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Abstract

We present an overview of recent results concerning wave trains, solitons
and their modulation in FPU chains. We take a thermodynamic perspec-
tive and use hyperbolic scaling of particle index and time in order to pass
to a macroscopic continuum limit. While strong convergence yields the well-
known p-system of mass and momentum conservation, we generally obtain a
weak form of it in terms of Young measures. The modulation approach ac-
counts for microscopic oscillations, which we interpret as temperature, causing
convergence only in a weak, average sense. We present the arising Whitham
modulation equations in a thermodynamic form, as well as analytic and nu-
merical tools for the resolution of the modulated wave trains. As a prototype
for the occurrence of temperature from oscillation-free initial data, we discuss
various Riemann problems, and the arising dispersive shock fans, which re-
place Lax-shocks. We predict scaling and jump conditions assuming a generic
soliton at the shock front.

1 Introduction

We consider chains of /V identical particles as plotted in Figure 1.1, nearest neighbor
coupled in a nonlinear potential ® : R — R by Newton’s equations

ia - (I),(Ia—i-l - xa) - @l(gja - Ia—l)a (11)
where ~ = % is the time derivative, z,(t) the atomic position, and « = 1,..., N the
particle index. Since the work of Fermi, Pasta and Ulam [FPU55| one usually refers
to (1.1) as FPU chains.

xa+1 xa+2

Ta—1 Ta
Ta

Figure 1.1: The atomic chain with nearest neighbour interaction.

We mainly consider general, convex potentials ®. While our focus lies on nonlinear
@', the harmonic potential with linear forces is an instructive, completely integrable
example. A nonlinear example, but still completely integrable, is the famous Toda
chain, see [Tod70, DKKZ74, Hén74] with potential

O(r)=exp(l—7r)—(1—1). (1.2)

For our purposes it is convenient to use the atomic distances r, = z,41 — T, and
velocities v, = @, as the basic variables, changing (1.1) to the system

’f’a = Vq+1 — Vq , i)a = (I)/(Ta) — (I)/(T’a_l). (13)



Rather than investigating solutions of (1.3) for finite N, we focus on the thermody-
namic limit e = 1/N — 0 in the hyperbolic scaling of the microscopic coordinates t
and o, which is defined by the macroscopic time t = et and particle index @ = ea.
It is natural to scale the atomic positions in the same way, i.e. T = ex, which leaves
atomic distances and velocities scale invariant. For a survey on other reasonable
scaling we refer to §2 and |GHMO06a].

Our main goal is to derive a micro-macro transition for the atomic chain, i.e. we
aim to replace the high dimensional ODE (1.1) by a few macroscopic PDEs. The
derivation of such a continuum limit is simple as long as the atomic data vary on
the macroscopic scale only, see (1.9) below. If, however, the atomic data oscillate
on the microscopic scale, the problem is tremendously complicated, because then
distances and velocities do not converge to macroscopic functions. Instead, at each
point in the macroscopic space-time, the local (r, v)-distribution converges to a
nontrivial Young-measures, see §5. We interpret the microscopic oscillations as a
form of temperature in the chain, see §2, and refer to oscillation-free limits as cold.

The main problem in the case of temperature is to find an appropriate description
for the structure and evolution of the oscillations. Even if we are interested in the
macroscopic behavior of averaged quantities only, the microscopic oscillations de-
termine the evolution of the internal energy, that is, the amount of energy which
is stored in purely microscopic motion. In other words, any reasonable macroscopic
limit for oscillatory solutions needs to describe thermodynamic effects, such as cre-
ation of temperature and transport of heat. Unfortunately, no rigorous theory is
known that applies without further assumptions.

Numerical simulations as discussed in §5 and §6, as well as rigorous results for the
Toda chain, c¢f. [HFM81, Kam91, VDO91, DKKZ96, DM98|, suggest that for certain
solutions of (1.1), the arising microscopic oscillations can be described by modulated
traveling waves. Traveling waves are highly oscillatory exact solutions of (1.1). The
most relevant kind for our purposes are wave trains which are periodic functions
of a single phase variable, depending on four characteristic parameters. Modulated
wave trains arise when these parameters vary on the macroscopic scale.

A characteristic property of wave trains is that the arising Young measures are sup-
ported on closed curves. As a consequence, they correspond to a very special kind
of temperature which is not related to our usual notion of thermalization. How-
ever, they give rise to a thermodynamically consistent macroscopic theory involving
temperature, entropy, and so on. Moreover, if cold initial data form macroscopic
shocks, then Newton’s equations self-organize into microscopic oscillations in form
of modulated wave trains, and in this sense our notion of temperature turns out to
be generic.

Some aspects of the problems addressed in this article have much in common with
certain zero dispersion limits, which we will briefly discuss next to illustrate our



point of view. This is not to be confused with so called zero diffusive-dispersive
limits, where diffusive effects prevail, cf. e.g. [Sch82, KL02|. The most prominent
example is Burger’s equation

Oiu+udgu =0, (1.4)
which, on a formal level, is the zero dispersion limit of the KdV equation
Ozu+udqu+ed3u=0. (1.5)

The main question is under which conditions the solutions of (1.5) converge as e — 0
to (weak) solutions of (1.4). The rigorous theory for this problem was developed
by Lax and Levermore in |LL83, Ven85| by relying on the complete integrability of
(1.5).

It is well known that generic initial data ug,; yield a critical time ¢4 such that (1.4)
has a unique smooth solution for 0 < t < fuj, but for ¢ > t. solutions exist in
a weak sense only, having at least one discontinuity at some @, and satisfying
O7u + %85 (u?) = 0 in the sense of distributions.

Imposing the same initial datum wu;,; for KdV, the typical behavior for ¢ — 0 is as
follows, see for instance the surveys in [Lax86, Lax91, LLV93]. For 0 < t < f
the solutions u. of (1.5) converge strongly to the unique smooth solution of (1.4).
However, for t > . the KdV-solutions become highly oscillatory in a neighborhood
of @ee with wavelength 1/4/c, and converge to a weak limit (u) only. The main
point is that (u) does not satisfy Burgers equation, i.e. 95 (u)+304 (u)? # 0, because

(u)? # (u?).

A discrete zero dispersion limit was studied in |GL88|, replacing (1.4) by
Uy + %ua (Uas1 — Ua—1) = 0. (1.6)

This scheme is equivalent to a dispersive spatial discretization of (1.4), because
the identification u,(t) = u(et, ea) transforms (1.6) into d;u + u V*u = 0 with
V*u(t, @) = (u(t,a+¢) —u(f, @ —¢)) /2, The numerical study in [GL88| pro-
vides evidences for the same qualitative limiting behavior as for KdV. Further ex-

amples for numerical schemes with interesting zero dispersion limit can be found in
|HL91| and |LL96|.

Towards modulation theory, |GL88| found a simple description for modulated binary
oscillations, which provides an approzimate solution of (1.6) satisfying u, =~ v, +
(—1)% w,, where v, and w, vary on the macroscopic scale only. The modulation
equations for binary oscillations read

d;a+adzb=0, 0;b+bdza=0. (1.7)

where a = v +w and b = v — w. This system is strictly hyperbolic if and only if a
and b have the same sign, and conservation laws for Ina and In b imply that strictly
positive initial data stay positive for all times.
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Let a = a(f, 6) and b = b(f, 6) be a smooth solution of (1.7) defined until ¢, and
denote the corresponding modulated binary oscillations by

u™(t) = v(et, ea) + (—1)% w(et, a). (1.8)

«

It is proven in |GL88| that (1.8) indeed yields approximate solutions of the micro-
scopic system for t < e 17 in the sense that u™°4(t) — u,(t) converges to zero as
g — 0 for £ < fai if ua(0) = u™°4(0). For larger times we expect that modulated
binary oscillations are not longer close to an exact solution.

