector k‖ = (kx, ky):

Ψ(r; k‖) = exp(ik‖ · r‖)
d∑

n=1

Fn(z; k‖)uΓ
n (r).

3.2 k·p-Schrödinger operators for layered nanostructures

According to [Bur92],[Bur94],[Bur99] the vector of the envelope functions F =
(F1, · · · , Fd) for a given reduced wave vector k‖ is the solution of an eigenvalue
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problem

H
(
k‖,−i

∂

∂z

)
F (z; k‖) = E(k‖)F (z; k‖). (11)

(11) is a family iof spatially one-dimensional eigenvalue problems indexed
by k‖. It provides a description of the in-plane band structure for layered
nanostructures, for examples see section 5.

Far away from the interface between two materials, the Schrödinger op-
erator H is formally identical with the bulk Hamiltonian (replacing kz →
−i∂/∂z) shifted by the band-edge Ev [Bur92, Bur94]. Therefore, the band-
offset ∆Ev between two materials enters as an additional parameter, avail-
able for the many material interfaces [VdW89, Kri91, VMRM01]. Near the
interface between two materials, non-local effects are present which lead to
a coupling of the states across the interface [Bur92],[Bur94]. The approxima-
tion of these non-local interactions by an interface condition for the envelope
functions is sufficient for many applications.

However, one has to be aware that the Burt-Foreman approach relies on
the assumption that the Bloch functions used in the approximation are the
same for all material layers. As a consequence, the momentum matrix element
P0 has the same value in all materials. However, the experimentally measured
value of P0 given by the optical matrix element Ep (10) is varying. Therefore,
it is necessary to incorporate this effect in the k·p Schrödinger operator by
additional interface conditions.

This suggests the following general structure of the Schrödinger operator:

• In each material layer, the Schrödinger operator is derived from a bulk
Hamiltonian like (5) resulting in a system of d coupled stationary Schrödinger
equations, see (12).

• At the material interfaces the continuity of the envelope functions and of
a flux vector (21) is assumed.

• If the optical matrix element P0 differs only slightly between the materials,
one can define an effective value by suitable averaging. Otherwise, by an
additional interface condition, one has to define the coupling between the
envelope functions related to the Bloch functions S and envelopes related
to the Bloch functions X, Y , Z across the interface [Bur99, For97].

The conventional k·p Schrödinger operators have been derived from the
bulk Hamiltonian by replacing kz → −i∂/∂z, see for instance [Bas88]. This ap-
proach also has to be supplemented by coupling conditions at the material in-
terfaces. These interface conditions have been established implicitly using the
so-called operator ordering. For the second order terms the BenDaniel-Duke
operator ordering Ak2

z → −∂/∂zA(z)∂/∂z has been used. For the first order
terms the heuristic symmetrization rule Akz → − i

2 [A(z)∂/∂z + ∂/∂z(A(z)·)]
has been applied [Bas88]. The resulting interface conditions differ from those
derived by Burt-Foreman. For a comparison of the different interface condi-
tions see [For93, MGO94].
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3.3 Confined states in quantum wells

A quantum well structure consists of a well material layer embedded between
two barrier material layers such that band-edge profiles Ev(z) and Ec(z) form
a potential well for both holes and electrons, see Fig. 1. This potential well
leads to the localization of the carriers in the quantum well region. This effect
is known as carrier confinement. Another key feature of quantum wells is the
appearance of discrete energy levels due to the size quantization induced by
the small width of the quantum well, typically ranging from 2-20 nm. Repeated
quantum well structures form multiple quantum wells (MQW), see Fig. 1.

The effect of carrier confinement is utilized in strained multiple-quantum
well (SMQW) laser diodes in order to increase the density of states and the
material gain in optical active region of the device. The confined carriers
in quantum wells are described by the bounded states of the corresponding
k·p Schrödinger operator (11) which are characterized by the discrete part of
the spectrum. The bounded states decay exponentially in the barrier region.
Therefore it is possible to use a finite-domain approximation by artificially
cutting out a simulation domain Ω and applying homogenous Dirichlet (hard
wall) or Neumann (soft wall) boundary conditions.

3.4 Spurious modes

It is known [For97, Sol03] that if the ratio ζ = Ep/Eg, exceeds a critical value
ζcrit due to anomalous band bending (see section 2.3) spurious modes occur
as eigenfunctions of the k·p Schrödinger operator. These spurious modes are
concentrated around a large value of kz, typically outside the first Brillouin
zone, and thus spatially oscillatory. The spurious modes lead to a pollution of
the spectrum of the operator or even to band gap solutions [For97, Sol03].

