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Abstract

A coagulation model on a finite spatial grid is considered. Particles of dis-
crete masses jump randomly between sites and, while located at the same site,
stick together according to some coagulation kernel. The asymptotic behav-
ior (for increasing particle numbers) of this model is studied in the situation,
when the coagulation kernel grows sufficiently fast so that the phenomenon of
gelation is observed. Weak accumulation points of an appropriate sequence of
measure-valued processes are characterized in terms of solutions of a nonlinear
equation. A natural description of the behavior of the gel is obtained by using
the one-point compactification of the size space. Two aspects of the limiting
equation are of special interest. First, the formal extension of Smoluchowski’s
coagulation equation to the spatially inhomogeneous case has to be modified
for a certain class of coagulation kernels. Second, due to spatial inhomogene-
ity, an equation for the time evolution of the gel mass density has to be added.
The jump rates are assumed to vanish with increasing particle masses so that
the gel is immobile. Two different gel growth mechanisms (active and passive
gel) are found depending on the type of the coagulation kernel.
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1 Introduction

We consider a particle system

The state space of a single particle is
Z={1,2,...} x @, (1.2)
where G is a finite set of (spatial) locations. Particles jump between sites
(2,0) = (x.8)
according to some rate function and, while located at the same site, stick together
(z, @), (y, @) = (z +y,0)

following stochastic rules determined by some coagulation kernel. The index N =

1,2,... denotes the number of monomers (units of size 1) in the system so that
nN (t)
d afty=N, Vt>0. (1.3)
i=1

The discrete (both in space and size) model described above was used in [27] as
an approximation to the spatially continuous coagulation equation with diffusion

%c(t,k,r) = D(k) A, c(t, k,r)+ (1.4)
—Z c(t,z,r)c(t,y,r) tk:TZKk;y (t,y,r).

z+y=k

The solution ¢(t, k, r) is interpreted as the average number density of clusters of size
k at time ¢ and position 7. The symbol A, denotes the Laplace operator with respect
to the position variable, D(k) are size-dependent diffusion coefficients and K is the
coagulation kernel. If there is no dependence on r (spatial homogeneity), then the
diffusion term disappears and equation (1.4) reduces to Smoluchowski’s coagulation
equation [30]

d
% ZK(x,y)c( x) ¢ ty—cthK
rty=k y=1

when considering the specific kernel
K(.T,y) _ (.1'71/3 _i_yfl/B) (xl/B +y1/3) ) (16)
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Theoretical investigations of the gelation phenomenon go back to the paper [10]
on condensation polymerization. Flory studied the size distribution of polymers and
established critical conditions (in terms of a parameter called “extent of reaction”)
for the formation of “infinitely large” molecules (gel). Developing this approach,
Stockmayer [26] pointed out a connection of the polymer size distribution with
equation (1.5), where

K(z,y) = [(f=2)x+2[(f-2)y+2]. (1.7)
Polymeric molecules (k-mers) are composed of £ monomeric units. Each monomeric
unit carries f functional groups capable of reacting with each other. Thus, the kernel

(1.7) represents the number of possible links between z-mers and y-mers. Note that
an equation with the commonly used multiplicative kernel

K(z,y) =zy (1.8)

can be obtained from equation (1.5) with the kernel (1.7) in the limit f — oo, when
time is appropriately scaled. Stockmayer [26] argued with Flory about the correct
post-gelation behavior and proposed a solution different from Flory’s. Early reviews
of the subject were given in [11] and [12, Ch. IX]. An extended discussion of different
solutions after the gel point and corresponding modified equations can be found in
[32] (f = 3) and [34] (f > 2). The paper [32] contains a rather complete list of
relevant earlier references.

Rigorous results concerning the derivation of the spatially inhomogeneous coag-
ulation equation (1.4) from systems of diffusing spherical particles, interacting at
contact, were obtained in [18| (constant kernel) and [24] (kernel (1.6)). Stochastic
models of coagulation in the spatially homogeneous case go back to [22], [14], [21].
In those papers the coagulation kernel, which contains the information about the
microscopic behavior of the physical system, is postulated. An extended review of
the subject was given in [2]. We also refer to the recent paper [13] studying the spa-
tially homogeneous case with rather general gelling kernels. When combining the
Marcus-Lushnikov approach with spatial inhomogeneity, particles coagulate with
a certain rate when they are close enough to each other (e.g., in the same cell).
Convergence results for such models with non-gelling kernels were obtained in [15]
(bounded kernel) and [3]| (sub-linear kernel). The two-site case of the van Dongen
model described above (with D(k) = 1 and kernel (1.8)) was studied in [25]. Analyt-
ical results concerning the coagulation equation with diffusion (1.4) (and references
to earlier studies) can be found, e.g., in [19] and [20] (see also [8, Section §]).

Equation (1.4) with constant diffusion coefficients D(k) = 1 and the multiplica-
tive kernel (1.8) was studied in [17]. The following equation for the gel mass density
g(t,r) was suggested,

0
&g(tT) :Arg(tar)—i_Ra (19)

where

k o)
R = lim Z Z 2re(t,z,r)yc(t,y,r) (1.10)

r=1 y=k—z+1



is a “Radon measure describing the rate of gel production”. Considering diffusion
coefficients D(k) vanishing sufficiently fast (with & — oo) and the multiplicative
kernel (1.8), van Dongen [27] proposed a modification of equation (1.4), namely

)
o clt. k) = D(k) A c(t, k,r)+ (1.11)

1 )
5 Z xyc(t,x,T)C(t,y,r)—kc(t,k,r) ZyC(t,y,T)—i—g(t,T) )

x+y=k y=1

where the time evolution of the gel mass density is determined by the equation
0 (tr)—gtr2k2 (t,k,r). (1.12)
a7

The paper is organized as follows. In Section 2 the asymptotic behavior (as
N — o0) of the particle system (1.1) is studied. Weak accumulation points of
an appropriately scaled sequence of measure-valued processes (based on (1.1)) are
shown to be concentrated on the set of solutions of a nonlinear equation. The
results cover the situation, when the coagulation kernel grows sufficiently fast so
that the phenomenon of gelation is observed. Using the one-point compactification
of the size space and considering mass density instead of number density leads to a
natural description of the behavior of the gel under rather general assumptions on the
coagulation kernel. Section 3 is concerned with properties of the limiting equation.
Two aspects are of special interest. First, the formal extension of Smoluchowski’s
coagulation equation to the spatially inhomogeneous case has to be modified for a
certain class of coagulation kernels (as, e.g., (1.11) compared to (1.4)). Second, an
equation for the time evolution of the gel mass density has to be added (as, e.g.,
(1.9) or (1.12)). Note that the second aspect is absent in the spatially homogeneous
situation, since the gel mass density is determined just as the mass defect of the
solution ¢(¢, k) . In the spatially inhomogeneous situation the gel is distributed over
different sites and gel equations are of interest. In general, they describe both the
spatial motion and the growth of the gel. In this paper the case of vanishing diffusion
coefficients is considered so that the gel is immobile. The growth behavior depends
on the kernel and is determined by terms of the type occurring in (1.10) or (1.12).
Finally, Section 4 contains most of the technical proofs.

