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Abstra
tWe present an overview of re
ent results 
on
erning wave trains, solitonsand their modulation in FPU 
hains. We take a thermodynami
 perspe
-tive and use hyperboli
 s
aling of parti
le index and time in order to passto a ma
ros
opi
 
ontinuum limit. While strong 
onvergen
e yields the well-known p-system of mass and momentum 
onservation, we generally obtain aweak form of it in terms of Young measures. The modulation approa
h a
-
ounts for mi
ros
opi
 os
illations, whi
h we interpret as temperature, 
ausing
onvergen
e only in a weak, average sense. We present the arising Whithammodulation equations in a thermodynami
 form, as well as analyti
 and nu-meri
al tools for the resolution of the modulated wave trains. As a prototypefor the o

urren
e of temperature from os
illation-free initial data, we dis
ussvarious Riemann problems, and the arising dispersive sho
k fans, whi
h re-pla
e Lax-sho
ks. We predi
t s
aling and jump 
onditions assuming a generi
soliton at the sho
k front.1 Introdu
tionWe 
onsider 
hains of N identi
al parti
les as plotted in Figure 1.1, nearest neighbor
oupled in a nonlinear potential Φ : R → R by Newton's equations
ẍα = Φ′(xα+1 − xα) − Φ′(xα − xα−1), (1.1)where ˙ = d

dt
is the time derivative, xα(t) the atomi
 position, and α = 1, . . . , N theparti
le index. Sin
e the work of Fermi, Pasta and Ulam [FPU55℄ one usually refersto (1.1) as FPU 
hains.

xα−1 xα
xα+1 xα+2

rαFigure 1.1: The atomi
 
hain with nearest neighbour intera
tion.We mainly 
onsider general, 
onvex potentials Φ. While our fo
us lies on nonlinear
Φ′, the harmoni
 potential with linear for
es is an instru
tive, 
ompletely integrableexample. A nonlinear example, but still 
ompletely integrable, is the famous Toda
hain, see [Tod70, DKKZ74, Hén74℄ with potential

Φ(r) = exp (1 − r) − (1 − r). (1.2)For our purposes it is 
onvenient to use the atomi
 distan
es rα = xα+1 − xα andvelo
ities vα = ẋα as the basi
 variables, 
hanging (1.1) to the system
ṙα = vα+1 − vα , v̇α = Φ′(rα) − Φ′(rα−1). (1.3)1



Rather than investigating solutions of (1.3) for �nite N , we fo
us on the thermody-nami
 limit ε = 1/N → 0 in the hyperboli
 s
aling of the mi
ros
opi
 
oordinates tand α, whi
h is de�ned by the ma
ros
opi
 time t = εt and parti
le index α = εα.It is natural to s
ale the atomi
 positions in the same way, i.e. x = εx, whi
h leavesatomi
 distan
es and velo
ities s
ale invariant. For a survey on other reasonables
aling we refer to �2 and [GHM06a℄.Our main goal is to derive a mi
ro-ma
ro transition for the atomi
 
hain, i.e. weaim to repla
e the high dimensional ODE (1.1) by a few ma
ros
opi
 PDEs. Thederivation of su
h a 
ontinuum limit is simple as long as the atomi
 data vary onthe ma
ros
opi
 s
ale only, see (1.9) below. If, however, the atomi
 data os
illateon the mi
ros
opi
 s
ale, the problem is tremendously 
ompli
ated, be
ause thendistan
es and velo
ities do not 
onverge to ma
ros
opi
 fun
tions. Instead, at ea
hpoint in the ma
ros
opi
 spa
e-time, the lo
al (r, v)-distribution 
onverges to anontrivial Young-measures, see �5. We interpret the mi
ros
opi
 os
illations as aform of temperature in the 
hain, see �2, and refer to os
illation-free limits as 
old.The main problem in the 
ase of temperature is to �nd an appropriate des
riptionfor the stru
ture and evolution of the os
illations. Even if we are interested in thema
ros
opi
 behavior of averaged quantities only, the mi
ros
opi
 os
illations de-termine the evolution of the internal energy, that is, the amount of energy whi
his stored in purely mi
ros
opi
 motion. In other words, any reasonable ma
ros
opi
limit for os
illatory solutions needs to des
ribe thermodynami
 e�e
ts, su
h as 
re-ation of temperature and transport of heat. Unfortunately, no rigorous theory isknown that applies without further assumptions.Numeri
al simulations as dis
ussed in �5 and �6, as well as rigorous results for theToda 
hain, 
f. [HFM81, Kam91, VDO91, DKKZ96, DM98℄, suggest that for 
ertainsolutions of (1.1), the arising mi
ros
opi
 os
illations 
an be des
ribed by modulatedtraveling waves. Traveling waves are highly os
illatory exa
t solutions of (1.1). Themost relevant kind for our purposes are wave trains whi
h are periodi
 fun
tionsof a single phase variable, depending on four 
hara
teristi
 parameters. Modulatedwave trains arise when these parameters vary on the ma
ros
opi
 s
ale.A 
hara
teristi
 property of wave trains is that the arising Young measures are sup-ported on 
losed 
urves. As a 
onsequen
e, they 
orrespond to a very spe
ial kindof temperature whi
h is not related to our usual notion of thermalization. How-ever, they give rise to a thermodynami
ally 
onsistent ma
ros
opi
 theory involvingtemperature, entropy, and so on. Moreover, if 
old initial data form ma
ros
opi
sho
ks, then Newton's equations self-organize into mi
ros
opi
 os
illations in formof modulated wave trains, and in this sense our notion of temperature turns out tobe generi
.Some aspe
ts of the problems addressed in this arti
le have mu
h in 
ommon with
ertain zero dispersion limits, whi
h we will brie�y dis
uss next to illustrate our2



point of view. This is not to be 
onfused with so 
alled zero di�usive-dispersivelimits, where di�usive e�e
ts prevail, 
f. e.g. [S
h82, KL02℄. The most prominentexample is Burger's equation
∂ tu+ u ∂αu = 0, (1.4)whi
h, on a formal level, is the zero dispersion limit of the KdV equation

∂ tu+ u ∂αu+ ε ∂ 3
α u = 0. (1.5)The main question is under whi
h 
onditions the solutions of (1.5) 
onverge as ε→ 0to (weak) solutions of (1.4). The rigorous theory for this problem was developedby Lax and Levermore in [LL83, Ven85℄ by relying on the 
omplete integrability of(1.5).It is well known that generi
 initial data uini yield a 
riti
al time tcrit su
h that (1.4)has a unique smooth solution for 0 < t < tcrit, but for t > tcrit solutions exist ina weak sense only, having at least one dis
ontinuity at some αcrit, and satisfying

∂ tu+ 1
2
∂α (u2) = 0 in the sense of distributions.Imposing the same initial datum uini for KdV, the typi
al behavior for ε → 0 is asfollows, see for instan
e the surveys in [Lax86, Lax91, LLV93℄. For 0 < t < tcritthe solutions uε of (1.5) 
onverge strongly to the unique smooth solution of (1.4).However, for t > tcrit the KdV-solutions be
ome highly os
illatory in a neighborhoodof αcrit with wavelength 1/

√
ε, and 
onverge to a weak limit 〈u〉 only. The mainpoint is that 〈u〉 does not satisfy Burgers equation, i.e. ∂ t 〈u〉+ 1

2
∂α 〈u〉2 6= 0, be
ause

〈u〉2 6= 〈u2〉.A dis
rete zero dispersion limit was studied in [GL88℄, repla
ing (1.4) by
u̇α + 1

2
uα (uα+1 − uα−1) = 0. (1.6)This s
heme is equivalent to a dispersive spatial dis
retization of (1.4), be
ausethe identi�
ation uα(t) = u(εt, εα) transforms (1.6) into ∂ tu + u∇±εu = 0 with

∇±εu
(
t, α

)
=

(
u
(
t, α + ε

)
− u

(
t, α− ε

))
/2ε, The numeri
al study in [GL88℄ pro-vides eviden
es for the same qualitative limiting behavior as for KdV. Further ex-amples for numeri
al s
hemes with interesting zero dispersion limit 
an be found in[HL91℄ and [LL96℄.Towards modulation theory, [GL88℄ found a simple des
ription for modulated binaryos
illations, whi
h provides an approximate solution of (1.6) satisfying uα ≈ vα +

(−1)αwα, where vα and wα vary on the ma
ros
opi
 s
ale only. The modulationequations for binary os
illations read
∂ t a+ a ∂α b = 0, ∂ t b+ b ∂α a = 0. (1.7)where a = v + w and b = v − w. This system is stri
tly hyperboli
 if and only if aand b have the same sign, and 
onservation laws for ln a and ln b imply that stri
tlypositive initial data stay positive for all times.3



Let a = a
(
t, α

) and b = b
(
t, α

) be a smooth solution of (1.7) de�ned until tcrit, anddenote the 
orresponding modulated binary os
illations by
umod

α (t) = v(εt, εα) + (−1)αw(εt, εα). (1.8)It is proven in [GL88℄ that (1.8) indeed yields approximate solutions of the mi
ro-s
opi
 system for t < ε−1tcrit in the sense that umod
α (t) − uα(t) 
onverges to zero as

ε → 0 for t < tcrit if uα(0) = umod
α (0). For larger times we expe
t that modulatedbinary os
illations are not longer 
lose to an exa
t solution.Returning to the atomi
 
hain (1.1), we next derive the ma
ros
opi
 evolution of 
olddata, i.e. we assume ma
ros
opi
 �elds r(t, α) and v(t, α) su
h that rα(t) = r(εt, εα),

vα(t) = v(εt, εα). Substitution into (1.3) yields
∂ t r −∇+εv = 0, ∂ t v −∇−εΦ′(r) = 0, (1.9)In the limit ε → 0 we formally obtain the so 
alled p-system 
onsisting of thema
ros
opi
 
onservation laws for mass and momentum given by
∂ t r − ∂α v = 0, ∂ t v − ∂α Φ′(r) = 0. (1.10)It is well known that, for 
onvex Φ, the p-system is hyperboli
 and that for smoothsolutions the energy is 
onserved a

ording to
∂ t

(
1
2
v2 + Φ(r)

