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ON THE EXISTENCE 

OF 

UNBIASED MONTE CARLO ESTIMATORS 

PETER MATHE 

August 10, 1994 

ABSTRACT. For many typical instances where Monte Carlo methods are applied attem-
pts were made to find unbiased estimators, since for them the Monte Carlo error reduces 
to the statistical error. These problems usually take values in the scalar field. 
If we study vector valued Monte Carlo methods, then we are confronted with the question 
whether there can exist unbiased estimators. This problem is apparently new. Below it 
is settled precisely. Partial answers are given, in~icating relations to several classes of 
linear operators in Banach spaces. 

1. lNTRODUCTION, NOTATION 

In many practical applications the program designer is confronted with the "curse of 
dimensionality", an exponential dependence on the dimension, which is inherent in most 
error estimates provided by classical numerical analysis, see e.g. [TWW88] for a sample 
of typical numerical problems and the respective error estimates. 
Often this can be overcome by choosing Monte Carlo methods, i.e., numerical methods 
involving random parameters in the computational process, see [HH64] for an excellent, 
by now classical treatment on the applicability of Monte Carlo methods. Within the 
classi~al theory one prefers unbiased Monte Carlo estimators, since they are self-focusing 
if the numerical simulation is repeated. Such unbiased estimators are often hard to find, 
see [KW86, ENS89]. 
In statistics, the problem whether there are unbiased estimates (in statistical sense) has 
also been attractive, recently. While it has been known since 1956 that there cannot 
exist such unbiased estimates for density estimation, see [Ros56], advantage has been 
made by [LB93]. They developed a machinery which enables to prove that there are no 
unbiased l-informative estimates for singular problems. Within our framework, the notion 
of l-informativity corresponds to the requirement of finite errors. On the other hand, 
all problems studied below are not singular in their sense. This may express that our 
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2 PETER MATHE 

arguments are completely different, indicating geometric properties of the target space, 
w here the error is measured. 
Below we are concerned with vector valued Monte Carlo methods for the randomized 
approximation of linear mappings. The cla.ssical results extend easily from real valued 
Monte Carlo methods to a finite number of them, if we gather unbiased estimates for 
each component. The · problem is how far one can proceed by this: Are there infinite 
dimensional problems, which admit unbiased Monte Carlo estimators? 
As an illustration let us briefly and informally introduce the following 

Example 1. Let f be any periodic function defined on the interval (0, 27r], which has a 
(generalized) derivative in l 2(0, 27r ), the space of all periodic square integrable functions. 
lt is well known that any such function expands into a Fourier series ( converging in 
l 2 (0, 27r)), which means, that we have 

00 

(1) f(x) = L1k(f)e-ikx, x E (0,27r], 
k=l 

with Fourier coefficients 

(2) 

For such functions an unbiased Monte Carlo estimator ( using Fourier coefficients) can 
be obtained in the following (trivial) way by choosing a member of the Fourier series at 
random. Precisely, let Pk := ~26k2 , k E N, and choose ~"6k

2 /k(j)e-ib:, k E N, with 
probability Pk, respectively. The average performance of this method yields the Fourier 
series of f, provided the random variable 

7r2 k2 . k ~ -1k(/)e_,k:z: 
6 

taking values in .i2 (0, 27r) is integrable. But we even have the strenger square integrability 
~m . . 