!=!

E

k

crit

crit

crit

!>!

!<!

Fig. 5. Schematic view of the dependence of the bending of the energy bands on
the ratio ζ = Ep/Eg. In the case ζ > ζcrit the bending for large k vectors becomes
anomalous. In the case of heterostructures this behavior can lead to pollution of the
spectrum by spurious modes or even to band gap solutions, as indicated.

This difficulty can be overcome in several ways:
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• Appropriate rescaling of the conduction-valence band coupling to achieve
ζ < ζcrit.

• Fitting of a set of bulk band parameters which ensure ζ < ζcrit.
• Approximation of the eigenfunctions in a function space which guarantees

kz < kcrit, kcrit is the value for which the bending changes its sign.

[Sti01] achieved a conforming set of band parameters by fitting the Hamil-
tonian to the real bandstructure in a larger part of the Brilluoin zone (≈20%)
and not only at the zone center. These effective parameters meet the con-
ditions given by Property 2 in section 4 which guarantee that there are no
spurious modes.

We have obtained a conforming parameter set by rescaling, see section 7.

4 Mathematical analysis of k·p Schrödinger operators

We review the spectral properties of Schrödinger type operators occurring
in k·p theory of layered semiconductor heterostructures. In this section we
denote the growth direction of the layers by x and reduced wave vector k‖ by
k = (k1, k2) ∈ C2. The formal structure of these operators is – for d bands
ϕ = (ϕ1, . . . , ϕd):

− d

dx

(
mj

∂

∂x
ϕj

)
+

d∑
l=1

(
M0 j l

∂

∂x
ϕl −

d

dx

(
M0 l j ϕl

))

+
∑

α=1,2

kα

d∑
l=1

(
Mα j l

∂

∂x
ϕl −

d

dx

(
Mα l j ϕl

))

+
∑

α=1,2

kα

d∑
l=1

Uα j l ϕl +
∑

α,β=1,2

kαkβ

d∑
l=1

Uα β j l ϕl

+
d∑

l=1

vj l ϕl + ejϕj , j = 1, . . . d

(12)

We assume the following general properties of the coefficients mj , M0 j l,
Mα j l, Uα j l, Uα β j l, vj l and ej on the space intervall Ω = (x0, xL) of the
coordinate of quantization:

Property 1. All coefficients are essentially bounded, namely

mj ∈ L∞(Ω,R), j = 1, . . . , d,
ej ∈ L∞(Ω,R), j = 1, . . . , d,

Mα ∈ L∞(Ω;B(Cd)), α ∈ {0, 1, 2},
Uα ∈ L∞(Ω;B(Cd)), α ∈ {1, 2},
Uα β ∈ L∞(Ω;B(Cd)), α, β ∈ {1, 2},

v ∈ L∞(Ω;B(Cd)),
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where B(Cd) is the Banach space of bounded linear operators on Cd.

Property 2. The set of band indices is a disjoint union {1, . . . , d} = D+ ∪D−
of conduction and valence bands that means

min
j∈D+

vraimin
x∈Ω

mj(x) > 0, max
j∈D−

vraimax
x∈Ω

mj(x) < 0,

min
j∈D+l

vraimin
x∈Ω

ej(x) > 0, max
j∈Di

vraimax
x∈Ω

ej(x) < 0;

D+ or D− may be empty. We introduce the conjugation operator Θ on Cd by

Θ(c1, . . . , cd) = (r1 c1, . . . , rd cd), rj =

{
1 if j ∈ D+,
−1 if j ∈ D−.

Property 3. For almost all x ∈ Ω and all α, β ∈ {1, 2} the operators Uα(x),
Uα β(x), and v(x) are selfadjoint over Cd.

Property 4. There is a finite, disjoint partition x0 < x1 < . . . < xL of the
interval Ω = (x0, xL) such that the functions mj ∈ R, j = 1, . . . , d, and
Mα ∈ B(Cd), α = 0, 1, 2, take exactly one value m̂j,l and M̂α,l, respectively,
on each of the intervals [xl, xl+1).