)
− ∂α (vΦ′(r)) = 0. (1.11)In analogy to the previous dis
ussion, the p-system des
ribes the thermodynami
limit for 
old atomi
 data as long as these data are smooth on the ma
ros
opi
 s
ale.However, we will show next that, if the nonlinearity forms a sho
k, then the p-systemis no longer a thermodynami
ally 
onsistent model for the ma
ros
opi
 evolution.For simpli
ity, we assume that the �ux fun
tion Φ′ is 
onvex so that all eigenvaluesof (1.10) are genuinely nonlinear. A

ording to the Lax theory of hyperboli
 system,
f. [Smo94, Daf00, LeF02℄, a sho
k wave propagates with a 
onstant sho
k speed

c so that r and v satisfy the Rankine-Hugoniot jump 
onditions a
ross the sho
kgiven by
−c|[r]| − |[v]| = 0, −c|[v]| − |[Φ′(r)]| = 0, (1.12)where |[·]| denotes the jump. However, (1.12) implies that the jump 
ondition for theenergy must be violated, i.e. for sho
ks with (1.12) we have

−c|[1
2
v2 + Φ(r)]| − |[vΦ′(r)]| 6= 0.Consequently, the p-system predi
ts some produ
tion for the ma
ros
opi
 energy(the Lax 
riterion sele
ts only sho
ks with negative produ
tion).In 
ontrast, Newton's equations always 
onserve mass, momentum and energy.Therefore, the p-system 
annot des
ribe the thermodynami
 limit beyond the sho
k4



at whi
h the atomi
 data start to os
illate. Indeed, some amount of energy is dissi-pated into internal energy leading to a dispersive sho
k fan. It is one of the meritsof modulation theory that it 
an des
ribe the mi
ros
opi
 os
illations emerging from
old sho
ks as dis
ussed in �6.The arti
le is organized as follows. In �2: we brie�y sket
h the thermodynami
alframework. We survey some existen
e and approximation results of wave trains andsolitons in �3, in
luding multi-phase wave trains, thermodynami
 properties andnew a priori estimates. �4 gives a brief overview on Whitham's modulation theoryapplied to FPU 
hains, leading to a system of four 
onservation laws for wave trainparameters. In �5 we brie�y summarize some aspe
ts of numeri
al justi�
ation byevaluating the aforementioned Young measures and testing assumptions of modula-tion theory. The sho
k problem for 
old Riemann data is dis
ussed in �6, and we
hara
terize the behavior of all ma
ros
opi
 �elds at the sho
k front by assumingthat is 
onsists of a generi
 soliton.2 Thermodynami
 frameworkThermodynami
s des
ribes the evolution of deformation and heat on the ma
ro-s
opi
 s
ale in a body, whi
h may be isolated from the surroundings or is subje
tedto external supply of me
hani
al for
es and heat. In the following we will illustratethe strategy of thermodynami
s for a ma
ros
opi
 body in one spa
e dimension,that is mi
ros
opi
ally 
onstituted by an atomi
 
hain. To this end thermodynam-i
s 
onsiders, at any Lagrangian spa
e-time point (t̄, ᾱ) a 
ertain number of spe
i�
densities uj(t̄, ᾱ), j = 1...M , and determines these �elds by means of a system ofPDEs for given initial and boundary data. The most important densities in 1D arethe spe
i�
 volume (mean distan
e) r, the ma
ros
opi
 velo
ity v, and the spe
i�
total energy E = 1
2
v2 + U , uniquely de
omposed into kineti
 energy and spe
i�
internal energy U .The PDE system relies on M equations of balan
e that read in regular points
∂ tuj + ∂αFj = Pj , j ∈ {1, 2, . . . , M}, (2.1)where fj and Pj are 
alled �uxes and produ
tions, respe
tively. The fundamentalbalan
e equations are the 
onservation laws for mass, momentum and energy givenby

∂ t r − ∂α v = 0 , ∂ t v + ∂α p = 0 , ∂ tE + ∂α f = 0, (2.2)where p denotes the pressure and f is the energy �ux, satisfying f = pv+q with heat�ux q. Further 
onservation laws are possible, but those are material and pro
essdependent. 5



In order that (2.1) be
omes a 
losed system for the variables, thermodynami
s has tomodel 
onstitutive equations that relate, in a material dependent manner, the �uxesand produ
tions to the densities themselves and/or their time and spa
e derivatives.The generality of the 
onstitutive fun
tions is restri
ted by universal prin
iples likeGalileian invarian
e and the entropy prin
iple, and by material dependent symmetryprin
iples. The entropy prin
iple 
onsists of several parts, see [MR98℄ for moredetails.1. There exists an entropy pair (S, g), given by (material dependent) 
onstitutivefun
tions in terms of the densities uj, so that the entropy density S is a 
on
avefun
tion.2. The 
onstitutive laws 
losing (2.1) yield a further balan
e equation
∂ tS + ∂α g = Σ ≥ 0 with Σ = 0 ⇐⇒ Pj = 0, (2.3)where Σ denotes the non-negative entropy produ
tion.3. The de�nition of (absolute) temperature Tmacro is given by

Tmacro =
∂U

∂S
. (2.4)Note that this phenomenologi
al de�nition is a priori unrelated to any mi
ro-s
opi
 model.4. The law of Clausius-Duhem holds, i.e. Tmacrog = q.This abstra
t framework is the basi
 paradigm of Rational Thermodynami
s andassumed to hold in all 
ases. However, the 
onstitutive laws depend on the 
hosenma
ros
opi
 s
aling and are generally unknown. Nevertheless, the s
aling predi
tsthe way in whi
h the �uxes (and produ
tions) 
an and 
annot depend on the den-sities. For instan
e, in the hyperboli
 s
aling, the ma
ros
opi
 equations must beinvariant (to leading order) under (t̄, ᾱ) 7→ (λt̄, λᾱ), whereas the paraboli
 s
aling

(t̄, ᾱ) = (ε2t, εα) implies ma
ros
opi
 invarian
e under (t̄, ᾱ) 7→ (λ2t̄, λᾱ).Therefore, in the hyperboli
 s
aling all 
onstitutive relations for the �uxes must belo
al, i.e. Fj depends pointwise on the densities uj, so that (2.2) is a �rst ordersystem. We mention that hyperboli
ity of (2.1) is guaranteed if the entropy S is a
on
ave fun
tion, see [MR98℄. Generally, for the hyperboli
 s
aling, all 
onstitutiverelations 
an be en
oded in a Gibbs equation with a single thermodynami
 potential.On the other hand, for paraboli
 s
aling, we expe
t that the �uxes depend (mainly)on the spatial derivatives of the densities. In the simplest 
ase the energy �ux f isgiven by Fourier's law, i.e. f = ∂ᾱU , so that the energy balan
e leads to the heatequation.In 
on
lusion, we sket
h the ma
ros
opi
 thermodynami
s for the atomi
 
hain (1.1)as it results from modulated wave trains. It turns out that the ma
ros
opi
 system6



(2.1) 
onsists of the three fundamental and a fourth equation, the 
onservation ofwave number ∂ t k − ∂αω = 0, with wave number k and frequen
y ω. In addition,there is a �fth 
onservation law for the entropy S, i.e. Σ = 0 in (2.3), and all�uxes are given by the thermodynami
 potential U = U(r, k, S) through the Gibbsequation
dE = ω dS − p dr − g dk + v dv. (2.5)Note that the equation of state depends on the 
hain, i.e. on the potential Φ, whereas(2.5) is universal. From (2.4) and (2.5), we infer that the ma
ros
opi
 temperature

Tmacro equals the wave train frequen
y ω. Interestingly, here there is a di�eren
ebetween Tmacro and the kineti
 temperature de�ned as the mean kineti
 energy ofthe atoms, see �3. However, it turns out that the Clausius-Duhem law is satis�ed,i.e. we �nd q = ωg.3 Traveling wavesTraveling waves are exa
t solutions of the in�nite 
hain (1.1) for N = ∞ of theform xα(t) = x(α− ct) depending on a single phase variable φ and traveling with a
onstant speed c. In the 
ontext of the ma
ros
opi
 limits that we 
onsider, relevanttraveling waves are solitons, whi
h vanish as φ → ±∞, and wave trains, whi
h areperiodi
 in φ. Due to Galilean invarian
e, we 
an allow additional drift in spa
e-timeof the form
xα(t) = rα+ vt+ yα(t),where the pro�le yα(t) solves the modi�ed latti
e equations

ÿα = Φ′(r + yα+1 − yα) − Φ′(r + yα − yα−1) (3.1)and traveling waves yα(t) = Y(α − ct) solve the se
ond order advan
e-delay di�er-ential equation
c2∂φφY(φ) = Φ′(r + Y(φ+ 1) − Y(φ)) − Φ′(r + Y(φ) − Y(φ− 1)). (3.2)3.1 Wave trainsNormalizing the period of wave trains to 1 and using c = ω/k with wave number kand frequen
y ω, we obtain the form

xα(t) = rα + vt+ X(kα + ωt), (3.3)where X(ϕ) is the 1-periodi
 wave pro�le fun
tion. There are unique 
hoi
es forthe average distan
e r and the average velo
ity v su
h that ∫ 1

0
X(ϕ)dϕ = 0. Uponsubstitution into Newton's equations, we obtain the analogue of (3.2)

ω2∂ϕϕX = Φ′(r + X(ϕ+ k) − X(ϕ)) − Φ′(r + X(ϕ) − X(ϕ− k)), (3.4)7



with the three parameters r, k, ω. Another useful formulation is the �xed pointequation, or nonlinear eigenvalue problem, for V = ∂ϕX

ω2
V = F(V) := Âk∂Φ

(
r + ÂkV

)
, (3.5)where the operator Âk and the Nemy
kii operator ∂Φ are de�ned by

(ÂkV)(ϕ) := AkV(ϕ) − k

∫ 1

0

V(s)ds , AkV(ϕ) :=

∫ ϕ+k/2

ϕ−k/2

V(τ)dτ

∂Φ(V)(ϕ) := Φ′(V(ϕ)).Distan
es and velo
ities of the mi
ros
opi
 wave trains are then
rα(t) = r + AkV(kα + ωt+ k/2) , vα(t) = v + ωV(kα+ ωt). (3.6)Existen
e and approximation of wave trainsWe give an overview of the variational approa
h to wave train existen
e and approx-imation by numeri
al s
hemes that are based on maximizing