00 7r4k4 7r2 00 L Pk361/k(J)l 2 lle-ikxll~ = B L k2 1/k(f)l2 < oo, 
k=l . k=l 

(3) 

for functions with square integrable derivative, see [Pie87]. 
The above example can be considered as a special instance of approximating a diagonal 
mapping in the space 12 of square summable sequences. To see this we switch from the 
spaces of functions to the respective spaces of Fourier coefficients in the following way. 
Assign any function J the sequence Xk := k1k(f), k E N. Then the approximation of J 
is replaced by the approximation of (/k(f))keN· The differentiability assumption ensures 
that Lbi lxk 1

2 < oo. This means that we assign every sequence ( xk)keN the sequence 
(txk)keN, correspond_ing to a diagonal mapping Du: 12 ~ 12 • 

Summarizing we switched from the random approximation of func:tions to the random 
approximation of a diagonal mapping between Hilbert spaces. Within this framework a 
theory of stochastic numerical methods is available, see [Mat91, Hei94]. The basic notion 
will be the notion of a (linear) Monte Carlo method. Throughout the paper we restrict 
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ourselves to linear Monte Carlo methods only. Let X and Y be Ban.ach spaces. Denote 
by .C(X, Y) the space of all bounded linear operators and by ~(X, Y) the subspace of 
all operators of finite rank, cf. -[Pie80, Pie87) for notation from the theory of operators 
in Ban.ach spaces. By ~k(X, Y) we denote the subset of operators of rank at most k. 
Corresponding to [Mat91, Hei94, Mat94] we propose the following 

Definition 1. A triple 
P := ([O,F,P] ,u,k) 

is called a (linear) Monte Carlo method, if 
(1) [n, F, P] is a probability space. 
(2) u: n ~~(X, Y) is such that the mapping <I>: Xo X n ~ Y, defined by 

<I>(x,w) := (u(w))(x), x EX, w E 0, 

is product measurable into Y and the set {(u(w))(x), x EX, w EO} is a sepa-
rable subset in Y. 

(3) The cardinality function k: n ~ N is a measurable natural number, for which 

Uw := u(w) E ~k(w)(X, Y), w E n. 
Remark 1. For linear Monte Carlo methods as introduced above we could directly assign 
k( w) := rank( u( w) ), since this would result in an appropriate measurable cardinality fun-
ction. However, for general classes of methods such assignment would not be meaningful, 
such that we kept the definition with the more general choice of cardinality function, see 
[Hei94, Mat94]. 
For such Monte Carlo methods we can assign the cardinality 

MC-card(P) := fo k( w )dP( w ). 

By definition, for every x EX the mapping 

w--+ uw(x) 

is a Radon random variable in Y, see [LT91] for spaces of Ban.ach space valued random 
variables. Therefore the error of any Monte Carlo method P := ([O, F, P], u, k) for an 
operator S: X ~ Y at input x E X may be defined as 

( )

1/2 
e(S, P,x) := fo llS(x)- u..,(x)[[~dP(w) , 

while the overall performance is given by 

We agree to denote by 

e(S, P) := sup e(S, P, x). 
llxllx9 

a:c(S) := inf { sup ( f llS(x) - uw(x)ll}dP(w))
112

, MC-card(P) < n} 
llxllx9 Jn 
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the nth Monte Carlo approximation number of the linear operator S: X ~ Y, see [Mat91] 
for more information on that topic. We shall make use of the following submultiplicativity 
property 

(4) 

whenever the product is correctly defined. 
If a Monte Carlo method P has a finite error for some linear operator S, i.e., e(S, P) < oo, 
then the function 

Sp(x) := fo u..,(x)dP(w) 

exists and denotes the respective expectation. From now on we make the assumption that 

sup r II uw(x)ll}dP(w) < oo, 
llxllx~9 Jn 

ensuring that e(O, P) < oo, where 0 denotes the zero operator. It is the aim of this paper 
to study properties of Sp. 

Definition 2. An operator S E ,.C(X, Y) admits an unbiased Monte Carlo method if there 
is a Monte Carlo method P with 

(1) 

(2) 

and 

(3) 

MC-card(P) < oo, 

sup 111 uw(x)ll}dP(w) < oo 
llxllx9 n 

S(x) = Sp(x), x EX. 