2 Asymptotic behavior of the stochastic model

We represent the particle system (1.1) in form of measures

nN(

t)
1
XN(t,dr,da) = Y N(t))(dx,da) (2.1)

=1



on the state space (1.2), where §, denotes the delta-measure concentrated in z € Z .
The transition kernel of the corresponding jump process is

)‘N(:uv B) = Zzﬁ(xia&iaﬁ> 1B(J1(M7Z75))+ (22)
i=1 BeCG
1

ﬁ Z 5ozi,aj K(xiaxjaai) 1B(J2(:U’ai7.j))a

1<i#j<n

where 15 denotes the indicator function of a set B, d,, g is Kronecker’s symbol, x and
K are non-negative functions on {1,2,...} x G? and {1,2,...}? x G, respectively,
and

. 1
Ji (:U” L 5) = p+ N |:l'l 5(12',[3) — i 5(%‘,0@')] ) (23)

- 1
Syt j) = nt [(ﬂfz +25) Oaitaon) = i Oason) — T 5<xj,aj>]

are jump transformations. The kernel (2.2) is defined on the state space of the
process (2.1),

B = (2.4)
1 & n
{Nzxz(s(mzm) : nZ]" (xﬁai)eZ,i:l,...,n, E J,’Z:N}
=l i=1

It satisfies

n

MV, ENY = ZZ/‘{(%’i,@i,ﬁ)"‘% Z O, K (i, 25, )

i=1 BeG 1<i£j<n

< N[ sup Z’%(xaaaﬁ)_'_ sup K(x,y,a)] :

<zx< < <
1<z<N,acG BeG 1<z,y<N,aeG

The pathwise behavior of the process in terms of particles is obtained from the kernel
(2.2). Since the kernel is bounded, the regularity issue is trivial.

Consider the space
Z'=({1,2,...} U{oo}) x G, (2.5)

where {1,2,...} U {oc} is the one-point compactification of {1,2,...} . Continuous
functions ¢ € C(Z2’) are functions on Z (cf. (1.2)) with finite limits

p(0o, ) := lim p(z,a), Vaed. (2.6)

r—00

Let P(Z2’) denote the space of probability measures on Z’ equipped with the topology
of weak convergence. For ¢ € C(Z’) and u € P(2’), we introduce the notations

(o) = [ olo.0)utdz. da)

6



and

Gen) = [ %

K, 0, 8) (e, 8) = olx, @) pldr,da) +

' Bea
3 | [ dus Futey. ) . do) . a5). .1)
where
Fy(r,y,a) = (2.8)
FELD ) o+ 5.0) ~ 2 p(0,0) ~ y ol a)]
and
Fo(o0,y,a) = [@(00,04) —¢(y )| lim w :
Fy(z,00,00) = F,(o00,2,a), F,(00,00,a0) =0, (2.9)
k(oo,a,f3) = Q}LIEO k(z,a, ().
Theorem 2.1 Assume
xlgg@ k(z,a,0) =0, Vo, €G. (2.10)
Let K be symmetric and such that
JLII;OW<OO, VaeG, y=12,..., (2.11)
and
max K(z,y,a) < Cgzy, Ve,y=1,2,..., (2.12)
for some Cx > 0. Assume
XN0) = v for some v € P(Z), (2.13)

where the sign = denotes convergence in distribution.

Then the processes (2.1) form a relatively compact sequence of random vari-
ables with wvalues in D([0,00), P(Z")), where D denotes the Skorokhod space of
right-continuous functions with left limits. Every weak accumulation point X solves,
almost surely, the limiting equation

(0. X(0) = (g} + [ GloX(s)ds,  VEzo. (2.14)
0
for all ¢ such that
o(x,a) = co(p, a), Ve >Z(e), aedG. (2.15)

Moreover, X is almost surely continuous.
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Remark 2.2 Note that (2.12) does not follow from (2.11). Indeed, consider the
kernel

3

o x~, Zf =Y,
K(,y) _{ 1 , otherwise.

Remark 2.3 Condition (2.15) means that the test functions are constant for suffi-
ciently large arguments, which is stronger than just continuity (cf. (2.6)).

Remark 2.4 The measure-valued process (2.1) represents the particle mass concen-
tration. It counts the number of monomers (mass) of particles of a given size instead
of the number of particles of a given size (particle number concentration) considered,
e.g., in [5]. Note that the underlying particle process (1.1) has the “direct simulation”
dynamics, not the “mass flow” dynamics considered, e.g., in [4] and [31, Sect. 3].
The process (2.1) turned out to be most appropriate for studying the post-gelation
behavior.

3 Properties of the limiting equation

Theorem 2.1 implies existence of solutions of equation (2.14). Let (cf. (2.5))
v € C(]0,00),P(Z")) (3.1)

be any such solution.

3.1 Derivation of strong equations

Expression (2.7) takes the form

= 3 S wlmaB) el 8) ol )| afea) +

=1 e
%;Gi(oo, a, ) [w(oo, B) — (oo, &)}u(ooa a) +
% g; a; Fy(x,y, ) p(x, @) ply, @) +
%O;Fw(oo, 00, ) pu(00, &) p(o0, av) +
%?}%;F@(oo,y,a) p(00, @) ply, @) +

% i ;Fw(x, 00, @) (00, @) p(w, ) .



Taking into account symmetry of K (and therefore F,,), (2.9) and (2.10), one obtains

Gl ) = 3 3 wle,a B) [, B) = ple, @) (e, )+ (3.2)
2=1 a0
3 30 S k) ol ) — el ) — o)) %
z,y=1 acG

pul, o) ply, @) +
D lploo, @) — oy, )] K(oo, y, @) p(00, ) ply, @) ,
where (cf.y?;.ielj)
K(00,y,a) = lim K.y @)

T—00 €T

(3.3)
Remark 3.1 The solution (3.1) satisfies equation (2.14) for any test function ¢ of
the form
Ay (2, 0) = Ok 1 0r 0 d~(00, ) =0 (3.4)
and
Ve (2, 0) = Tjpoo)(@) Oy Pry(00, @) = b0, (3.5)
where k =1,2,... and v € G, since these functions satisfy (2.15).

3.1.1 Sol equations
One obtains from (3.2), with ¢ of the form (3.4), that

Gl 1) = Yl ) plk, ) = > (k. B) plk, 7)+
aFy By

% M(:p +y) e, ) uly,v) —

X
r+y=k Y

1= K(k,y,7v)
- 2D (ke _
5 hy (k) 1y, )

aFy B#y

() ply, ) —

p(k, ) ZW#(%VHK(M%,V)M(%V) : (3.6)

r=1



Equation (2.14), with the representation (3.6), provides the sol equations

v(t,k,v) =v(0,k,7v) + /0 [Z k(k,a,y)v(s, k,a)—

aFEy
v(s, k,7v) Z/@(k,’y, B) + g S % v(s,z,y)v(s, k—x,v) —
B =1
s k) 30 BT 0 3) s k) R0, k) vl 00, s
Vi>0), 17{1:1,2,..., NEG. (3.7)

3.1.2 Gel equations

Now we are going to obtain equations for v(¢,00,7), v € G . Note that
v(t,00,7) = limn (s, (1), V120, (3.8)

where the functions 1)y, are defined in (3.5). The starting point are the equations
(cf. Remark 3.1)

W%W®>=<WMWW+AQWMWMM&
Vi>0, k=12 ... (3.9)

It follows from (3.8) and (3.9) that

t

Jlim | Gk, v(s))ds. (3.10)

k—oo 0

One obtains from (3.2), with ¢ of the form (3.5), that

G(Wrm ) = > [Z R, 0y) ple, @) = ple,7) Y ke, 8) | +

z=k Lazy B#
k=1 k-1
1 K(z,y,7
: RE) (0 4 y) ) ) +
=1 y=k—=x
I\ o K (2,9.7)
522 ol y) ply. ) +
=1 y=k Yy
k—1 oo k—1
1 K Yy, o
LS OV e ) ) + (oo, ) Y K s0..79) )
ry
y=1 z=k y=1
= > Dol ay) pla,a) = pl,) Dk, 8) | +
a=k Lazy B#y



