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Abstract

It is well known that high stress concentrations can occur in elastic composites in
particular due to the interaction of geometrical singularities like corners, edges and
cracks and structural singularities like jumping material parameters. In the project C5
Stress concentrations in heterogeneous materials of the SFB 404 Multifield Problems
in Solid and Fluid Mechanics it was mathematically analyzed where and which kind
of stress singularities in coupled linear and nonlinear elastic structures occur. In the
linear case asymptotic expansions near the geometrical and structural peculiarities are
derived, formulae for generalized stress intensity factors included. In the nonlinear case
such expansions are unknown in general and regularity results are proved for elastic
materials with power-law constitutive equations with the help of the difference quotient
technique combined with a quasi-monotone covering condition for the subdomains and
the energy densities. Furthermore, some applications of the regularity results to shape
and structure optimization and the Griffith fracture criterion in linear and nonlinear
elastic structures are discussed. Numerical examples illustrate the results.

1 Introduction

Composites play an important role in the everyday life, examples are fiber-reinforced
composites in car industry, piezo-electric stack actuators or semiconductor devices. From
experience and experiments it is well known that very high mechanical stresses can occur in
the composite in the vicinity of re-entrant corners, edges, cracks and near interior surfaces,
where the different materials of the composite come together. These stress concentrations
have a strong influence on the strength and physical life of the structure. Their knowledge
is fundamental for fracture and failure criteria.

The project C5 Stress concentrations in heterogeneous materials of the SFB 404 Mul-
tifield Problems in Solid and Fluid Mechanics was devoted to the mathematical analysis
of stress singularities in linear and nonlinear elastic coupled nonsmooth structures. In the
first years of this project we have focused on linear problems whereas in the last period
we have concentrated on some nonlinear boundary transmission problems.

In this article we give an overview on the regularity results, shortly for linear and more
detailed for nonlinear elastic composites. We consider bodies which are composed of
several elastic substructures with different material properties. The whole body as well as
the interfaces, which separate the substructures, may have corners or edges. Throughout
the whole paper we assume small strains and consider constitutive laws which lead to
linear elliptic systems of partial differential equations or to quasilinear elliptic systems of
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p-structure for the displacement fields. These PDEs have piecewise constant coefficients
due to the heterostructure of the composite.

The Linear Case

In this case the substructures consist of linear elastic materials and the singular behav-
ior of the displacement and stress fields can be completely characterized by means of an
asymptotic expansion of the solution near the mentioned geometrical and structural pe-
culiarities. In two dimensions this expansion reads in the neighborhood of a corner point
or an interior cross point S for a displacement field u (polar coordinates with respect to
S are used):

ηSu(r, ϕ) = ureg(r, ϕ) + ηS
∑

0<Re α<1

cαrαvα(ln r, ϕ) . (1.1)

The singular exponents α ∈ C are eigenvalues of a corresponding nonlinear eigenvalue
problem and the functions vα consist of (generalized) eigenfunctions and powers of ln r.
The constants cα are generalized stress intensity factors and depend on the given external
loading. ηS is a cut-off function with respect to S and ureg is a regular function. The
regularity of the solution u is determined by the singular exponent α with the smallest
positive real part. This exponent and the corresponding function vα can be explicitly
calculated for fixed geometries and material parameters and do not depend on the given
external forces.

Expansions like (1.1) are well established for homogeneous materials and, more general,
for linear elliptic systems with smooth coefficients, see for example [12, 20, 36]. In Sect. 2
we will demonstrate, that the Mellin-technique as an appropriate mathematical tool guar-
antees such expansions for solutions of general elliptic boundary-transmission problems in
composites, too [43, 44]. Furthermore, we will formulate explicit formulae for the constants
cα in this case and give a numerical example. The computation of the singular terms in
(1.1) is technically complicated in general and very small real parts of the exponents α

can appear. In [27, 29, 45], we derived a criterion for linear elliptic systems with piecewise
constant coefficients, which guarantees Re α ≥ 1

2 in the two dimensional case and similar
results for higher dimensions. This condition, the quasi-monotonicity condition, was orig-
inally defined for the Laplace operator with piecewise constant coefficients in a completely
different context [16]. Its relevance for the regularity of weak solutions was discovered in
[48] for the two dimensional Laplacian and in [45] for isotropic bi-materials. We discuss
this condition in Sect. 2.4.2.

The Nonlinear Case

Much less is known about the regularity of displacement and stress fields of nonlinear elas-
tic materials. For some classes of semilinear and quasilinear systems of partial differential
equations (e.g. stationary Navier-Stokes equations, semiconductor equations) it can be
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shown [1, 6, 49] that the regularity of the solutions is dominated by assigned linearized
problems. Furthermore, a comparison principle and barrier functions are used for a special
class of scalar nonlinear equations on two-dimensional domains (see e.g. [8, 15, 55]) to get
similar results.

Nonlinear elastic field equations of power-law type do not fit in this framework in general
and it is an open question whether the behavior of the elastic fields can be completely
characterized by leading terms in an asymptotic expansion similar to the linear case (1.1).
First investigations into this direction were done at the end of the sixties in [22, 50] for
homogeneous materials of Ramberg-Osgood type (power-law models). In order to describe
the elastic fields near a crack tip an ansatz (HRR-field) of the form

u = rαvα(ϕ) (1.2)

was inserted into the corresponding field equations and led to a fully nonlinear eigenvalue
problem for the determination of the eigenpairs (α, vα).

The field equations of the Ramberg-Osgood model are closely related to general systems
of quasilinear elliptic partial differential equations of p-structure, see e.g. [18] for a defini-
tion. In [18, 19, 52], Ebmeyer, Frehse and Savaré obtained independently global regularity
results for weak solutions of such systems on nonsmooth domains with a difference quo-
tient technique. The difference quotient method is also applicable to the Ramberg-Osgood
model [31, 32] and we cite and discuss the corresponding results in Sect. 4.2.

At the beginning of the last research period of the SFB 404 only very few regularity
results for transmission problems of p-growth were reported in the literature; e.g. two
subdomains were considered with either smooth interface and different pi [39] or with
nonsmooth interface and p1 = p2 = 2 [52]. In Sect. 3 we will present recently derived
regularity results for transmission problems in composites where on the substructures
Ωi we have different quasilinear elliptic systems of pi-structure. We do not restrict the
number of subdomains and the growth properties of the differential operators may vary
from subdomain to subdomain.

For obtaining the regularity results, the main idea is to combine the difference quo-
tient technique with the concept of a quasi-monotone distribution of material parameters
known from the linear problems. This leads to the new concept of a quasi-monotone
covering condition for the subdomains and the energy densities which determine the dif-
ferential operators on the subdomains. The very special case, the linear Laplace equation
with piecewise constant coefficients, is included and our general quasi-monotone covering
condition coincides in this case up to an additional geometric condition with the original
definition of quasi-monotonicity from [16].

In the last section of this paper we discuss applications of the regularity results for linear
and nonlinear elastic problems. These are shape and structure optimization problems in
nonsmooth domains, sensitivity analysis for compound elastic structures and the Griffith
fracture criterion for a nonlinear elastic model of power-law type. Relying on the proved

3



regularity results formulae for shape derivatives and the energy release rate are derived
which are suitable for computations.