Returning to the atomic chain (1.1), we next derive the macroscopic evolution of cold
data, i.e. we assume macroscopic fields (¢, @) and v (¢, @) such that r,(t) = r(et, ea),
va(t) = v(et, ea). Substitution into (1.3) yields

Oy — Vtu = 0, 70—V =d/(r) = 0, (1.9)

In the limit ¢ — 0 we formally obtain the so called p-system consisting of the
macroscopic conservation laws for mass and momentum given by

Oir — 0zv =0, 0O;v—05z9'(r)=0. (1.10)

It is well known that, for convex ®, the p-system is hyperbolic and that for smooth
solutions the energy is conserved according to

07 (302 4+ @(r)) — 05 (v ¥'(r)) = 0. (1.11)

In analogy to the previous discussion, the p-system describes the thermodynamic
limit for cold atomic data as long as these data are smooth on the macroscopic scale.
However, we will show next that, if the nonlinearity forms a shock, then the p-system
is no longer a thermodynamically consistent model for the macroscopic evolution.
For simplicity, we assume that the flux function ®’ is convex so that all eigenvalues
of (1.10) are genuinely nonlinear. According to the Lax theory of hyperbolic system,
cf. |Smo94, Daf00, LeF02|, a shock wave propagates with a constant shock speed
¢ so that r and v satisfy the Rankine-Hugoniot jump conditions across the shock
given by

—cr] = vl =0, —cfv] = [¥'(r)] =0, (1.12)

where [-] denotes the jump. However, (1.12) implies that the jump condition for the
energy must be violated, i.e. for shocks with (1.12) we have

~efg0? + 2()] ~ [ ()] 0.

Consequently, the p-system predicts some production for the macroscopic energy
(the Lax criterion selects only shocks with negative production).

In contrast, Newton’s equations always conserve mass, momentum and energy.
Therefore, the p-system cannot describe the thermodynamic limit beyond the shock
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at which the atomic data start to oscillate. Indeed, some amount of energy is dissi-
pated into internal energy leading to a dispersive shock fan. 1t is one of the merits
of modulation theory that it can describe the microscopic oscillations emerging from
cold shocks as discussed in §6.

The article is organized as follows. In §2: we briefly sketch the thermodynamical
framework. We survey some existence and approximation results of wave trains and
solitons in §3, including multi-phase wave trains, thermodynamic properties and
new a priori estimates. §4 gives a brief overview on Whitham’s modulation theory
applied to FPU chains, leading to a system of four conservation laws for wave train
parameters. In §5 we briefly summarize some aspects of numerical justification by
evaluating the aforementioned Young measures and testing assumptions of modula-
tion theory. The shock problem for cold Riemann data is discussed in §6, and we
characterize the behavior of all macroscopic fields at the shock front by assuming
that is consists of a generic soliton.

2 Thermodynamic framework

Thermodynamics describes the evolution of deformation and heat on the macro-
scopic scale in a body, which may be isolated from the surroundings or is subjected
to external supply of mechanical forces and heat. In the following we will illustrate
the strategy of thermodynamics for a macroscopic body in one space dimension,
that is microscopically constituted by an atomic chain. To this end thermodynam-
ics considers, at any Lagrangian space-time point (t, @) a certain number of specific
densities u;(t,a), j = 1...M, and determines these fields by means of a system of
PDEs for given initial and boundary data. The most important densities in 1D are
the specific volume (mean distance) r, the macroscopic velocity v, and the specific
total energy E = %v2 + U, uniquely decomposed into kinetic energy and specific
internal energy U.

The PDE system relies on M equations of balance that read in regular points
8;’&]'4—85}7}:%, jE{l,Q,...,M}, (21)

where f; and P; are called fluzes and productions, respectively. The fundamental
balance equations are the conservation laws for mass, momentum and energy given
by

Oir —0zv=0, Ojv+0gp=0, O;E+0zf =0, (2.2)
where p denotes the pressure and f is the energy flux, satisfying f = pv+q with heat

flux ¢g. Further conservation laws are possible, but those are material and process
dependent.



In order that (2.1) becomes a closed system for the variables, thermodynamics has to
model constitutive equations that relate, in a material dependent manner, the fluxes
and productions to the densities themselves and /or their time and space derivatives.
The generality of the constitutive functions is restricted by universal principles like
Galileian invariance and the entropy principle, and by material dependent symmetry
principles. The entropy principle consists of several parts, see |[MR98| for more
details.

1. There exists an entropy pair (.S, g), given by (material dependent) constitutive
functions in terms of the densities u;, so that the entropy density S is a concave
function.

2. The constitutive laws closing (2.1) yield a further balance equation
0:9+0z9g=X>0 with ¥ =0+<= P, =0, (2.3)
where Y denotes the non-negative entropy production.

3. The definition of (absolute) temperature Tacr0 1S given by

ou
Tnacro = =g+ 2.4
macro aS ( )

Note that this phenomenological definition is a priori unrelated to any micro-
scopic model.

4. The law of Clausius-Duhem holds, i.e. Tyac09 = ¢-

This abstract framework is the basic paradigm of Rational Thermodynamics and
assumed to hold in all cases. However, the constitutive laws depend on the chosen
macroscopic scaling and are generally unknown. Nevertheless, the scaling predicts
the way in which the fluxes (and productions) can and cannot depend on the den-
sities. For instance, in the hyperbolic scaling, the macroscopic equations must be
invariant (to leading order) under (¢, @) — (A, A@), whereas the parabolic scaling
(t,@) = (e%t,ea) implies macroscopic invariance under (t, @) — (A%, A\a).

Therefore, in the hyperbolic scaling all constitutive relations for the fluxes must be
local, i.e. F; depends pointwise on the densities u;, so that (2.2) is a first order
system. We mention that hyperbolicity of (2.1) is guaranteed if the entropy S is a
concave function, see [MR98|. Generally, for the hyperbolic scaling, all constitutive
relations can be encoded in a Gibbs equation with a single thermodynamic potential.
On the other hand, for parabolic scaling, we expect that the fluxes depend (mainly)
on the spatial derivatives of the densities. In the simplest case the energy flux f is
given by Fourier’s law, i.e. f = 05U, so that the energy balance leads to the heat
equation.

In conclusion, we sketch the macroscopic thermodynamics for the atomic chain (1.1)
as it results from modulated wave trains. It turns out that the macroscopic system
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(2.1) consists of the three fundamental and a fourth equation, the conservation of
wave number 0;k — 0gw = 0, with wave number k£ and frequency w. In addition,
there is a fifth conservation law for the entropy S, i.e. ¥ = 0 in (2.3), and all
fluxes are given by the thermodynamic potential U = U(r, k,S) through the Gibbs
equation

dE =wdS —pdr — gdk +vdo. (2.5)

Note that the equation of state depends on the chain, i.e. on the potential ®, whereas
(2.5) is universal. From (2.4) and (2.5), we infer that the macroscopic temperature
Thacro €quals the wave train frequency w. Interestingly, here there is a difference
between Th.co and the kinetic temperature defined as the mean kinetic energy of
the atoms, see §3. However, it turns out that the Clausius-Duhem law is satisfied,
i.e. we find ¢ = wg.

3 Traveling waves

Traveling waves are exact solutions of the infinite chain (1.1) for N = oo of the
form x,(t) = z(a — ct) depending on a single phase variable ¢ and traveling with a
constant speed c. In the context of the macroscopic limits that we consider, relevant
traveling waves are solitons, which vanish as ¢ — 400, and wave trains, which are
periodic in ¢. Due to Galilean invariance, we can allow additional drift in space-time
of the form

To(t) = ra+ vt 4+ ya(t),

where the profile y,(t) solves the modified lattice equations
Yo = (I),(T + Yay1 — ya) - (I),(’l“ + Yo — ya—l) (31)

and traveling waves y,(t) = Y(a — ct) solve the second order advance-delay differ-
ential equation

P0pY (¢) = ' (r + Y(¢+ 1) = Y(¢)) — @' (r + Y(¢) — Y(¢ — 1)). (3.2)

3.1 Wave trains

Normalizing the period of wave trains to 1 and using ¢ = w/k with wave number k
and frequency w, we obtain the form

To(t) = ra+ vt + X(ka + wt), (3.3)

where X(¢p) is the 1-periodic wave profile function. There are unique choices for
the average distance r and the average velocity v such that fol X(¢)de = 0. Upon
substitution into Newton’s equations, we obtain the analogue of (3.2)

W0,X = ¥ (r + X+ k) — X(0) — ¥(r +X(0) - X(p — k), (34)
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with the three parameters r, k, w. Another useful formulation is the fixed point
equation, or nonlinear eigenvalue problem, for V = 9,X

WV = F(V) = 4,00 <7“ + Akv) , (3.5)

where the operator Ay and the Nemyckii operator 0® are defined by

o+k/2

1
(AV) (@) = ArV(p) — k/ V(s)ds, ApV(p):= / V(r)dr
0 p—k/2
02(V)(p) = @'(V(p)).
Distances and velocities of the microscopic wave trains are then

ro(t) =1+ AV(ka+wt+k/2), v,(t) = v+ wV(ka + wt). (3.6)

Existence and approximation of wave trains

We give an overview of the variational approach to wave train existence and approx-
imation by numerical schemes that are based on maximizing

' ; 1
W(V) = /0 <I><r - Akv) dp, Ve H, = {V e L*([0,1]) : §||V||2Lz < 7} :

Problem 3.1. For given parameters v, k and v > 0 we seek maximizers of VW in

H,, i.e. we solve W(r, k,~v) = max W(V).
€y

Theorem 3.2. Problem 3.1 always has a solution. In particular, there exists a
mazimizer V with || V || 2= /27 together with a positive Lagrangian multiplier
wi > 0 such that V and w? solve (3.5).