If SE ,.C(X, Y) admits an unbiased Monte Carlo method then we let 

(5) u(S) := inf { sup ( r II Uw(x)ll}dP(w))
112

, p is unbiased for s}. 
llxllx9 Jn 

This turns into a norm and we have llS: X~ Yll ~ u(S). As explained above, property 
(2) is equivalent to the statement that P has a finite error for some bounded operator 
acting. between X and Y. Within this framework it is immediate that any finite rank 
operator L admits an unbiased Monte Carlo method by letting P be choosing L with 
probability 1. However, there are different ways of representing a given finite dimensional 
mapping, leading to different Monte Carlo methods. 

Example 2. Let Idm : lR.m ~ lR.m be the identity and e;, j = 1, ... , m, denote the unit 
vector basis in R_m. 
1. (trivial) representation: 



UNBIASED MONTE CARLO ESTIMATORS 5 

2. ( nuclear) representation: 

1 (m )(m ) Idm(x) = - '°"" '°"" c ·x · '°"" c ·e · 2m LI ~ i i ~ i i ' 
e1 , ... ,em.=±1 J=l J=l 

where c1, ... , cm denotes a Bernoulli sequence, see Remark 2 below. 
Observe that it is much more elaborate to find unbiased Monte Carlo methods with 
prescribed properties. We will not turn to that problem. 

2. DIAGONAL MAPPINGS Der: l2 -4 lq, 1 ~ q ~ oo 

We are going to study diagonal mappings in sequence spaces. To make things precise 
we need to introduce the Lorentz sequence spaces, cf. [Pie87, 2.1]. For any sequence 
x = ( l;) iEN of real numbers, which is convergent to 0 we assign by sn( x) the non-increasing 
rearrangement (in modulus) of x. The (real) Lorentz space lr,w consists of all sequences x 
for which the sequence (n l/r-l/w sn( x )) belongs to lw equipped with the norm arising 

nEN 
from this identification. Explici tly, if 1 ~ w < oo then we let 

. while for w = oo we put 

Observe that we can identify for any 1 ~ p < oo the classical sequence spaces lp with 
lp,p, while we denote by eo· the space 100 , 00 and by l00 the space of all bounded sequences 
equipped with the supremum norm. 
We begin our study with the consideration of a specific class of diagonal operators. 
Given any sequence a = ( a; );eN of real numbers, let us consider the mapping x = 
(x;);eN -4 (a;x;);eN· Denote this mapping by Der. For choices of 1 ~ p,q ~ oo the 
operator Da- acts continuously from lp to lq if and only if the diagonal a belongs to Zr with 
:=max{o,~-~}. 
The simple construction outlined in the introductory section .implies the existence of 
unbiased Monte Carlo ~ethods for Der: 12 -4 l2 whenever a E 12, which is more than 
required for continuity. This is typical and we shall derive necessary conditions later. 
However, the dass of operators admitting an unbiased Monte Carlo method can be en-
larged for other spaces, employing a more involved construction. This is provided in the 
following 

Theorem 1. A diagonal mapping Der: 12 -4 lq admits an unbiased Monte Carlo method 
if a E lq. Moreover we have u(Der: l2 -4 lq) ~ llallq· 
Before proving the theorem we need a preparatory lemma. Let cm denote the uniform 
distribution on the extreme points of B;:,, i.e., all vectors w E { +1, -l}m. Thus the basic 
probability space is [{ +1, -l}m, .Pn, cm]. For computations involving cm the following 
lemma is useful. 
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Lemma 1. Let m > 1. 

(1) For all l :S j, k :::; m we have 

'if j = k 
, else 

(2) For all a E lRm we have 

Proof. The second statement is a consequence of the first one. To prove the first topic, 
let us observe that for w E { +1, -l}m and 1 :::; j ~ m the number (w, e;) is ±1. This 
implies f{ +l,-l} (w, ei )2 dem( w) = 1. If j -/:- k then 

card{w E { +1, -l}m, (w, e;)(w, ek) = 1} = 
card{w E { +1, -l}m, (w, e;)(w, ek) = -1}, 

which is equal to 2m-l, and from which the proof can be completed. D 

Remark 2. The above lemma is well known. The reader familiar with probability theory 
will recognize that the distribution of (w, a) is the distribution of the sum Ej:1 e;(e;, a), 
where the e; are independent numbers taking values +1 and -1 with equal probability, 
i.e., they form a Bernoulli sequence. 