2 Linear Elastic Composites

2.1 Weak Formulation

We start with the weak formulation of the elastic field equations in a composite. Let
Ω ⊂ R

d, d = 2, 3, be a bounded domain consisting of pairwise disjoint subdomains Ωi ⊂ Ω,
1 ≤ i ≤ M , with Ω = ∪M

i=1Ωi. We assume for simplicity that Ωi are Lipschitz domains of
polygonal or polyhedral type. We distinguish between exterior boundary pieces

Γi = int (∂Ωi ∩ ∂Ω) (2.1)

and interior boundary pieces, the common interfaces of Ωi and Ωj,

Γij = int (∂Ωi ∩ ∂Ωj) . (2.2)

In each domain Ωi we consider the equilibrium equations for two classes of fields: potential
fields (antiplanar case, (2.3)) and linear, anisotropic elastic fields, that means (2.4)

−div (μi∇ui) = fi i = 1, . . . ,M , (2.3)

−div σi(ui) = Fi i = 1, . . . ,M . (2.4)

Here, μi are given positive constants (shear moduli), ui in (2.3) are the scalar potentials,
ui = (ui

1, . . . , u
i
d)

� in (2.4) the displacement fields and σi = (σi
kj)kj ∈ R

d×d are the stress
tensors. For small strains, Hooke’s law yields

σi
kj(u

i) =
d∑

m,n=1

Ci
kjmnεmn(ui), i = 1, . . . ,M, k, j = 1, . . . , d ,

where εmn(ui) = 1
2(∂ui

m
∂xn

+ ∂ui
n

∂xm
) are the components of the linearized strain tensor ε(ui) ∈

R
d×d. It is assumed that the material tensors Ci are symmetric and positive definite

(Ciξ) : ξ =
d∑

k,j,m,n=1

Ci
kjmnξkjξmn ≥ Mi

d∑
k,j=1

|ξkj|2 (2.5)

for every ξ = (ξkj)kj ∈ R
d×d. We consider Dirichlet and Neumann boundary conditions

on ∂Ω = ΓD ∪ ΓN . These conditions read for (2.4)

σ	n = gi on ΓN , (2.6)

u = 0 on ΓD , (2.7)

where σ = σi on ΓN ∩ Γi, u = ui on ΓD ∩ Γi and ΓD ∩ ΓN = ∅. Furthermore, we assume
that the subdomains Ωi are bonded, which is expressed by the following transmission
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conditions on the skeleton Γ = ∪M
i,j=1Γij (	ni denotes the exterior unit normal vector on

Γij with respect to Ωi):

ui = uj on Γij , (2.8)

σi	ni = σj	ni on Γij . (2.9)

We are now in a position to formulate the boundary-transmission problems in a weak
sense. Let

V = {u ∈ W 1,2(Ω) : u
∣∣
ΓD

= 0} , (2.10)

where the restriction to ΓD is to be understood in the trace-sense. We assume that f ∈ V ′,
fi = f on Ωi, g ∈ W− 1

2
,2(ΓN ), g = gi on ΓN ∩ Γi. The weak formulation reads

Find u ∈ V such that for every v ∈ V

a(u, v) = 〈f, v〉Ω + 〈g, v〉ΓN
, (2.11)

where for the Poisson equations (2.3)

a(u, v) =
∫

Ω
μ(x)∇u∇v dx =

M∑
i=1

∫
Ωi

μi∇ui∇vi dx (2.12)

and for the equations of linear elasticity (2.4)

a(u, v) =
∫

Ω
σ(u) : ε(u) dx =

M∑
i=1

∫
Ωi

σi(ui) : ε(ui) dx . (2.13)

Both problems, (2.11)+(2.12) and (2.11)+(2.13), respectively, are elliptic boundary-trans-
mission problems (see [43, 51]) due to the assumptions on the material parameters. There-
fore it holds

1. If meas ΓD > 0, then there exists a unique solution u ∈ V of (2.11).

2. If meas ΓD = 0 and 〈f, r〉Ω + 〈g, r〉ΓN
= 0 for every r ∈ R ⊂ W 1,2(Ω), where R is

the set of rigid body displacements, then there exists a solution u ∈ W 1,2(Ω) which
is unique up to elements from R.

If Ω is a homogeneous body with a smooth boundary, then the regularity of a weak solution
of problem (2.11) is determined by the regularity of the data f, g. But, if Ω is a composite
and if the boundary of Ω has corners and edges, then such a regularity is not longer valid
even if f and g are smooth. The geometric (corners, edges) and structural singularities
(discontinuous material parameters) have an essential influence on the regularity of the
solutions. Weak solutions of boundary-transmission problems of the form (2.11) can be
decomposed into singular terms describing the behavior near corners, edges and jumps
of the material parameters and into a more regular term. This decomposition can be
described and calculated by Mellin-techniques, similar to pure boundary value problems.
Special ansatzes frequently used in mechanics [23, 57, 58, 59] lead also to such results. In
the following section we outline the use of the ansatzes and the Mellin technique for two
dimensional transmission problems and we mention results for the 3D-case.
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Figure 1: Polygonal domain

2.2 2D-Corner Singularities

Let S be the set of the corner points of ∂Ωi and of the points of ΓD ∩ ΓN , see Fig. 1. For
a fixed point S ∈ S we introduce polar coordinates (r, ϕ) with respect to S and search a
corner singularity of the form

using(r, ϕ) = rαΦα(ϕ) , (2.14)

The corner singularity (2.14) has to be a solution of

a(using, v) = 0 (2.15)

for v ∈ V with supp v ⊂ ΩS = Ω∩BR(S), where BR(S) is an open ball centered at S with
appropriate small radius and a(·, ·) is the bilinear form from (2.12) or (2.13). Choosing
the special test function v = η(r)Ψ(ϕ), where Ψ ∈ Vϕ = {Ψ ∈ W 1,2(0, ϕ2) : Ψ|ΓD

= 0}
and η ∈ C∞

0 ((−R,R)), we obtain from (2.15) a bilinear form which depends on S ∈ S and
the parameter α:

aS(α; Φα,Ψ) = 0 , (2.16)

see for example [37, 41, 45] for explicit formulae. Relation (2.16) defines a quadratic
eigenvalue problem and we refer to Sect. 2.4 for some examples.

By this procedure one can generate weak solutions having a singular behavior of the
form (2.14) near a point S ∈ S. Now the question is whether terms of the form (2.14)
characterize the singular behavior of weak solutions completely. This problem can be
answered using an appropriate integral transform, the Mellin transform [37]:

M(u(r, ϕ))[α] = û(α,ϕ) =
∫ ∞

0
r−α−1u(r, ϕ) dr . (2.17)

This transform maps r∂r into the complex parameter α. The Mellin transform applied to
the differential operators in (2.3), (2.4), (2.6)–(2.9), generates a Fredholm operator pencil
AS(α) with

AS(α) : Vϕ → V ′
ϕ . (2.18)
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For explicit formulas for AS(α) see the examples in [37, 45]. The operator pencil AS(α)
and the bilinear form aS(α; ·, ·) from (2.16) are related as follows

〈AS(α)Φ,Ψ〉 = aS(α; Φ,Ψ) for every Φ,Ψ ∈ Vϕ . (2.19)

The corresponding quadratic eigenvalue problem AS(α)Φα = 0 has a finite number of
eigenvalues in any strip [37, 45]

c1 ≤ Re α ≤ c2 . (2.20)

The following regularity theorem is proved with the Mellin technique and connects the
eigenvalue problems (2.16) to the global regularity of weak solutions.

Theorem 2.1 (Regularity theorem). [20, 36, 37, 45] Let the volume force densities f

of (2.3) and F of (2.4) be elements of W l,2(Ω) and let the Neumann datum g be in
W l+ 1

2
,2(ΓN ) with l ∈ N0. Assume that AS(α) is invertible on the line Re α = l + 1.

Then the weak solution u ∈ V of the boundary transmission problem admits the following
decomposition:

u = ureg +
∑
S∈S,
γ∈ΛS

ηScS
γ vS

γ (r, ϕ) . (2.21)

Here, ureg

∣∣
Ωi

∈ W l+2,2(Ωi) and

ΛS = {γ = (α, μ, κ) : α is an eigenvalue of AS(α) in the strip

0 < Re α < l + 1; μ = 1, . . . , IS
α ; κ = 0, . . . ,MS

α,μ} . (2.22)

IS
α denotes the geometrical multiplicity of α, {ΦS

α,μ,κ, μ = 1, . . . , IS
α ;κ = 0, . . . ,MS

α,μ} is
a canonical system of Jordan chains of AS(α) with respect to eigenvalue α, MS

α,μ + 1 are
the lengths of the Jordan chains, ηS are cut-off functions which equal to 1 near S and the
singular functions vS

γ are of the form

vS
γ (r, ϕ) = rα

κ∑
q=0

(ln r)q

q!
ΦS

α,μ,κ−q(ϕ) . (2.23)

The constants cS
γ are also called generalized stress intensity factors and depend on the

data.