W(V) =

∫ 1

0

Φ
(
r + ÂkV

)
dϕ, V ∈ Hγ :=

{
V ∈ L2([0, 1]) :

1

2
‖V‖2

L2 ≤ γ

}
.Problem 3.1. For given parameters r, k and γ > 0 we seek maximizers of W in

Hγ, i.e. we solve W (r, k, γ) = max
V∈Hγ

W(V).Theorem 3.2. Problem 3.1 always has a solution. In parti
ular, there exists amaximizer V with ‖ V ‖L2=
√

2γ together with a positive Lagrangian multiplier
ω2

1 > 0 su
h that V and ω2 solve (3.5).S
heme 3.3. Let any parameter set for problem 3.1 be given, and let V0 ∈ Hγ bean arbitrary initial datum with ÂkV0 6= 0. Then we de�ne indu
tively two sequen
es
(Vn)n∈N

⊂ Hγ and (ωn)n∈N
by the following iteration step

Vn+1 =
1

fn

Wn , Wn = FVn , fn =
‖Wn ‖L2√

2γ
, ωn+1 =

√
fn.In [Her04℄ it is proved that this s
heme is 
ompa
t, and numeri
al simulations indi-
ate that 3.3 
onverges.Remark 3.4. In fa
t, Theorem 3.3.2 in [Her04℄ proves that every 
losed 
one offun
tions that is invariant under F 
ontains at least one traveling wave. For the
one of even monotone fun
tions used below, this was also shown in [FV99℄, Theorem2.14. 8



By means of S
heme 3.3 we 
an 
ompute wave trains with pres
ribed parameter
γ = 1

2
‖V‖2

L2. There are variants of 3.3 whi
h allow to pres
ribe either the entropy
S or the temperature T of a wave train (for the de�nition of S and T see �3.1below). Hen
e, wave trains are parametrized (at least) by (k, r, γ), as well as triviallyby v; the latter is relevant for the modulation equations dis
ussed in �4. On mayview the parameter ω of the wave train equation (3.4) depending on (r, k, γ) viaa 'dispersion relation', here expressed as the Lagrange multiplier. We emphasize,that it is not known whether the set of wave trains is a smooth three-dimensionalmanifold of orbits; note that phase shifts V(· + s) trivially give rise to an (at least)one-dimensional kernel of the linearization ω2 − DF(V) of (3.5) spanned by ∂ϕV.Moreover, for given parameters there is a dis
rete multipli
ity of solutions, be
ausesolutions for mk, m ∈ N, are solutions for k as well, though these do not haveminimal period 1. We 
onje
ture that wave trains are unique in 
ones de�ned bymonotoni
ity properties of V as dis
ussed below.Existen
e and approximation of multi-phase wave trainsWe present new results 
on
erning the existen
e of multi-phase waves, whi
h willbe published with full details elsewhere. As before, our variational approa
h isessentially restri
ted to 
onvex intera
tion potentials Φ, but allows for arbitrarylarge amplitudes.For simpli
ity we 
onsider only two-phase wave trains having two wave numbers k1and k2. However, all results 
an easily be generalized to other multi-phase wavetrains. Moreover, to avoid te
hni
alities we always suppose that Φ is de�ned on thewhole real axis with bounded and 
ontinuous se
ond derivative Φ ′′.A two-phase wave train is an exa
t solution of Newton's equations satisfying

xα(t) = rα + vt+ X(k1α + ω1t, k2α + ω2t). (3.7)Here r, v, k1, k2, ω1 and ω2 are given parameters, and the pro�le fun
tion X isassumed to have zero average and be 1-periodi
 with respe
t to ea
h phase variable
ϕi = kiα+ωit. The ansatz (3.7) gives rise to the advan
e-delay di�erential equation

(
ω2

1 ∂
2
ϕ1

+ ω2
2 ∂

2
ϕ2

)
X = ∇−∂Φ

(
r + ∇+

X
) (3.8)where ∇± are di�eren
e operators de�ned by

(
∇±

X
)
(ϕ1, ϕ2) := ±X(ϕ1 ± k1, ϕ2 ± k2) ∓ X(ϕ1, ϕ2)Our aim is to identify an optimization problem with a single s
alar 
onstraint su
hthat (3.8) is equivalent to the 
orresponding Euler-Lagrange equation with multiplier

ω2
1. Consequently, we regard the ratio β = ω2/ω1 as parameter of this problem.Let T2

∼= [0, 1] × [0, 1] be the two dimensional torus with its 
anoni
 Lebesguemeasure, and let all fun
tion spa
es whi
h follow be de�ned on T2. We 
onsider the9



Sobolev spa
e
H1

0 =

{
X ∈ H1 :

∫

T2

X = 0

}
, ‖X ‖2

H1
0
:=

∫

T2

(∂ϕ1
X)2 + β2 (∂ϕ2

X)2. (3.9)This norm is equivalent to the standard norm on H1
0 as long as β 6= 0. Let E bethe 
anoni
 embedding E : H1

0 → L2, and E∗ its adjoint operator E∗ : L2 → H−1 =
(H1

0 )
∗. Note that E is 
ompa
t, and that here we have identi�ed L2 with its dual

L2∗. By △ we denote the Lapla
e operator 
orresponding to (3.9), i.e.
△ := ∂2

ϕ1
+ β2 ∂2

ϕ2
.Re
all that −△ : H1

0 → H−1 is an isometri
 isomorphism between Hilbert spa
es,and that the di�eren
e operators ∇± : L2 → L2 are 
ontinuous with (∇+)
∗

= −∇−.Moreover, our assumptions on Φ imply that the 
onvex fun
tional X 7→
∫
T2

Φ(X) iswell de�ned and 
ontinuous on L2.The spa
es and operators from above allow to regard the wave train equation as anequation in H−1. In parti
ular, (3.8) is equivalent to
−ω2

1△X = E∗
(
∇+

)∗
∂Φ

(
r + ∇+E X

)
, (3.10)where the Nemy
kii operator ∂Φ : L2 → L2 with X 7→ Φ′(X) is the Gateaux dif-ferential of the fun
tional (3.11). For �xed γ > 0 we de�ne the 
losed 
onvex set

Hγ ∈ L2 and the 
onvex Gateaux di�erentiable fun
tional W as follows
Hγ =

{
X ∈ H1

0 : 1
2
‖X ‖2

H1
0
≤ γ

}
, W(X) :=

∫

T2

Φ
(
∇+E X

)
. (3.11)Now (3.10) yields the following 
onstrained optimization problem.Problem 3.5. For given parameters r, k1, k2, γ > 0 and β 6= 0 we seek maximizersof W in Hγ, i.e. we solve

W (r, k1, k2, β, γ) = max
X∈Hγ

W(X).Theorem 3.6. Problem 3.5 always has a solution. In parti
ular, there exists amaximizer X with ‖ X ‖H1
0
=

√
2γ together with a positive Lagrangian multiplier

ω2
1 > 0 su
h that X and ω2

1 solve (3.10).Remark 3.7. By 
onstru
tion, (3.10) is an identity in H−1. However, X ∈ H1 impliesthat the right hand side of (3.10) is again an element ofH1, and the theory of ellipti
regularity provides X ∈ H3. Moreover, we 
an prove further regularity by exploitingSobolev's embedding theorems.In analogy to the single-phase wave trains, we 
an solve the optimization problem3.5 iteratively using an adapted abstra
t approximation s
heme.10



Geometry and phase velo
ity of wave trainsSin
e the modulation equations for the ma
ros
opi
 limit of the 
hain depend onwave trains, it is essential to understand properties of wave trains and their pa-rameter variation. Motivated by numeri
al simulations, we investigate geometri
properties of wave trains in the phase spa
e of distan
es and velo
ities. With thesho
k problem in mind, see �6, we are also interested in the transition to solitons asthe wave number tends to zero.From (3.5) we infer that if (V, ω, k, r) is a solution to (3.5), then (−V, ω, 1 − k, r)is also a solution, and vi
e versa: V(ϕ; k) = −V(ϕ + 1/2; 1 − k). In 
ase of abinary os
illation, k = 1/2, the symmetry implies that (3.4) redu
es to the planarHamiltonian ODE
ω2∂ϕϕX = Φ′(r − 2X) − Φ′(r + 2X). (3.12)More generally, for rational k = n/m equation (3.4) 
an be written as an m-dimensional se
ond order Hamiltonian ODE with 
omponents Xj = X(· + jn/m),

j = 0, . . .m− 1. This system is equivariant under the Zm a
tion Xj → Xj+1, whereindi
es are taken modulo m, and Zm lies in the isotropy subgroup of wave trains.The mi
ros
opi
 phase spa
e of distan
es and velo
ities is in fa
t the phase spa
e ofthe ODE (3.12) for k = 1/2. Therefore, the orbits
Q := {(r + AkV(ϕ+ k/2), v + ωV(ϕ)) | 0 ≤ ϕ < 1} (3.13)are 
onvex, non self-interse
ting 
urves and nested for di�erent ω with �xed (r, k).We 
an prove some of these properties for general wave number k, see also Figure 5.4,and de�ne the positive 
ones

M± := {V(1 + ϕ) = V(ϕ),

∫ 1

0

V(s)ds = 0, V(ϕ) = V(−ϕ),

sgn(V(ϕ1) − V(ϕ2)) = ±1, 0 < ϕ1 < ϕ2 < 1/2},so that W ∈ M± has unique global extrema at ϕ = 0 and ϕ = 1/2, and W(ϕ1) =
W(ϕ2) is equivalent to ϕ1 ∈ {ϕ2,−ϕ2, 1 − ϕ2}. By symmetry W ∈ M±, implies
W(· + 1/2) ∈ M∓. The basis of the following results is the observation F : M± →
M±, whi
h was noted in [FV99℄. Throughout this arti
le, we are only interested inwave trains in M+ ∪M−, and 
onje
ture that wave trains are unique within these
ones.Let QΦ = {Φ′′(r + AkV(ϕ)) | 0 < ϕ ≤ 1}. We will estimate the phase velo
ity
cph := ω/k of wave trains and the size of Q in terms of