> Klz.9,7) p(z,y) ply, y) +

k—1
(e, y) 1y, ) + p(00,7) Y K(00,y,7) p(y,7)
y=1

= Z[ rlx, a,) ple, o) = pla,7) Y w7, 6) (3.11)
ot

ol B#y

T
k— 00 —1

p(z ZK“” (y,7) + p(00,7) D> K (00, 4,7) iy, 7) -

N

8
I
N
<
I
w
EZ
<
I

Since

Silk, ) = [Z Kz, a,7) plw, a) — ple,7) Y ke, 7, 5)]

z=k La#y By
satisfies (cf. (2.10))

|S1(k,y, |<2maxz (x,, ) < 00,

= a,Beq

the dominated convergence theorem implies

¢ ¢
lim [ Si(k,v,v(s))ds = / lim Sy(k,v,v(s))ds=0. (3.12)
0

k—o0 0 k—o0

Since
k-1

Sk, 7, ) : )Y K (00,y,7) 1y, )

y=1

is non-decreasing in k£ and

S(h,v,p) = plx,y) > Wu(%v) (3.13)

r=1 y=k—2x

is non-negative, it follows from (3.10)—(3.12)that

t

Jlim [ So(k,v,v(s))ds = (3.14)
(

k—o0 0

(e 9]

t
/ v(s,00,7) Y K(c0,y,7) v(s,y,7)ds < 00
0

y=1

Finally, it follows from (3.10)—(3.12) and (3.14) that

t

Jlim [ S(k,v,v(s))ds < oco. (3.15)

k—o0 0

11



Thus, one obtains from (3.8), (3.9) and (3.11)-(3.15) the gel equations

t 00
v(t,00,7) = V(O,oo,v)Jr/ v(s,00,7) Y K(00,y,7) v(s,y,7) ds +
0

t [k—1 00
K
lim [ v(s,2,7) Y MV(&%V) ds,
0 Y

Vi>0, veG. (3.16)

Remark 3.2 The case v(0,00,7) > 0 (for some v € G) is covered by Theorem 2.1.

3.2 Properties of the gel solution

Taking into account (3.14) and (3.15), one concludes from (3.16) that

t [e'¢)
v(t,00,7) = V(u,oo,7)+/ v(s,00,7) Y K(co,y,7) v(s,y,7)ds +
t

klim S(k,v,v(s))ds, Vo<u<t. (3.17)

According to (3.17), the growth of the gel may originate from two different sources.
In the case K = 0 (cf. (3.3)), the gel is “passive” and grows due to the “gel production
term”

lim [ S(k,v,v(s))ds = (3.18)
t [k—1 [ee}
lim [ v(s,z,) Z M v(s,y,7)| ds,
w Yy

which depends only on the sol solution. In the case K > 0, the gel “actively” collects
mass from the sol solution, according to the term

e}

[ 500 Y Koo vls, i) ds.

y=1
It turns out that the gel production term (3.18) vanishes in the active gel case (under
some additional assumptions).
3.2.1 Estimates of the gel production term

Here we study the behavior of the term (3.18). The proofs of the lemmas will be
given in Section 4.

First we find sufficient conditions assuring a vanishing gel production term.

12



Lemma 3.3 Let 0 <u <t and v € G. Assume the kernel satisfies
K(x7y7’y)§0xy7 vx?y:]‘727"'7

for some C' > 0. If
> yv(uy,y) < oo,
y=1

then

lim S(k,v,v(u)) = 0.

k—o00

Moreover, if the sol solution satisfies

/ut [iyl/(s,yﬁ)] ds < oo,

y=1

then
t

lim [ S(k,y,v(s))ds = 0.

k—o00 u
Lemma 3.4 Let 0 <u <t and v € G. Assume the kernel satisfies
K(z,y,v) < Clxy*+2%y], Vo,y=1,2,...,

for some C >0 and a€|0,1]. If
> yv(uy,y) <oo  and  lim yw(u,y,y) =0,
y—o0
y=1

then (3.19) holds. Moreover, if the sol solution satisfies
t [ o
/ > yru(syy)|ds < oo
u y:1

and

lim [y sup V(S,y,v)] = 0,

Yy—oo s€[u,t]
then (3.21) holds.
Lemma 3.5 Let 0 <u <t and v € G. Assume the kernel satisfies
K(z,y,7) < Clz"y" + 2y, Vae,y=1,2,...,

for some C >0 and a,be[0,1].

13
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(i) Assume

V(u,y,v)géyﬁ, Vy=1,2,...,
for some C >0 and B < —1. Then
sup S(k,y,v(u)) <00 if B _a+12;+ !
and
]}LIEOS(k,V,V(u)):O if ﬁ<_a—|—;)—|—1.
(ii) Assume the sol solution satisfies
v(s,y,7) < C(s)y°, Vselutl, y=1,2,...,
for some (3 < —1, where
/té'(s)2ds < 00.
Then
/t sgp S(k,v,v(s))ds < > if pB< _%b-kl
and
/t ligl sup S(k,v,v(s))ds =0 if f< _%b—l—l : (3.24)

Remark 3.6 Note that (3.24) implies (3.21). If a =b =1 and [ < —2, then
Lemma 3.5 follows from Lemma 3.3. If a=1 and (< —1—0b, then Lemma 3.5
follows from Lemma 3.4.

Finally, we provide conditions assuring a non-vanishing gel production term.
Lemma 3.7 Let 0 <u <t and v € G. Assume the kernel satisfies
K(z,y,7) > Cz%y" + 2y, Ve,y=1,2,...,
for some C >0 and a,be[0,1] : a+b>1.
(i) Assume
v(u,y,v) > Cy°, Vy=1,2,...,
for some C >0 and B < —1. Then

1
lilgninf S(k,vy,v(u)) > 0 if  fB= —%,
and
b+1
lim S(k,v,v(u)) = o0 if _erot <p<-1.

k—oo 2

14



(ii) Assume the sol solution satisfies

v(s,y,v) > C(s)y”, Vseut], y=12,..., (3.25)
for some [ < —1, where
/t C(s)?ds > 0. (3.26)
Then )
/ut lil?l)'gjlf S(k,v,v(s))ds >0 if (= —%M , (3.27)
and
/utlil?l)'g)lf S(k,v,v(s))ds =00 if —%M <pB<-1. (3.28)
Remark 3.8 Since
/Ot ligriicgf S(k,y,v(s))ds < h,ﬁﬁii}f /Ot S(k,v,v(s))ds, (3.29)
according to Fatou’s lemma, (3.27) and (3.28) imply
l}l_)ngo t S(k,v,v(s))ds > 0
and )
t
lim S(k,v,v(s))ds = oo, (3.30)

k—o00 u

respectively. Note that (3.30) contradicts (3.15) so that (3.25), (3.26) can not be
fulfilled if
a+b+1

— < B < -1.
5 g

3.2.2 Active gel case

Here we provide sufficient conditions assuring that the gel solution satisfies the
equation

v(t, 00,7) = v(7(7), 00,7)+ (3.31)
t 00
/ v(s,00,7) > K(00,y,7) v(s,y,7)ds, Vit >7(7),
(™) y=1
where
7(y) :==1inf{t > 0 : v(t,00,7) > 0}, veG. (3.32)

Note that v(t,00,7) is non-decreasing in ¢, according to (3.17). Moreover, the gel
solution satisfies

v(s,00,7) =0, Vs<7(v), v(s,00,7) >0, Vs>r7(7). (3.33)

15



Theorem 3.9 Let v € G. Assume the kernel satisfies

K(z,y,v) <Cuzy, Ve,y=1,2,...,
and (cf. (3.3))

K(c0,y,7) > Cy, Vy=1,2,..., (3.34)
for some C,C > 0. Then the gel solution satisfies (3.31).
Theorem 3.10 Let v € G. Assume the kernel satisfies

K(z,y,v) < Clxy*+2%y], Voe,y=1,2,...,

and

K(00,y,7) > Cy*, Vy=1,2,..., (3.35)
for some C,C >0 and a € [0,1]. If the sol solution is such that

lim
y—o0

Y sup V(s,y,v)] =0, Vi>u>0: v(ut,o0,v) >0, (3.36)

sE€[u,t]

then the gel solution satisfies (3.31).

The proof of the theorems is based on the following lemma.

Lemma 3.11 If

v(u+,00,7v) >0, for some u >0, (3.37)
implies
t
klim S(k,v,v(s))ds = 0, Vit >u, (3.38)

u

then the gel solution satisfies (3.31).