Coefficient Formulae

The coefficients cS
γ in (2.21) express the intensity of the singular functions vS

γ (r, ϕ). In
particular, they can vanish and then u is regular. Damage and crack criteria rely on these
coefficients. The coefficients depend on the exterior forces, the elastic material parameters
and on the geometry of the domain and can be calculated via so-called coefficient formulae.
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In the case of homogeneous materials these formulae are well known [37, 41]. In this
section we derive analogous formulae of Mazya/Plamenevski type for potential fields in
composites. Corresponding coefficient formulae for linear elastic fields in bonded structures
are described in [5].

Lemma 2.2. Let Ω,Ω1,Ω2 ⊂ R
2 be bounded polygons, Ω = ∪2

i=1Ωi and S ∈ ∂Ω∩∂Ω1∩∂Ω2

a corner point (see Fig. 1). For a weak solution u of the boundary-transmission problem
(2.11) with bilinear form (2.12) and M = 2 the expansion (2.21) reads near the point S

(ui = u
∣∣
Ωi

): (
u1

u2

)
= ηSc0r

α0M(α0)

(
sin(α0ϕ)
cos(α0ϕ)

)
+ remainder . (2.24)

Here, M(α0) is a matrix depending on the kind of the boundary conditions near the corner
S:

M(α0) = MD−D =

(
− sin(α0(ϕ2 − ϕ1)) 0
cos(α0ϕ2) sin(α0ϕ1) − sin(α0ϕ2) sin(α0ϕ1)

)
,

M(α0) = MN−N =

(
0 cos(α0(ϕ2 − ϕ1))

sin(α0ϕ2) cos(α0ϕ1) cos(α0ϕ1) cos(α0ϕ2)

)
,

M(α0) = MN−D =

(
cos(α0(ϕ2 − ϕ1)) 0

sin(α0ϕ1) sin(α0ϕ2) sin(α0ϕ1) cos(α0ϕ2)

)
.

The exponent α0 is a zero of the equation

μ2 cos(α(ϕ2 − ϕ1)) sin(αϕ1) + μ1 sin(α(ϕ2 − ϕ1)) cos(αϕ1) = 0 (D − D) ,

μ2 cos(αϕ1) sin(α(ϕ2 − ϕ1)) + μ1 sin(αϕ1) cos(α(ϕ2 − ϕ1)) = 0 (N − N) ,

μ1 cos(αϕ1) cos(α(ϕ2 − ϕ1)) − μ2 sin(αϕ1) sin(α(ϕ2 − ϕ1)) = 0 (N − D) .

The corresponding coefficient c0 is given by

c0 =
1

α0K(α0)

(∫
Ω

μ(fs− + u
s−) dx +
∫

ΓN

μ(gs− − u
∂s−
∂n

)dσ

)
, (2.25)

where s− = ηSr−α0M(α0) (sin(α0ϕ), cos(α0ϕ))� and

K(α0) = KD−D = μ1ϕ1 sin2 α0(ϕ2 − ϕ1) + μ2(ϕ2 − ϕ1) sin2 α0ϕ1 ,

K(α0) = KN−N = μ1ϕ1 cos2 α0(ϕ2 − ϕ1) + μ2(ϕ2 − ϕ1) cos2 α0ϕ1 ,

K(α0) = KN−D = μ1ϕ1 cos2 α0(ϕ2 − ϕ1) + μ2(ϕ2 − ϕ1) sin2 α0ϕ1 .

For the meaning of the angles ϕ1, ϕ2 see Fig. 1.

Sketch of the proof. The formula (2.24) was derived via the Mellin technique in [45].
It remains to show (2.25): For a fixed cut-off function ηS = ηS(r) we consider a family
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Figure 2: a) interface crack, b) real part (K1) and imaginary part (K2) of c1

of balls Bδ(S) = {x ∈ R
2 : |x − S| = r < δ} such that η ≡ 1 on Bδ. We apply Green’s

formula on Ωδ = Ω\Bδ(S) and obtain∫
Ωδ

(μ(Δus− − uΔs−) dx

=
2∑

i=1

∫
Ωδ∩Ωi∩supp ηS

μi(Δuis−,i − uiΔs−,i) dx

= μ1δ

∫ ϕ1

0

(
u1

∂s−,1

∂r
− ∂u1

∂r
s−,1

)
dϕ + μ2δ

∫ ϕ2

ϕ1

(
u2

∂s−,2

∂r
− ∂u2

∂r
s−,2

)
dϕ

+
∫

ΓN∩∂Ωδ

μ

(
gs− − u

∂s−
∂	n

)
dσ .

Inserting the expansion (2.24) of u and considering the limit δ → 0 we get the coefficient
formula (2.25).

Computation of Stress Intensity Factors for Interface Cracks

As an example we consider the linear isotropic elasticity problem in a one sided clamped
laminated structure with an interface crack, see Fig. 2. There are no volume forces and
tensions of ±2000MPa. The Young moduli are E1 = 200000MPa and E2 = 400000MPa,
the Poisson ratios are chosen as ν1 = ν2 = 0.3. The asymptotic expansion (2.21) near the
crack tip S reads [5, 60]

u = ηS

(
c1r

1
2
+iεv1(ϕ) + c2r

1
2
−iεv2(ϕ)

)
+ ureg ,

where

ε =
1
2π

ln
1 + β

1 − β
, β =

μ2(1 − 2ν1) − μ1(1 − 2ν2)
2(μ2(1 − ν1) + μ1(1 − ν2))

.

The coefficients ci as well as the functions vi are complex valued. The stress intensity
factor c1 = K1 + iK2 is computed via coefficient formulas similar to formula (2.25) and
the real part and imaginary part are plotted in Fig. 2, [4]. Coefficient formulas for linear
isotropic elasticity are derived in [5].
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Figure 3: The vertex neighborhood

2.3 3D Vertex and Edge Singularities

Let us assume that Ωi ⊂ R
3 are polyhedrons and that the set ΓD ∩ΓN consists of straight

edges. We analyze now the behavior of the potential and elastic fields near the set S:

S = {edges of ∂Ωi} ∪ {vertices of ∂Ωi} .

The vertex singularities can be described analogously to the 2D corner singularities
taking an ansatz in spherical coordinates:

using(r, ϕ, θ) = rαΦα(ϕ, θ) ,

where r = |x − v| and v is a vertex as in Fig. 3. We proceed as in the 2D case and get
(2.15), (2.16), (2.6) correspondingly and finally an operator pencil

Av(α) : V (Ω ∩ SR(v)) → V (Ω ∩ SR(v))′ ,

where SR(v) = {x ∈ R
3 : |x − v| = R} for sufficiently small fixed R and V (Ω ∩ SR(v)) =

{u ∈ W 1,2(Ω ∩ SR(v)) : u|ΓD
= 0}. There are finitely many eigenvalues of the Fredholm

operator bundle Av(α) in any strip

c1 ≤ Re αv ≤ c2 .

