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Abstra
tAn important 
lass of �nite-strain elastoplasti
ity is based on the multi-pli
ative de
omposition of the strain tensor F = FelFpl and hen
e leads to
omplex geometri
 nonlinearities. This survey des
ribes re
ent advan
es onthe analyti
al treatment of time-in
remental minimization problems with orwithout regularizing terms involving strain gradients. For a regularization 
on-trolling all of∇Fpl we provide an existen
e theory for the time-
ontinuous rate-independent evolution problem, whi
h is based on a re
ently developed ener-geti
 formulation for rate-independent systems in abstra
t topologi
al spa
es.In systems without gradient regularization one en
ounters the formationof mi
rostru
tures, whi
h 
an be des
ribed by sequential laminates or moregeneral gradient Young measures. We provide a mathemati
al framework forthe evolution of su
h mi
rostru
ture and dis
uss algorithms for solving the as-so
iated spa
e-time dis
retizations. We outline in a �nite-step-sized in
remen-tal setting of standard dissipative materials details of relaxation-indu
ed mi-
rostru
ture development for strain softening von Mises plasti
ity and single-slip 
rystal plasti
ity. The numeri
al implementations are based on simpli�edassumptions 
on
erning the 
omplexity of the mi
rostru
tures.1 Introdu
tionWe study the theory of elastoplasti
ity in the 
ase of �nite strains in appli
ationssu
h as visualized in Fig. 1, where the deformation gradient F = ∇ϕ is 
onsidered asa matrix with positive determinant. Moreover, we work under the basi
 assumptionthat the multipli
ative de
omposition
F = ∇ϕ = Fel P with P = Fpl
an be used to des
ribe the elasti
 properties via the elasti
 part Fel of the deforma-tion tensor and the plasti
 evolution via the plasti
 tensor P. In 
ontrast to this, theadditive de
omposition ε = εel+εpl is well-established in small-strain elastoplasti
ityand has ni
e mathemati
al features sin
e it 
an be easily 
ombined with 
onvexitytools. The assumption of �nite strains and the multipli
ative split destroy 
lassi
al
onvexity properties and the more general notions of poly- and quasi-
onvexity needto be employed for the energy-storage potential

ψ(F,P, p) = ψ̃(FP−1, p) ,where p are additional hardening variables.The subsequent mathemati
al analysis as well as the numeri
al implementations arebased on the time-in
remental minimization problems introdu
ed in Se
t. 2 whi
hare phrased in terms of the full stored energy
E(t,ϕ,P, p) =

∫

B

ψ(∇ϕ,P, p)+U(P, p,∇P,∇p)dx− 〈Πext(t),ϕ〉1
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(a) (b)(
)Figure 1: Experiments and numeri
al simulations of �nite plasti
 deformations. (a)Ne
king of a poly
rystalline material. (b) Ne
k propagation in a tensile test of anamorphous glassy polymerand a dissipation distan
e

D((P0, p0), (P1, p1)) =

∫

B

D(P0, p0), (P1, p1))dx .For a given partition 0 = t0 < t1 < · · · < tN = T of the time interval [0, T ] thetime-in
remental minimization problem has the form(IP) (ϕj ,Pj, pj) ∈ Arg Min
eϕ,eP,ep

(
E(tj, ϕ̃, P̃, p̃)+D((Pj−1, pj−1), (P̃, p̃))

)
.In Se
tion 2.2 (
f. [Mie03a℄) it is shown that this in
remental problem o

urs natu-rally as the fully impli
it (ba
kward Euler) s
heme for the energeti
 formulation (S)& (E), whi
h is a weak formulation of the time-
ontinuous problem 
onsisting of theelasti
 equilibrium together with the plasti
 �ow law, see (2.3). In Se
t. 2.3 we dis-
uss the arising nonlinearities, whi
h are best understood when 
onsidering the ma-trix groups GL+(d) = {F ∈ Rd×d | detF > 0} and SL(d) = {P ∈ Rd×d | detP = 1}as Lie groups.In Se
tion 3 several existen
e results are surveyed. In the situation without anylength s
ale (i.e., the term U involving ∇P in E is not present) the variables P and

p 
an be minimized pointwise for ea
h x ∈ B in the in
remental problem (IP). Thisleads to the 
ondensed potential
W cond((P0, p0);F) = min{ ψ(F,P1, p1) +D((P0, p0), (P1, p1)) | (P1, p1) } ,whi
h plays a fundamental r�le in the existen
e theory in Se
t. 3.1. Under the as-sumptions thatW cond((I, p0); ·) is poly
onvex and that it satis�es the usual 
oer
ivityassumptions, an existen
e theory for (IP) was derived in [Mie04b℄. If poly
onvexityof W cond fails, then existen
e of solutions is not to be expe
ted be
ause of the for-mation of mi
rostru
ture. In this situation the relaxation te
hniques of Se
t. 4 haveto be used to derive e�e
tive properties. 2
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(a) (b)(
)Figure 2: Experiment and numeri
al simulation of mi
rostru
tures in �nite plasti
deformations. (a) Experimentally observed mi
rostru
ture. (b) Numeri
al simula-tion based on rank�one laminate mi
rostru
tureIn Se
t. 3.2 a regularization of (IP) is 
onsidered whi
h involves the geometri
 dis-lo
ation tensor GP = (curlP)P⊤ via the potential U in E , namely U(P,∇P) =