Following [BKKR00] we define parts of the k·p Schrödinger operator be-
tween W 1,2

0
def= W 1,2

0 (Ω; Cd) and its dual space W−1,2, the space of anti-linear
forms on W 1,2

0 . For ϕ,ψ ∈W 1,2
0 we set

〈Hϕ,ψ〉 =
d∑

j=1

∫
Ω

mj
∂

∂x
ϕj

∂

∂x
ψj dx, (13)

〈Aαϕ,ψ〉 =
∫

Ω

〈
Mα(x)

∂

∂x
ϕ(x), ψ(x)

〉
Cd

+
〈
M∗

α(x)ϕ(x),
∂

∂x
ψ(x)

〉
Cd
dx, α = 0, 1, 2, (14)

〈Bα ϕ,ψ〉 =
∫

Ω

〈
Uα(x)ϕ(x), ψ(x)

〉
Cd dx, α = 1, 2, (15)

〈Bα β ϕ,ψ〉 =
∫

Ω

〈
Uαβ(x)ϕ(x), ψ(x)

〉
Cd dx, α, β = 1, 2, (16)

〈V ϕ, ψ〉 =
∫

Ω

〈
v(x)ϕ(x), ψ(x)

〉
Cd dx, (17)

〈Eϕ,ψ〉 =
d∑

j=1

∫
Ω

ej ϕj(x)ψj(x) dx. (18)
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Now we define for each reduced wave vector k = (k1, k2) ∈ C2 the k·p
Schrödinger operator

Hk : W−1,2 →W−1,2 (19a)

by the sum

Hk = H +A0 +
∑

α=1,2

kα(Aα +Bα) +
∑

α,β=1,2

kα kβ Bα β + V + E. (19b)

The terms in (19) relate to (5): E represents the basic energies of the (class
A) bands involved; V contains the spin-orbit interaction and the influence of
strain; the operators

A0 +
∑

α=1,2

kαBα and H +
∑

α=1,2

kαAα +
∑

α,β=1,2

kα kβ Bα β

describe the first and second order k·p interactions, respectively. They rep-
resent, e.g. for diamond like crystal structures, interband (interaction within
conduction bands and valence bands, respectively) and intraband (interac-
tion between conduction and valence bands) coupling, respectively. Making
use of the conjugation operator Θ we can split the Schrödinger operator into
intraband and interband coupling terms in the following way:

Hk,intra =
1
2
(Hk +ΘHkΘ), Hk,inter =

1
2
(Hk −ΘHkΘ).

4.1 Spectral properties

We first state spectral properties of the operator (19) on the space W−1,2.

Theorem 5. See [BKKR00]. We assume Properties 1–4. For any k ∈ C2 the
operator (19) has the same domain as H, namely W 1,2

0 , and all these operators
are closed and have a compact resolvent. For any one dimensional complex
analytic submanifold S of C2 the operator family {Hk}{k∈S} is a holomorphic
operator family of type (A), see [Kat84, VII.2]. The spectrum of Hk only
consists of at most countably many eigenvalues with finite multiplicity, which
do not accumulate at any finite point.

The restriction of the operator (19) to the space L2 def= L2(Ω; Cd) has the
following spectral properties.

Theorem 6. See [BKKR00]. We assume Properties 1–4. The spectra of
Hk|L2 and Hk are the same. The resolvent of Hk|L2 is nuclear. For any k ∈ C2

the geometric spectral multiplicity is at most d. The domain of Hk|L2 is given
by
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dom(Hk|L2) = W 1,2 ∩
{
ϕ

∣∣∣∣ ϕ|]xl,xl+1[ ∈W
2,2(]xl, xl+1[),

m̂l lim
x→xl
x>xl

∂

∂x
ϕ(x)− m̂l−1 lim

x→xl
x<xl

∂

∂x
ϕ(x) +

(
M̂∗

0,l+1 − M̂∗
0,l

)
ϕ(xl)

+
∑

α=1,2

kα

(
M̂∗

α,l+1 − M̂∗
α,l

)
ϕ(xl) = 0, l = 0, . . . , L− 1

}
. (20)

For functions ϕ from the domain of Hk|L2 the vector

m
∂

∂x
ϕ(x)−

(
M∗

0 (x) +
∑

α=1,2

kαM
∗
α(x)

)
ϕ(x) (21)

is continuous across the material interfaces.