We call an eigenvalue non-defective, if its algebraic and geometric multiplicities coincide.
Assuming this for simplicity we get together with the eigensolutions Φαv (ϕ, θ) singular
vertex functions for weak solutions of the form

uvertex =
∑

− 1
2
<Re αv< 1

2

ηv(r)cαvrαvΦαv(ϕ, θ) , (2.26)

where ηv is a cut-off function and cαv are constants which depend on the right hand sides.
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The edge singularities are generated by 2D operator pencils. For a fixed edge 	e, we
introduce an orthogonal system of coordinates (y1, y2, y3), where the y3-axis is directed
along the edge 	e. We denote by K
e the straight plane angular cone of opening ϕ
e in
the {y1, y2}-plane such that Ω coincides with K
e × R in a neighborhood of 	e. Removing
the derivative ∂y3 in the operators L defined by (2.3) and (2.4) we get 2D-operators L
e

in K
e. Introducing polar coordinates (ρ, ϕ
e) and applying the Mellin-technique we get
edge-singularities of the weak solution of the following form provided the eigenvalues are
non-defective:

uedge =
∑

0<Re α�e<1

cα�e
(y3)ρα�eΦα�e

(ϕ
e) . (2.27)

The exponents α
e are the eigenvalues and Φα�e
(ϕ
e) the corresponding eigensolutions of the

eigenvalue problem as formulated in (2.16).
The asymptotic expansion of weak solutions of (2.11), (2.12) and (2.13) reads in a

vicinity of a vertex v, provided the eigenvalues are nondefective [2, 13, 37, 45]:

ηvu = ηv

(
uvertex +

∑
edges

uedge

)
+ ureg

= ηv

∑
− 1

2
<Re αv< 1

2

cαvrαvΦαv(ϕ, θ) + ηv

∑
edges

∑
0<Re α�e<1

c̃α�e
(y3, r)ρα�eΦα�e

(ϕ
e)

+ ureg , (2.28)

where ureg|Ωi ∈ H2−ε(Ωi). Here, we accumulated the interaction of vertex and edge
singularities in the coefficient c̃α�e

(y3, r).

2.4 Examples

Vertex Exponents

We start with the Dirichlet problem for linear elastic fields in a composed Fichera domain
with the Young moduli E1 = 1, E2 = 10 and Poisson ratios ν1 = ν2 = 0.3, see Fig. 4.
The plotted squares in Fig. 4 represent the real parts whereas the diamonds show the
imaginary parts of the vertex exponents. Figure 4 is from [45], the computations where
done by D. Leguillon.

2.4.1 Kellogg’s Example

The following two dimensional example by R. B. Kellogg shows that the singular exponents
in expansion (2.21) for solutions of the Laplace equation can have arbitrary small positive
real parts.

Let be Ω = (−1, 1)2 ⊂ R
2, Ωi = {x = r

( cos ϕ
sinϕ

) ∈ Ω : (i − 1)π/2 < ϕ < iπ/2} for
1 ≤ i ≤ 4 and we consider the Laplace equation (2.3) on this domain. In the neighborhood
of S, the solution u has the structure (2.21), the singular exponents α in (2.23) are real and
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Figure 4: a) Fichera corner, b) vertex exponent

there are no logarithmic terms. If we choose μ1 = μ3 = 1, μ2 = μ4 = h > 0, then α > 0 is
a singular exponent of (2.23) if and only if cos(απ) = 1 − 8h/(1 + h)2 [11, 24]. It follows
from this relation that αmin = min{α > 0, α is singular exponent} tends to 0 for h → 0
or h → ∞, see also Fig. 5. Therefore, the regularity of weak solutions can get arbitrarily
low, i.e. for general situations it can only be guaranteed that u

∣∣
Ωi

∈ W 1+ε,2(Ωi), ε > 0
small.

2.4.2 Quasi-Monotonicity

Different authors investigated in detail the dependence of the singular exponents in (2.23)
and (2.28) on the geometry, material parameters and the number of subdomains and
we refer to [27, 42, 45, 48] for the Laplace equation and to [27, 45] for linear elasticity.
M. Petzoldt observed and proved for two dimensional polygons that a quasi-monotone dis-
tribution of the parameters μi in the Laplace equation (2.3) leads to general positive lower
bounds for Re αmin and thus guarantees a higher minimum regularity of weak solutions
[48]. In [26, 27, 29] this condition was slightly modified and extended to composites of
linear elastic materials in 2D and 3D polyhedral domains and the real parts of the sin-
gular exponents were estimated. We give here the definition of quasi-monotonicity from
[29] for a cross point S which is situated on the Neumann boundary of a two dimensional

Ω1Ω2

Ω3 Ω4

S

h

α

1 2 3 4 5

1

2

3

Figure 5: Domain and eigenvalues α for Kellogg’s example
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Figure 6: Example for the quasi-monotonicity condition

polygon and formulate the corresponding regularity result. Let R > 0, N ∈ N. For
Φ0 < Φ1 < . . . < ΦN ≤ Φ0 + 2π we introduce

Ωi = {x ∈ R
2 : 0 < |x| < R, Φi−1 < ϕ < Φi}, 1 ≤ i ≤ N

and Ω = {x ∈ R
2 : 0 < |x| < R, Φ0 < ϕ < ΦN}. Let furthermore Ci be the elasticity

tensor corresponding to the subdomain Ωi. It is assumed that the boundaries Γi = {x ∈
R

2 : |x| ≤ R, ϕ = Φi}, i ∈ {0, N}, are parts of the Neumann boundary. The quasi-mono-
tonicity condition is satisfied if there exists an index i0 ∈ {0, . . . , N} such that (Fig. 6)

QM1 C1 ≤ . . . ≤ Ci0−1 ≤ Ci0 ≥ Ci0+1 ≥ . . . ≥ CN ,

QM2 There exists 	t ∈ R
2\{0} such that 	t ∈ Ωi0 and −	t /∈ Ω .

By Ci ≥ Cj we mean that (CiA) : A ≥ (CjA) : A for every A ∈ R
2×2. If the materials are

isotropic, then Ciε = λitr (ε)I + 2μiε for ε ∈ R
2×2 with Lamé constants λi, μi and QM1

is equivalent to

μ1 ≤ . . . ≤ μi0 ≥ . . . ≥ μN , (2.29)

λ1 + μ1 ≤ . . . ≤ λi0 + μi0 ≥ . . . ≥ λN + μN . (2.30)

Theorem 2.3. [26, 27, 29, 45] Let Ω ⊂ R
2 be as described above and let u ∈ W 1,2(Ω)

satisfy (2.11) with bilinear form (2.13) for every v ∈ W 1,2(Ω) with v
∣∣
∂Ω∩∂BR(0)

= 0.
Assume furthermore that f ∈ L2(Ω) and gi = 0 (for simplicity). Let finally the quasi-
monotonicity condition QM1, QM2 be satisfied. Then it holds for the exponents α in the
asymptotic expansion (2.21) with respect to S: Re α ≥ 1

2 . Thus ηSu
∣∣
Ωi

∈ W
3
2
−ε,2(Ωi) for

every ε > 0 and a cut-off function ηS. Moreover, if the materials are isotropic for every
i, then Re α > 1

2 and ηSu
∣∣
Ωi

∈ W
3
2
+ε,2(Ωi) for an appropriate ε > 0.

The isotropic case is proved in [26, 27, 45] with a homotopy method. The proof of the
general case relies on a difference quotient technique and we go into details in Sect. 3, see
also [29, 31]. Analogous results are derived for more general linear elliptic systems in two
and three dimensions [29, 31, 45].
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As a special application of Theorem 2.3 we consider an elastic, isotropic bi-material
with a crack perpendicular to the interface. This example is studied in [35]. Let Φ0 = 0,
Φ1 = π

2 , Φ2 = 3π
2 and Φ4 = 2π − δ for small δ > 0. We assume that vanishing Neumann

conditions are imposed near the cross point S = (0, 0), see Fig. 6. Let Ω1 and Ω3 be
occupied by zirconia oxide ZrO2 and Ω2 by aluminum oxide Al2O3. The corresponding
material parameters are μ1 = μ3 = 0.73 [105 N/mm2] , λ1 = λ3 = 1.096 [105 N/mm2] and
μ2 = 1.46 [105 N/mm2], λ2 = 2.19 [105 N/mm2]. The quasi-monotonicity condition QM1,
QM2 is satisfied for δ > 0 and thus Re αmin ≥ 1

2 due to Theorem 2.3. The numerical
calculations in [35] confirm this with αmin = 0.57 for δ = 0. If on the other hand the
materials are interchanged, i.e. Ω1 and Ω3 are occupied by Al2O3 and Ω2 by ZrO2, then
the quasi-monotonicity condition is violated and the calculations from [35] give αmin = 0.42
for δ = 0. Following the discussion in [35] it seems that the quasi-monotonicity condition
does not only lead to higher regularity results but also describes a class of composites
which can sustain higher loads before breaking.