M := maxQΦ(V) , m := minQΦ(V).Remark 3.8. Note that √m, √M are the 
hara
teristi
 velo
ities of the p-system.Applying Theorem 3.10 below for monotone Φ′′, these values are attained at ϕ =
0, 1/2, respe
tively. 11



Next, we report our main, new results 
on
erning the general geometry and phasevelo
ity of wave trains; full proofs will appear elsewhere.Theorem 3.9. Assume Φ′′ > 0. Then (3.5) has solutions (ω,V) ∈ R0 × M+ forany (γ, r, k) ∈ R
2 × (0, 1/2) su
h that k → 0 ⇔ ω → 0.More pre
isely, the phase velo
ity of these wave trains satis�es

b(k)
√
m ≤ |ω|

k
≤

√
M, (3.14)where b(k) ∈ (0, 1/2), b(k) = 1/2 for k ≤ 2ϕ∗ with V(ϕ∗) = 0 the unique root of V.For 2ϕ∗ < k < 1/2, we 
an take

b(k) =
1

4
−

∫ k/4

−k/4
|V(ϕ)|2 + |V(ϕ+ 1/2)|2dϕ

4||V||22
.Theorem 3.9 states that the lower phase velo
ity bound of wave trains is estimatedby a 
orre
tion of the p-system 
hara
teristi
. Indeed, small amplitude wave trainshave m ∼ Φ′′(r), so that the harmoni
 phase velo
ities √m sin(πk)/πk apply, whi
h,being smaller than √

m, ne
essitate a 
orre
tion su
h as b(k).Theorem 3.10. Assume Φ′′ > 0 and 
onsider solutions V ∈ M+ to (3.5) for given
(r, k, γ). Then the 
urve Q is smooth, 
losed, 
onvex and non self-interse
ting.Its unique extrema in r-dire
tion lie at ϕ = −k/2, (1 − k)/2 and in v-dire
tion at
ϕ = 0, 1/2, and it is bounded by |ω| ≤ k

√
M and

1

2
k|V(ϕ)| ≤ |AkV(ϕ)| ≤

√
k||V||2. (3.15)If Φ′′ is monotone, and ω independent of (r, k), then ω is a stri
tly monotone fun
-tion of γ and the 
urves Q are nested near the extrema in r- and v-dire
tions for�xed (r, k). The sign of monotoni
ity is that of ω.While the unique points on Q with verti
al and horizontal slope lie at ϕ = (1 −

k)/2, 1/2 and ϕ = 0,−k/2, the limiting pro�le for k → 0 is not ne
essarily parametrizedby ϕ. Indeed, for a limiting soliton, we expe
t that only one of these pairs 
onvergesto the point (r, v) of the soliton's ba
kground state as k → 0.The harmoni
 dispersion relation (3.18) renders ω a fun
tion of k, so that the lastpart of Theorem 3.10 does not apply. Indeed, in this 
ase V is independent of k and
ω, see (3.17).Remark 3.11. The estimates on the size of Q imply that a nontrivial solitary limitas k → 0 requires unbounded norm parameter γ, growing at least like 1/k. Sin
eTheorem 3.9 also implies ω → 0 as k → 0, we expe
t that the monotoni
ity of γ in
ω holds in general for small ω.Nestedness of Q near the extrema in r and v dire
tions for �xed (r, k) is a biprodu
tof our approa
h. However, it seems di�
ult to prove the numeri
al observation thatthe entire phase plots are nested. 12



Thermodynami
s of wave trainsWave trains represent exa
t solutions of Newton's equations whi
h are highly os-
illating on the mi
ros
opi
 s
ale. However, on the ma
ros
opi
 s
ale we 
annotresolve the mi
ros
opi
 os
illations but must pass to a thermodynami
 des
riptioninvolving energy, pressure, temperature and the like. It turns out that for ea
h wavetrain all these thermodynami
 quantities are 
onstant on the ma
ros
opi
 s
ale. Asa 
onsequen
e, we 
an interpret ea
h exa
t wave train solution of Newton's equa-tion as a �thermodynami
 state� of the 
hain. This idea turns out to be fruitful inmodulation theory dis
ussed in �4, where we allow for ma
ros
opi
 modulations ofthe thermodynami
 states.Most thermodynami
 quantities are de�ned as mean values of the os
illating atomi
data in a wave train solution:
W =

∫ 1

0

Φ(r + AkV(ϕ)) dϕ spe
i�
 internal potential energy density,
p = −

∫ 1

0

Φ′(r + AkV(ϕ)) dϕ pressure = negative spe
i�
 for
e density,
K =

ω2

2

∫ 1

0

V(ϕ)2 dϕ spe
i�
 internal kineti
 energy density,and further
T = 2K kineti
 temperature,
F = K −W spe
i�
 internal a
tion density,
U = K +W spe
i�
 internal energy density,
E =

1

2
v2 + U spe
i�
 total energy density.Note that K = ω2γ, where γ is norm parameter used above. All these quantities are
onstants for exa
t wave trains. However, in modulation theory they be
ome �eldsin t and α whose ma
ros
opi
 evolution is des
ribed by the modulation equations.In parti
ular, although all quantities are de�ned by integrals over the phase variable

ϕ, in modulation theory they represent spe
i�
 densities.There are other important thermodynami
 quantities whi
h are not dire
tly relatedto mean values of the atomi
 data. It turns out that
S := ω

∫ 1

0

V(ϕ)2 dϕ , g := −
∫ 1

0

V(ϕ) Φ′(r + AkV(ϕ)) dϕ (3.16)
an be interpreted as the ma
ros
opi
 entropy density and entropy �ux, respe
tively.It is proven in [Her04, DHM06℄ that any smooth family of wave trains provides an
13



equation of state together with a 
orresponding Gibbs equation.independentvariables thermodynami
potential Gibbs equation
(r, k, γ) W = W (r, k, γ) dW = ω2 dγ − p dr − g dk
(r, k, ω) F = F (r, k, ω) dF = S dω + p dr + g dk
(r, k, S) U = U(r, k, S) dU = ω dS − p dr − g dkThe di�erent variants of equations of state and Gibbs equations are all equivalentas long as the respe
tive 
hanges of 
oordinates are well de�ned.The Gibbs equation be
omes very important in modulation theory, where it providesthe 
losure for the modulation equations. In parti
ular, if the equation of state isknown, then all other 
onstitutive relations are determined by the Gibbs equation.Examples for wave trainsFor a few spe
i�
 potential, expli
it expressions are known for both the pro�lefun
tions and the equation of state. The following examples are taken from [Her04,DHM06℄.The harmoni
 
hain with intera
tion potential Φ(r) = c0 + c1 r + c2

2
r2. Here thelinearity of Φ ′ implies that (3.5) may be solved by means of Fourier transform. Somesimple 
al
ulations yield the following family of traveling waves, parameterized by

(r, k, γ),
V(ϕ) = 2

√
γ sin (2πϕ), AkV(ϕ+ k/2) = (sin (π k)/π) V(ϕ). (3.17)Here V is independent of (r, k) and AkV independent of r. Degenera
y of theharmoni
 
hain is also re�e
ted by the harmoni
 dispersion relation

ω(k) =
√
c2 sin (πk)/π, (3.18)whi
h provides the frequen
y ω as fun
tion of k, and does not depend on r or

γ. Consequently, for the harmoni
 
hain we 
annot 
hoose r, k and ω as set ofindependent variables. From (3.17) we infer that the equation of state reads
W (r, k, γ) = c0 + c1 r +

1

2
c2 r

2 + ω(k)2γ,whi
h implies g(r, k, γ) = −c2 sin (2πk)γ and S(r, k, γ) = 2ω(k)γ. Moreover, we
an repla
e γ by S, and obtain
U(r, k, S) = c0 + c1r +

1

2
c2r

2 + ω(k)S. (3.19)The hard sphere model with intera
tion radius r0. Here all atomi
 intera
tion aremodeled as elasti
 
ollision between hard spheres with radius r0. This gives rise toan intera
tion potential Φ with
Φ(r) = +∞ for r < r0, Φ(r) = 0 for r ≥ r0.14



Although this potential is not smooth the notion of traveling waves may be general-ized to this 
ase, and again we are able to derive expli
it expressions for wave trains.Some basi
 arguments lead to the following family of traveling waves, parameterizedby (r, k, ω),
V(r, k, ϕ) =

{
−(r − r0)/k if 0 ≤ ϕ < k,
+(r − r0)/(1 − k) if k ≤ ϕ < 1.Note that here the frequen
y ω > 0 is a free parameter and may be 
hosen indepen-dently of r and k. The 
orresponding equation of state reads

U(r, k, S) = 1
2
(r − r0)

−2 S2 k (1 − k). (3.20)We mention that the hard sphere model des
ribes the high energy limit for 
ertainpotentials, see [Tod81℄ for the Toda potential, and [FM02℄, as well as �3.2, forLennard-Jones potentials.The third example is the small amplitude limit, where the amplitude δ of V is de-�ned as the �rst fourier 
oe�
ient, i.e. for odd V we �nd δ =
∫ 1

0
V(ϕ) cos (2πϕ) dϕ.To identify the leading order terms we expand the nonlinear intera
tion poten-tial Φ around the mean distan
e r up to fourth order. To leading order the fre-quen
y ω must satisfy the harmoni
 dispersion relation whi
h now reads Ω0(r, k) =√

Φ′′(r) sin (k π)/π. A

ording to [DHM06℄, the amplitude δ and the a
tion F 
anbe expressed in powers of ω − Ω0(r, k) as follows
δ2 =

ω2 − Ω0(r, k)
2

2 Ω0(r, k)
2 G(r, k),

F (r, k, ω) = −Φ(r) +G(r, k)(ω − Ω0(r, k))
2 + O

(
(ω − Ω0(r, k))

3
)
, (3.21)where G(r, k) is given by

G(r, k) =
Φ′′(r)2

2 π2 Φ′′(r)Φ(4)(r)
(
1 − cos (2πk)

)
+

(
Φ′′′(r)

)2(
1 + cos (2πk)