Theorem 7. See [BKKR00]. We assume Properties 1–4. If the reduced wave
vector k = (k1, k2) is from R2, then the operator Hk|L2 is selfadjoint, has an
orthonormal basis of eigenfunctions in L2, and its geometric and algebraic
eigenspaces coincide.

We now investigate how the spectral properties of the operators Hk|L2 de-
pend on the reduced wave vector k. Unfortunately, the domain of the oper-
ators Hk|L2 is not independent of k. Hence, in contrast to Theorem 5, the
concept of a holomorphic operator familiy of type (A) does not apply any-
more. However we can prove, see [BKKR00], that for any one dimensional
complex analytic submanifold S ∈ C2 the family {Hk|L2}k∈S , is an analytic
family of operators in the sense of Kato [Kat84, VII.1.2]. This implies that
a closed curve, separating two parts of the spectrum of Hk for k = k0, also
separates corresponding parts of the spectrum of Hk for k from a suitable
neighbourhood of k0, see [Kat84, Th. VII.1.7].

4.2 Gap estimate

From the point of view of electronic structure calculation it is of interest for
which k ∈ R2 the spectral gap between the positive and negative parts of the
band-edge operator E can be found in the spectrum of Hk, and how one can
estimate the size of the gap in terms of k and the data of the problem. This
relates also to the problem of spurious modes in bandstructure calculation.

According to Property 2, the lower bound

e
def= min

j=1,...,d
vraimin

x∈Ω
|ej(x)| (22)

of the spectral gap in E is positive, and so is the lowest eigenvalue µ of |H|.
We define the weighted strength of the band couplings by

M
def=

max
α=1,2

‖Mα‖2
L∞(Ω;B(Cd))

min
j=1,...,d

vraimin
x∈Ω

|mj(x)|
. (23)
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Moreover, we assume the following property of the coupling matrix M0:

Property 8. M0(x) is skewadjoint and ΘM0(x) is selfadjoint for almost all
x ∈ Ω.

Property 8 implies M0 + ΘM0Θ that means that the intra-band part of the
operator M0,intra, see (4), vanishes. This property is satisfied by the usual
eight-band Hamiltonian and its heterostructure equivalent, see (5). The ske-
wadjointness of M0 is a consequence of symmetric operator ordering of the
first order terms of conduction-valence band coupling.

Theorem 9. See [BKKR00]. In addition to Properties 1–4 and Property 8 we
assume that for almost all x ∈ Ω

ΘUα(x) are skewadjoint, α ∈ {1, 2}, (24)
ΘUα α(x) are nonnegative operators, α ∈ {1, 2}, (25)

and
1
2

vraimin
η∈[0,2π[,x∈Ω

inf spec
(
ΘUη(x) + Uη(x)Θ

) def= ν ≥ 0, (26)

where

Uη(x) def= cos2 ηU11(x) + sin2 ηU22(x) + sin η cos η
(
U12(x) + U21(x)

)
.

If |k|, and λ satisfy the relations

0 ≤ λ ≤ e− ‖v‖L∞([0,xL];B(Cd)). (27a)

|k| ≤ 1
δ
√

2
(27b)

0 < µ− |k|
√

2
(
µδ +

M

δ

)
+ |k|2ν − ‖v‖L∞(Ω;B(Cd)) + e− λ, (27c)

for some δ > 0, then λ belongs to the resolvent set of Hk.

Thus, we have established a spectral gap (−λ,+λ) in Hk. In case of v ≡ 0
(27c) means that Hk at zone center k = 0 has the same spectral gap as the
band-edges E. Thus, spurious modes, that means band gap solutions, can be
excluded in this case.

By properly choosing δ in (27) one may obtain sharp estimates of the
gap, see [BKKR00]. For the optimal choice of δ = δopt(|k|) one obtains the
following range of k

0 ≤ |k|2 <
e− ‖v‖L∞(Ω;B(Cd))

2M
. (28)

for which a spectral gap in Hk persists.
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4.3 Remarks

Apart of k·p Schrödinger operators with interband coupling there are also
operators with a positive or negative definite main part. In the terms of Prop-
erty 2 this means that D− = ∅ or D+ = ∅, respectively. Important examples
are the 4-band Luttinger-Kohn-Hamiltonian [Chu95] and 6-band valence band
Hamiltonians, see [Car96, CKI94, Chu95, For93, MGO94, Sin93]. If the oper-
ator H from (13) is definite, then the operators Hk are semibounded and one
obtains more results about the way the eigenvalues and eigenvectors depend
on k, see [BKKR00].