Scheme 3.3. Let any parameter set for problem 3.1 be given, and let Vo € H., be
an arbitrary initial datum with ALVy # 0. Then we define inductively two sequences
(Vi)pen € Hy and (wy,), oy by the following iteration step

1 W, || 72
Vn—}—l:ﬁwna anmna fn:%a wn-l-l:\/.frr

In [Her04] it is proved that this scheme is compact, and numerical simulations indi-
cate that 3.3 converges.

Remark 3.4. In fact, Theorem 3.3.2 in [Her04] proves that every closed cone of
functions that is invariant under JF contains at least one traveling wave. For the
cone of even monotone functions used below, this was also shown in [FV99|, Theorem
2.14.



By means of Scheme 3.3 we can compute wave trains with prescribed parameter
7 =% || V|3, There are variants of 3.3 which allow to prescribe either the entropy
S or the temperature T' of a wave train (for the definition of S and T see §3.1
below). Hence, wave trains are parametrized (at least) by (k,r,7), as well as trivially
by v; the latter is relevant for the modulation equations discussed in §4. On may
view the parameter w of the wave train equation (3.4) depending on (1, k,~) via
a 'dispersion relation’, here expressed as the Lagrange multiplier. We emphasize,
that it is not known whether the set of wave trains is a smooth three-dimensional
manifold of orbits; note that phase shifts V(- 4 s) trivially give rise to an (at least)
one-dimensional kernel of the linearization w? — DF(V) of (3.5) spanned by 9,V.
Moreover, for given parameters there is a discrete multiplicity of solutions, because
solutions for mk, m € N, are solutions for k as well, though these do not have
minimal period 1. We conjecture that wave trains are unique in cones defined by
monotonicity properties of V as discussed below.

Existence and approximation of multi-phase wave trains

We present new results concerning the existence of multi-phase waves, which will
be published with full details elsewhere. As before, our variational approach is
essentially restricted to convex interaction potentials ®, but allows for arbitrary
large amplitudes.

For simplicity we consider only two-phase wave trains having two wave numbers k;
and ky. However, all results can easily be generalized to other multi-phase wave
trains. Moreover, to avoid technicalities we always suppose that ® is defined on the
whole real axis with bounded and continuous second derivative ®”.

A two-phase wave train is an exact solution of Newton’s equations satisfying
l’a(t) =ra—+ vt + X(l{ilOK + wlt, kQOK + (Ugt). (37)

Here r, v, kq, ko, w1 and w, are given parameters, and the profile function X is
assumed to have zero average and be 1-periodic with respect to each phase variable
;i = k;a+w;t. The ansatz (3.7) gives rise to the advance-delay differential equation

(Wi 02, + w3 02,)X =V 0%(r+ V'X) (3.8)
where V* are difference operators defined by

(Vix) (1, p2) = EX(p1 £ k1, @2 £ k2) F X(1, @2)

Our aim is to identify an optimization problem with a single scalar constraint such
that (3.8) is equivalent to the corresponding Euler-Lagrange equation with multiplier
w?. Consequently, we regard the ratio 3 = wy/w; as parameter of this problem.

Let 75 = [0, 1] x [0, 1] be the two dimensional torus with its canonic Lebesgue
measure, and let all function spaces which follow be defined on 73. We consider the
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Sobolev space
H&Z{XGH“/ X:0}> X |30:= / (05X)" + 0% (0,,X)°. (3.9)
T 7>

This norm is equivalent to the standard norm on H} as long as 3 # 0. Let E be
the canonic embedding F : H} — L? and E* its adjoint operator E* : L? — H~! =
(H})". Note that E is compact, and that here we have identified L? with its dual
L*. By A we denote the Laplace operator corresponding to (3.9), i.e.

N=02 4 B282,.

Recall that —A : Hj — H~' is an isometric isomorphism between Hilbert spaces,
and that the difference operators V* : L? — L? are continuous with (V*)" = -V ~.
Moreover, our assumptions on ¢ imply that the convex functional X — sz O(X) is

well defined and continuous on L.
The spaces and operators from above allow to regard the wave train equation as an
equation in H~1. In particular, (3.8) is equivalent to

—wiAX = E*(V') 00 (r + VT EX), (3.10)

where the Nemyckii operator 0® : L? — L? with X — @& (X) is the Gateaux dif-
ferential of the functional (3.11). For fixed v > 0 we define the closed convex set
H, € L* and the convex Gateaux differentiable functional W as follows

H, = {XeHg : §||X||§101§ 7} . W(EX) ::/Tq>(v+Ex). (3.11)

Now (3.10) yields the following constrained optimization problem.

Problem 3.5. For given parameters r, ki, ko, v > 0 and 5 # 0 we seek maximizers
of W in H,, i.e. we solve

W(r, ki, k = X).

(Ir7 1, 2, 67 /7) &aﬁ}i W( )

Theorem 3.6. Problem 3.5 always has a solution. In particular, there exists a
mazimizer X with || X ||ga= /27 together with a positive Lagrangian multiplier
w? > 0 such that X and w? solve (3.10).

Remark 3.7. By construction, (3.10) is an identity in H~'. However, X € H! implies
that the right hand side of (3.10) is again an element of H', and the theory of elliptic
regularity provides X € H3. Moreover, we can prove further regularity by exploiting
Sobolev’s embedding theorems.

In analogy to the single-phase wave trains, we can solve the optimization problem
3.5 iteratively using an adapted abstract approximation scheme.

10



Geometry and phase velocity of wave trains

Since the modulation equations for the macroscopic limit of the chain depend on
wave trains, it is essential to understand properties of wave trains and their pa-
rameter variation. Motivated by numerical simulations, we investigate geometric
properties of wave trains in the phase space of distances and velocities. With the
shock problem in mind, see §6, we are also interested in the transition to solitons as
the wave number tends to zero.

From (3.5) we infer that if (V,w,k,r) is a solution to (3.5), then (=V,w,1 — k,r)
is also a solution, and vice versa: V(p; k) = —V(p + 1/2;1 — k). In case of a
binary oscillation, k = 1/2, the symmetry implies that (3.4) reduces to the planar
Hamiltonian ODE

w?0,,X = &' (r — 2X) — ®'(r + 2X). (3.12)
More generally, for rational & = n/m equation (3.4) can be written as an m-
dimensional second order Hamiltonian ODE with components X; = X(- + jn/m),
J = 0,...m — 1. This system is equivariant under the Z,, action X; — X, where
indices are taken modulo m, and Z,, lies in the isotropy subgroup of wave trains.

The microscopic phase space of distances and velocities is in fact the phase space of
the ODE (3.12) for k = 1/2. Therefore, the orbits
Q:={(r+ AV(e+k/2),v+wV(p)[0<p <1} (3.13)

are convex, non self-intersecting curves and nested for different w with fixed (r, k).

We can prove some of these properties for general wave number £, see also Figure 5.4,
and define the positive cones

Me = {V(1+y)=Y(p) / V(s)ds = 0, V(g) = V(—),
sgn(V(p1) = V(pa)) = +1, 0 < 1 < ¢ < 1/2},

so that W € ML has unique global extrema at ¢ = 0 and ¢ = 1/2, and W(y,) =
W(ps) is equivalent to @1 € {2, —@o, 1 — @o}. By symmetry W € M., implies
W(- +1/2) € Mz. The basis of the following results is the observation F : My —
M, which was noted in [FV99|. Throughout this article, we are only interested in
wave trains in M, U M_, and conjecture that wave trains are unique within these
cones.

Let Qo = {®"(r + AV(p)) | 0 < ¢ < 1}. We will estimate the phase velocity
Cph := w/k of wave trains and the size of () in terms of

M :=maxQqe(V), m:=minQqe(V).