Proof of Theorem 1. The proof is constructive. We are going to design a concrete Monte 
Carlo method of cardinality 1. Let rzm := { +1, -l}m equipped with em, introduced above 
as probability. Denote by n := UmeN nm the disjoint union, equipped with the cr-algebra 
:F, generated from the sequence P. A probability P will be given as mixture of em in 
the following way. 
0 bserve, that for e > 0 we can find a decreasing sequence (Tm )meN, such that Tl = 1 and 
O"m = Tmßm, m E N, liIDm-oo Tm = 0 and 2::~1 lß;lq :=::; (1+e)q2::~1 lcr;lq· For a proof of 
this fact we refer to [Pie80, 8.6.4]. Let Pm :=Tm - Tm+h m E N. Then we have Pm 2:: 0 
and E:=l Pm =Tl = 1, which means that this sequence gives rise to a probability P by 
letting p := E:=l Pmem. (We implicitly extended the probabilities em to all n.) So far 
we have "defined a probability space (n, :F, P]. Now, define a mapping u: n ~ ~(l2 , lq) by 

lt is readily checked that P = ((n, :F, P], u, 1) is a linear Monte Carlo method of cardina-
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lity 1. Moreover, for x E 12 we have by Lemma 1 

in II u..,(x)ll~dP(w) =%;Pm t II u..,(x)ll~dem(w) 

= f Pm t lf w;(x,e;}i211 f w;ß;e;ll~dem(w) 
m=l J=l 1=1 

00 
( m ) 

2
/q ::; f

1 
Pmllxll~ fi IM 

. 2/ 

::; (1 + c:)211xll~ (~ Ju;Jq) q, 

such.that u(Du: l2 ~ lq):::; (:Ef=1 la;lq)11q, provided P was unbiased for Du. But this is 
true, since . 

T(x) := la u..,(x)dP(w), x E 12 , 

is well-de:fined and equal to 

oo m . 

= :E Pm :E ß;(x, e;)e; 
m=l j=l 

= f ß; (f.Pm) (x, e;)e; 
J=l m=J 

00 

= °'Lß;r;(x, e;)e; 
i=l 

= Du(x), 
again by Lemma 1. The proof of the theorem is complete. O 

Analogously we could prove 

Corollary 1. A diagonal mapping Du: 12 ~ 100 admits an unbiased Monte Carlo method 
provided the diagonal tends to 0. 
All operators considered so far have been compact. So the question arises, whether this 
is typical and leads to the following 

Open Problem. Does the identity Id: 12 ~ l00 admit an unbiased Monte Carlo method? 

Below we shall turn to the question whether there are necessary conditions for the exi-
stence of unbiased Monte Carlo methods. Such conditions will be expressed in terms of 
the Monte Carlo approximation numbers, introduced above. Therefore we are looking 
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for a reformulation of Theorem 1. To do this we need the following result, which points 
at the relation of the ordinary approximation numbers to the Monte Carlo counterpart, 
see [Mat91, Lemma 5]. Topics (2) and (3), below provide the typical instances where the 
Monte Carlo and the ( ordinary) approximation numbers differ. 

Proposition 1. There is a constant C < oo such that for all m, n E N we have 
(1) 

l/q 
a:c(Id: l;r' -7 z;;) ~ C ::/q' , 

if 1 < q < 2 and l = 1 - 1 - - q' ql 
(2) 

if 2 ::; q < oo and 
(3) 

a:c(Id: l-;' -7 z:) ~ G log (l + m). 
. n 

For the convenience of the reader we shall provide a proof, different from the one given 
previously in [Mat91, Hei94], thereby using the construction outlined above. We need a 
geometric property of Banach spaces. 