The whole theory considerably simplifies, if one relaxes Property 4 such
that the coefficient functions Mα, α = 0, 1, 2 are continuous. This allows for a
regularization of the operators (19). One can prove, see [BKKR00], that the
resolvents of a regularizing sequence converge in trace class to the operator
(19) with jumping coefficients Mα.

5 Electronic states in strained quantum wells

The band structure in quantum wells is given by the eigenvalue curves Ei(k‖)
and the vector of eigenfunctions Fi(z; k‖) = (Fi,1(z; k‖), . . . , Fi,d(z; k‖)) of
the k·p Schrödinger operator (11) depending on the reduced wave vector
k‖ = (kx, ky). We regard an eight-band kp Hamiltonian of the type (5) in
the formulation given by [EW96]. Thus, the mathematical results of section
4 apply. The numerical calculations have been performed by means of WIAS-
QW [BK] using a finite volume method.

In particular, the structure under consideration is a In1−xGaxAsyP1−y

based strained MQW structure. The stack consists of six 1% compressively
strained 7 nm thick quantum wells (x = 0.239, y = 0.826), which are separated
by 10 nm thick 0.3% tensile strained barriers (x = 0.291, y = 0.539), see
[BHK03]. As confirmed by the calculation of the mini-band formation in the
MQW structure [BHK03], the barrier width is such that the lowest states in
the wells decouple, that means, they are strongly localized in the individual
quantum wells. This allows to restrict ourselves in the following to single
quantum well calculations.

5.1 Band structure

Fig. 6 displays the band structure Ei(k‖) for the 7 nm InGaAsP quantum
well under consideration. Due to their different effective mass, in quantum
wells the confinement energy Econf = Ev,qw − Ei(k‖ = 0) of the heavy hole
states is smaller than for light-hole states (Ev,qw is the valence band-edge of
the well material). Thus, the degeneracy (at k = 0) between light and heavy
holes in bulk materials, see Fig. 3, is lifted. The compressive strain increases
the splitting between the heavy hole and light hole states while energetically
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favoring the heavy holes. Thus, the highest two valence bands correspond to
heavy hole states.
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Fig. 6. Band structure and warping in a 7nm InGaAsP compressively strained
quantum well, calculated with WIAS-QW. Top: conduction bands, bottom: valence
bands. k‖ in [100]- (solid) and [110]-direction (dashed). We remark that the bands
are twice degenerate due to symmetry. Reprinted with permission from [BHK03].
c© 2003, IEEE.

We have investigated two different crystallographic directions to demon-
strate the angular dependence of the dispersion (warping effect). We observe
weak warping for the conduction band, and strong warping and strong non-
parbolicities for the valence bands, see Fig. 6.

5.2 Momentum matrix elements for interband transitions

Important information on the electronic states within the quantum well is
encoded in the intersubband momentum matrix elements. For the transition
from the conduction band state Fi to the valence band state Fj these are
defined, see [EBWS95], by

pij =
m0

~
∑
µ,ν

∫
Ω

F̄i,µ

(
∇kHµν(k‖, kz)

)∣∣∣
ikz= ∂

∂z

Fj,νdz. (29)

Fig. 7 displays the most prominent interband momentum matrix elements
for TE and TM polarization. These momentum matrix elements have a dis-
tinctive dispersion and warping. In particular, the dominant transition for
TE polarization is between the lowest conduction band CB1 and the topmost
valence band HH1.
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Fig. 7. Momentum matrix element dispersion |epij(k‖)|2 (29) for transitions be-
tween the lowest conduction band CB1 shown in Fig. 6 top, and the upper valence
bands shown in Fig 6 bottom. Different polarization directions e are shown. Top:
TE-polarization (p||ex), bottom: TM-polarization (p||ey). Note the normalization to
the same quantity P0 in both pictures. Reprinted with permission from [BHK03].
c© 2003, IEEE.

6 Upscaling to semi-classical state equations

In the simulation of opto-electronic devices such as strained multiple quan-
tum well (SMQW) laser diodes, semi-classical models turned out to be very
successful, provided that information about the optical active zone is derived
from smaller scale models. This requires suitable upscaling schemes for semi-
classical constitutive laws.