Remark 3.8. Note that \/m, VM are the characteristic velocities of the p-system.
Applying Theorem 3.10 below for monotone ®”, these values are attained at p =
0,1/2, respectively.
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Next, we report our main, new results concerning the general geometry and phase
velocity of wave trains; full proofs will appear elsewhere.

Theorem 3.9. Assume ®” > 0. Then (3.5) has solutions (w,V) € Ry x M for
any (v,7r, k) € R? x (0,1/2) such that k — 0 < w — 0.

More precisely, the phase velocity of these wave trains satisfies

|w

b(k)v/m < ?| < VM, (3.14)
where b(k) € (0,1/2), b(k) = 1/2 for k < 2p, with V(p,) = 0 the unique root of V.
For 2p, < k < 1/2, we can take

V@R + V(e + 1/2)Pdp

1
4 A[[VI[3

b(k) =

Theorem 3.9 states that the lower phase velocity bound of wave trains is estimated
by a correction of the p-system characteristic. Indeed, small amplitude wave trains
have m ~ ®”(r), so that the harmonic phase velocities \/m sin(7k)/7k apply, which,
being smaller than y/m, necessitate a correction such as b(k).

Theorem 3.10. Assume ®” > 0 and consider solutions V.€ M, to (5.5) for given
(r,k,~v). Then the curve Q) is smooth, closed, convexr and non self-intersecting.

Its unique extrema in r-direction lie at ¢ = —k/2,(1 — k)/2 and in v-direction at
v =0,1/2, and it is bounded by |w| < kv M and

SV < [4V(e)] < VIV (3.15)

If " is monotone, and w independent of (r, k), then w is a strictly monotone func-
tion of v and the curves Q) are nested near the extrema in r- and v-directions for
fized (r, k). The sign of monotonicity is that of w.

While the unique points on ) with vertical and horizontal slope lie at ¢ = (1 —
k)/2,1/2and ¢ = 0, —k/2, the limiting profile for k& — 0 is not necessarily parametrized
by ¢. Indeed, for a limiting soliton, we expect that only one of these pairs converges
to the point (r,v) of the soliton’s background state as k — 0.

The harmonic dispersion relation (3.18) renders w a function of &, so that the last
part of Theorem 3.10 does not apply. Indeed, in this case V is independent of £ and
w, see (3.17).

Remark 3.11. The estimates on the size of () imply that a nontrivial solitary limit
as k — 0 requires unbounded norm parameter v, growing at least like 1/k. Since
Theorem 3.9 also implies w — 0 as k — 0, we expect that the monotonicity of v in
w holds in general for small w.

Nestedness of () near the extrema in r and v directions for fixed (r, k) is a biproduct
of our approach. However, it seems difficult to prove the numerical observation that
the entire phase plots are nested.
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Thermodynamics of wave trains

Wave trains represent exact solutions of Newton’s equations which are highly os-
cillating on the microscopic scale. However, on the macroscopic scale we cannot
resolve the microscopic oscillations but must pass to a thermodynamic description
involving energy, pressure, temperature and the like. It turns out that for each wave
train all these thermodynamic quantities are constant on the macroscopic scale. As
a consequence, we can interpret each exact wave train solution of Newton’s equa-
tion as a “thermodynamic state” of the chain. This idea turns out to be fruitful in
modulation theory discussed in §4, where we allow for macroscopic modulations of
the thermodynamic states.

Most thermodynamic quantities are defined as mean values of the oscillating atomic
data in a wave train solution:

1
W = / (7“ + AV (p))de specific internal potential energy density,
p = (ID/ (r+ AxV(p))de  pressure = negative specific force density,
0
w
K = ?/ V(p specific internal kinetic energy density,
0

and further

T = 2K kinetic temperature,

F = K-W specific internal action density,

U = K+ W specific internal energy density,
1

E = 51)2 + U  specific total energy density.

Note that K = w?vy, where v is norm parameter used above. All these quantities are
constants for exact wave trains. However, in modulation theory they become fields
in ¢t and @ whose macroscopic evolution is described by the modulation equations.
In particular, although all quantities are defined by integrals over the phase variable
©, in modulation theory they represent specific densities.

There are other important thermodynamic quantities which are not directly related
to mean values of the atomic data. It turns out that

S = w / V) dp, g=-— / V() ¥(r + AV(e)dp  (3.16)

can be interpreted as the macroscopic entropy density and entropy flux, respectively.
It is proven in |[Her04, DHMO0G6| that any smooth family of wave trains provides an

13



equation of state together with a corresponding Gibbs equation.

independent thermodynamic Gibbs equation

variables potential

(r, k, ) W =W(r, k, v) dW = w?dy — pdr — gdk
(r, k, w) F=F(r k, w) dFf = Sdw + pdr + gdk
(r, k, S) U=U(rk, 5) dU =wdS — pdr — gdk

The different variants of equations of state and Gibbs equations are all equivalent
as long as the respective changes of coordinates are well defined.

The Gibbs equation becomes very important in modulation theory, where it provides
the closure for the modulation equations. In particular, if the equation of state is
known, then all other constitutive relations are determined by the Gibbs equation.

Examples for wave trains

For a few specific potential, explicit expressions are known for both the profile
functions and the equation of state. The following examples are taken from [Her04,
DHMO06.

The harmonic chain with interaction potential ®(r) = ¢y + ¢;r + £ r*. Here the
linearity of ®’ implies that (3.5) may be solved by means of Fourier transform. Some
simple calculations yield the following family of traveling waves, parameterized by

(s ks ),
V(p) = 2/ sin (2myp), AV (p+k/2) = (sin(mk)/m) V(). (3.17)

Here V is independent of (r,k) and A,V independent of r. Degeneracy of the
harmonic chain is also reflected by the harmonic dispersion relation

w(k) = /cosin (k) /7, (3.18)

which provides the frequency w as function of k£, and does not depend on r or
v. Consequently, for the harmonic chain we cannot choose r, £ and w as set of
independent variables. From (3.17) we infer that the equation of state reads

1
Wi(r, k,v)=co+cir+ 52 r? 4+ w(k)2'y,

which implies g(r, k, v) = —cz sin (27k)y and S(r, k, v) = 2w(k)y. Moreover, we
can replace v by S, and obtain

U(r, k, S) =co+crr + %CQT2 + w(k)S. (3.19)

The hard sphere model with interaction radius ry. Here all atomic interaction are
modeled as elastic collision between hard spheres with radius ry. This gives rise to
an interaction potential ® with

O(r) =400 for r<ry, P(r)=0 for r>r.

14



Although this potential is not smooth the notion of traveling waves may be general-
ized to this case, and again we are able to derive explicit expressions for wave trains.
Some basic arguments lead to the following family of traveling waves, parameterized

by (r, k, w),

—(r — o)/ if 0<¢<k,
V(r,k,ﬁp)Z{Jr(r_ro)/(l_k) if k§i<1.

Note that here the frequency w > 0 is a free parameter and may be chosen indepen-
dently of r and k. The corresponding equation of state reads

Ulr, k, S) =1 (r—ro) 2%k (1— k). (3.20)

We mention that the hard sphere model describes the high energy limit for certain
potentials, see [Tod81| for the Toda potential, and [FM02|, as well as §3.2, for
Lennard-Jones potentials.

The third example is the small amplitude limit, where the amplitude § of V is de-
fined as the first fourier coefficient, i.e. for odd V we find § = fol V() cos (2mp) de.
To identify the leading order terms we expand the nonlinear interaction poten-
tial ® around the mean distance r up to fourth order. To leading order the fre-
quency w must satisfy the harmonic dispersion relation which now reads Qq(r, k) =

¢’ (r)sin (k) /m. According to [DHMO6]|, the amplitude 6 and the action F' can
be expressed in powers of w — Qq(r, k) as follows

2 2
5= ) G,
2QO(T7 k)

F(r, k, w) = =®(r) + G(r, k)(w — Qo(r, k))* + O((w — Q(r, k))?), (3.21)

where G(r, k) is given by

(I)”(r)2
2720 (1) ®W(r) (1 — cos (27k)) + (7 (r))* (1 + cos (27k))

G(r, k) =

3.2 Solitary waves

Homoclinic orbits in ODEs are typically accompanied by large wave length periodic
orbits in the sense that there exists a parameter curve of periodic orbits converging
to the homoclinic orbit as the period tends to infinity |[VF92|. For the lattices we
consider, the situation is similar: wave trains exist for arbitrarily larger wave number
and limit to solitons as the wave number tends to zero. This was proven for certain
monotone waves and potentials under growth assumptions in [PP00] by a mountain
pass approach.