) .3.2 Solitary wavesHomo
lini
 orbits in ODEs are typi
ally a

ompanied by large wave length periodi
orbits in the sense that there exists a parameter 
urve of periodi
 orbits 
onvergingto the homo
lini
 orbit as the period tends to in�nity [VF92℄. For the latti
es we
onsider, the situation is similar: wave trains exist for arbitrarily larger wave numberand limit to solitons as the wave number tends to zero. This was proven for 
ertainmonotone waves and potentials under growth assumptions in [PP00℄ by a mountainpass approa
h.We thank Karsten Matthies (University of Bath) for providing notes on whi
h theremaining part of this se
tion is based. We report some of his joint work with Gero15



Friese
ke, mainly 
on
erning solitons in (1.1) in the form (3.1) for a large 
lass ofpossibly non-
onvex potentials Φ.A prototype of physi
ally realisti
 intera
tion is given by the standard Lennard-Jonespotentials
Φ(r) = a

(
r−m − r−m

∗

)2 for r > 0, a > 0, m ∈ N.where Φ is minimized when neighbouring parti
les are pla
ed at some spe
i�
 equi-librium distan
e r = r∗ > 0, and tends to in�nity as the neighbour distan
e tendsto zero.Sin
e the parti
le positions xα 
orresponding to displa
ements yα are xα = r∗α+yα,this means that Φ(r) must have a minimum at r = r∗ and that Φ(r) → ∞ as r → 0.More pre
isely we assume:(H1) (Minimum at r∗) Φ ∈ C3(0,∞), Φ(r∗) = Φ′(r∗) = 0, Φ′′(r∗) > 0(H2) (Growth) Φ(r) ≥ c0r
−1 for some c0 > 0 and all r 
lose to 0and Φ(r) = ∞ for r ≤ 0 .(H3) (Hardening) Φ′′′(r) < 0 in (0, r∗], Φ(r∗ + r) < Φ(r∗ − r) in (0, r∗).Here we seek solitons whose pro�le Y(φ) solves (3.2) with r = r∗. The 
onstru
tionin [FW94℄ for the existen
e of solitons is based on the variational problemMinimize γ∗(Y) :=
1

2

∫

R

∂φY(φ)2dφ among Y ∈W 1,2
loc (R) satisfying

∂ϕY ∈ L2(R), W∗(Y) :=

∫

R

Φ(r + Y(φ+ 1) − Y(φ))dφ. (3.22)Remark 3.12. It is instru
tive to 
ompare this ansatz with the one used for wavetrains in �3.1, where the real line is repla
ed by the unit interval and W maximizedfor �xed norm parameter γ. This lead to a relatively simple 
onvex maximizationproblem for 
onvex potentials. In 
ontrast, (3.22) is a kind of dual problem, where
W∗ is �xed and the norm parameter γ∗ minimized; a more 
hallenging formulationthat allows for non-
onvex potentials.The goal is to determine the Γ-limit of the variational problem and the limitingpro�le in the high-energy regime. Sin
e this regime is highly dis
rete and involvesstrong for
es, neither 
lassi
al 
ontinuum approximations nor weak 
oupling approx-imations are possible.The limiting pro�le for W∗(Y) → ∞ was derived in [FM02℄. Here we re
over thisas a 
orollary of the following Γ-
onvergen
e result. We let

H∗ := {Y ∈W 1,2
loc (R)|Y(0) = 0, ∂φY ∈ L2(R)},and for every displa
ement pro�le Y we denote the relative displa
ement pro�le by

r(φ) = Y(φ+ 1) − Y(φ). As in (3.22) we 
onsider the fun
tional γ∗ on
H∗

K = {Y ∈ H∗ |W∗(Y) = K}
H∗

∞ = {Y ∈ H∗ | r(φ) ≥ −r∗; ∀φ ∈ R

∃ 
ompa
t nonempty set SY ⊂ R with r|SY
= −r∗}.16
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Figure 3.1: Left: Hard-sphere soliton. Right: 
ell of springs in 2D latti
e.Theorem 3.13. (Γ-
onvergen
e) Assume that the intera
tion potential satis�es(H1), (H2). Then the problem 'Minimize γ∗(Y) for Y ∈ H∗
K ' Γ-
onverges to theproblem 'Minimize γ∗(Y) for Y ∈ H∗

∞' in the sense that1. (lim-inf-inequality) If Y
(K) ⇀ Y in H∗ with Y

(K) ∈ H∗
K, Y

(K) translationnormalized (i.e. r(K)(0) = minφ∈R r
(K)(φ)), then Y ∈ H∗

∞ and γ∗(Y) ≤
lim infK→∞ γ∗(Y

(K)),2. (Existen
e of re
overy sequen
e) For all Y ∈ H∗
∞ there exists a sequen
e

Y
(K) ∈ H∗

K with Y
(K) ⇀ Y in H∗ and γ∗(Y(K)) → γ∗(Y).A 
onsequen
e is the following pie
ewise linear asymptoti
 displa
ement pro�le,
orresponding to pie
ewise 
onstant velo
ity pro�le.Corollary 3.14. (Asymptoti
 shape of minimizers) Every translation normalizedsequen
e Y

(K) of minimizers of γ∗ on H∗
K 
onverges in H weakly to the up to trans-lation unique minimizer Y∞ of the limit problem, where

Y∞(φ) =





0, φ ≤ 0
−r∗φ, φ ∈ [0, 1]
−r∗, φ ≥ 1.In a me
hani
al interpretation, this is a 
ompression wave lo
alized on a single atomi
spa
ing. The limiting dynami
s are hard-sphere dynami
s like in a Boltzmann gas,see Figure 3.1. In parti
ular the work shows that dispersionless transport of energyis not restri
ted to the long-wave regime.We mention that Friese
ke and Matthies analyse a two dimensional 
ounterpartof (3.1) in [FM03℄, see Figure 3.1. The existen
e of longitudinal solitary wavesalong one of the latti
e dire
tions was shown for typi
al potentials under some mildnondegenera
y assumptions. These traveling waves are unique, i.e. there are no otherlo
alized traveling wave in the same dire
tion, e.g. there do not exist transversaltraveling waves. It is surprising that purely harmoni
 springs are in
luded here,be
ause solitary waves do not o

ur in harmoni
 
hains.17



4 Modulation Theory4.1 Ma
ros
opi
 evolution of data with temperatureIn this se
tion we use the theory of Young measures, see for instan
e [Tay96, War99,Daf00℄, and derive some restri
tions for any thermodynami
 limit of the 
hain.Let Ω = {
(
t, α

)
: 0 ≤ t ≤ tfin, α ∈ [0, 1]}, and let (Ni)i be a sequen
e with Ni → ∞.Moreover, for any i let Q(i)

α (t) = (r
(i)
α (t) v

(i)
α (t)), 0 ≤ t ≤ Nitfin and α = 1, ..., Ni,be a solution of Newton's equation, and suppose that the total energy of the initialdata is proportional to Ni, i.e.

Ni∑

α=1

(
1

2

(
v(i)

α (0)
)2

+ Φ
(
r(i)
α (0)

))
= O(Ni). (4.1)Under some suitable assumptions on the potential (say boundedness of Φ′′ for sim-pli
ity) the fun
tions Q(i)

α (t) are 
ompa
t with respe
t to the 
onvergen
e of Youngmeasures in the following sense. There is at least a subsequen
e, still denoted by
(Ni)i, and a family of probability measures (

t, α
)
7→ µ

(
t, α, dQ

) su
h that for any
ontinuous observable ψ = ψ(Q) = ψ(r, v) the following 
onvergen
e is satis�ed
∫

Ω

ψ
(
Q(i)

(
Ni t, Ni α

))
ξ
(
t, α

)
dt dα

i→∞−−−→
∫

Ω

〈ψ〉
(
t, α

)
ξ
(
t, α

)
dt dα. (4.2)Here ξ is an smooth test fun
tion, and 〈ψ〉

(
t, α

) is given by
〈ψ〉

(
t, α

)
=

∫

R2

ψ(Q)µ
(
t, α, dQ

)
. (4.3)For �xed (

t, α
)
∈ Ω, the probability measure µ(

t, α, dQ
) des
ribes the mi
ros
opi
os
illations in the vi
inity of (

t, α
), and for any observable Ψ the number 〈Ψ〉

(
t, α

)gives the lo
al mean value of Ψ.Here we 
onsider the 
ommon probability distribution of distan
e and velo
ity in-stead of their separate statisti
s so that any measure µ(
t, α, dQ

) 
an be interpretedas a weight fun
tion de�ned on the mi
ros
opi
 state spa
e whi
h is spanned bydistan
e and velo
ity.In �1 we have seen that Newton's equations are equivalent to the two mi
ros
opi

onservation laws (1.3), from whi
h one 
an derive the mi
ros
opi
 
onservationof energy ėα(t) = −fα(t) + fα+1(t) with eα(t) = 1
2
v2

α+1(t) + Φ(rα(t)) and fα(t) =
−vα(t)Φ′(rα(t)). As a dire
t 
onsequen
e, every Young measure limit must satisfythe following ma
ros
opi
 
onservation laws of mass, momentum and energy

∂ t 〈r〉 − ∂α 〈v〉 = 0,

∂ t 〈v〉 − ∂α 〈Φ′(r)〉 = 0, (4.4)
∂ t

〈
1
2
v2 + Φ(r)

〉
− ∂α 〈vΦ′(r)〉 = 0.18



This system of PDEs gives some restri
tions for any young measure limit of theatomi
 
hain. However, in general we 
an not express the �uxes in terms of thedensities, and hen
e the system (4.4) is not 
losed, i.e. it does not determine thema
ros
opi
 evolution 
ompletely. We mention that (4.4) shows that any Youngmeasure limit is a measure-valued solution of the p-system in the sense of DiPerna,see [Hör97, Daf00℄. In addition, it is a measure-valued solution of the energy equation(1.11).Within modulation theory we will start with some assumptions 
on
erning the stru
-ture of the mi
ros
opi
 os
illations in the 
hain. Afterwards we will identify furtherma
ros
opi
 evolution laws extending (4.4), and 
onstitutive relations that 
lose theextended system.4.2 Whitham modulation equations for wave trainsHere we des
ribe Whitham's modulation theory for the atomi
 
hain with hyperboli
s
aling. For further examples 
on
erning modulation theories of dis
rete system werefer to [HLM94, SW00, FP99, DK00, GM04, GM06℄, and to [GHM06a, GHM06b℄for an overview.A modulated traveling wave is an approximate solution of Newton's equation (1.1)satisfying
xα(t) =