Definition 3. A Banach space Y has type p, 1 ~ p ~ 2, if there is a constant C < oo, 
such that for all probability spaces [n, :F, P], k E N and independent random elements 
1\, „., Tk in 1 2(0, :F, P, Y), for which fn Ti(w)dP(w) = 0, j = 1, „., k, we have 

(7) (io II t Ti(w)ll~dP(w)) 112 

~ C (t fo llTi(w)ll~dP(w)) l/p 

The smallest constant satisfying the above. inequality shall be called the type-p-constant 
and is denoted by Tp(Y). 

Remark 3. The notion of a type of a Banach space was originally introduced in [MP76], 
w.here this definition was given in terms of Rademacher sequences. But, as can be seen 
easily, it can be extended to the above situation, albeit the type-p-constant is different 
by a factor of at most 2, see [LT91, Chapt. 9.2], but also [HJ74]. lt can be seen that 
T2(1R) = 1. Moreover, every finite-dimensional Banach space has type p, 1 ::; p ::; 2, 
although the respective constant may depend on the dimension, cf. [TJ88, Ch. 1, §4]. 
However, we have 

and 
. 

T2(l;;) ~ C {l ,___ __ 
Jlogl +m 

for some universal constant C < oo. 

' if 2 ::; q < 00 

'if q = 00 
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Now we are prepared to provide the proof of Proposition 1, following the one given in 
[Mat94]. 

Proof of Proposition 1. We shall carry out the estimates only for 2 ~ q < oo. The other 
cases follow the same lines. By Theorem 1 there is an unbiased Monte Carlo method 
P == ([n, F, P], u, 1) with u(Id: l~ ~ l~) ~ m 1/q. The sample mean 

pn == ([nn, P, pn], v, n) 

of n independent copies of P, which is defined by 

provides another unbiased Monte Carlo method, this time of cardinality n, which has an 
error at x E l~, llxll2 ~ 1, of 

(8) e(Id: l~ ~ l~, pn, x) == ( f llx - _!_ tuwj(x)ll~dPn(wn)) 
112 

Jo n i=I 

(9) =;; (!a II~ (x - u„;(x)) ll~dPn(wn)) 
112 

(10) :=:; )nr2( l;') e(Id: I~ ---> l;', P). 

Since 

e(Id: l~ ~ z;i, P) ~ II Id: z;i ~ l;'ll + u(Id: l~ ~ l;'), 

the proof can be completed in case 2 ~ q < oo. D 

N ow we are able to provide the reformulation of Theorem 1 in terms of the respective 
Monte Carlo approximation numbers a:c( D": !2 ~ lq), as promised above. 

· Corollary 2. Let 1 ~ q < oo and put r :==max {2, q'}. lf 

then the mapping D": l2 ~ lq admits an unbiased Monte Carlo me~hod. 

Proof. To simplify the proof we shall assume that the diagonal is nonnegative and non-
increasing. 
Since the following diagram is commutative ( where Rm assigns every vector in lq the 
vector with the first m Coordinates, Jm denotes the natural embedding and D;1 is the 
corresponding restri ction), 
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D"' 

nm 
l~ ~~~~-"'~~~- zm 

q 

and llJmll ::; 1, llRmll ::; 1, we have by inequality (4) the estimate 

amc(Dm) < amc(D ) 
n "' - n "' · 

Moreover, we have 

(11) 

which can be seen as follows, cf. also .[Pie87, 2.9.3]. Without loss of generality we may 
assume O"m > 0. Since 

Idm =(Dm. zm ~ zm). (Dm. zm ~ zm)-1 
2,q "' • 2 q <T • 2 2 

and 
ll(D:;i: l~ ~ Z~t1ll = a~1 

the estimate (11) follows immediately. 
Letting m = 2n - 1 and inserting the .results from Proposition 1 we see that the sequence 
( 0"2n-1 )nEN belongs to lq whenever the assumptions from Corollary 2 are fulfilled. But this 
is equivalent to ( an)nEN E lq, see e.g. [Pie87, Prop. 2.1.9]. D 