Proof. Tt follows from (3.17) that

¢ 0o

v(t,00,7) = V(T(v),oo,v)vL/ v(s,00,7) Y  K(00,y,7) v(s,y,7)ds +
7(v) y=1

t

lim S(k,v,v(s))ds, Vit>T1(v). (3.39)

k=00 Jr(v)

If v(7(y)+,00,7) > 0, then (3.31) follows from (3.39) and (3.38). It follows from
(3.39) that

T(7)+6
v(T(7)+,00,7) = v(1(7),00,7) + lim lim S(k,v,v(s))ds. (3.40)

6—0 k—o0 (v)
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If v(7(y)+,00,7) =0, then (3.39) and (3.40) imply

t
V(t,oo,v)z/( SOO’YZ (00, y,7) v(s,y,7) ds +
() y=1
t

lim lim S(k,~v,v(s))ds, Vit>T1(y),

so that (3.31) follows from (3.33) and (3.38). |

Proof of Theorem 3.9.  The theorem follows from Lemma 3.11. Indeed, (3.37)
implies

/[Z (00, y,7) v 397)1d8<oo, Vi>u, (3.41)

according to (3.14). It follows from (3.41) and (3.34) that

t [ o
/ [Zyz/(s,y,’y)] ds < o0, Vi>u.

y=1
Thus, (3.38) is a consequence of Lemma 3.3. |

Proof of Theorem 3.10.  The theorem follows from Lemma 3.11. Indeed, (3.37)
implies

t (o]
/ [Zyau(s,y,y)] ds < o0, Vit>u,

y=1

according to (3.14) and (3.35). Thus, (3.38) is a consequence of (3.36) and Lemma 3.4.
|

3.2.3 Continuity

It follows from (3.1) that the functions v(t,z,~) are continuous in ¢, for any finite
x and v € G . Here we provide sufficient conditions for the continuity of v(¢, c0,7) .

Lemma 3.12 If the sol solution is such that

¢
/limsupS(k:,%l/(s))ds < 00, Vt>0,
0 k

then v(t,00,7) is continuous in t.

Note that

t
/liminfS(k:,%l/(s))ds < 00, Vt>0,
0

k—o00

according to (3.29) and (3.15).

Lemma 3.12 is an immediate consequence of the following slightly more general
result.

17



Lemma 3.13 If
t
/ limsup S(k,v,v(s))ds < oo, for t>0 andsome € (0,t),
t—e k
then v(t—,00,7) = v(t,00,7). If

t+e
/ limsup S(k,v,v(s))ds < oo, for some >0,
t k

then v(t,00,7) = v(t+,00,7) .

Proof. It follows from (3.17) that

t

v(t,00,v) = v(t—, 00,7) + (lsir% klim S(k,v,v(s))ds, Vt>0,

and
t46
v(t+,00,7) = v(t,00,7) + (lsin% klim S(k,v,v(s))ds, Vt>0.
— —0o0 Jy
Since
t t
klim S(k,v,v(s))ds < / limsup S(k,v,v(s))ds V0<u<t,
—© Uu U k—o0

the assertions follow. [

3.3 Spatially homogeneous case

Let |G| denote the size of the grid. In the case |G| = 1, when all particles are located
at the same site, the sol equations (3.7) are sufficient to describe the evolution of v,
since

v(t,o0) =1-> v(t k). (3.42)

k=1

o0

In the case |G| > 1 (with k > 0), equations for v(t,00,7), v € G, are necessary,
since there is mass exchange between different sites. However, even in the spa-
tially homogeneous case the gel equation (3.16) provides additional insight into the
gelation phenomenon.

3.3.1 Modified coagulation equations

Here we derive some versions of the limiting equation (2.14) that have been previ-
ously studied in the literature.
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Weak equations

Equation (2.14) holds, in particular, for ¢ € C.(Z) . It takes the form (cf. (2.7)-(2.9),

(3.42))
(p, X(1)) = (o, 0) ///K (3.43)

(e +y)p(a+y) o p(z) - w(y)}X(s, dx) X (s, dy) ds

_/Ot (/Z(p(x) LIHEO W} X(s,dx)) 11— X(s, 2)]ds.

Introducing the notations z C'(t,dx) = X(t,dz) and (x) = x¢(x), one obtains
from (3.43)

W, o) = (- G+ (3.44)
///ny (z+y) — () - @Z)(y)}c(s,dx)C’(s,dy)ds

_/O (/Zzp(x) {JE& %y)} c(s,dx)> {1—/23:0(3,(13:)} ds,

which is a discrete version of the “modified Smoluchowski equation” in [13, Eq. (2.5)].

If the kernel has the form K(z,y) = f(x)y, for sufficiently large y, where
f(z) = Mz, for some M > 0 and sufficiently large =, then (3.44) takes the form

(,C(t)) = (¥, Co)+
///Kﬁfﬂ/ (z +y) —(x) - w(y)}C(s,dx)C(s,dy)ds

- /0 ( /Z o) () C(s,da:)) {1— /Z xC(s,dx)] ds,

which is is a discrete version of the “modification of Smoluchowski’s equation” in
[23, Eq. (2.6)].
Strong equations

Equations (3.7) take the form (cf. (3.42))

k— 1

0 k
< —1)— 4
atl/tk: 2; vit,z)v(t,k — x) (3.45)
> Kz, k) =
. —v(t, k) K [ Z v(t ]
r=1 =1
and, with the notations v(t, k) = kc(t, k),
P =
< — SN K(x k- —2)— 4
- c(t. k) =5 ZT (2, k — ) e(t, x) c(t, k — x) (3.46)
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c(t,k)iK(m,k)c(t, ) — et k) K (oo, k) ll—Zxct:p].

If the kernel has the form
K(z,y) =zy" + 2%y,

then the negative terms on the right-hand side of (3.46) are (in the case a € [0, 1))

c(t, k) k* i zc(t,x)+ (3.47)

c(t, k) k i x®c(t,z) + c(t, k) k* [1 - i x c(t, x)]

=1 r=1

and (in the case a = 1)

tkaxctm )+2c(t, k) k ll—Zxctx]. (3.48)

r=1

According to (3.47), (3.48), one obtains from (3.46) (in the case a € [0, 1))

0

—~

k-1

1

—Zka‘—x (t,z) (tk—x)—ctkk‘Zx c(t,z) —c(t, k) k*
=1

r=1

\)

and (in the case a = 1)
0 18
ot k) =5 S K(wk—x)c(t,z)c(t,k—x) = 2c(t, k) k. (3.50)

r=1

Equations (3.49) and (3.50) are discrete versions of the “modified coagulation equa-
tion” in |7, Eq. (1.10)].

3.3.2 Multiplicative kernel

Here we illustrate some of the results in the special case (1.8), which has been
extensively studied in the literature.

Properties of the solution

The sol equations (3.7) take the form (cf. (3.45))

?T‘

- vit,x)v(t,k —z) —kv(t k). (3.51)

1

0 k
a’/(ta k) = 5

8
I
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The unique solution of (3.51), with monodisperse initial conditions, is

kk_l
vt k) = I th=tekt >0, (3.52)

Using Stirling’s formula

V27 kM e eI < Bl < V2r ke e R (3.53)
one obtains
1 3
S— R G LIPS 3.54
V2t eﬁlk ( )
vt k) < ;1 5 ek (t-1-logt)
V21t e1zktl

Note that the function f(t) =t —1—logt satisfies f'(t)=1—1 and

F) >0, Yt#£1,  f(1)=0.