3 Nonlinear Elliptic Systems of p-Structure

In this section we consider boundary transmission problems for quasilinear elliptic equa-
tions and systems of p-structure, where the p-Laplace equation is a typical example. We
admit that the growth properties of the differential operators vary from subdomain to sub-
domain. Unlike the linear case it is to the authors’ knowledge an unsolved problem whether
the behavior of weak solutions of such nonlinear transmission problems can completely be
characterized by asymptotic expansions similar to (2.21). By a difference quotient method,
Savaré [52] and Ebmeyer and Frehse [18, 19] obtained global regularity results for quasilin-
ear elliptic boundary value problems with smooth coefficients on Lipschitz domains. They
assumed that the domains satisfy an additional geometrical condition near those points,
where the boundary conditions change. Their results describe a minimum regularity in
Sobolev-Slobodeckij spaces for weak solutions on this class of domains.

The main idea for obtaining global regularity results also for transmission problems is
to combine the difference quotient technique with the quasi-monotonicity condition, which
originally was introduced for linear elliptic transmission problems (Sect. 2.4.2). We explain
here this concept in detail.

3.1 Systems of p-Structure

It is assumed that the differential operators under consideration can be derived from
convex minimization problems. Let Ω = ∪M

i=1Ωi ⊂ R
d and assume that M functions

Wi : Rm×d → R are given for some m ≥ 1. The conditions on the functions Wi are
specified later. The boundary transmission problem reads for u : Ω → R

m, u
∣∣
Ωi

= ui and
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given functions f , g:

div (DWi(∇ui)) + fi = 0 in Ωi , (3.1)

ui − uj = 0 on Γij , (3.2)

DWi(∇ui)	ni + DWj(∇uj)	nj = 0 on Γij , (3.3)

u = 0 on ΓD , (3.4)

DWi(∇ui)	ni = g on ΓN ∩ Γi . (3.5)

Here, we use the notation DWi(A) =
(

∂Wi(A)
∂Akl

)
kl
∈ R

m×d and A : B =
∑m

k=1

∑d
l=1 AklBkl,

|A| =
√

A : A for A,B ∈ R
m×d. It is assumed that the differential operators (3.1) are of

p-structure. This means that the energy densities Wi satisfy H1–H4 here below for some
pi ∈ (1,∞):

H1 Wi ∈ C1(Rm×d, R) ∩ C2(Rm×d\{0}, R) .

H2 There exist ci
0 ∈ R, ci

1, c
i
2 > 0 such that for every A ∈ R

m×d

ci
0 + ci

1 |A|pi ≤ Wi(A) ≤ ci
2(1 + |A|pi) .

H3 There exist ci > 0 such that for every A ∈ R
m×d:

|DWi(A)| ≤ ci(1 + |A|pi−1) ,
∣∣D2Wi(A)

∣∣ ≤ ci |A|pi−2 .

H4 There exist ci > 0 such that for every A,B ∈ R
m×d, A �= 0:

D2Wi(A)[B,B] =
m∑

k,j=1

d∑
r,s=1

∂2Wi(A)
∂Aks∂Ajr

BksBjr ≥ ci |A|pi−2 |B|2 .

Condition H4 implies that the functions Wi are strictly convex and that the corresponding
differential operators (3.1) are elliptic. The p-Laplace equation is included here with
Wi(∇u) = 1

pi
|∇u|pi for u : Ω → R.

Appropriate function spaces for a weak formulation of (3.1)–(3.5) were first introduced
and studied by W.B. Liu [39]. Let 	p = (p1, . . . , pM ) with pi ∈ (1,∞) corresponding to Wi

and pmin = min{pi, 1 ≤ i ≤ M}. Then

W 1,
p(Ω) = {u ∈ W 1,pmin(Ω) : u
∣∣
Ωi

∈ W 1,pi(Ωi)} .

Since W 1,
p(Ω) ⊂ W 1,pmin(Ω), traces are well defined for elements of W 1,
p(Ω) and thus, the
following definition is meaningful:

V 
p(Ω) = {u ∈ W 1,
p(Ω) : u
∣∣
ΓD

= 0} .
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Figure 7: Examples for the quasi-monotonicity condition

Assume now for simplicity that the Neumann datum g in (3.5) vanishes and that ΓD �= ∅.
The weak formulation to (3.1)–(3.5) reads for given f ∈ L
q(Ω) with 	q = (q1, . . . , qM ) and
q−1
i + p−1

i = 1: Find u ∈ V 
p(Ω) such that for every v ∈ V 
p(Ω)

M∑
i=1

∫
Ωi

DWi(∇u) : ∇v dx =
∫

Ω
fv dx . (3.6)

It follows from the main theorem on monotone operators that (3.6) has a unique weak
solution u ∈ V 
p(Ω).

3.2 The Quasi-Monotone Covering Condition and Regularity

Kellogg’s example in Sect. 2.4.1 shows that even in the linear case one cannot expect
to obtain general minimum regularity results without any further assumptions on the
geometry of the subdomains or the distribution of the coefficients. Furthermore, when
proving the regularity results with a difference quotient technique, one has to ensure that
functions of the form η2(x)(u(x + hej) − u(x)), where η is a cut-off function, {e1, . . . , ed}
a basis of R

d, h > 0 and u ∈ W 1,
p(Ω), are admissible test functions. In particular, the
translated function η2u(·+ hej) should be an element of W 1,
p(Ω) as well. This cannot be
guaranteed for an arbitrary geometry and an arbitrary distribution of the parameters pi.

Our main assumption on the boundary transmission problem is that the subdomains
Ωi together with the energy densities Wi satisfy the quasi-monotone covering condition.
We formulate here this condition for an interior cross point S and refer to [29, 31] for the
general case.

Definition 3.1. Let S ∈ Ω ⊂ R
d be an interior cross point of the subdomains Ωi, 1 ≤

i ≤ N and R > 0 such that BR(S) � Ω. Let Wi, 1 ≤ i ≤ N , be the energy densities
corresponding to the subdomains Ωi.

The pairs {(Ωi,Wi), 1 ≤ i ≤ N} satisfy the quasi-monotonicity condition on BR(S) if
there exist numbers ki ∈ R and an open cone K ⊂ R

d with vertex in 0 such that for every
h ∈ K, 1 ≤ i, j ≤ N and A ∈ R

m×d it holds

if Ωi + h ∩ Ωj �= ∅, then Wj(A) + kj ≥ Wi(A) + ki . (3.7)
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See Fig. 7 (left) for an example. For interior cross points on two dimensional domains
which are composed of polygonal subdomains, this definition can be reformulated in a
more illustrative way. Let Ω = BR(0) ⊂ R2 and Ωi = {x ∈ R2 : Φi−1 < ϕ < Φi, |x| < R}
for Φ0 < . . . < ΦN = Φ0 + 2π. The quasi-monotonicity condition is satisfied if there exist
an index i0 ∈ {2, . . . , N} and numbers ki ∈ R such that it holds (see Fig. 7, right):

QM3 For every A ∈ R
m×2 we have

W1(A) + k1 ≥ W2(A) + k2 ≥ . . . ≥ Wi0(A) + ki0 ≤
. . . ≤ WN (A) + kN ≤ W1(A) + k1 .

QM4 There exists 	t ∈ R
2\{0} such that 	t ∈ Ω1 and −	t ∈ Ωi0 .

Example 3.2. Let Wi(A) = 1
pi
|A|pi for A ∈ R

d. Then QM3 is equivalent to

p1 ≥ p2 ≥ . . . ≥ pi0 ≤ . . . ≤ pN ≤ p1 .

The energy densities Wi(A) = μi
2 |A|2, A ∈ R

2, in Kellogg’s example (Sect. 2.4.1) do not
satisfy the quasi-monotonicity condition with respect to S = (0, 0).