1

ε
X(εt, εα) + X̃

(
εt, εα,

1

ε
Θ(εt, εα)

)
, (4.5)where X and Θ are ma
ros
opi
 fun
tions. The generi
 traveling wave parameters

(r, v, k, ω) now are ma
ros
opi
 �elds depending on (
t, α

), and read
ω = ∂ t Θ, k = ∂α Θ, v = ∂ tX r = ∂αX. (4.6)The mi
ros
opi
 os
illations are des
ribed by

X̃
(
t, α, ϕ

)
= X

(
r
(
t, α

)
, v

(
t, α

)
, k

(
t, α

)
, ω

(
t, α

)
, a

(
t, α

)
, ϕ

)
, (4.7)where X(r, v, k, ω, a, ϕ) is a smooth family of 1-periodi
 wave trains depending onthe parameters ~u = (r, v, k, ω, a) as well as on the phase ϕ. We use an additionalparameter a, whi
h might be the entropy S or the parameter γ. However, in any
ase we impose an abstra
t dispersion relation

ω = Ω(r, k, a). (4.8)The modulation equations are PDEs whi
h des
ribe the ma
ros
opi
 evolution of themodulated parameter (r, v, k, ω, a), and ensure that (4.5) indeed provides approxi-mate solutions. For their formal derivation we use Whitham's variational approa
h,see [Whi74, FV99, DHM06℄, and [GHM06a, GHM06b℄ for a more general setting.19



In a �rst step we insert the ansatz (4.5) into the expression for the total a
tion inthe atomi
 
hain, and expand all arising terms in powers of ε. This gives rise to theredu
ed a
tion integraltotal a
tion = L(X, Θ, a) =

tfin∫

0

1∫

0

L
(
~u
(
t, α

))
dα dt, (4.9)with L(~u) = L(~u, X(~u, ·)) and

L(~u, X) =

∫ 1

0

(
1

2
(v + ω ∂ϕX)2 − Φ(r + ∇kX)

)
dϕ,where (∇kX)(ϕ) = X(ϕ+ k). In a se
ond step we apply the prin
iple of least a
tionto (4.9). The variation with respe
t to a gives ∂aL = 0, whi
h re
overs the dispersionrelation (4.8), and the variations with respe
t to X and Θ yield

∂ t ∂vL+ ∂α ∂rL = 0 and ∂ t ∂ωL+ ∂α ∂kL = 0, (4.10)respe
tively. Moreover, the de�nitions (4.6) imply two further evolution equations,namely ∂ t r − ∂α v = 0 and ∂ t k − ∂αω = 0.In the last step we reformulate all ma
ros
opi
 identities by using the thermody-nami
 de�nitions from �3, and as a 
onsequen
e we �nd that the modulation equa-tions take the form
∂ t

(
r, v, k, S

)
+ ∂α

(
−v, +p, −ω, +g

)
= 0. (4.11)These equations represent the ma
ros
opi
 
onservation laws for mass, momentum,wave number and entropy. Moreover, they imply the 
onservation of energy via

∂ tE + ∂α

(
pv + gω

)
= 0. (4.12)and thus we 
an regard the system (4.11) as an extension of (4.4). Re
all that the
losure for (4.11) and (4.12) is provided by the equation of state E = 1

2
v2+U(r, k, S)and the Gibbs equation (2.5). However, for almost all intera
tion potential Φ we la
kexpli
it expressions for the equations of state, and therefore we 
annot 
hara
terizethe properties of (4.11).Finally, we display the modulation equations for the harmoni
 
hain

∂ t

(
r, v, k, S

)
− ∂α

(
v, c2 r, ω(k), ω′(k)S

)
= 0, (4.13)whi
h follow from (4.11) by means of the equation of state (3.19), and the harmoni
dispersion relation (3.18).
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4.3 The justi�
ation problemSo far, there is no known rigorous derivation of the modulation equations for thenonlinear 
ase. For this reason we formulate a 
onje
ture, following similar results forpartial di�erential equations [KSM92, S
h98, Mie02℄. We assume that the potential
Φ is su�
iently smooth, and that a smooth family of traveling waves X(~u, ϕ) withindependent parameters ~u = (r, v, k, ω) is given. Moreover, we assume that thefollowing set M is open

M =

{
~u = (r, v, k, ω)

∣∣∣∣
the system (4.11) is stri
tly hyperboli
 in ~u,the traveling wave X(~u, ·) is linearly stable }

.For a given solution ~̃u = ~̃u
(
t, α

) of (4.11) we de�ne
Mε

α(t) =


 r̃(εt, εα) + (ÂkV)

(
~̃u(εt, εα), 1

ε
Θ̃(εt, εα) + 1

2
k̃(εt, εα)

)

ṽ(εt, εα) + ω̃(εt, εα) V

(
~̃u(εt, εα), 1

ε
Θ̃(εt, εα)

)

 ,where V abbreviates ∂ϕX, and the modulated phase Θ̃ is given by (4.6). We believethat the following 
onje
ture is in the heart of the matter.Conje
ture 4.1. Let ~̃u be a su�
iently smooth solution of Whitham's equationde�ned for t ∈ [0, tfin], and suppose that ~̃u takes values in M. Then there exists asuitable Bana
h spa
e Υε, and some exponent κ > 0 su
h that

‖Qε(t) −Mε(t)‖Υε
= O(εκ), ‖Qε(0)‖Υε

= O(1) (4.14)for all ε, and all t with 0 ≤ εt ≤ tfin.At the moment we are far from being able to prove this 
onje
ture in this generalform. However, it does hold rigorously for the harmoni
 
hain and the hard spheremodel.The proof for the harmoni
 
hain essentially relies on the linearity of Newton'sequations, whi
h allows to 
ontrol the residuum, see [DHM06℄. In addition, thereis further rigorous derivation of (4.11) in the 
ontext of Wigner measures. For thedetails we refer to [Mie06℄, and for similar results to [Ma
02, Ma
04℄. The rigorousjusti�
ation for the hard sphere model is based on the observation that both themi
ros
opi
 dynami
s and the ma
ros
opi
 equations be
ome mu
h simpler in theEulerian representation of thermodynami
s, 
f. [Her04℄On a formal level we expe
t a 
lose relation between stability of wave trains andhyperboli
ity of modulation equations; if Whitham's equations (4.11) are not hyper-boli
, then the 
orresponding initial value problem is ill-posed, whi
h indi
ates thattraveling waves are unstable due to a Benjamin-Feir instability, see e.g. [Whi74,BM95℄. However, for arbitrary intera
tion potential Φ, neither stability 
riterionsnor hyperboli
ity 
onditions are available up to now. Having linearly degenerateeigenvalues, the harmoni
 
hain and hard sphere model are not prototypi
al and21



do not provide further insight. Only the small amplitude limit gives some 
riteriafor the hyperboli
ity of (4.11). Starting with the equation of state (3.21) we 
an
ompute the 
hara
teristi
 speeds for (4.11), see [DHM06℄, and end up with the fol-lowing 
riterion. The system (4.11) has four real eigenvalues, and is thus hyperboli
,if
N̂(r, k) =

(
Φ′′′(r)

)2 (
7 − 8 cos (2πk) + cos (4πk)

)
+

Φ′′(r)Φ(4)(r)
(
4 cos (2πk) − 3 − cos (4πk)

)is positive, but has two imaginary eigenvalues for N̂(r, k) < 0. For k = 1/2 the
orresponding formula was already given in [Fla96℄.5 Numeri
al justi�
ation ofmodulation theoryAlthough there is no rigorous justi�
ation for the modulation equations (4.11), nu-meri
al simulations strongly indi
ate that they provide the right thermodynami
des
ription for a wide 
lass of initial value problems for the atomi
 
hain. We referto [DH06℄ whi
h gives a detailed thermodynami
 interpretation of several numeri
alexperiments. The main results 
an be summarized as follows.
(i) If all ma
ros
opi
 �elds are smooth, then the arising os
illations in the atomi
data 
an be des
ribed in terms of modulated traveling waves, and the ma
ro-s
opi
 dynami
s is governed by the modulation system (4.11).

(ii) Modulated traveling waves des
ribe the mi
ros
opi
 os
illations emerging when
old data form sho
ks.
(iii) If the sho
ks emerge from data with temperature, then usually the mi
ro-s
opi
 os
illations exhibit a more 
ompli
ated stru
ture, and (single-phase)modulation theory fails in this 
ase.Con
erning the last item, results for the Toda 
hain suggest a hierar
hy of modu-lation models, enumerated by the number of phases, where sho
ks on a lower levelrequire the model of the next level, see e.g. the review [LLV93℄ and the referen
estherein.Note that these numeri
al observation are valid only if the intera
tion potential
Φ is 
onvex, the ma
ros
opi
 s
ale results from the hyperboli
 s
aling, and themi
ros
opi
 initial data are given by modulated traveling waves.In this se
tion we give an brief survey on the numeri
al justi�
ation from [DH06℄,and present a typi
al example with periodi
 boundary 
onditions and smooth ma
ro-s
opi
 �elds. Moreover, in �6 we study the numeri
al solution of a Riemann problemwith 
old initial data, and give an improved dis
ussion of its ma
ros
opi
 limit.22



In order to study the ma
ros
opi
 behavior of the atomi
 
hain for large N wemust evaluate the thermodynami
 properties of the numeri
al data whi
h are thema
ros
opi
 �elds of the lo
al mean values, and the lo
al distribution fun
tions ofthe atomi
 data. The 
omputation of both mean values and distribution fun
tionsrelies on mesos
opi
 spa
e-time windows. In what follows let F = IFT × IFP be su
ha window where IT and IP are sets of time steps and parti
le indi
es, respe
tively.The window F is mesos
opi
 if and only if it is very small on the ma
ros
opi
 s
ale,but 
ontains a lot of parti
les as well as time steps, i.e. ♯IT, ♯IP ∼ Nκ for someexponent κ with 0 < κ < 1. In parti
ular, any F des
ribes the mi
ros
opi
 vi
inityof a 
ertain ma
ros
opi
 point ZF = (tF , αF).For any atomi
 observable ψ we 
an easily 
ompute the mean value 〈ψ〉F of ψ withrespe
t to ea
h window F by a simple averaging formula. Note that there is a 
loserelation to the notion of Young measures. In parti
ular, if the atomi
 data 
onvergefor N → ∞ in the sense of Young measures, then 〈ψ〉F is a good approximationfor 〈ψ〉(tF , αF) from (4.3). Moreover, by means of F we 
an 
ompute the 
ompletemeasure µ(
tF , αF , dQ