In particular, it follows that the moments

me(t) := Zye v(t,y), e>0, (3.55)

remain finite for ¢t > 0, if ¢ < %, while having a singularity at ¢ = 1, if ¢ > %

Furthermore, it is known that (cf., e.g., [6, p.274], [29, p.922], [25, p.377|)

1 =exp(tv(t,o0)) (1 —rv(t,o0)), (3.56)
. d
11\{1} pm v(t,00) =2, (3.57)
ma(t) = 1_1;:;2510) (3.58)
and
t ! t—1 3.59
my(t) ~ =1 as t—1. (3.59)

Gel equation

Note that



according to (3.59). Thus, (3.20) does not hold and Lemma 3.3 can not be used.
However, v(s, k) has the order k=% for s = 1 and lower order for s # 1, according
to (3.54). Thus, Lemma 3.5 implies

sup S(k,v(1)) < oo, klim S(k,v(s)) =0 Vs#1,
k —00

where (cf. (3.13))

k—1 00

Stk =3 nte) 3 D ). (3.60)

=1 y=k—x
Moreover, since (cf. (3.52))
kkfl

/ _
V(t k) = 1

e (k- 1) — kt],

one obtains

v(t, k) gZ%M@y:mw—wymky:@:iﬁjeﬂﬂh Vt>0,

and, using (3.53)
1 1

T < Umax (k) < ; :
V21 e knk — 1 V27 e bk — 1

Thus,
vt k) <2k 2, Vk=1,2,..., t>0,

and it follows from Lemma 3.5 that

t
/ sup S(k,v(s))ds < 00, Vt>0. (3.61)
0 k

Finally, Lemma 3.7 implies
h/fn inf S(k,v(1)) > 0.

According to (3.61) and Lemma 3.12, the gel solution v(¢,00) is continuous.

Moreover, the gel production term vanishes, since
t

lim [ S(k,v(s))ds= /Ot lim S(k,v(s))ds=0.

k—o0 0 k—o0

The gel equation (3.16) takes the form
¢
v(t,00) =1(0,00) + / v(s,00) my(s)ds, Vt>0. (3.62)
0

Note that (3.56) and (3.58) imply

d ~ v(t,00) (1 —v(t,00))
@ "% = T T 00)

which is consistent with equation (3.62). Moreover, one obtains

= v(t,00)my(t),

11{3 I/(ta OO) ml(t) = 27
according to (3.57) and (3.59).
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3.3.3 Active and passive gel

Here we consider kernels of the form
1
K(x,y)=§[af‘y”+xby“}, 1>a>b>0, a+b>1, (3.63)

which have been frequently studied in the literature. We assume that the initial
condition is such that 7 > 0 (cf. (3.32)). Using the results concerning the gel
equation and, in particular, the gel production term, we discuss (on a heuristic
level) the behavior of the sol solution.

Let the sol solution be such that (cf. (3.60))

sup sup S(k,v(t)) < oo (3.64)

t>0 k

and

3 lim S(k,v(t)), Vt>0.

k—o0

The gel equation (3.16) implies (except for ¢ = 7)

d < _
37 (059) = #,05) 32 K(ow,) (o) + i STk (3.65)
Note that (cf. (3.3))
) y , if 1=a=5b,
K(oo,y)={ Ly, if 1=a>b, (3.66)
0, if 1>a>0.

According to Lemma 3.5, condition (3.64) is satisfied if
v(t,k) < CkK°, Vk=1,2,..., t>0, (3.67)

for some C' > 0 and

a+b+1

b= (3.68)

Correspondingly, moments (3.55) of the order

a+b—-1
2

remain finite. We refer to [33, p.594], [16, p.553| and [28, p.792] concerning the
“critical” exponent (3.68).

For t < 7, equation (3.65) implies (cf. (3.32), (3.33))

€<

lim S(k,v(t)) =0. (3.69)

k—o0

23



Thus, the solution should decay faster than algebraically with exponent (3.68).

At ¢t = 7, one might expect that the solution reaches algebraic growth with
exponent (3.68). Correspondingly, moments (3.55) of the order

a+b—1
>217 -
FE T

become infinite.

For ¢ > 7, the behavior is completely different in the cases of active and passive
gel.

Active gel case

In the active gel case (a = 1), the first term in (3.65) takes control at t = 7 (cf.
(3.31)). Moments my(t) (cf. (3.55)) become finite and, as a consequence, (3.69)
holds. Thus, the behavior of the solution is the same as before 7. In fact, if the
solution satisfies the growth condition (3.67), then the finiteness of m,(t) implies
3 < —b—1, which is stronger than § < —2 —1 (cf. (3.68)). The gel equation (3.65)
takes the form

d o0
ﬁu(t o0) = v(t, 00 ; ,Y) (3.70)

For the kernel (3.63) with a =1 and b € (0,1), one obtains (cf. (3.66), (3.55))

% v(t,00) = ; v(t, 00) my(t) .

Passive gel case

In the passive gel case (a < 1), the first term in (3.65) disappears and gelation is
controlled by the second term. The gel equation (3.65) takes the form

S u(t,00) = lim S(k, () (3.71)

so that

lim S(k,v(t)) > 0.

k—o0

Thus, the solution keeps to be of the order (3.68), according to Lemma 3.5 and

Lemma 3. 7 For the kernel (3.63) with b = @ and a € (0.5,1), the critical order is
f = —a — 5. Correspondingly, moments of the order ¢ < a — % stay finite, while
moments of the order ¢ > a — % stay infinite. In particular, one concludes that

mq(t) = 0o. Note that the moments m.(t), € > 0, grow monotonically, which can
be derived from the weak form of the equation.
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3.3.4 Special initial conditions

Here we consider kernels of the form (3.63) and discuss initial conditions leading to
7 =0 (cf. (3.32)).

Slowly decaying initial distributions

In the case of the multiplicative kernel (1.8) it is known that |23, Th. 2.8|

1
my(0)

T =

Thus, m(0) = oo is a necessary and sufficient condition for 7 = 0, or, in other
words, sufficiently slow decay of (0, z) in x leads to immediate gelation.

In the general case (3.63), it is of interest to consider initial distributions satis-
fying

v(0,k)>CE,  VE=1,2,..., (3.72)
for some C' > 0 and 3 such that

+h+1
—GT<B<—1.

According to Lemma 3.7, condition (3.72) implies

klgg@ S(k,v(0)) = o0
so that (3.64) does not hold. In the active gel case (a = 1), the behavior for ¢t > 0
seems to remain the same as in the case t > 7 > 0, discussed before. In the passive
gel case (a < 1), equation (3.71) would suggest an infinite slope of the gel solution,
i.e. V/(04,00) = oco. However, even a rigorous conclusion about continuity would
need further information about the sol solution (cf. Lemma 3.12).

Initial gel

Consider the case v(0,00) > 0 (cf. Remark 3.2). In the active gel case (a = 1),
the gel mass starts growing immediately. Its slope depends on the corresponding
moment, according to equation (3.70). Note that this moment should be integrable
in any neighborhood of t = 0 (compare this with (3.59)). In the passive gel case
(a < 1), the gel mass may remain constant and start growing later (dependent on
the sol component of the initial condition). So, having in mind the passive gel case,
it might be appropriate to define the gelation time as

7(7y) :=inf{t > 0 : v(t,00,v) > v(0,00,7)},

instead of (3.32). In the active gel case both definitions are equivalent (except the
trivial case v(0, 00) = 1).
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An interesting aspect of the initial gel case is that even the consideration of
non-gelling kernels makes sense. In the passive gel case (e.g., K(z,y) = 1), the sol
and the gel develop independently. However, in the active gel case the initial gel
starts growing immediately. The linear kernel K (z,y) = x + y is is an example
of a non-gelling kernel, for which the gel is active. One obtains K (co,y) = 1 and
equation (3.70) takes the form

d
- v(t,00) = w1, 00)[1 — v(t, 00)].

Note that the sol equations are modified in the initial gel case.