The simulation of opto-electronic devices requires at least the description
of the flow of electrons and holes, the description of the optical field, and
the coupling of these models by the radiative recombination of electrons and
holes. In the following, we focus on a semi-classical carrier flow model, and on
a specific part of radiative recombination; for models of the optical field, see
[BGK00, BGH05, BKKR03, BHK03]. In particular, we deal with upscaling
schemes for quantities such as the density of states, the optical response, and
the optical peak gain, from electronic structure calculations as described in
section 5.

6.1 Drift-diffusion equations

The most popular semi-classical models for the carrier flow in a semiconductor
device are drift-diffusion models. The basic model of this type is the van
Roosbroeck system, see [Gaj93] and the references therein, which describes the
flow of electrons and holes in a selfconsistent field due to drift and diffusion. It
comprises current–continuity equations for the densities n and p of electrons
and holes, respectively, and a Poisson equation for the electrostatic potential
ϕ:
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q
∂n

∂t
−∇ · jn = −qR, q

∂p

∂t
+∇ · jp = −qR (30)

ε0∇(εs∇ϕ) = −q(C + p− n). (31)

ε0 is the vacuum dielectric constant, εs is the static dielectric constant, q
is the elementary charge, and C is the net doping. The recombination rate
R in (30) involves all non-radiative and radiative recombination processes,
and depends at least on n and p. The currents jn and jp are driven by the
negative gradients of the quasi-Fermi potentials Fn and Fp for electrons and
holes, respectively:

jn = −qnµn∇Fn, jp = −qpµp∇Fp; (32)

µn and µp are the mobilities of electrons and holes.
The current continuity equations describing the motion of electrons and

holes have to be completed by laws for the recombination of electrons and
holes, and by Fermi-Dirac distributions for the densities of electrons and holes:

n = NcF1/2

(
qϕ− qFn − Ec

kBT

)
, p = NvF1/2

(
Ev + qFp − qϕ

kBT

)
. (33)

Ec and Ev denote the conduction and valence band edges, respectively. Nc and
Nv are the corresponding densities of states (DOS) given by the expressions

Nc = 2
(
mckBT

2π~2

)3/2

, Nv = 2
(
mvkBT

2π~2

)3/2

. (34)

mc and mv are the density of state masses, T is the temperature, kB is Boltz-
mann’s constant, and F1/2 Fermi’s integral of the order 1/2:

F1/2(x) =
2√
π

∫ ∞

0

√
y

1 + exp(y − x)
dy. (35)

The constitutive equations link the classical drift-diffusion equations to the
quantum mechanical model for the electronic structure. Typically one derives
parameters in a constitutive law by upscaling of electronic structure infor-
mation. Examples are the band-edges Ec, Ev and the density of states Nc,
Nv.

6.2 Effective band-edges and densities of states

In the flat-band case, qϕ − qFn and qϕ − qFp are approximately constant
across the nanostructure. Therefore, we can define the quasi Fermi levels of the
quantum confined electrons and holes by EFn = qϕ−qFn and EFp = qϕ−qFp,
respectively. SMQW lasers are usually designed such that they operate in this
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flat-band mode. Assuming thermodynamic equilibrium of confined electrons
and holes, respectively, their local density distributions for given quasi Fermi
levels EFn and EFp are calculated by

nqw(z) =
∑
i∈c

1
2π2

∫
f
(
Ei(k‖)− EFn

)
‖Fi(z; k‖)‖2

Cd dk‖, (36)

pqw(z) =
∑
j∈v

1
2π2

∫
f
(
EFp − Ej(k‖)

)
‖Fj(z; k‖)‖2

Cd dk‖, (37)

with Fermi’s function

f(E) =
(

1 + exp
(

E

kBT

))−1

. (38)

We introduce the average carrier densities per quantum well by
n̄ =

∫
Ω
nqw(z)dz/dqw and p̄ =

∫
Ω
pqw(z)dz/dqw, where dqw is the thickness

of the well. For our example quantum well structure from section 5 the lo-
cal carrier distributions are plotted in Fig. 8 for different values of the sheet
concentrations N = n̄ dqw and P = p̄ dqw.
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Fig. 8. Local carrier density distributions (36) and (37) for different values of the
sheet concentrations N = P = 2·10−12cm−2, 3·10−12cm−2, 4·10−12cm−2 for ambient
temperature. One observes a stronger confinement of the holes in comparison to the
electrons.