), see [DH06℄ for the details.The mi
ro-ma
ro transition of modulation theory relies on the hypothesis that allatomi
 os
illations 
an be des
ribed by modulated wave trains. If this is right, thenthe mi
ros
opi
 distributions fun
tions within any spa
e-time window F must beequivalent to an exa
t wave train. Of 
ourse, the parameters of this wave train maydepend on F . In order to justify this hypothesis for given F , we have to identifyfour wave train parameters, namely the spe
i�
 length rF , the mean velo
ity vF ,the wave number kF and a fourth parameter whi
h might be the parameter γF , thefrequen
y ωF , the entropy SF , or the temperature TF .The values of rF , vF and TF are given by mean values of mi
ros
opi
 observables.This reads rF = 〈r〉F , vF = 〈v〉F , and TF = 〈v2〉F − 〈v〉2F . Determining kF and ωFis not so obvious, be
ause they have no immediate physi
al interpretation on themi
ros
opi
 s
ale. To over
ome this problem we introdu
e auxiliary observables Ψkand Ψω, see [DH06℄ for their de�nitions, and set
kF := 〈Ψk〉F , ωF := 〈Ψω〉F .In the next step we start a numeri
al s
heme similar to (3.3), whi
h allows to pre-s
ribe the values rF , vF , kF and TF , see [DH05℄ for details, and 
ompute an exa
twave train with these parameters. For any F , the s
heme yields a pro�le fun
tion

VF as well as a frequen
y ωTW
F whi
h does not result from the auxiliary observable

Ψω but satis�es a dispersion relation.Finally, we 
ompare the mi
ros
opi
 distribution fun
tions from the numeri
al datawith their ma
ros
opi
 predi
tions whi
h 
an be expressed in terms of VF . In par-ti
ular, a

ording to modulation theory, the support of the mi
ros
opi
 distribution23



fun
tions must equal the 
urve
ϕ 7→ QTW(ϕ) =

(
rF + ÂkVF(ϕ+ kF/2), vF + ωF VF(ϕ)

)
. (5.1)This rather strong predi
tion 
an be 
he
k for given numeri
al data.Smoothly modulated initial dataWe study the evolution of data with temperature by imposing initial data in formof smoothly modulated binary os
illations, i.e. we set

rα(0) =

{
r odd(εα) if α is odd,
r even(εα) if α is even, vα(0) =

{
v odd(εα) if α is odd,
v even(εα) if α is even,where r odd, r even, v odd and v even may be read o� from Figure 5.1. We solvedNewton's equation for the Toda 
hain with N = 4000 up to the ma
ros
opi
 time

tfin = 0.4 by means of the Verlet s
heme, see [SYS97, HLW02℄.Figure 5.1 
ontains snapshots of the atomi
 data for several ma
ros
opi
 times, wherethe bla
k 
olored 
urves represent the lo
al mean values, and Figure 5.2 shows thepro�les for some ma
ros
opi
 �elds at time t = 0.4. We observe that the atomi
 dataare highly os
illating on the mi
ros
opi
 s
ale so that any appropriate mathemati
aldes
riptions of the limit N → ∞ must rely on measures. The 
omputation of wavenumber and frequen
y is illustrated in Figure 5.3, showing the os
illating values ofthe auxiliary observables Ψk and ΨΩ as well as their ma
ros
opi
 mean values.In Figure 5.4 we 
ompare the mi
ros
opi
 distribution fun
tions with their ma
ro-s
opi
 predi
tions from modulation theory for six mesos
opi
 spa
e-time windowsat t = 0.4. For ea
h of these windows we represent the distribution fun
tion ofmi
ros
opi
 data by a density plot with high (Gray) and low (White) probability for�nding a parti
le. Note that the support of every distribution fun
tions is 
ontainedin 
losed 
urves, and that the distribution fun
tions vary on the ma
ros
opi
 s
ale.
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Figure 5.1: Snapshots of the atomi
 distan
es and velo
ities at several ma
ros
opi
times. The verti
al lines at t = 0.4 mark the spa
e-time windows for Figure 5.4.24
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ted ma
ros
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 �elds as fun
tions of α for t = 0.4.
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Figure 5.3: Wave number and frequen
y: os
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 mean values.
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Figure 5.4: Distribution fun
tions of the atomi
 data in three sele
ted spa
e-timewindows at t = 0.4; for the α-
oordinates see Figure 5.1. Ea
h pi
ture 
ontains adensity plot of the atomi
 data (White and Gray) together with an illustration ofthe ma
ros
opi
 predi
tion (Bla
k).The bla
k dots in Figure 5.4 represent the ma
ros
opi
 predi
tions: we proje
t 20points Qi = QTW(i/20) of the 
urve (5.1), into the density plots. Figure 5.4 revealsthat the 
urve (3.13) 
oin
ides with the support of the mi
ros
opi
 distribution fun
-tions, and that the distan
e between Qi+1 and Qi is related to the gray level of themi
ros
opi
 distribution fun
tions. In 
on
lusion, we 
an des
ribe the mi
ros
opi
os
illations within any window F by a periodi
 wave train. Moreover, we 
an 
on-
lude that the ma
ros
opi
 evolution of the thermodynami
 �elds is indeed governedby the modulation equations (4.11), see the dis
ussion in [DH06℄.
25



6 The sho
k problemSin
e we expe
t a hyperboli
 system des
ribing the ma
ros
opi
 limit, it is naturalto investigate Riemann problems and interpret the results in terms of hyperboli
theory. A goal of this is to indi
ate sele
tion prin
iples for Riemann solvers thata

ount for the ma
ros
opi
 limit of atomi
 
hains.We would naively expe
t to �nd rarefa
tion fans, sho
ks and possibly 
onta
t dis-
ontinuities, that are sele
ted by 
hara
teristi
 
urves and entropy 
onditions andwhose velo
ities are determined by 
hara
teristi
 velo
ities and Rankine-Hugoniot
onditions.It turns out that this pi
ture is invalid when mi
ros
opi
 os
illations o

ur, leading tomodulated wave trains as mentioned in �4. Instead, we �nd a situation very similarto the zero dispersion limit of the KdV equation mentioned in �1, where dispersivesho
k fans repla
e Lax-sho
k, and where velo
ities are not given by 
hara
teristi
velo
ities of the limiting Burger's equation, 
orresponding to the p-system in our
ase. Fa
ed with a large number of publi
ations on this matter, we restri
t referen
eshere to [LLV93, LP05, El05℄ and the bibliographies therein.We fo
us on 
old initial data, i.e. 
onstant displa
ements and velo
ities with a singlejump at some ᾱ∗, i.e.
(r, v)(ᾱ, 0) = (r−, v−) , ᾱ ≤ ᾱ∗ , and (r, v)(ᾱ, 0) = (r+, v+) , ᾱ > ᾱ∗.The ma
ros
opi
 limit of the harmoni
 potential for su
h Riemann problems is 
oldand des
ribed by (4.13). It is therefore des
ribed by the 
orresponding p-system,whi
h is a linear 1D wave equation, whose dynami
s 
an be understood dire
tlyfrom the d'Alembert solution form, so there are only 
onta
t dis
ontinuities.For general nonlinear potentials, there is numeri
al eviden
e that dispersive sho
ksappear for initial data leading to Lax-sho
ks of the p-system, while rarefa
tion dataleads to 
old ma
ros
opi
 limits des
ribed by the p-system. In Figure 6.1 we plota typi
al situation for illustration, and sket
h a dispersive sho
k fan in Figure 6.3.We are parti
ularly interested in the transition of the Whitham modulation at itsfront.Remark 6.1. For 
onvex �ux, i.e. Φ′′′ > 0, the p-system 
an be solved uniquelyin terms of at most two rarefa
tion or sho
k waves [Smo94℄. For non-
onvex �uxthe situation is more 
ompli
ated, and the entropy 
onditions for the p-system nolonger agree, be
ause eigenvalues are no longer genuinely nonlinear [KS97, LeF02℄.A spe
i�
 
hoi
e of a 
onvex-
on
ave potential for (1.1), numeri
ally yields a ma
ro-s
opi
ally 
old, strong sho
k, 
onne
ting states with equal 
hara
teristi
 velo
ities,and traveling with a di�erent Rankine-Hugoniot velo
ity. In parti
ular, it is not a
onta
t dis
ontinuity or Lax sho
k, but a (fast) under
ompressive sho
k. Details onthis phenomenon will be published elsewhere.The ma
ros
opi
 dynami
s in spa
e-time for Riemann data appear to be self-similar,hen
e redu
ible to a ma
ros
opi
 velo
ity variable c = α/t = ᾱ/t̄. More formally, we26
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Figure 6.1: Riemann problem with N = 4000 and Φ(r) = (r−1)2/2−cos(2(r−1))/4with one rarefa
tion wave and one dispersive sho
k: snapshots of atomi
 distan
esand velo
ities for t̄ = 0.0, t̄ = 0.15, and t̄ = 0.3.assume that the Young measure µ(c) arising in the ma
ros
opi
 limit for (initially
old) Riemann problems at ea
h c is either a point measure or supported on a 
losed
urve, 
orresponding to a wave train, so that from the modulation ansatz (4.5) weobtain X̃(c, ϕ) and analogously, from �4.3, an expression Mε(c, ϕ) for the ve
tor ofmodulated distan
es and velo
ities. We use the phase variable ϕ to parametrize thesupport of µ(c). In 
ase µ(c) is a point measure, we obtain a strong limit where
X̃(c, ϕ) ≡ 0.A dispersive sho
k spans a range of speeds from the sho
k ba
k velo
ity, cb, to thesho
k front velo
ity, cf . To ease notation, we assume 0 < cb < cf , and that the
onstant states to the left and right of the dispersive sho
k are (r−, v−) and (r+, v+)as sket
hed in Figure 6.3.It is instru
tive to view the modulation of wave trains in a dispersive sho
k as thesele
tion of a 
urve in the set of wave trains X̃(c, ϕ) parametrized by cb < c < cfin terms of the wave train parameters (r(c), k(c), ω(c)). This 
urve bridges theenergy jump between the 
onstant states (r−, v−) and (r+, v+), and the wave trainsbe
ome singular at cb and cf . Based on numeri
al eviden
e [HFM81℄ and resultsfor the Toda 
hain [VDO91, Kam91℄, we assume that Mε(cb) ≡ (r−, v−) has zeroamplitude, and the sho
k front Mε(cf) 
orresponds to a soliton with ba
kgroundstate (r+, v+), where k(cf) = ω(cf) = 0. Note that this is a singular limit of (3.4)and that Theorem 3.10 implies in�nite kineti
 energy γ(cf). We plot wave trainsand �elds within a dispersive sho
k in Figure 6.2.More pre
isely, the sho
k front is assumed to be a homo
lini
 orbit