We thank Karsten Matthies (University of Bath) for providing notes on which the
remaining part of this section is based. We report some of his joint work with Gero
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Friesecke, mainly concerning solitons in (1.1) in the form (3.1) for a large class of
possibly non-convex potentials .

A prototype of physically realistic interaction is given by the standard Lennard-Jones
potentials

2
@(r)za(r‘m—r;m) forr>0, a>0, meN.

where ® is minimized when neighbouring particles are placed at some specific equi-
librium distance r = r, > 0, and tends to infinity as the neighbour distance tends
to zero.

Since the particle positions x,, corresponding to displacements y, are x, = r.a+ya,
this means that ®(r) must have a minimum at r = r, and that ®(r) — oo as r — 0.
More precisely we assume:

(H1)  (Minimum at r,) ® € C3(0,00), ®(r,) = ®'(r,) = 0, ®"(r.) > 0
(H2)  (Growth) ®(r) > c¢or~! for some ¢y > 0 and all r close to 0

and ®(r) = oo for r < 0.
(H3)  (Hardening) ®"”(r) < 0in (0,r,], ®(r. +r) < ®(r. —r) in (0, 7,).

Here we seek solitons whose profile Y(¢) solves (3.2) with = r,. The construction
in [FW94| for the existence of solitons is based on the variational problem

1
Minimize 7,(Y) := - / 0sY (4)?d¢ among Y € W,-*(R) satisfying
R

d,Y € L*(R), W.(Y) := / O(r+Y(p+1)— Y(¢))de. (3.22)

R
Remark 3.12. It is instructive to compare this ansatz with the one used for wave
trains in §3.1, where the real line is replaced by the unit interval and YV maximized
for fixed norm parameter v. This lead to a relatively simple convex maximization
problem for convex potentials. In contrast, (3.22) is a kind of dual problem, where
W, is fixed and the norm parameter ~, minimized; a more challenging formulation
that allows for non-convex potentials.

The goal is to determine the I'-limit of the variational problem and the limiting
profile in the high-energy regime. Since this regime is highly discrete and involves
strong forces, neither classical continuum approximations nor weak coupling approx-
imations are possible.

The limiting profile for W, (Y) — oo was derived in [FM02|. Here we recover this
as a corollary of the following I'-convergence result. We let

H* = {Y € W2(R)|Y(0) = 0,0,Y € L*(R)},

and for every displacement profile Y we denote the relative displacement profile by
r(¢) =Y(¢+1) —Y(¢). As in (3.22) we consider the functional 7, on

Hy; = {Ye H |W.(Y)=K}
H. = {YeH"|r(¢)> —r;VoeR
3 compact nonempty set Sy C R with rjg, = —r,}.
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Figure 3.1: Left: Hard-sphere soliton. Right: cell of springs in 2D lattice.

Theorem 3.13. (I'-convergence) Assume that the interaction potential satisfies
(H1), (H2). Then the problem ’Minimize v.(Y) for Y € Hj.’ I'-converges to the
problem "Minimize v.(Y) for Y € HX ' in the sense that

1. (lim-inf-inequality) If YO —~ Y in H* with Y5 € Hi, Y translation
normalized (i.e. r5(0) = minger ) (¢)), then Y € HY and 7.(Y) <
lim inf g oo 7, (YD),

2. (Existence of recovery sequence) For all Y € HZ there exists a sequence
Y € H with YE) —~ Y in H* and 7,(Y5)) — ~,(Y).

A consequence is the following piecewise linear asymptotic displacement profile,
corresponding to piecewise constant velocity profile.

Corollary 3.14. (Asymptotic shape of minimizers) Every translation normalized
sequence Y of minimizers of v, on Hy, converges in H weakly to the up to trans-
lation unique minimizer Yo, of the limit problem, where

0, <0
Yoo(¢) = _T*¢7 ¢ S [Ov 1]
—re, O > 1.

In a mechanical interpretation, this is a compression wave localized on a single atomic
spacing. The limiting dynamics are hard-sphere dynamics like in a Boltzmann gas,
see Figure 3.1. In particular the work shows that dispersionless transport of energy
is not restricted to the long-wave regime.

We mention that Friesecke and Matthies analyse a two dimensional counterpart
of (3.1) in |[FMO3|, see Figure 3.1. The existence of longitudinal solitary waves
along one of the lattice directions was shown for typical potentials under some mild
nondegeneracy assumptions. These traveling waves are unique, i.e. there are no other
localized traveling wave in the same direction, e.g. there do not exist transversal
traveling waves. It is surprising that purely harmonic springs are included here,
because solitary waves do not occur in harmonic chains.
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4 Modulation Theory

4.1 Macroscopic evolution of data with temperature

In this section we use the theory of Young measures, see for instance [Tay96, War99,
Daf00|, and derive some restrictions for any thermodynamic limit of the chain.

Let Q = {(f, E) 10 <t <tgy, @€ |0, 1]}, and let (N;); be a sequence with N; — oo.
Moreover, for any @ let Q,(Jf)(t) = (r,(;f)(t) v((li)(t)), 0 <t < Nitgy and a = 1, ..., N,
be a solution of Newton’s equation, and suppose that the total energy of the initial
data is proportional to N, i.e.

N.
: 1 . .
EZ@@?@f+Mwmm)=mM» (4.1)
a=1

Under some suitable assumptions on the potential (say boundedness of ®” for sim-

plicity) the functions QY (t) are compact with respect to the convergence of Young
measures in the following sense. There is at least a subsequence, still denoted by
(N;)i, and a family of probability measures (¢, @) — (%, @, dQ) such that for any
continuous observable ¥ = ¥(Q) = ¥ (r, v) the following convergence is satisfied

/Q GQU(NE Na)) et @) dida == [ ()5 a)¢(E @) dida.  (42)

Q

Here £ is an smooth test function, and (1#)(?, a) is given by

W)E®) = | vQu( 7 o) (1.3)

For fixed (I, @) € €, the probability measure u(f, @, d@Q) describes the microscopic
oscillations in the vicinity of (£, @), and for any observable ¥ the number (¥) (%, @)
gives the local mean value of W,

Here we consider the common probability distribution of distance and velocity in-
stead of their separate statistics so that any measure ,u(f, a, dQ) can be interpreted
as a weight function defined on the microscopic state space which is spanned by
distance and velocity.

In §1 we have seen that Newton’s equations are equivalent to the two microscopic
conservation laws (1.3), from which one can derive the microscopic conservation

of energy €q(t) = —fa(t) + far1(t) With eq(t) = Jv2,,(t) + (ra(t)) and fo(t) =
—Ua () D' (ro(t)). As a direct consequence, every Young measure limit must satisfy
the following macroscopic conservation laws of mass, momentum and energy

0 (r) — 0z (v)
0 (v) — 8a< '(r)
07 (30 + &(r)) — 0a (v (1))

r (4.4)

I
o oo

r
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This system of PDEs gives some restrictions for any young measure limit of the
atomic chain. However, in general we can not express the fluxes in terms of the
densities, and hence the system (4.4) is not closed, i.e. it does not determine the
macroscopic evolution completely. We mention that (4.4) shows that any Young
measure limit is a measure-valued solution of the p-system in the sense of DiPerna,
see [Hor97, Daf00|. In addition, it is a measure-valued solution of the energy equation
(1.11).

Within modulation theory we will start with some assumptions concerning the struc-
ture of the microscopic oscillations in the chain. Afterwards we will identify further
macroscopic evolution laws extending (4.4), and constitutive relations that close the
extended system.

4.2 Whitham modulation equations for wave trains

Here we describe Whitham’s modulation theory for the atomic chain with hyperbolic
scaling. For further examples concerning modulation theories of discrete system we

refer to [HLM94, SW00, FP99, DK00, GM04, GMO06|, and to |[GHM06a, GHMO06b)|

for an overview.