We turn to the question whether there are non-trivial necessary conditions to be imposed 
on an operator in order to admit an unbiased Monte Carlo method. In terms of the 
Monte Carlo approximation numbers a fairly general condition can be given, provided the 
target space has some type p. Indeed, the sample mean construction from the proof of 
Proposition 1 im plies 

Theorem 2. Suppose the Banach space Y has type p, p > 1. lf an operator S: X ~ Y 
admits an unbiased Monte Carlo method then necessarily ( a:c( S) )nEN E lp',oo. 
Taking into account the behavior of the Monte Carlo approximation nurnbers of the 
diagonal rnappings and applying a technique similar to the one of Corollary 2 this transfers 
to 

Corollary 3. Let 1 ::; q < oo. lf D"': 12 ~ lq admits an unbiased Monte Carlo method 
then a E lq,oo. 

Remark 4. A look at the necessary and su:fficient conditions proves that there is only a 
srnall gap left. Since the arguments to prove the necessary conditions are very rough we 
conjecture that the su:fficient conditions are sharp. 
On the class of operators acting between Hilbert spaces we immediately obtain 
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Theorem 3. Any Hilbert-Schmidt operator (acting between Hilbert spaces} admits an un-
biased Monte Carlo method. Conversely, if an operator between Hilbert spaces admits an 
unbiased Monte Carlo method then necessarily the sequence of singular numbers belongs 
to l2 oo 1 

Indeed, The norm u, as defi.ned in (5), is easily seen to be unitarily invariant, such 
that the result for diagonal operators implies the respective result for arbitrary ones 
using the Schmidt - representation, see [Pie87, 2.11.4]. The dass of Hilbert - Schmidt 
operators corresponds to the dass of operators having square summable singular numbers, 
see [Pie80, 15.5.5], these corresponding to diagonal mappings having square summable 
diagonal. 

3. SOME RELATIONS TO OPERATOR IDEALS 

As could be seen in Theorem 3, Hilbert - Schmidt operators admit an unbiased Monte 
Carlo method. The dass of such operators is clos~ly related to the theory of operator 
ideals as developed in [Pie80]. The fi.rst important (though simple) observation is 

Theorem 4. The class of all operators admitting an unbiased Monte Carlo method turns 
into a normed operator ideal by letting S--+ u(S) be the norm as defined in equation (5). 
This immediately implies 

Corollary 4. Nuclear operators admit an unbiased Monte Carlo method. 
We shall introduce this ·dass of operators below. The assertion of the corollary follows 
from the fa~t that the ideal of the nuclear operators is the smallest normed ideal. However, 
a direct proof of the corollary could also be given using the trivial unbiased representation 
known from the introductory example. 
N ext we shall see that the dass of operators admitting an unbiased Monte Carlo method 
can be enlarged considerably in many situations. We shall exemplify this by introducing 
the ideal of (r, p, q)-nudear operators. 
Let 0 < r < oo, 1 ::; p, q ::; ~ with 1 + 1/r ~ ~ + ~· Denote by 9'1(r,p,q) the ideal of 
(r,p, q)-nuclear operators, i.e., an operator S E J2(X, Y) is (r,p, q)-nudear, if there is a 
representation 

00 

Sx = L a;(x, a;)y;, x EX, 
j=l 

with a; E X' and Y; E Y satisfying 

and 
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Denote the respective quasi norm by 

where the infimum is taken over all possible representations, see [Pie80, 18.l] for more 
details. Especially we obtain as 91(1,1,1) the ideal of nuclear operators mentioned above. 
The ideal of ( r, p, q )-nuclear operators can be character.ized by a factorization property, 
see [Pie80, 18.1.3]. Especially, every (q, q, 2)-nuclear operator factors through a diagonal 
mapping from l2 to lq with diagonal belonging to lq. (In case q = oo the diagonal converges 
to 0.) 
Together with Theorem 1 and Corollary 1 this provides 

Corollary 5. Let 1 ~ q < oo. Every (q, q, 2)-nuclear operator S admits an unbiased 
Monte Carlo method. M oreover we have 

u( S) ~ n(q,q,2)( S). 