Example 3.3. Let Ω,Ω1,Ω2 ⊂ R
d be bounded Lipschitz domains with Ω1 ∩ Ω2 = ∅,

Ω = Ω1 ∪ Ω2 and Ω2 � Ω. Let furthermore ∂Ω = ΓD or ∂Ω = ΓN and assume that W1,
W2 satisfy H1–H4 with p1 �= p2. Then the quasi-monotone covering condition is satisfied
for the pairs {(Ωi,Wi), i = 1, 2}, see Fig. 8. We refer to [29, 31] for further examples.

Theorem 3.4. [29, 30, 31] Let Ω ⊂ R
d be a bounded Lipschitz domain with Ω = ∪M

i=1Ωi.
We assume that the functions Wi : R

m×d → R, 1 ≤ i ≤ M , satisfy H1–H4 for some
pi ∈ (1,∞) and the quasi-monotone covering condition. Let finally f ∈ L
q(Ω) with p−1

i +
q−1
i = 1.
Then the weak solution u ∈ V 
p(Ω) of (3.6) and the stress field σ = DW (∇u) ∈ L
q(Ω)

have the following regularity: For every δ > 0

u
∣∣
Ωi

∈ W
1+ 1

pi
−δ,pi(Ωi), σ

∣∣
Ωi

∈ W
1
2
−δ,r(qi)(Ωi) if pi ∈ [2,∞) , (3.8)

u
∣∣
Ωi

∈ W
3
2
−δ,r(pi)(Ωi), σ

∣∣
Ωi

∈ W
1
qi
−δ,qi(Ωi) if pi ∈ (1, 2] . (3.9)

Here, r(s) = 2ds
2d−2+s and for s ∈ (1, 2] it is s ≤ r(s) ≤ 2.

Ω1

Ω2

Figure 8: Nested Lipschitz domains
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Non vanishing Dirichlet and Neumann conditions are treated in [29, 31]. The regularity
theorem corresponds well with the results of references [18, 19, 52] for pure boundary value
problems. Moreover, the results of the linear case (Thm. 2.3) are recovered by Theorem
3.4. Note that Theorem 3.4 is applicable in the situation described in Example 3.3.

Remarks on the proof. The proof of Theorem 3.4 is carried out with a difference quo-
tient technique, where the domain Ω is covered by a finite number of balls and Theorem
3.4 is proved for each ball separately. We give here a sketch for an interior cross point S

for which the quasi-monotonicity condition of Definition 3.1 is satisfied. For simplicity we
assume that pi ≥ 2 for every i. For the full proof we refer to [29, 31].

The goal is to derive the following estimate for h ∈ K, where K is the cone of Definition
3.1:

N∑
i=1

∫
Ωi∩BR(S)

|∇u(x + h) −∇u(x)|pi dx ≤ c |h| , (3.10)

and the constant c is independent of h ∈ K. Inequality (3.10) implies that u
∣∣
Ωi∩BR(S)

is

an element of the Nikolskii space N 1+ 1
pi

,pi(Ωi ∩BR(S)) [56]. The embedding theorems for
Nikolskii and Sobolev-Slobodeckij spaces lead to u

∣∣
Ωi∩BR(S)

∈ W
1+ 1

pi
−δ,pi(Ωi ∩BR(S)) for

every δ > 0 [56]. We prove now estimate (3.10). H1–H4 imply the following convexity
inequality (see e.g. [29])

N∑
i=1

∫
Ωi

ciη
2 |∇u(x + h) −∇u(x)|pi dx

≤
N∑

i=1

∫
Ωi

η2DW (∇u) : ∇(u(x + h) − u(x)) dx

+
N∑

i=1

∫
Ωi

η2 (Wi(∇u(x + h) − Wi(∇u(x))) dx , (3.11)

where η is a smooth cut-off function with η = 1 on BR(S). The quasi-monotonicity
condition guarantees that v(x) = η2(u(x + h) − u(x)), h ∈ K, is an an element of V 
p(Ω)
and thus is an admissible test function for the weak formulation. Using (3.6), the first term
on the right hand side in (3.11) can be controlled after some technical calculations by c |h|.
The second term in (3.11) can be rewritten as follows with 
hw(x) = w(x + h) − w(x)
and the numbers ki from Definition 3.1:

N∑
i=1

∫
Ωi

η2 (Wi(∇u(x + h)) + ki − Wi(∇u(x)) − ki) dx

=
N∑

i=1

∫
Ωi


h(η2(Wi(∇u) + ki)) dx

−
N∑

i=1

∫
Ωi

(
hη2)(Wi(∇u(x + h)) + ki) dx . (3.12)
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The quasi-monotonicity condition implies that the first term on the right hand side in
(3.12) is ≤ 0. Since η is smooth, the second term can be estimated by c |h|. Thus (3.10)
holds and the proof is finished.

Inequalities like convexity inequality (3.11) are essential for obtaining regularity results
via a difference quotient technique. On the basis of inequalities like (3.11) we proved a
global regularity result for a shear thinning fluid of power-law type [28] and extended a
local regularity result by Carstensen and Müller [9] for stress fields of not strictly convex
energies to a global one [30].

4 Application of the Regularity Results

The derived regularity results and coefficient formulae can be applied in different fields. We
discuss here two of them in detail, namely sensitivity analysis for linear elastic fields and
the derivation of formulas in fracture mechanics for a nonlinear elastic model of power-law
type.

4.1 Sensitivity Analysis

The goal of shape and structure optimization in elasticity is to determine an elastic body
or composite which is optimal with respect to objective and constraint functionals. For
example, if one wants to avoid plastification the values of the von Mises yield functional
should be small enough, or if one wants to avoid crack growth, the energy release rate (or
the stress intensity factors) should not exceed their critical values. The influence of the
shape or the structure of the domain on the stress behavior has been studied by many
authors [21, 53] and the corresponding sensitivity analysis is well developed for problems
in smooth domains. Here, we focus on the sensitivity analysis for linear elastic fields in
two-dimensional non smooth domains and study a class of functionals with respect to
shape perturbation.

Let Ω ⊂ R
2 be a polygonal domain. We introduce a family of mappings {Φε ∈

[C3(Ω)]2, ε ∈ [0, ε0]} which admit Taylor expansions

Φε(x) = x + εΦ(x) + ε2ΦR(ε, x)

with Φ,ΦR ∈ [C3(Ω)]2. The function ΦR(ε, x) is bounded with respect to ε for every
x ∈ Ω. The perturbations (Ωε,Γε,ΓD

ε ,ΓN
ε ) of the reference configuration (Ω,Γ,ΓD,ΓN )

are defined by

Ωε = Φε(Ω) , Γε = Φε(Γ) , ΓD
ε = Φε(ΓD) , ΓN

ε = Φε(ΓN ) .

Since Φε ∈ [C3(Ω)]2 the number of singular points in Ωε is independent of ε.
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Let be uε a solution of (2.4) in Ωε with mixed boundary conditions on ΓD
ε ,ΓN

ε and
corresponding interface conditions on Γε. We consider functionals associated with the
elastic fields uε and σ(uε)

J(Ωε) =
∫

Ωε

F (uε, σ(uε))dxε , (4.1)

where the function F satisfies for a positive constant c the growth conditions

F (p, q) ≤ a(p)(c + |q|2), ∂qF (p, q) ≤ a(p)(c + |q|) (4.2)

for some a ∈ C(R2) and all p ∈ R
2, q ∈ R

4.

Our goal is to derive formulae for the sensitivity of the functional J with respect to the
perturbation mapping Φε, i.e. we want to calculate the shape derivative

dJ(Ω,Φ) = lim
ε→0

J(Φε(Ω)) − J(Ω)
ε

(4.3)

and to express dJ(Ω,Φ) as an integral over ∂Ω.

Sensitivity Formulae with Material and Shape Derivatives

We give different formulae for dJ(Ω,Φ) with material and shape derivatives. The material
derivatives of uε and σε are defined as

u̇ :=
d(uε ◦ Φε)

dε

∣∣∣∣
ε=0

, (4.4)

whereas the shape derivative is given as

u′ :=
duε

dε

∣∣∣∣
ε=0

= u̇ − Du0Φ . (4.5)

It is proved in [7] that u̇ and u′ are well defined. We assume that the transformed force
densities fε ◦ Φε and gε ◦ Φε depend smoothly on ε

fε ◦ Φε =f0 + εf1 + ε2fR(ε) ,

gε ◦ Φε =g0 + εg1 + ε2gR(ε) .