A modulated traveling wave is an approximate solution of Newton’s equation (1.1)
satisfying

To(t) = %X(st, ea) + X(st, e %@(d, 5a)>, (4.5)

where X and © are macroscopic functions. The generic traveling wave parameters
(r, v, k, w) now are macroscopic fields depending on (f, 6), and read

w=0;0, k=050, v=0;X r=05X. (4.6)

The microscopic oscillations are described by

X(T, @, ¢) =X(r(t, @), v(t, @), k(t, @), w(t, @), a(t, @), p), (4.7)

where X(7, v, k, w, a, ) is a smooth family of 1-periodic wave trains depending on
the parameters @ = (r, v, k, w, a) as well as on the phase . We use an additional
parameter a, which might be the entropy S or the parameter v. However, in any
case we impose an abstract dispersion relation

w=Q(r, k, a). (4.8)

The modulation equations are PDEs which describe the macroscopic evolution of the
modulated parameter (r, v, k, w, a), and ensure that (4.5) indeed provides approxi-

mate solutions. For their formal derivation we use Whitham’s variational approach,
see |[Whi74, FV99, DHMO6|, and [GHM06a, GHMO06b| for a more general setting.
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In a first step we insert the ansatz (4.5) into the expression for the total action in
the atomic chain, and expand all arising terms in powers of . This gives rise to the
reduced action integral

Eﬁn 1
total action = (X, ©, a) = //L(ﬁ(f, a)) dadt, (4.9)
0

0

with L(d@) = £(d@, X(i, -)) and

£, X) = /01 (%(v + WA, X):— D+ m)) dy,

where (Vi X)(¢) = X(p + k). In a second step we apply the principle of least action
to (4.9). The variation with respect to a gives 0, L = 0, which recovers the dispersion
relation (4.8), and the variations with respect to X and © yield

0,0,L +9z0,L =0 and 9;0,L + dz0L = 0, (4.10)

respectively. Moreover, the definitions (4.6) imply two further evolution equations,
namely 0;r — 0gv = 0 and 0;k — Oqw = 0.

In the last step we reformulate all macroscopic identities by using the thermody-
namic definitions from §3, and as a consequence we find that the modulation equa-
tions take the form

0: (7. v, b, S) + 04 (—v, +p, —w, +g) = 0. (4.11)

These equations represent the macroscopic conservation laws for mass, momentum,
wave number and entropy. Moreover, they imply the conservation of energy via

O¢ E + 05 (pv+ gw) = 0. (4.12)

and thus we can regard the system (4.11) as an extension of (4.4). Recall that the
closure for (4.11) and (4.12) is provided by the equation of state E = 0>+ U(r, k, 5)
and the Gibbs equation (2.5). However, for almost all interaction potential ® we lack
explicit expressions for the equations of state, and therefore we cannot characterize
the properties of (4.11).

Finally, we display the modulation equations for the harmonic chain
07 (7. v, b, 8) = 0 (v, 27, wlk), /() S) =0, (4.13)

which follow from (4.11) by means of the equation of state (3.19), and the harmonic
dispersion relation (3.18).
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4.3 The justification problem

So far, there is no known rigorous derivation of the modulation equations for the
nonlinear case. For this reason we formulate a conjecture, following similar results for
partial differential equations [KSM92, Sch98, Mie02|. We assume that the potential
® is sufficiently smooth, and that a smooth family of traveling waves X(u, ¢) with
independent parameters @ = (r, v, k, w) is given. Moreover, we assume that the
following set M is open

M= {ﬁ — (v, kW) ’ the system (4.11) is strictly hyperbolic in , }

the traveling wave X(@, -) is linearly stable
For a given solution 4 = ﬁ(f, @) of (4.11) we define

7(et, ea) + (ALV) (ﬁ(at, ea), %é(at, ea) + %E(ét, 504))

MG (t) = ~ ~ = ~

v(et, ea) + &(et, 5a)V(u(5t, ), 10(et, ea))
where V abbreviates 0,X, and the modulated phase O is given by (4.6). We believe
that the following conjecture is in the heart of the matter.

Conjecture 4.1. Let U be a sufficiently smooth solution of Whitham’s equation
defined for t € [0, ta,), and suppose that u takes values in M. Then there exists a
suitable Banach space Y., and some exponent k > 0 such that

1Q°(t) = M*(#)|ly, = O("),  1Q°(0)lly, = O(1) (4.14)

for all €, and all t with 0 < et < tg,.

At the moment we are far from being able to prove this conjecture in this general
form. However, it does hold rigorously for the harmonic chain and the hard sphere
model.

The proof for the harmonic chain essentially relies on the linearity of Newton’s
equations, which allows to control the residuum, see [DHMO06|. In addition, there
is further rigorous derivation of (4.11) in the context of Wigner measures. For the
details we refer to [Mie06|, and for similar results to [Mac02, Mac04|. The rigorous
justification for the hard sphere model is based on the observation that both the
microscopic dynamics and the macroscopic equations become much simpler in the
Eulerian representation of thermodynamics, cf. [Her04]

On a formal level we expect a close relation between stability of wave trains and
hyperbolicity of modulation equations; if Whitham’s equations (4.11) are not hyper-
bolic, then the corresponding initial value problem is ill-posed, which indicates that
traveling waves are unstable due to a Benjamin-Feir instability, see e.g. |Whi74,
BMO95|. However, for arbitrary interaction potential ®, neither stability criterions
nor hyperbolicity conditions are available up to now. Having linearly degenerate
eigenvalues, the harmonic chain and hard sphere model are not prototypical and
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do not provide further insight. Only the small amplitude limit gives some criteria
for the hyperbolicity of (4.11). Starting with the equation of state (3.21) we can
compute the characteristic speeds for (4.11), see [DHMO6|, and end up with the fol-
lowing criterion. The system (4.11) has four real eigenvalues, and is thus hyperbolic,

if
N(r, k) = (@”'(r)) i (7 — 8cos (27k) + cos (47Tk)) +
" (r) ®W (1) (4 cos (2rk) — 3 — cos (47rk:))

is positive, but has two imaginary eigenvalues for N(r, k) < 0. For k = 1/2 the
corresponding formula was already given in [F1a96|.

5 Numerical justification of
modulation theory

Although there is no rigorous justification for the modulation equations (4.11), nu-
merical simulations strongly indicate that they provide the right thermodynamic
description for a wide class of initial value problems for the atomic chain. We refer
to |DHO6| which gives a detailed thermodynamic interpretation of several numerical
experiments. The main results can be summarized as follows.

(7) If all macroscopic fields are smooth, then the arising oscillations in the atomic
data can be described in terms of modulated traveling waves, and the macro-
scopic dynamics is governed by the modulation system (4.11).

(7i) Modulated traveling waves describe the microscopic oscillations emerging when
cold data form shocks.

(27i) If the shocks emerge from data with temperature, then usually the micro-
scopic oscillations exhibit a more complicated structure, and (single-phase)
modulation theory fails in this case.

Concerning the last item, results for the Toda chain suggest a hierarchy of modu-
lation models, enumerated by the number of phases, where shocks on a lower level
require the model of the next level, see e.g. the review |LLV93| and the references
therein.

Note that these numerical observation are valid only if the interaction potential
® is convex, the macroscopic scale results from the hyperbolic scaling, and the
microscopic initial data are given by modulated traveling waves.

In this section we give an brief survey on the numerical justification from |[DHO6|,
and present a typical example with periodic boundary conditions and smooth macro-
scopic fields. Moreover, in §6 we study the numerical solution of a Riemann problem
with cold initial data, and give an improved discussion of its macroscopic limit.
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In order to study the macroscopic behavior of the atomic chain for large N we
must evaluate the thermodynamic properties of the numerical data which are the
macroscopic fields of the local mean values, and the local distribution functions of
the atomic data. The computation of both mean values and distribution functions
relies on mesoscopic space-time windows. In what follows let F = I x IZ be such
a window where It and Ip are sets of time steps and particle indices, respectively.
The window F' is mesoscopic if and only if it is very small on the macroscopic scale,
but contains a lot of particles as well as time steps, i.e. flr, fIp ~ N* for some
exponent k with 0 < k < 1. In particular, any F' describes the microscopic vicinity
of a certain macroscopic point Zr = (tr, ar).

For any atomic observable ¢ we can easily compute the mean value (1) - of ¢ with
respect to each window F by a simple averaging formula. Note that there is a close
relation to the notion of Young measures. In particular, if the atomic data converge
for N — oo in the sense of Young measures, then (¢) is a good approximation
for () (t£, @x) from (4.3). Moreover, by means of F we can compute the complete
measure ,u(ff, ar, dQ), see [DHO6| for the details.

The micro-macro transition of modulation theory relies on the hypothesis that all
atomic oscillations can be described by modulated wave trains. If this is right, then
the microscopic distributions functions within any space-time window F must be
equivalent to an exact wave train. Of course, the parameters of this wave train may
depend on F. In order to justify this hypothesis for given F, we have to identify
four wave train parameters, namely the specific length r£, the mean velocity vz,
the wave number kz and a fourth parameter which might be the parameter vz, the
frequency wx, the entropy Sz, or the temperature Tx.