The. largest ideal of this type which admits unbiased Monte Carlo methods is obtained as 
9'1( oo,oo,2) · 
For operators acting between Hilbert spaces H and Kit is readily checked that 

9'1coo,oo,2)(H, K) = 9'1(2,2,2)(H, K) 

and we obtain the Hilbert - Schmidt operators once more, see [Pie80, 18.5.4]. 

(ENS89] 

(Hei94] 

(HH64] 
[HJ74] 

[KW86] 
(LB93] 

(LT91] 

(Mat91] 
(Mat94] 
(MP76] 

[Pie80] 
[Pie87] 

[Ros56] 

REFERENCES 

S.M. Ermakov, W.W. Nekrutkin, and A.S. Sipin. Random Processes for Classical Equations 
of Mathematical Physics. Mathematics and its Appl., Soviet Ser. 34. Kluwer Academic Publ., 
Dordrecht, 1989. 
S. Heinrich. Random approximation in numerical analysis. In K. D. Bierstedt, et al., editor, 
Functional Analysis: Proceedings of the Essen Conference, volume 150 of Lect. Notes in pure 
and appl. Math., pages 123 - 171, New York, Basel, Hong Kong, 1994. Marcel Dekker. 
J. M. Hammersley and D. C. Handscomb. Monte Carlo methods. Methuen, London, 1964. 
J. Hoffmann-J izsrgensen. Sums of independent Banach space valued random variables. Stv.dia 
Math., 52:159 - 186, 1974. 
M. H. Kalos and P. A. Whitlock. Monte Carlo methods, volume 1. Wiley, New York, 1986. · 
R. C. Liu and L. D. Brown. N onexistence of informative unbiased estimators in singular pro-
blems. Ann. Statist., 21(1):1 - 13, 1993. 
M. Ledoux and M. Talagrand. Probability in Banach spaces, volume 23 of Ergeb. Math. und 
ihrer Grenzgeb., 3. Folge. Springer, Berlin, Heidelberg, New York, 1991. 
P. Mathe. Random approximation of Sobolev embeddings. J. Complezity, 7:261 - 281, 1991. 
P. Mathe. Approximation theory of Monte Carlo methods. Habilitation thesis, 1994. 
B. Maurey and G. Pisier. Series de variables aleatoires vectorielles independantes et geometrie 
des espaces ~e Banach. Studia Math., 58:45 - 90, 1976. 
A. Pietsch. Operator Ideals. North Holland, Amsterdam, New York, Oxford, 1980. 
A. Pietsch. Eigenvalues and s-Nv.mbers, volume 43 of Math. und ihre Anw. in Phys. und 
Technik. Geest & Portig, Leipzig, 1987. 
M. Rosenblatt. Remarks on nonparametric estimates of a density function. A nn. M ath. Statist., 
27:832 - 837, 1956. 



(TJ88] 

UNBIASED MONTE CARLO ESTIMATORS 13 

N. Tomczak-Jaegermann. Banach-Mazur Di.!tances and Finite-dimenaional Operator Ideals, 
volume 38 of Pitman M onographs and SuMJeys in pure and applied M ath. Longman, Essex, 
1988. 

(TWW88] J.F. Traub, G.W. Wasilkowski, and H. Woiniakowski. Information-Based Complezity. Acade-
mic Press, New York, 1988. 