3.4 Comments
Here we give some comments concerning the two spatially inhomogeneous gelation
models mentioned in the introduction.
3.4.1 The van Dongen model
The sol equations (3.7), with the notations v(¢, k,v) = kc(t, k, ), take the form
0
a C(ta ka 7) = Z H(ka Q, 7) C(ta ka O‘) - C(ta ka 7) Z H(ka Y5 B)_'_

aFy B
k-1

K(x Ye(t, ) c(t, k —x,7y) — (3.73)

DO | —

=1

c(t, k,v) Z K(z, k) c(t,,y) — clt, k,v) K(00, k,v) v(t,00,7)
=1

8

which is a spatially discrete version of (1.11), when the multiplicative kernel (1.8)
is chosen. Moreover, equation (3.31) holds, according to Theorem 3.9, and provides
a spatially discrete version of (1.12).

3.4.2 Formal extensions of Smoluchowski’s coagulation equation
Note that (3.73) is a spatially discrete version of (1.4), when
K(00,k,v)=0. (3.74)
In this case, equation (3.16) can be formally transformed into
v(t,00,7) = lim Zxct:v Y K,y ety )|, (3.75)

875 k—oo
y=k—x

which is a spatially discrete version of (1.9), (1.10) (without the gradient term),
when the multiplicative kernel (1.8) is chosen.
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However, condition (3.74) is not fulfilled for the kernel (1.8). Before commenting
on this point, we illustrate the situation in the spatially homogeneous case. When
skipping the term containing K , equations (3.73) take the form

% c(t k) = % ix (k—x)e(t,x) etk —x) — ket k) Z xc(t, ). (3.76)

This is Smoluchowski’s coagulation equation (1.5) formally extended to the kernel
(1.8). It is known that the solution of (3.76), with monodisperse initial conditions,
satisfies (cf. (3.52))

1 1
c(t, k) = T v(1, k) . t>1. (3.77)
According to (3.77), growth properties (with respect to k) at ¢ = 1 remain valid
for t > 1. This behavior of the solution reminds the passive gel case discussed in
Section 3.3.3.

Equation (3.76) is “wrong” in the sense that its solution does not approximate the
corresponding Marcus-Lushnikov process. In general, various coagulation kernels are
derived from certain assumptions on the underlying physical system. Smoluchowski
derived his equation with the particular (non-gelling) kernel (1.6) starting from a
system of diffusing spherical particles. Thus, it might be more appropriate to call
equation (3.76) a “formal” Smoluchowski equation. Rigorous results concerning the
transition from stochastic particle systems to the solution (3.77) would need some
truncation of the kernel dependent on the number of monomers in the system (cf.
[1, Conjecture 3.6]). Due to this truncation, the gel would not interact with the
sol, thus becoming “passive”. This explains why the solution of the formal extension
of Smoluchowski’s coagulation equation to the multiplicative kernel behaves like a
solution in the passive gel case.

Turning to the model (1.9), (1.10), the form of the gel production term can
be explained now by analogy with the passive gel case. However, in the spatially
inhomogeneous situation the spatial behavior of the gel has to be described, in
addition to its growth properties. Simply adding a diffusion term seems to be another
formal extension of Smoluchowski’s coagulation equation. It is not clear if this model
is of any practical relevance, since the gel would be expected to behave randomly,
even if a truncation of the kernel was used. The asymptotic behavior of the gel
is determined by the assumptions on the diffusion coefficients. For non-vanishing
D(k), a stochastic limit was predicted in [27]. We also refer to the corresponding
discussion in [25].
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4 Proofs

4.1 Proof of Theorem 2.1
Properties of the processes

Note that (cf. (2.1), (1.3))
P (X" € D([0,00),P(2))) = 1.
Consider the generator (cf. (2.2)-(2.4))
A0(p) = [ [0() = 2] N ) (4.1)
and test functions of the form

B(3) = (po1t) = 1 D ol ).

Note that |®(u)| < ||¢]/e - The usual starting point for deriving a limiting equation
is the martingale representation

(. XV0) = (0. X5 (O) + [ A (9) s+ M (0,0). (42)
Helpful properties are
E sup |MN (¢, 5)| <4EMN(p,1)?, (4.3)
EMY(p,1)? = E /t [ANcb? — 20 AV®| (XN (s)) ds (4.4)
40 —204%0)0) = [ [(0) — G N ) (1.5

and (for any k > 0)

/ENW’ v) = (. )] AV (u, dv) =
ZZ o 6 [ e Ji(ps 1, 0)) — <90,u>r +
i=1 g

QL ; e xz,x],&z) [(SO, Ja(p,, 7)) — <<Paﬂ>]k

n

1 k
- —kzz xl’alﬂﬁ [cp(xz,ﬁ) - 90(1‘270[2)} + (46)
i=1 B
1
9 Nk+1 Z 5%«1;' K(xiaxjaai> X
1<i#j<n

k
[(l"z +x;) oz + x5, 05) — x5 0(24, ;) — 5 (), Oéj)] .
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Estimates for the generator
Lemma 4.1 If ¢ has the form (2.15), then
(@+y) @ty o) —vo(ra) —yely,a) < 4ol 2(p) . (4.7)

Proof. If z < Z(y) and y > Z(p), then the left-hand side of (4.7) takes the form
|z co(p, ) — x p(x, )| . Other cases are treated analogously. |

Lemma 4.2 Assume
k(z,a, ) < Oy, Va,€G, x=1,2,...,
for some C, >0, and (2.12). Then

sup sup |AN®(p)| < oo,
N pueEN

for any ¢ satisfying (2.15).
Proof. One obtains from (4.1), (4.6) (with £ = 1) and Lemma 4.1 that

1 n
|ANCD(M)| < N;;H(%,Oﬁ,ﬁ) Z; @(ﬁi,ﬁ) —<P(9Uz‘704z‘) +

n

Z 5ai,aj K(l’l, Ly, az’) X

ij=1

1
2N?

)(% + ;) p(x; + 25, 04) — xi (s, 05) — xj o), @)
< 2|p|l Ci |Gl + 2|l 2(¢) Ck

and the assertion follows. [ |

Estimates for the martingale term

Lemma 4.3 Assume (2.10) and (2.12). Then
im E sup |[M"™(¢,s)| =0, (4.8)

1
N—oo s<t
for any ¢ satisfying (2.15).
Proof. One obtains from (4.3)—(4.5) and (4.6) (with k£ = 2)
E sup | MY (5, )| < (19)
s<t

4t sup % Z Z k(i B) 27 [‘P(xiaﬁ) — (i, Oéz')r +

N
HEE i=1 BeG

2
[(l"i +x;) oz + x5, 05) — x5 (25, 05) — 5 (), Oéi)] .
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Let € > 0 and choose z(g) such that
k(x,a,0) <e, Va>ux(e).
Then (4.9) and Lemma 4.1 imply

E sup M (¢, 5)] <

s<t

2 z(e) 1 O 2 2/ \2 1
161 ||lo||” |G| CKTJFSW;% + 32t ||o[|" Z(¢p) CKN'

Since Y, x; = N, one obtains

limsup E sup |[M" (¢, s)| < 16t ||p||* |G| e

N—oo s<t

and (4.8) follows. |

Relative compactness
Lemma 4.4 The set
{dkﬁ, iﬂm S G, k=1,2,.. } (410)

of functions (3.4), (3.5) is convergence determining (with respect to weak conver-

gence in P(Z')).