The values of rz, vr and Tx are given by mean values of microscopic observables.
This reads 77 = (r)z, vF = (V) 5, and Tr = (V%) — (v)%. Determining k r and ws
is not so obvious, because they have no immediate physical interpretation on the
microscopic scale. To overcome this problem we introduce auziliary observables Wy,
and W, see |DHO6| for their definitions, and set

k’]: = <\I/k>}-, Wr = <\I/w>]_-.

In the next step we start a numerical scheme similar to (3.3), which allows to pre-
scribe the values 7z, vg, kg and Tx, see [DHO5| for details, and compute an exact
wave train with these parameters. For any F, the scheme yields a profile function
V£ as well as a frequency wx" which does not result from the auxiliary observable
W, but satisfies a dispersion relation.

Finally, we compare the microscopic distribution functions from the numerical data
with their macroscopic predictions which can be expressed in terms of V£, In par-
ticular, according to modulation theory, the support of the microscopic distribution
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functions must equal the curve

@ Q™(@) = (rr + AV + kr/2), v +wr Vr(p)). (5.1)

This rather strong prediction can be check for given numerical data.

Smoothly modulated initial data

We study the evolution of data with temperature by imposing initial data in form
of smoothly modulated binary oscillations, i.e. we set

odd ; H odd : .
ro(0) = { rodd(eaq) if «is odd, v(0) = { v ea) if ais odd,

reV(ea) if « is even, v (ea) if s even,

where rodd peven g0dd and peven may be read off from Figure 5.1. We solved
Newton’s equation for the Toda chain with N = 4000 up to the macroscopic time
tin = 0.4 by means of the Verlet scheme, see [SYS97, HLW02].

Figure 5.1 contains snapshots of the atomic data for several macroscopic times, where
the black colored curves represent the local mean values, and Figure 5.2 shows the
profiles for some macroscopic fields at time ¢ = 0.4. We observe that the atomic data
are highly oscillating on the microscopic scale so that any appropriate mathematical
descriptions of the limit N — oo must rely on measures. The computation of wave
number and frequency is illustrated in Figure 5.3, showing the oscillating values of
the auxiliary observables ¥, and W as well as their macroscopic mean values.

In Figure 5.4 we compare the microscopic distribution functions with their macro-
scopic predictions from modulation theory for six mesoscopic space-time windows
at ¢ = 0.4. For each of these windows we represent the distribution function of
microscopic data by a density plot with high (Gray) and low (White) probability for
finding a particle. Note that the support of every distribution functions is contained
in closed curves, and that the distribution functions vary on the macroscopic scale.

Distances, Time=0.0

+2.65 /—\/_/ 6 e | +3.80

+1.22
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+0.57 fem—————

150 —/\
0.
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+0.00

150 -/\

0. 1.

1.350A
" Velocities, Time=0.4 !

+2.63

+0.00

-2.63

0. 1.

Figure 5.1: Snapshots of the atomic distances and velocities at several macroscopic
times. The vertical lines at ¢ = 0.4 mark the space-time windows for Figure 5.4.
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Figure 5.2: Selected macroscopic fields as functions of @ for ¢ = 0.4.
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+0.77 +1.32

+0.51 +0.74

+0.24 +0.17
0. . 0

Figure 5.3: Wave number and frequency: oscillating auxiliary variables and macro-
scopic mean values.
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Figure 5.4: Distribution functions of the atomic data in three selected space-time
windows at ¢ = 0.4; for the @-coordinates see Figure 5.1. Each picture contains a
density plot of the atomic data (White and Gray) together with an illustration of
the macroscopic prediction (Black).

The black dots in Figure 5.4 represent the macroscopic predictions: we project 20
points Q; = QT (i/20) of the curve (5.1), into the density plots. Figure 5.4 reveals
that the curve (3.13) coincides with the support of the microscopic distribution func-
tions, and that the distance between ;1 and @); is related to the gray level of the
microscopic distribution functions. In conclusion, we can describe the microscopic
oscillations within any window F by a periodic wave train. Moreover, we can con-
clude that the macroscopic evolution of the thermodynamic fields is indeed governed
by the modulation equations (4.11), see the discussion in [DHO6].
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6 The shock problem

Since we expect a hyperbolic system describing the macroscopic limit, it is natural
to investigate Riemann problems and interpret the results in terms of hyperbolic
theory. A goal of this is to indicate selection principles for Riemann solvers that
account for the macroscopic limit of atomic chains.

We would naively expect to find rarefaction fans, shocks and possibly contact dis-
continuities, that are selected by characteristic curves and entropy conditions and
whose velocities are determined by characteristic velocities and Rankine-Hugoniot
conditions.

It turns out that this picture is invalid when microscopic oscillations occur, leading to
modulated wave trains as mentioned in §4. Instead, we find a situation very similar
to the zero dispersion limit of the KdV equation mentioned in §1, where dispersive
shock fans replace Lax-shock, and where velocities are not given by characteristic
velocities of the limiting Burger’s equation, corresponding to the p-system in our
case. Faced with a large number of publications on this matter, we restrict references
here to [LLV93, LP05, EI05] and the bibliographies therein.

We focus on cold initial data, i.e. constant displacements and velocities with a single
jump at some ay, i.e.

(r,v)(@,0) = (r_,v_), a < @, and (r,v)(a,0) = (ry,vy), @ > Q..

The macroscopic limit of the harmonic potential for such Riemann problems is cold
and described by (4.13). It is therefore described by the corresponding p-system,
which is a linear 1D wave equation, whose dynamics can be understood directly
from the d’Alembert solution form, so there are only contact discontinuities.

For general nonlinear potentials, there is numerical evidence that dispersive shocks
appear for initial data leading to Lax-shocks of the p-system, while rarefaction data
leads to cold macroscopic limits described by the p-system. In Figure 6.1 we plot
a typical situation for illustration, and sketch a dispersive shock fan in Figure 6.3.
We are particularly interested in the transition of the Whitham modulation at its
front.

Remark 6.1. For convex flux, i.e. ®” > 0, the p-system can be solved uniquely
in terms of at most two rarefaction or shock waves [Smo94|. For non-convex flux
the situation is more complicated, and the entropy conditions for the p-system no
longer agree, because eigenvalues are no longer genuinely nonlinear [KS97, LeF02].
A specific choice of a convex-concave potential for (1.1), numerically yields a macro-
scopically cold, strong shock, connecting states with equal characteristic velocities,
and traveling with a different Rankine-Hugoniot velocity. In particular, it is not a
contact discontinuity or Lax shock, but a (fast) undercompressive shock. Details on
this phenomenon will be published elsewhere.

The macroscopic dynamics in space-time for Riemann data appear to be self-similar,
hence reducible to a macroscopic velocity variable ¢ = «a/t = @/t. More formally, we
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Figure 6.1: Riemann problem with N = 4000 and ®(r) = (r—1)%/2—cos(2(r—1))/4
with one rarefaction wave and one dispersive shock: snapshots of atomic distances
and velocities for ¢ = 0.0, t = 0.15, and ¢ = 0.3.

assume that the Young measure u(c) arising in the macroscopic limit for (initially
cold) Riemann problems at each ¢ is either a point measure or supported on a closed
curve, corresponding to a wave train, so that from the modulation ansatz (4.5) we
obtain X(c, ¢) and analogously, from §4.3, an expression M¢(c, ) for the vector of
modulated distances and velocities. We use the phase variable ¢ to parametrize the
support of p(c). In case u(c) is a point measure, we obtain a strong limit where
X(c, ) =0.

A dispersive shock spans a range of speeds from the shock back velocity, ¢, to the
shock front velocity, ¢;. To ease notation, we assume 0 < ¢, < ¢, and that the
constant states to the left and right of the dispersive shock are (r_,v_) and (ry, v;)
as sketched in Figure 6.3.

It is instructive to view the modulation of wave trains in a dispersive shock as the
selection of a curve in the set of wave trains X(c, ¢) parametrized by ¢, < ¢ < ¢
in terms of the wave train parameters (r(c),k(c),w(c)). This curve bridges the
energy jump between the constant states (r_,v_) and (r,,vy), and the wave trains
become singular at ¢, and ¢;. Based on numerical evidence [HFM81| and results
for the Toda chain [VDO91, Kam91|, we assume that M¢(cy) = (r_,v_) has zero
amplitude, and the shock front M¢(¢¢) corresponds to a soliton with background
state (ry,vy), where k(¢;) = w(c) = 0. Note that this is a singular limit of (3.4)
and that Theorem 3.10 implies infinite kinetic energy 7(cf). We plot wave trains
and fields within a dispersive shock in Figure 6.2.