WEIERSTRASS INSTITUTE FOR APPLIED ANALYSIS AND STOCHASTICS, D-10117 BERLIN, MOHREN-
STRASSE 39 





Recent publications of the 
Weierstraß-Institut für Angewandte Analysis und Stochastik 

Preprints 1994 

84. Karmeshu, Henri Schurz: Moment evolution of the outflow-rate from non-
linear conceptual reservoirs. 

85. Wolfdietrich Müller, Klaus R. Schneider: Feedback stabilization of nonlinear 
discrete-time systems. 

86. Gennadii A. Leonov: A method of constructing of dynamical systems with 
bounded nonperiodic trajectories. 

87. Gennadii A. Leonov: Pendulum with positive and negative dry friction. Con-
tinuum of homoclinic orbits. 

88. Reiner Lauterbach, Jan A. Sanders: Bifurcation analysis for spherically sym-
metric systems using invariant .theory. 

89. Milan Kucera: Stability of bifurcating periodic solutions of differential in-
equalities in IR 3. . 

90. Peter Knabner, Cornelius J. van Duijn, Sabine Hengst: An analysis of crystal 
dissolution fronts in flows through porous media Part I: Homogeneous charge 
distribution. 

91. Werner Horn, Philippe Lauren~ot, Jürgen Sprekels: Global solutions to a 
Penrose-Fife phase-field model under flux boundary conditions for the in-
verse temperature. 

92. Oleg V. Lepskii, Vladimir G. Spokoiny: Local adaptivity to inhomogeneous 
smoothness. 1. Resolution level. 

93. Wolfgang Wagner: A functional law of large numbers for Boltzmann type 
stochastic particle systems. 

94. Hermann Haaf: Existence of periodic travelling waves to reaction-diffusion 
equations with excitable-oscillatory kinetics. 

95. Anton Bovier, Veronique Gayrard, Pierre Piece: Large deviation principles 
for the Hopfield model and the Kac-Hopfield model. . 

96. Wolfgang Wagner: Approximation of the Boltzmann equation by discrete 
velocity models. 

97. Anton Bovier, Veronique Gayrard, Pierre Piece: Gibbs states of the Hopfield 
model with extensively many patterns. 



98. Lev D. Pustyl'nikov, Jörg Schmeling: On some estimations of Weyl sums. 

99. Michael H. Neumann: Spectral density estimation via nonlinear wavelet 
methods. for stationary non-Gaussian time series. 

100. Karmeshu, Henri Schurz: Effects of distributed delays on the stability of 
structures under seismic excitation and multiplicative noise. 

101. Jörg Schmeling: Estimates of Weyl sums over subsequences of natural num-
bers. 

102. Grigori N. Milstein, Michael V. Tret'yakov: Mean-square approximation for 
stochastic differential equations with small noises. 

103. Valentin Konakov: On convergence rates of suprema in the presence of non-
negligible trends. 

104. Pierluigi Colli, Jürgen Sprekels: On a Penrose-Fife model with zero interfa-
cial energy leading to a phase-field system of relaxed Stefan type. 

105. Anton Bovier: Self-averaging in a dass of generalized Hopfield models. 

106. Andreas Rathsfeld: A wavelet algorithm for the solution of the double layer 
potential equation over polygonal boundaries. 

107. Michael H. Neumann: Bootstrap confidence bands in nonparametric regres-
s1on. 

108. Henri Schurz: Asymptotical mean square stability of an equilibrium point 
of some linear numerical solutions with multiplicative noise. 

109. Gottfried Bruckner: On the stabilization of trigonometric collocation meth-
ods for a dass of ill-posed first kind equations. 

110. Wolfdietrich Müller: Asymptotische Input-Output-Linearisierung und Stör-
größenkompensation in nichtlinearen Reaktionssystemen. 

111. Vladimir Maz'ya, Gunther Schmidt: On approximate approximations using 
Gaussian kernels. 

112. Henri Schurz: A note on pathwise approximation of stationary Ornstein-
Uhlenbeck processes with diagonalizable drift. 