For a calculated band structure we regard the averaged carrier densities
in their dependence on EFn, EFp and kBT :

n̄ = n̄ (EFn, kBT ) , p̄ = p̄ (EFp, kBT ) , (39)

see Fig. 9 and Fig. 10 for our example. These relations are fitted to the Fermi-
Dirac distributions



22 Thomas Koprucki, Hans-Christoph Kaiser, and Jürgen Fuhrmann

n̄ = NcF1/2

(
EFn − Ec

kBT

)
, (40)

p̄ = NvF1/2

(
Ev − EFp

kBT

)
(41)

by adjusting the parameters Nc,Ec and Nv, Ev for a specified reference tem-
perature T0. By (34) we obtain the density of state masses mc and mv. This
procedure provides quantum corrected band-edges Ec, Ev and density of state
masses mc and mv. Thus, one can treat individual quantum wells as an artifi-
cial classical material, whose parameters significantly differ from bulk values
of the quantum well materials. This approach has been applied to the the
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Fig. 9. Relation (39) (kp-calculation) between electron density n and Fermi level
EFn relative to the net band edge Ec for temperatures T=290K, 315K, 340K. The
dashed lines indicate the fit to the macroscopic state-equation (40). Reprinted with
permission from [BHK03]. c© 2003, IEEE.
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Fig. 10. Relation (39) (kp-calculation) between hole density p and Fermi level
EFp relative to the net band edge Ev for temperatures T=290K, 315K, 340K. The
dashed lines indicate the fit to the macroscopic state-equation (41). Reprinted with
permission from [BHK03]. c© 2003, IEEE.
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MQW structure discussed in section 5. Fig. 10 and Fig. 9 demonstrate the
high quality of the fit for this particular structure [BHK03].

6.3 Material gain

Still assuming the flat-band conditions, the band structure and the momentum
matrix elements (29) enter the expression for the material gain

g(ω) =
π~q2

ε0m2
0nrc

1
dqw

1
4π2

∑
i∈c
j∈v

∫
|pije|2

Ei − Ej
f(Ei − EFn) (1− f(Ej − EFp))×

[
1− exp

(
~ω − (EFn − EFp)

kBT

)]
1
π

Γ

[(Ei − Ej)− ~ω]2 + Γ 2
dk‖,

(42)

where the last factor includes broadening due to collision processes [End97].
The latter have been parametrized by a characteristic intra-band relaxation
time τ of 60 fs (Γ = ~/τ). c is the speed of light and nr the refractive index.
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Fig. 11. Material gain spectra (TE-polarization) according to (42) for different
sheet concentrations and temperatures. Reprinted with permission from [BHK03].
c© 2003, IEEE.

For the case of an undoped active region and local charge neutrality the
calculated gain spectra are drawn in Fig. 11 for different excitations and tem-
peratures. The evolution of the corresponding maximum material gain with
the carrier density shown in Fig. 12 for different temperatures. In [BHK03] it
is discussed how to fit the calculated peak gain characteristics to a logarithmic
model g(n) = g0 log(n/nt), which is used as a state equation in semi-classical
equations.
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Fig. 12. Maximum material gain for different carrier densities and temperatures
T=290K, 300K, 310K. Dashed lines indicate the fit to the logarithmic gain model
g(n) = g0 log(n/nt). Whereas g0 = 2155cm−1 is not very sensitive to the tempera-
ture and has been kept constant here, the transparency density nt = nt(T ) roughly
linearly increases with the temperature. Reprinted with permission from [BHK03].
c© 2003, IEEE.
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Fig. 13. Spontaneous radiative recombination rate (43) for different tem-
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1.47 (290K), 1.51 (315K), 1.55 (340K). Reprinted with permission from [BHK03].
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6.4 Spontaneous radiative recombination rate

The spontaneous radiative recombination rate Rrad is calculated according to
[Wen] by

Rrad =
nrq

2

π~2c3ε0m2
0

1
dqw

1
4π2

∑
i∈c
j∈v

∫
(Ei − Ej)

∣∣pij

∣∣2×
f(Ei − EFn)f(EFp − Ej) dk‖.

(43)
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It is shown in Fig. 13 together with the fit to Rrad = Bnα. The exponent
was approximately α = 1.5 which differs from the commonly used models
corresponding to α = 2.