H(s) := lim
c→cf

Mε(cf)in the phase s
aling ϕ = ωs with asymptoti
 state lims→±∞H(s) = (r+, v+). Weexpe
t the 
onvergen
e to the asymptoti
 state is exponential in s, thus Lp-normsof [H(s)− (r+, v+)] are �nite. In terms of the wave train pro�le X and V = ∂ϕX we27
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Figure 6.2: Example for dispersive sho
ks. Left: snapshots of atomi
 distan
esand their lo
al mean values. Center: superposition of several distribution fun
tionswithin the sho
k; positions of the spa
e-time windows are marked by verti
al lines.Right: snapshots of temperature and entropy.
an write the se
ond 
omponent H2 of H as
H(s) := H2(s) − v+ = lim

c→cf
ω(c)V(c, ω(c)s) = lim

c→cf

d

ds
X(c, ω(c)s).Both the vanishing amplitude at cb and sinusoidal os
illations, and the homo
lini
orbit at cf are natural 
odimension-1 singularity along a 
urve of wave trains viewedas periodi
 orbits.Assuming a soliton at the sho
k front means in parti
ular that the modulationsystem does not have a strong sho
k, whi
h is 
hallenging to 
on�rm numeri
ally asdis
ussed below. Instead, we 
onje
ture that at the sho
k front the entropy S jumpsand (r, v, k, ω) are 
ontinuous with unbounded derivative. Heuristi
ally, the ex
essenergy at the jump in the initial data 
annot be dissipated by the 
onservativesystem, but is transported dispersively via os
illations with two new degrees offreedom, frequen
y and wave number.Properties at and near the solitonWe predi
t the s
aling of temperature and related quantities assuming the s
aling ingeneri
 or 
onservative homo
lini
 bifur
ations of ODEs [VF92℄, where the unfoldingparameter, here c, is exponentially small in the period, here 1/ω. We thus expe
t

cf − c ∼ e−κ/ω, for some κ > 0, and so
ω(c) ∼ k(c) ∼ 1/ log(cf − c),be
ause Theorem 3.9 implies the same s
aling in k. Indeed, this s
aling 
ould be
on�rmed for the 
ase of Toda potential using the expli
it solutions in [DKV95℄,and also appears in the formal derivations in [El05℄.Temperature, entropy, entropy �ux. The de�nition T = ω2

∫ 1

0
V(ϕ)2dϕ of the tem-28



perature of a wave train yields
T (c) =

∫ 1

0

[ω(c)V(c, ϕ)]2 dϕ = ω(c)

∫ 1/ω(c)

0

[ω(c)V(c, ω(c)s)]2 dsand thus (assuming smoothness) the limiting temperature of the soliton
lim
c→cf

T (c) = lim
c→cf

ω(c)

∫ 1/ω(c)

0

[ω(c)V(c, ω(c)s)]2 ds =

∫ ∞

0

H(s)2ds lim
c→cf

ω(c) = 0,be
ause the L2 norm of H is �nite. Then the s
alings of temperature T , entropy Sand entropy �ux g, see (3.16), are given by
T (c) ∼ (log(cf − c))−1 , g(c) ∼ S(c) = T (c)/ω ∼ 1,where we used cS ′ = g′. We thus predi
t that the temperature is 
ontinuous for all cand de
ays to zero like 1/ log. Entropy and entropy �ux vanish in 
old regions, but
ontinuously approa
h a �nite, non-zero value and jump to zero beyond the sho
kfront.Sin
e the temperature also de
ays towards the sho
k ba
k, we expe
t a unimodal
urve T (c) with a unique maximum, as is the 
ase in e.g. a planar ODE where theinterior of a homo
lini
 orbit is �lled with periodi
 orbits and an ellipti
 equilibrium.However, these s
alings and limiting values are di�
ult to 
on�rm numeri
ally, be-
ause the 1/ log de
ay is hard to resolve, and the sho
k front 
ould not be simulatedin isolation from the rest of the modulation region due to boundary e�e
ts.Norm parameter γ. On a

ount of Theorem 3.10, the norm parameter γ grows atleast like 1/k, so that γ(c) ≥ −C log(cf − c), for a 
onstant C > 0. This agrees withthe predi
tion from the above entropy s
aling, be
ause

γ(c) =
S

2ω
=

T

2ω2
∼ 1

ω
∼ log(cf − c).Mean distan
e and velo
ity. Assuming that c unfolds the homo
lini
ity as a generi
(or Hamiltonian) ODE, the �ow time through a �xed small region near (r+, v+)grows logarithmi
ally in c and thus for the average values we obtain the s
aling

r(c) = r+ − r1/ log(cf − c) + h.o.t. v(c) = v+ − v1/ log(cf − c) + h.o.t.,with some 
onstants r1, v2, sin
e the limiting values are those of the 
orrespondingRiemann data.Note that the �rst equation in (4.4) implies −cr′ = v′ in the sense of distributions,where ′ = d/dc. Therefore, −cfr1 = v1, and so
cf = −v1/r1 (6.1)repla
es the Rankine-Hugoniot jump 
ondition.29



Propagation speeds. The modulation equations yield �ve equations for the propa-gation speed of the sho
k front; four in term of leading order expansions su
h as
−cr′ = v′ → −c = dv/dr above, and one jump 
ondition c|[S]| = |[g]|. Indeed,in numeri
al simulations of dispersive sho
ks all these velo
ities are 
lose to thatobtained from the slope of the sho
k front in spa
e-time.The 
onservation of wave number implies −ck′ = ω′ and thus throughout the disper-sive sho
k we have −c = cg := dω/dk, whi
h is the group velo
ity and not the phasevelo
ity cph := −ω/k of wave trains. Note that here, −c is the expe
ted propagationvelo
ity due to the 
hoide of sign for ω in (3.3) and (4.7).In parti
ular, the sho
k front should move with the limiting group velo
ity, whilethe soliton speed naturally is the limiting phase velo
ity. However, in the solitarylimit, phase and group velo
ity typi
ally 
oin
ide, be
ause for L = 1/k we have theidentity

cg = cph − L
dcph

dL
,where dcph

dL
is exponentially small for generi
 and 
onservative homo
lini
 bifur
ationsin ODE [VF92℄; the identity follows from dcph

dk
=

cg−cph

k
.Re
all that the phase velo
ities of wave trains were estimated in (3.14) and rigorouslyimply that the soliton velo
ity is bounded (essentially) by p-system 
hara
teristi
svelo
ities c−, c− of the left and right states r−, r+. However, in numeri
al simu-lations, the sho
k front velo
ity cf never exhausted these bounds, but was stri
tlybetween c− and c+.
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Figure 6.3: Left: Sket
h of a dispersive sho
k for the ma
ros
opi
 limit of a sho
kproblem in (1.1). Dashed line is the p-system Lax sho
k with speed crh, dotted thep-system 
hara
teristi
 velo
ities c± of left and right states (r±, v±). Right: sket
hof the r-modulation at some time t̄∗ > 0 with 1/ log s
aling at cf .On the other hand, the sho
k velo
ity of the p-system is given by the Rankine-Hugoniot 
ondition crh =
√

(Φ′(r−) − Φ′(r+))/(r− − r+), and in all 
ases (for Φ′monotone) we numeri
ally found the velo
ity ordering sket
hed in Figure 6.3, thatis,
cb < c+ < crh < cf < c−,where crh−cf ∼ 5%. Chara
teristi
s point into the dispersive sho
k fan, and indeed,we seem to �nd dispersive sho
ks only if c− < crh < c+, see also Remark 6.1.30



Finally, we mention that the velo
ity cb of the sho
k ba
k, where wave trains havesmall amplitude, numeri
ally agrees with the predi
tion from harmoni
 modulationequations, i.e. cb =
√

Φ′′(r−) sin(πk(cb))/πkb.Remarks and open problemsThe o

urren
e of dispersive sho
ks has only been proven rigorously for some 
om-pletely integrable 
ases, in parti
ular the Toda 
hain [VDO91, Kam91℄. Unfortu-nately, the literature on this issue is not easily a

essible to non-spe
ialists, and wefound it in
on
lusive 
on
erning the rigorous justi�
ation of a hyperboli
 systemof Whitham modulation equations. In fa
t, neither the observation that the sho
kfront is a soliton, nor the s
aling at the sho
k front, nor the velo
ity of the sho
kba
k seem to be worked out.Similarly, to our knowledge, the sele
tion me
hanism for the soliton has not beenformulated in terms of initial values for the Riemann problem (though the sho
kfront velo
ity for the Toda sho
k problem 
an be 
omputed expli
itly [VDO91℄). Anobservation towards a sele
tion prin
iple 
ould be that in numeri
al experiments forvanishing initial velo
ities, the dispersive sho
k exhausts pre
isely the range betweenthe initial jump in the r-
omponent. We also observe that the dispersive sho
k in
(c, r, v)-spa
e is a graph over the plane (0, r, v). In other words, the modulationparameter 
urve (r, v, k, ω)(c) appears to be sele
ted in su
h a way that wave trainorbits Q are (nested) level sets of an unknown fun
tion.We hope that a study of the expli
it solutions for the 
ase of Toda potential, andresults for zero dispersion limits mentioned in �1, provide more insight into thegeneral situation, in parti
ular the predi
tion of dispersive sho
ks and the sho
kfront velo
ity.A
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