More precisely, the shock front is assumed to be a homoclinic orbit

H(s) := lim M*(c¢)

c—cy

in the phase scaling ¢ = ws with asymptotic state limg 1+ H(s) = (ry,vy). We
expect the convergence to the asymptotic state is exponential in s, thus L,-norms
of [H(s) — (4, v4)] are finite. In terms of the wave train profile X and V = 9,X we
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Figure 6.2: Example for dispersive shocks. Left: snapshots of atomic distances
and their local mean values. Center: superposition of several distribution functions
within the shock; positions of the space-time windows are marked by vertical lines.
Right: snapshots of temperature and entropy.

can write the second component Hy of H as

. . d
H(s) := Ha(s) — v = lim w(c)V(c,w(c)s) = lim —X(c, w(c)s).
c—cy Cc—Ct ds
Both the vanishing amplitude at ¢, and sinusoidal oscillations, and the homoclinic
orbit at ¢ are natural codimension-1 singularity along a curve of wave trains viewed
as periodic orbits.

Assuming a soliton at the shock front means in particular that the modulation
system does not have a strong shock, which is challenging to confirm numerically as
discussed below. Instead, we conjecture that at the shock front the entropy S jumps
and (r,v, k,w) are continuous with unbounded derivative. Heuristically, the excess
energy at the jump in the initial data cannot be dissipated by the conservative
system, but is transported dispersively via oscillations with two new degrees of
freedom, frequency and wave number.

Properties at and near the soliton

We predict the scaling of temperature and related quantities assuming the scaling in
generic or conservative homoclinic bifurcations of ODEs [VF92|, where the unfolding
parameter, here ¢, is exponentially small in the period, here 1/w. We thus expect
¢ — ¢~ e F% for some k > 0, and so

w(c) ~ k(c) ~1/log(cs — ¢),

because Theorem 3.9 implies the same scaling in k. Indeed, this scaling could be
confirmed for the case of Toda potential using the explicit solutions in [DKV95|,
and also appears in the formal derivations in [E105].

Temperature, entropy, entropy fluz. The definition T = w? fl V(p)2de of the tem-

0
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perature of a wave train yields

1 1/w(e)
T(c) = / W(OV(e, ) dp = w(c) / w(e)V(e,w(e)s) ds

and thus (assuming smoothness) the limiting temperature of the soliton

1/w(e) 00
lim T'(c) = lim w(c)/ [w(e)V(e,w(c)s)]” ds = / H(s)*ds lim w(c) = 0,

c—cy c—cy 0 0 c—cy
because the L2 norm of H is finite. Then the scalings of temperature 7', entropy S
and entropy flux g, see (3.16), are given by

T(c) ~ (log(cs =)™, gle) ~ S(e) =T(c)Jw ~ 1,

where we used ¢S’ = ¢’. We thus predict that the temperature is continuous for all ¢
and decays to zero like 1/log. Entropy and entropy flux vanish in cold regions, but
continuously approach a finite, non-zero value and jump to zero beyond the shock
front.

Since the temperature also decays towards the shock back, we expect a unimodal
curve T'(c) with a unique maximum, as is the case in e.g. a planar ODE where the
interior of a homoclinic orbit is filled with periodic orbits and an elliptic equilibrium.

However, these scalings and limiting values are difficult to confirm numerically, be-
cause the 1/log decay is hard to resolve, and the shock front could not be simulated
in isolation from the rest of the modulation region due to boundary effects.

Norm parameter v. On account of Theorem 3.10, the norm parameter v grows at
least like 1/k, so that v(c) > —C'log(cs — ¢), for a constant C' > 0. This agrees with
the prediction from the above entropy scaling, because

N B
2w w? w oslc = ¢

v(c)

Mean distance and velocity. Assuming that ¢ unfolds the homoclinicity as a generic
(or Hamiltonian) ODE, the flow time through a fixed small region near (rp,v,)
grows logarithmically in ¢ and thus for the average values we obtain the scaling

r(c) =ry —ri/log(cs — ¢) + h.ot. v(c) =vy —v1/log(es — ¢) + h.o.t.,

with some constants 71, vo, since the limiting values are those of the corresponding
Riemann data.

Note that the first equation in (4.4) implies —cr’ = v’ in the sense of distributions,
where " = d/dc. Therefore, —cgr; = vy, and so

cf = —v1/m (6.1)

replaces the Rankine-Hugoniot jump condition.
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Propagation speeds. The modulation equations yield five equations for the propa-
gation speed of the shock front; four in term of leading order expansions such as
—cr’ = v — —c¢ = dv/dr above, and one jump condition ¢[S] = [g]. Indeed,
in numerical simulations of dispersive shocks all these velocities are close to that
obtained from the slope of the shock front in space-time.

The conservation of wave number implies —ck’ = w’ and thus throughout the disper-
sive shock we have —c¢ = ¢, := dw/dk, which is the group velocity and not the phase
velocity cpn := —w/k of wave trains. Note that here, —c is the expected propagation
velocity due to the choide of sign for w in (3.3) and (4.7).

In particular, the shock front should move with the limiting group velocity, while
the soliton speed naturally is the limiting phase velocity. However, in the solitary
limit, phase and group velocity typically coincide, because for L = 1/k we have the
identity

. deh
Cg = Cpn — L7,

depy . . ) L :
where gzh is exponentially small for generic and conservative homoclinic bifurcations

. . . depn  cg—cp
in ODE [VF92[; the identity follows from —f* = ===,

Recall that the phase velocities of wave trains were estimated in (3.14) and rigorously
imply that the soliton velocity is bounded (essentially) by p-system characteristics
velocities c_, c_ of the left and right states r_, r,. However, in numerical simu-
lations, the shock front velocity ¢; never exhausted these bounds, but was strictly
between c_ and c,.

tA modu{ated rd
p-systeni wave trains
- C r C
s ’ . +--
e
[ Ch ;
S - “modulated : PSYS
p-system g P~SyS.wave trains: g

Figure 6.3: Left: Sketch of a dispersive shock for the macroscopic limit of a shock
problem in (1.1). Dashed line is the p-system Lax shock with speed ¢,;,, dotted the
p-system characteristic velocities cx of left and right states (ry,v.). Right: sketch
of the r-modulation at some time ¢, > 0 with 1/log scaling at c;.

On the other hand, the shock velocity of the p-system is given by the Rankine-
Hugoniot condition ¢, = /(®(r_) — ®(r,))/(r— —ry), and in all cases (for @’
monotone) we numerically found the velocity ordering sketched in Figure 6.3, that
is,

Cph < Cp < Cp < ¢ < cC_,

where ¢, — ¢ ~ 5%. Characteristics point into the dispersive shock fan, and indeed,
we seem to find dispersive shocks only if ¢ < ¢, < ¢y, see also Remark 6.1.
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Finally, we mention that the velocity ¢, of the shock back, where wave trains have
small amplitude, numerically agrees with the prediction from harmonic modulation
equations, i.e. ¢, = VO"(r_) sin(mwk(ey,))/mky.

Remarks and open problems

The occurrence of dispersive shocks has only been proven rigorously for some com-
pletely integrable cases, in particular the Toda chain [VDO91, Kam91|. Unfortu-
nately, the literature on this issue is not easily accessible to non-specialists, and we
found it inconclusive concerning the rigorous justification of a hyperbolic system
of Whitham modulation equations. In fact, neither the observation that the shock
front is a soliton, nor the scaling at the shock front, nor the velocity of the shock
back seem to be worked out.

Similarly, to our knowledge, the selection mechanism for the soliton has not been
formulated in terms of initial values for the Riemann problem (though the shock
front velocity for the Toda shock problem can be computed explicitly [VDO91]). An
observation towards a selection principle could be that in numerical experiments for
vanishing initial velocities, the dispersive shock exhausts precisely the range between
the initial jump in the r-component. We also observe that the dispersive shock in
(c,r,v)-space is a graph over the plane (0,7,v). In other words, the modulation
parameter curve (r,v, k,w)(c) appears to be selected in such a way that wave train
orbits @) are (nested) level sets of an unknown function.

We hope that a study of the explicit solutions for the case of Toda potential, and
results for zero dispersion limits mentioned in §1, provide more insight into the
general situation, in particular the prediction of dispersive shocks and the shock
front velocity.
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