Furthermore,

	nε ◦ Φε = 	n0 + ε	̇n + ε2	nR(ε) ,

(uε ◦ Φε)(x) =u0(x) + εu̇(x) + O(ε2) .

Theorem 4.1. [7] Let F in (4.1) be continuously differentiable with respect to all its
arguments and satisfy the growth conditions (4.2). Furthermore, let α∗ = min{Re αj ∈
(0, 1)}, where αj is defined by (2.22). Then

dJ(Ω,Φ) =
∫

Ω
(∂uF (u0, σ0) · u̇ + ∂σF (u0, σ0) : σ̇ + F (u0, σ0)div Φ) dx .
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If additionally α∗ ≥ 1
2 , then

dJ(Ω,Φ) =
∫

Ω

(
∂uF (u0, σ0) · u′+∂σF (u0, σ0) : σ′) dx +

∫
∂Ω

F (u0, σ0)Φ · 	n0dsx .

If α∗ > 1
2 , then

dJ(Ω,Φ) =
∫

∂Ω
F (u0, σ0)(Φ · 	n0)dsx

+
∫

ΓN

w · ((Φ · 	n0)(f + κg) − div Γ((Φ · 	n0)σT (u0))) dsx

−
∫

ΓD

(Φ · 	n0)(C∂σF (u0, σ0) − σ(w))	n0 · ∂nu0dsx . (4.6)

σT (u0) is the tangential component of the stress tensor on ∂Ω, κ is the curvature of ∂Ω,
the tangential divergence operator div Γ is defined by

div Γv = div v − Dv	n0 · 	n0 ,

and w is the so-called adjoint displacement field, see [7].

Remark 4.2. If α∗ = 1
2 and a homogeneous material is given, then we have to add to

(4.6) stress intensity factors [7]. This yields for straight propagation of cracks in linear,
isotropic, elastic materials with the energy functional

J(Ωε) =
1
2

∫
Ωε

σ(uε) : ε(uε)dxε (4.7)

to the well-known Irwin formula

dJ(Ω,Φ) = γ
2∑

i=1

Ki(u0)2 .

Here, Ki are the classical stress intensity factors and γ is a material constant.

4.2 Griffith’s Fracture Criterion for a Power-Law Model

A special case in sensitivity analysis is the derivation of the formulas for the energy release
rate of bodies with pre-existing cracks. We describe here recently derived results for a
power-law model.

4.2.1 The Ramberg-Osgood Model and Regularity

The Ramberg-Osgood model is applied to describe materials with low proportionality limit
and with strain hardening behavior [10, 47]. The field equations for the displacement field
u : Ω → R

d and stress field σ : Ω → R
d×d read as follows:

div σ + f = 0 in Ω , (4.8)

ε(u) − Aσ − α
∣∣σD

∣∣q−2
σD = 0 in Ω (4.9)
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Figure 9: Examples for an admissible domain and a cracked domain

together with boundary conditions on ∂Ω. Here, σD = σ − 1
dtr σI denotes the deviator of

σ, q ≥ 2 is the strain hardening parameter, A the tensor of elastic compliances (A−1 = C

with C from (2.5)) and α > 0 a further material constant. The field equations (4.8)–(4.9)
are closely related to quasilinear elliptic systems of p-structure (Sect. 3). The following
global regularity results are derived in [31, 32] with a difference quotient technique for
weak solutions on admissible domains (q ≥ 2, p−1 + q−1 = 1):

u ∈ W
3
2
−δ, 2dp

2d−2+p (Ω) , σ, div u ∈ W
1
2
−δ,2(Ω) ∩ W

1
q
−δ,2(Ω) (4.10)

for every δ > 0. We call a domain admissible if either A1 or A2 here below is satisfied:

A1 Ω ⊂ R
d is a bounded Lipschitz domain and ΓD ∩ ΓN = ∅.

A2 Ω ⊂ R
d is a Lipschitz polyhedron where at most d faces intersect near points S ∈

ΓD ∩ ΓN . Furthermore, the interior opening angle between ΓD and ΓN is less than
π, see Fig. 9 and [17].

A slightly more general definition of admissible domains is given in [32]. Local regularity
results are proved by Bensoussan and Frehse in [3].

As in the case of quasilinear elliptic systems of p-structure, it is also for the Ramberg-
Osgood model an unsolved problem, whether the behavior of weak solutions near re-
entrant corners, edges or crack tips can be completely characterized by asymptotic expan-
sions. A comparison between singularities obtained with ansatzes of the form u(r, ϕ) =
rαv(ϕ) and between the regularity results (4.10) shows good agreement:

Let Ω2π = {x ∈ R
2 : −π < ϕ < π, |x| < R} for R > 0, and assume that ΓN ⊃ {x : ϕ =

±π}, i.e. Ω2π ⊂ R
2 is a domain with a crack on the negative x1-axis. First investigations

on crack tip singularities for Ramberg-Osgood materials were done by Hutchinson [22] and
Rice and Rosengren [50]. Based on the assumption that the displacement and stress fields
have an asymptotic structure like in the linear case (2.21), they derived a strongly non-
linear eigenvalue problem from which they calculated the leading terms in the asymptotic
expansion. In particular, they obtained

u(r, ϕ) = r
1
q v(ϕ) + ureg(r, ϕ) , σ(r, ϕ) = r

− 1
q τ(ϕ) + σreg(r, ϕ) (4.11)

near the crack tip. The singular terms are called HRR-fields. Relation (4.11) fits well with
the regularity results (4.10) since the function v(x) = |x|γ is an element of W

3
2
−δ, 4p

2+p (Ω),
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which is the space from (4.10) for d = 2, if and only if γ ≥ 1
q . Furthermore, numerical

investigations (see e.g. [61]) show the dependence of the exponents in (4.11) on the opening
angle of the domain and indicate that the singular behavior of weak solutions is completely
characterized by asymptotic expansions as in the linear case. But to our knowledge there
is no rigorous proof of this conjecture and therefore, we do not use relation (4.11) for the
derivation of formulas for the energy release rate.

4.2.2 Griffith’s Fracture Criterion and Energy Release Rate

Griffith’s fracture criterion is an energetic criterion and reads as follows for a domain Ω0

with pre-existing crack C0 and loading F [38]:

The crack C0 is stationary with respect to the applied loading F if the total potential
energy Π of the body in the actual configuration is minimal compared to every admissible

neighboring configuration.

We consider here the simplest case and assume that plane strain conditions hold, that the
crack is part of a straight line and that the crack can grow straight on, only. Admissible
neighboring configurations are characterized as follows: For δ ∈ R let Sδ = {x ∈ R

2 :
x1 ≤ δ, x2 = 0} and let Ω̃ ⊂ R

2 be a bounded domain with Lipschitz boundary such that
δ ( 1

0 ) ∈ Ω̃ for |δ| < δ0. For |δ| < δ0 we define Ωδ = Ω̃\Sδ, Cδ = Ω̃ ∩ Sδ and call Ω0

actual configuration with crack C0. The domains Ωδ, δ > 0, are admissible neighboring
configurations with cracks Cδ.