7 Avoiding spurious modes by adjusting Ep

For low band gap semiconductors, the parameters of the eight-band Hamil-
tonian often cause anomalous band bending, see section 2.3. This may lead
to spurious modes of the k·p Schrödinger operator for heterostructures, see
section 3.4. However, it is possible to fullfil the condition ζ < ζcrit by lowering
the value of Ep (10):

Ep → E′
p = αEp, α < 1 (44)

This adjustment has only a small influence on the band structure for low
values of k and therefore leaves the confined states nearly untouched.
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Fig. 14. (a) Calculated conduction and valence band structures for a
InAsxSb1−x/GaSb quantum well with the As mole fraction of x = 0.82 at am-
bient temperature, see [KBB+05]. (b) Comparison between eight-band k·p–band
structure calculations and experiments for a set of InAsSb/GaSb multiple quantum
well samples with different As mole fractions. Full circles indicate the MQW–edge as
determined from transmittance, whereas open circles point to the edge as deduced
from PL. Squares mark the edge as obtained from the energy difference of the lowest
conduction band (at k = 0) and the highest valence band (at k = 0) according to
8–band k·p–calculations. One observes a systematic IR-shift of the QW–edge data
experimentally determined compared to the k·p calculation. This tendency is also
present in the InAs0.895Sb0.105 bulk–like sample, indicated as ’Reference’. Thus it is
not likely to be a residual effect of the k·p calculation. (b) reprinted with permission
from [KBB+05]. c© 2005 American Institute of Physics.

In the limit case Ep → 0 the conduction bands and the valence bands
decouple, and one arrives at the usual six-band Hamiltonian for valence band
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states. This Hamiltonian still provides a reasonable approximation of the va-
lence band structure [CC92, For93, MGO94, CC96].

The InAsxSb1−x system is the alloy with the lowest direct band–gap value
of all III–V–semiconductor materials. This mixed crystal system is of utmost
interest for infrared (IR) optoelectronic applications such as heterostructure–
based lasers and detectors [WGS+00, GKS00]. In [KBB+05] the rescaling
approach is applied to the calculation of the electronic states in a set of samples
with different mole fractions x. For a comparison of eight-band k·p calculation
with the experimentally measured properties of the samples, see Fig. 14.

8 Biased quantum wells

Typical applications of biased quantum well structures are photonic integrated
chips consisting of integrated semiconductor laser/electro-absorption modu-
lator [Bas95, Ch. 6], [Chu95, Ch. 13]. In such devices, the external electric
field allows to modulate the absorption or the reflectivity for specific spectral
regions.

The applied voltage leads to tilted band edges in the quantum well region,
hence, to meta-stable states. If the applied bias is small with respect to the
band-edge offsets ∆Ev and ∆Ec of the quantum well to the barrier, then hard
wall or soft wall boundary conditions can still be applied for the calculation of
the electronic states [SB87, DF93, ASV98]. The calculated eigenvalues Ei(k‖)
yield an reasonable approximation of the real parts of the complex eigenvalues
corresponding to the meta-stable states of the biased structure.
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Fig. 15. Band structure ([100] direction) in a 13 nm InGaAsP quantum well lattice-
matched to InP barriers for two different external electric fields. (a) F=0 V/µm,
and (b) F=4 V/µm. At F=0 V/µm, the valence bands are double degenerate. At
F=4 V/µm, they split due to the applied external electric field (Rashba effect).
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As an example we discuss the application of this approach to the calcula-
tion of the band structure and the local carrier density distributions for a 13
nm thick InGaAsP quantum well, lattice-matched to InP barriers. In Figs. 15
and 16 we present the results of eight-band k·p calculations for various values
of the electrical field. Due to the Kramers degeneracy the heavy and light hole
bands are double degenerate for an unbiased quantum well, see Fig. 15a. This
spin degeneracy is lifted if an electric field is applied to the quantum well,
see Fig. 15b. The spin splitting of the valence bands induced by the external
electric field is known as the Rashba effect.

Fig. 16 shows titled band edge profiles and carrier density distributions
for different applied biases. For the electric field strength F = 6 V/µm one
observes the onset of accumulation of the hole density in the barrier region,
marking the limit of the approach based on the use of hard wall boundary
conditions.
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Fig. 16. Tilted band edge profiles Ec(z) and Ev(z) and local density distributions
for electrons and holes in a 13 nm InGaAsP quantum well lattice-matched to InP
barriers for different external electric fields. F=0 V/µm, 2 V/µm, 4 V/µm, 6 V/µm.
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