Proof. According to [9, Lemma 3.4.3|, it is sufficient to show that the set (4.10) is
separating. From (dj g, ;1) = (dj 3, V) one obtains pu(k, 3) = v(k, 3), and (¢y g, pu) =
(Yrp,v) forall k=1,2,... implies u(oco, 5) = v(oo, ). |

To prove relative compactness of the sequence (X") we apply [9, Theorem 3.7.6]
with £ = P(Z2’) and the metric (cf. Lemma 4.4)

imln (1,1¢ cpk;, > <‘Pkay>|)’ (4.11)
k=1

where () denote the reordered elements of the set (4.10). The compact contain-
ment condition is trivial, since the space P(Z’) is compact. The remaining condition
to be checked is

VI,e>0 36>0 : supP(w(XM,6T)>¢)<e (4.12)
N

where the modulus of continuity

w(p,d,T) = inf max sup 7(u(s),u(t)) (4.13)

{ti} v s,te[ti,l,ti)

is defined for 6,7 > 0 and p € D([0,00), E) . Here {t;} ranges over all partitions of
the form 0 = o<ty < - <tlp1< T <t, with minlgign(ti — tifl) >dandn>1.
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Lemma 4.5 Assume (2.10), (2.12) and let ¢ be of the form (2.15). Then, for any
T,e >0, there exist At, Ny > 0 such that

sup P ( sup (0, XV (s)) — (0, XV (t))| > 5) < e. (4.14)

N>N |s—t|<At,t<T

Proof. One obtains from (4.2)
[, XN()) — (o, XV ()| < [MY (. t) = M™ (0, 9)| + [t — 5] e, (4.15)

where ¢ := supy sup,,cpv AV ()] < 0o, according to Lemma 4.2. Let 0 < At <
52 A 1. It follows from (4.15) that

P( sup }<so,XN<s>>—<w,XN<t>>}zfs>g

|s—t| <At t<T

IP’(E—I— sup }MN(cp,s)—MN(go,t)’ Zz—:)

2 s—t<Ati<T

4
< P(sup ’MN(go,t)lzi) < - E sup |M"(g,t)]. (4.16)
t<T+1 4 €  t<T+1

By Lemma 4.3, the mean value at the right-hand side of (4.16) becomes smaller
than 2 /4 for sufficiently large N so that (4.14) is satisfied. |

Lemma 4.6 Assume (2.10) and (2.12). Then, for anyT,e > 0, there exist At, Ny >
0 such that

N>N |s—t|<At,t<T

sup P ( sup  r(XN(s), XN(t) > 5) <e. (4.17)

Proof. Fix T,e > 0 and choose L = L(¢) > 0 such that 37, 5+ < £. One
obtains (cf. (4.11))

P< 2 TR AT 2 8) : (4.18)
|s—t|<At, t<T
P ( |su]D Z }<90k,XN(5)> — <g0k’XN(t)>} > %)
s—t|<ALI<T 1
ZL N N €
: k:1P (Istsglg,th [ X () = o, X (0))] 2 i) .

According to Lemma 4.5, there are At, Ny > 0 such that (4.14) holds for all ¢ = ¢y
with £ = 1,...,L (cf. Remark 3.1). Thus, inequality (4.17) follows from (4.18).
|

31



For any T, e > 0 and N there exists o,y > 0 such that
P(w(XNa(SNaT) Z 5) S €,

according to [9, Lemma 3.6.2(a)]. Note that w decreases with 6. Thus, condition
(4.12) follows from

VT,e>0 36,Nyg>0 : sup P(w(XY,6T)>¢)<e (4.19)

N>No
by choosing 0 < § < min{dy,...,0n,—1}. Note that (cf. (4.13))

w(p,0,T) < sup  r(u(s), u(t)), 0<d<At. (4.20)

[s—t|<At, s<T

Thus, condition (4.19) is a consequence of (4.20) and Lemma 4.6.

Characterization of weak limits
Using (4.2), (4.1) and (4.6) (with & = 1), one obtains (cf. (2.7))
(p, XN (1) = (4.21)
(X0 + [ 6o X (6)) ds 4 MY(p,0) + R (.0)
where

RN (p,t) = /Ot [ANQD(XN(S)) —G(p, XN (s))|ds. (4.22)

Lemma 4.7 If ¢ satisfies (2.15), then

im E sup |RY(p,s)] = 0. (4.23)

|
N—oo s<t

Proof. It follows from (4.1), (4.6) (with k£ = 1) that
1
ANCD(M) —G(p,p) = A2 Z v K (i, 23, ;) [90(29017 ;) — (g, %‘)]

and

1 n
AYO() = Glom)| <20lell s K(zza)i; > i
=1

z<z(p), a€G

Thus, one obtains

lim  sup AN@(M)—Q(%M)):O

N—o00 WEEN

and (4.23) follows from (4.22). [
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Lemma 4.8 Assume (2.10), (2.11) and let ¢ be of the form (2.15). Then the
mapping
MSO : D([Ov OO),P(Z,)) - D([0,00),R)

defined as (cf. (2.14))

M (1)(t) = (oo pl8)) — (. (0)) — / Glon(s)ds,  t20,  (424)

18 continuous.

Proof. This is a consequence of the continuity of G(¢, ) with respect to p, which
follows from the continuity of the functions x and F,. Note that the function & is
continuous, according to (2.10). The function (2.8), (2.9) is continuous if (2.11)
holds and ¢ has the form (2.15). |

Lemma 4.9 Assume (2.10), (2.12) and let ¢ be of the form (2.15). Then any
limiting point X of the sequence X satisfies

P(My,(X)=0)=1.
Proof. Fixt > 0and ¢. Since (cf. (4.24), (4.21))
sup [ M (X", 5)| < sup [M™ (¢, 5)| +sup |[R" (¢, 5)],
s<t s<t s<t

it follows from Lemma 4.3 and Lemma 4.7 that

lim P(sup|M¢(XN,s)| 25) =0, Ve>0,

N—oo s<t
and

sup [M,(XV,s)|=0 as N —o0. (4.25)

s<t

Suppose

XN = X (4.26)
for some subsequence. Then Lemma 4.8 implies M, (X™) = M,(X) and

d(M,(X™),0) = d(M,(X),0),
where d denotes the Skorokhod metric. On the other hand, (4.25) implies
d(My(X™),0)=0 and  d(My(X),0)=0 as.
so that the assertion follows. |
As a consequence of Lemma 4.9, one obtains

P (M, (X)=0,Vk) =1.

Pk

Assumption (2.13) and (4.26) imply X (0) = 1 almost surely, so that equation
(2.14) is fulfilled for all functions () . Finally, any function of the form (2.15) can
be approximated by linear combinations (with rational coefficients) of functions ()
in such a way that the corresponding values of G converge.
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Continuity

Note that
sup r(XN(t), XN (t—)) < sup  r(XN(s), XN(1), VAt >0.
i<T |s—t|<At t<T

Thus, Lemma 4.6 implies

sup P(sup HXY (), XN (1)) 25) <

N>N t<T

so that
sup r(XN(t), XV (t-)) = 0, VT >0,

t<T
as N — oo. An application of [9, Theorem 3.10.2(a)| gives
P(X € C(10,0), P(2) = 1,

for every weak limit X of the sequence (X*).

This completes the proof of Theorem 2.1.

4.2 Proof of Lemma 3.3

Lemma 4.10 If
K(z,y) <Cuxy, Vae,y=1,2,..., for some C >0, (4.27)

then
k—1 0o

Soute) 3 ) < 20<Zw<x>) S au).
—=k— r=1

r=1 y x r=min(k—k’ k’+1)

forany 1 <k <k-—1.

Proof. One obtains

1 — — K(z,9)
59;1#(9:);;00 ) <

> wp()

< qu(x) w(y) + Z IEM@)ZN(?J)

< <Zx,u(x)> [ Z yu(y) + Z z pu()

so that the assertion follows. [ |

Il
i
=
s

I
=
+
A
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Corollary 4.11 If (4.27) and

then

Proof. Choose k' := [k/2] (closest integer). Since

[e.9]

lim Z zp(r) =0,

k—o0
r=min(k—k’ k’'+1)

the assertion follows from Lemma 4.10. |
Since
\- — K(z,9,7)
S(k,”y,l/(s)):Zusx’y Z v(s,y,7) <Cqusx’y)
z=1 y=k—= z=1

assumption (3.20) and the dominated convergence theorem imply

t

lim [ S(k,v,v(s))ds = /t lim S(k,v,v(s))ds. (4.28)

k—o0 u k—o0

On the other hand, (3.20) implies » % yv(s,y,7) < oo, for almost all s € [u,].
Thus, the assertion follows from (4.28) and Corollary 4.11.