The total potential energy Π has the following form for a displacement field u and
external forces F :

Π(Ωδ) = Iel(Ωδ, u) − W (Ωδ, u, F ) + D(Ωδ) . (4.12)

Here, Iel denotes the elastic strain energy, W the work of the external forces and D is
a dissipative energy which we assume to be proportional to the crack length: D(Ωδ) =
D(Ω0) + 2γδ. The constant γ > 0 is the specific surface energy or fracture toughness and
depends on the material. The elastic strain energy of the Ramberg-Osgood model reads for
a displacement field uδ, a corresponding stress field σδ with ε(uδ) = Aσδ +α

∣∣σD
δ

∣∣q−2
σD

δ =
DAWc(σδ) and complementary energy density Wc(σδ) = 1

2Aσδ : σδ + α
q

∣∣σD
δ

∣∣q:
Iel(Ωδ, uδ) =

∫
Ωδ

σδ : ε(uδ) − Wc(σδ) dx . (4.13)

Let f ∈ Lq(Ω̃), g ∈ (
W

1
q
,q(ΓN )

)′ and F = (f, g). Then W (Ωδ, uδ , F ) =
∫
Ωδ

fuδ dx +
〈uδ, g〉ΓN

. The quantity E(Ωδ, uδ, F ) = Iel(Ωδ, uδ) − W (Ωδ, uδ , F ) describes the potential
deformation energy. Let (uδ, σδ) be a weak solution of (4.8)–(4.9). Griffith’s fracture
criterion takes now the form: If

E(Ω0, u0, F ) − E(Ωδ, uδ , F ) < D(Ωδ) − D(Ω0) = 2γδ (4.14)
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for every small δ > 0, then the crack C0 is stationary. This motivates the following
definition, which is a special case of (4.3) with J = −E:

Definition 4.3 (Energy release rate). For δ ≥ 0 let uδ, σδ be a weak solution of (4.8)–
(4.9). The energy release rate, shortly ERR, for the domain Ω0 with crack C0 and exterior
forces F is defined as

ERR(Ω0, F ) = lim
δ↘0

1
δ
(E(Ω0, u0, F ) − E(Ωδ , uδ, F )) .

With this definition the fracture criterion reads:

If ERR(Ω0, F ) < 2γ, then the crack is stationary, otherwise it will grow.

The question is whether the energy release rate is well defined and whether there exist
formulas for calculating this quantity. In the case of linear elastic materials such formulas
(Griffith’s formula, J-integral, formulas based on the stress intensity factors) are rigorously
proved in [14, 25, 40]. For nonlinear elastic models these formulas were derived in the
literature under the assumption that the elastic fields u0, σ0 are smooth enough or that
they can be characterized by certain asymptotic expansions near the crack tip. However,
such regularity results are not known in general. Using the regularity results for the
Ramberg-Osgood model from Sect. 4.2.1 we proved the following theorem:

Theorem 4.4. [33, 31] Let θ ∈ C∞
0 (Ω̃) with θ = 1 in a neighborhood of the crack tip. Let

furthermore Γ be a non-intersecting, Lipschitz-continuous path around the crack tip with
normal vector 	n = (n1, n2)� pointing towards the crack tip. Let finally f ∈ C1(Ω̃) with

∂
∂x1

f = 0 in a neighborhood of the crack tip and Γ (see Fig. 9). Then the energy release
rate is well defined for the Ramberg-Osgood model and the Griffith-formula holds:

ERR(Ω0, F ) =
∫

Ω0

σ0 : (∂1u0 ⊗∇θ)sym dx +
∫

Ω0

u0 · ∂1(θf) dx

−
∫

Ω0

(
σ0 : ε(u0) − Wc(σ0)

)
∂1θ dx . (4.15)

Furthermore, after integration by parts,

ERR(Ω0, F )=
∫

Γ
(σ0	n)·∂1u0ds −

∫
Γ

(
σ0 :ε(u0) −Wc(σ0)

)
n1ds+

∫
Γ
u ·fn1ds . (4.16)

This path integral is called J-integral. The integrands of (4.15) and (4.16) are L1-functions
and (4.15)–(4.16) are independent of θ and of the path Γ.

The formulas for the energy release rate have the same structure as in the linear case.
Moreover, the proof of Theorem 4.4 runs parallel to the linear case and is based on the
mapping Tδ(x) = x − δ

(
θ(x)

0

)
, which is a diffeomorphism from the domain Ωδ to Ω0.

The J-integral is meaningful due to the regularity results in (4.10). In a recent paper we
extended Theorem 4.4 to geometrically nonlinear elastic models with polyconvex energy
densities [34], results for dynamical crack propagation (linear case) are proved in [46].
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Numerical Examples for the Energy Release Rate

The following example is studied in [54]. Let Ω0 = (−5, 5)2\S0 be a compound of two
materials with an interface crack and energy densities corresponding to modified pi-Laplace
operators, i.e. Wi(A) = p−1

i (κi + |A|2) pi
2 for A ∈ R

2, i = 1, 2. This example can be
interpreted as an anti-plane case of the Ramberg-Osgood model. The same notation as in
the previous section is used here, see also Fig. 2. The field equations for u : Ω0 → R read

div DWi(∇ui) = 0 in Ωi , DWi(∇ui)	ni = 0 on ΓN ∪ C0

together with the Dirichlet conditions

u(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−2x1 + x2 + 15 if x2 = −5, x1 ∈ (−5, 5) ,

0 if x1 = 5 ,

2x1 + x2 − 15 if x2 = 5, x1 ∈ (−5, 5) .

The energy release rate can be expressed by the Griffith formula

ERR(Ω0) =
2∑

i=1

∫
Ωi

∂x1uiDWi(∇ui) · ∇θ − Wi(∇ui)∂x1θ dx ,

where θ is a cut-off function centered at the crack tip. Figure 10 shows the energy release
rate for κ1 = κ2 = 10−7, different lengths of the crack C0 and varying parameters μi and
pi.
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Figure 10: Energy release rate versus crack length, μ1, μ2, p1, p2
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5 Conclusions

High mechanical stresses can occur in linear and nonlinear elastic composites in the vicinity
of re-entrant corners, edges, cracks and near interior surfaces, where the different materials
of the composite come together. These stress concentrations have a strong influence on the
strength and physical life of the structure. Their knowledge is fundamental for fracture
and failure criteria.

In the linear case the substructures consist of linear elastic materials and the singular
behavior of the displacement and stress fields can be completely characterized by means
of an asymptotic expansion of the solution near the mentioned geometrical and structural
peculiarities. Detailed formulas are derived. For some classes of semilinear and quasi-
linear systems of partial differential equations (e.g. stationary Navier-Stokes equations,
semiconductor equations) it can be shown that the regularity of the solutions is dominated
by assigned linearized problems.

Nonlinear elastic field equations of power-law type do not fit in this framework in general
and it is an open question whether the behavior of the elastic fields can be completely
characterized by leading terms in an asymptotic expansion similar to the linear case. In
order to obtain global regularity results for nonlinear elastic field equations of power-
law type a combination of the difference quotient technique with the concept of a quasi-
monotone distribution of material parameters was used. This leads to the new concept of
a quasi-monotone covering condition for the subdomains and the energy densities which
determine the differential operators on the subdomains.

The regularity results for linear and nonlinear elastic problems can be applied in shape
and structure optimization problems in nonsmooth domains, sensitivity analysis for com-
pound elastic structures and the Griffith fracture criterion for a nonlinear elastic model of
power-law type. Relying on the proved regularity results formulae for shape derivatives
and the energy release rate are derived. Numerical experiments show their relevance for
computations.
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[46] S. Nicaise and A.-M. Sändig. Dynamical crack propagation in a 2d elastic body.
The out-of plane state. Preprint 2005/001, Institut für Angewandte Analysis und
Numerische Simulation, Universität Stuttgart, 2005. (submitted).

[47] W. R. Osgood and W. Ramberg. Description of stress-strain curves by three pa-
rameters. NACA Technical Note 902, National Bureau of Standards, Washington,
1943.

[48] M. Petzoldt. Regularity results for Laplace interface problems in two dimensions.
Zeitschrift für Analysis und ihre Anwendungen, 20(2):431–455, 2001.

[49] L. Recke. Applications of the implicit function theorem to quasilinear elliptic bound-
ary value problems with non–smooth data. Comm. Part. Diff. Equat., 20:1457–1479,
1995.

[50] J. R. Rice and G. F. Rosengren. Plane strain deformation near a crack tip in a
power-law hardening material. Journal of the Mechanics and Physics of Solids, 16:1–
12, 1968.
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