4.3 Proof of Lemma 3.4

Lemma 4.12 If

K(z,y) < Cley*+z%y], Vao,y=1,2,..., (4.29)
for some a€[0,1], C >0,
then
1 k—1 9] K(ZL‘ y)
3 u) > K ) < (4.30)
Yy
=1 y=k—x
>y u(y) [ sup wpu(x)+ > ply)| +
y=1 2k—k y=k—k'
>yt uly) [2 sup  pu(x +Zu ]
y=k'+1

forany 1 <k <k-1
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Proof. One obtains

&Y ula) > FED ) <
iw(l’) > y“‘lu(y)+i$“u(w) > uly)
= ixu(:v) () +iw(~’v)2y“ "ly) +
" e - -
Z:p“,u(x) Z w(y) + 2 p(r) 1(y)
=1 y—h—z o=k 41 y—k—=
< iw(l’) 4 y) +% y zp() Yy ply) +
K [e9) k—1 [e9)
Zma,u(x) Z w(y) + xa/i(x)zlu(y)
=1 y=k—k' r=k'+1 y=1
and
k—1 k—1 k—1 1 k—1
D_anl@) Yy ) =D v aly)s Y wul)
z=1 y=k—=x y=1 r=k—y
= Zy“u(y)é i z p(x) + i y“u(y)i i e
y=1 z=k—y y=k"+1 r=k—y
< >y uly) nggﬁ/w(w)} + i y* pu(y) [sgpw(x)}
so that
%Zu(l‘) > K(Z 9 i) < 3yt uty) nggk/w(:v)} +
>yt uly) [supxu(x)} +> Y u(y) {Supxu(:v)} +
y=k'+1 v y=k v
doatulz) Yo ouly)+ Y atulz) Y ply)
z=1 y=k—k' x=k'+1 y=1
and (4.30) follows. |

Corollary 4.13 If (4.29),
>y uly) < oo (4.31)
y=1
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and

klim ku(k)=0, (4.32)
then
= — K(z,9) _
lim Zlu(w) = ply) = 0. (4.33)
y=k—x

Proof. Choose k' := [k/2]. Since

lim Zy“,u(y) =0 and lim sup xp(z)=0,

kf*)OO x>k k/

the assertion follows from Lemma 4.12. [ |

Remark 4.14 If K(z,y) > Cyzy*, then

Z_: Z v ply) = Cr(k = 1) pk = 1) p(1),

Y=RK—X

so that condition (4.32) is necessary for (4.33). Condition (4.31) with a = 1 is
sufficient for (4.32) (cf. Corollary 4.11).

Since, according to Lemma 4.12,

k—1
Sk, (5) = 3 o ,7)
r=1 Y

Zx v(s,x,7) {3 (supa;y(s,x,y))JrQ],

ZK v(s,y,7) <
=k—

T

T

assumptions (3.22), (3.23) and the dominated convergence theorem imply
t

lim [ S(k,v,v(s))ds = / l}l_)rglo S(k,v,v(s))ds. (4.34)

k—o0 u

On the other hand, (3.22) and (3.23) imply
Zya(7 v(s,y,7) and lim kv(s, k,v) =0,

k—o0
y=1

for almost all s € [u,t]. Thus, the assertion follows from (4.34) and Corollary 4.13.
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4.4 Proof of Lemmas 3.5 and 3.7

Lemma 4.15 The quantities

k—1 0
Ay = Ap(a,b,8) = D @t Yy k> 2,
rz=1 y=k—x
where
a,be0,—-0), < -1,
satisfy
1 a
Ay > —B+bx£+ (k—x)* (k—1), VEk>2,
and
B+b—1 1
A < — (k- Atb 1 7<ﬂ+a+—1
=T B+ (k=) T rar1 >+
1
B+a B+b+1
1+—— (k- 1
T {+ﬁ+b+1((k ) )]}
VE>2: 1<z, <k-—1,
where
(B+a)k
Ty = ——— .
2+a+0

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

If B+a+1=0 or f+b+1=0, then the undefined terms in (4.38) are to be

replaced according to lim, o(z¥ —1)/y =logx .

Proof. Note that

BHb-1 < /oo BHb—1 g, — L — )5tb
y;xy = V=3 +b( )
and
Z yﬁ+b71 < (k . x)mbq n /OO y[@erfl dy =
y=k—x k—w
1 G+b—1
k BHb-1 _ _ L (B < L — )8+
(k= )70 = e (k=) < S (k)
Thus, one obtains
=
A _ Bta (. _ p)B+0
k= 3+b ;x ( )

(4.40)



and

B+b
A Ara (f — x)8t0, 4.41
v S §j (1.41)

The function f(x) = 2% (k — x)°*® satisfies
fi(x) = a7 (k= )7 (B + a) (k= @) — 2 (8 +D)]

and takes its minimum at =z (cf. (4.39)). One obtains
Zwa )P0 > 2Pt (k= 1) (k= 1)

so that (4.40) implies (4.37).
The function z°*? is decreasing and the function (k — z)?*? is increasing on
(0, k). Thus, one obtains

mea ,8+b
Z P (k — )Pt 4 Z 2Pt (k — )Pt

1<z<zy rp<r<k-—1

< (k=)™ D0 afrgpaltt Y (k—a)Pt (4.42)

1<z<xy rp<z<k—1
Note that (if 8+ a # —1)

Tk 1
B+a B+a o B+a+1 _
g T <1+/ x dx—l—l—iﬁ_’_a_i_l(xk 1) (4.43)

1<a<ay,

and (if 4+ a = —1)

Z 2T < 14 logay,. (4.44)

1<x<zy,

In analogy, one obtains (if §+ b # —1)

> (k—a)t = (4.45)
rp<z<k—1
1
ﬁer <1+ k— B+b+1 1

and (if 64+ b= —1)

> (k=) <1 4log(k — ). (4.46)
rp<z<k—1
Finally, (4.38) follows from (4.41) and (4.42)-(4.46). |
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Remark 4.16 Note that 1 < x < k—1 (cf. (4.38)) is fulfilled for sufficiently large
k, since (B4 a)/(28+ a+b) € (0,1), according to (4.36).

Remark 4.17 If a = b =1 and [ = —3/2, then xx = k/2 (cf. (4.39)) and
Lemma 4.15 implies

40k —1)

— <A< 62— (k/Q)*l/Z].

Corollary 4.18 The expressions (4.35) satisfy

b+1
khm Ak(aabaﬁ)zoa Zf ﬁ<_%a
lilgn inf Ag(a,b,5) >0 and lim sup Ag(a, b, B) < oo, (4.47)
0 k—oo
. a+b+1
i op=-1
and
b+1
lim Ag(a,b,8) =00, if 5> —%.

Remark 4.19 The lower and upper bound in (4.47) can be specified in terms of
a’? b?ﬁ'

One obtains (cf. (4.35))

k—1 oo
Shn(s) = Lowsinn) Yo LD s )
=1 y=k—x
< CC(s)?[Ap(a, b, B) + Ap(b,a, 3)] (4.48)
and
S(k,v,v(s)) > C’CN'(S)2 [Ak(a, b, 3) + Ag(b,a, B)] . (4.49)

Now (4.48) implies
sup S(k,v,v(s)) < CC(s)? sup [A(a,b, B) + An(b, a, 5)]

k>l k>l
so that
! b+1
lim [ sup S(k,v,v(s))ds=0 it A< _eror ] ,
l—oo [, k>l 2

according to Corollary 4.18, and Lemma 3.5 follows. On the other hand, (4.49)
implies

inf S(k,v,v(s)) > CC(s)? }ggfl [Ag(a,b,B) + Ag(b, a, 5)]

k>l
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so that

and

[ . a+b+1
lli)rgo ’ }féfz S(k,v,v(s)ds>0 if (= I
[ . a+b+1
zlir?o ’ }Cgfl S(k,v,v(s))ds=00 if (B> >

according to Corollary 4.18, and Lemma 3.7 follows.
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