V (GP). In [MM06b℄ it was observed that the multipli
ative de
omposition Fel =
∇ϕP−1 is perfe
tly suited to be 
ontrolled in the sense of poly
onvexity, if curlP
an be bounded by the energy. Hen
e, the solvability of (IP) 
an be proved undersuitable assumptions on the dissipation distan
e.Finally, in Se
t. 3.3 we dis
uss work in progress (
f. [MM06a℄) whi
h uses a fullregularization of the internal variables (P, p) in the energy-storage fun
tional E , i.e.,
U(P, p,∇P,∇p) ≥ c|(∇P,∇p)|r. Using the abstra
t theory for rate-independentsystems developed in [MM05, Mie05b, FM06℄, it is possible to show �rst existen
eof solutions for (IP) and then to pass to the limit for time step going to 0. The limitfun
tion obtained along a 
arefully 
hosen subsequen
e 
an �nally be identi�ed asa solution of the original energeti
 formulation (S) & (E).In Se
tion 4 we de�ne material instabilities in rate independent standard dissipativesolids based on �nite-step-sized in
remental energy minimization prin
iples and ap-ply the results in Se
tions 5 and 6 to the predi
tion of deformation mi
rostru
turesin strain-softening von Mises and single-slip 
rystal plasti
ity. The formulation o�erstwo important perspe
tives. First, the de�nition of material stability of standarddissipative materials is based on weak 
onvexity 
onditions of in
remental stress po-tentials in analogy to �nite hyper-elasti
ity. Se
ond, mi
rostru
ture developments inunstable inelasti
 solids su
h as visualized in Fig. 2 are asso
iated with non-
onvexin
remental stress potentials similar to elasti
 phase transformation problems. Thesedeformation mi
rostru
tures 
an be resolved by a relaxation of in
remental energyfun
tionals based on a 
onvexi�
ation of the non-
onvex stress potential. The sub-sequent developments are stru
tured into three parts as overviewed in Table 1.An in
remental variational formulation for standard dissipative materials is outlinedin the works [Mie02a, MSL02, Mie03a℄, whi
h generalized treatments on the defor-mation theory of plasti
ity [Mar75℄, its appli
ation to a �nite-step-sized in
rementalsetting [OR99, OS99℄ and the formulation [CHM02℄ restri
ted to �nite plasti
ity. It3



des
ribes the response of an inelasti
 material by only two s
alar fun
tions: the en-ergy storage fun
tion and the dissipation fun
tion. The general set up of this generi
type of material model 
an be tra
ed ba
k to the works [Bio65, Zie63, Ger73℄. It
overs a broad spe
trum of models in vis
oelasti
ity, plasti
ity and damage me-
hani
s. For this 
lass of materials we de�ne a variational formulation, where aquasi-hyperelasti
 stress potential at dis
rete time is obtained from a lo
al mini-mization problem of the 
onstitutive response, in Table 1 denoted by problem (C).Algorithms for a dis
rete setting of this 
onstitutive minimization problem are out-lined in the works [OS99, MA04, MAL02, MS04a, MS04b℄ for di�erent approa
hesto �nite plasti
ity.A key advantage of the outlined variational formulation is the opportunity to de�nethe stability of the in
remental inelasti
 response in terms of terminologies usedin elasti
ity theory, see for example [Da
89, Kra86, Cia88, MH94, �il97℄. Here, ane
essary 
ondition for the existen
e of minimizers for
es the energy fun
tional tobe sequentially weakly lower semi
ontinuous (s.w.l.s.). An important impli
ationof this desired property is the quasi
onvexity of the stored elasti
 energy fun
tion,a terminology introdu
ed in [Mor52℄. The above outlined 
onstitutive variationalformulation enables us to extend these results to the �nite-step-sized in
rementalresponse of inelasti
ity. To this end, we introdu
e an in
remental energy minimiza-tion prin
iple for standard dissipative solids that 
ontains the in
remental stresspotential. The inelasti
 solid is then 
onsidered to be stable if this potential is qua-si
onvex, see 
ondition (S) in Table 1. However, quasi
onvexity is a global integral
ondition whi
h is hard to verify in pra
ti
e. More manageable is the slightly weakerrank-one 
onvexity that is 
onsidered to be a 
lose approximation of quasi
onvexity.As presented in [ML03b, ML03a, MLG04℄, 
lassi
al 
onditions of material stabil-ity of elasti
-plasti
 solids outlined in [Tho61, Hil62, Ri
76℄ are 
onsistent with thein�nitesimal form of the rank-one 
onvexity, i.e. the strong ellipti
ity or Legendre-Hadamard 
ondition.As pointed out in the re
ent papers [LMD03, ML03b, ML03a, MLG04, GM06℄ the in-
remental variational formulation for the inelasti
 response opens up the opportunityto resolve a developing mi
rostru
ture in unstable standard dissipative solids by a re-laxation of the asso
iated non-
onvex in
remental variational problem, in Table 1 de-noted by problem (R). If the above outlined material stability analysis dete
ts a non-
onvex in
remental stress potential, an energy-minimizing deformation mi
rostru
-ture is assumed to develop su
h as indi
ated in Fig. 2. A relaxation is asso
iatedwith a 
onvexi�
ation of the non-
onvex stress potential by 
onstru
ting its quasi-orrank-one 
onvex envelope. We refer to [KS86, Da
89, �il97, M�99, Dol03℄ for a soundmathemati
al basis. The 
on
ept of relaxation has been applied to elasti
 phase de-
omposition problems in [Koh91, Lus96, CP97, DD00, GMH02, AFO03, KMR05℄,single 
rystal plasti
ity in [OR99, ORS00, MLG04℄, strain-softening von Mises plas-ti
ity in [LMD03, ML03b, ML03a℄ and damage me
hani
s in [GM06℄. We 
ommenton these results in Se
tions 5 and 6.
4



2 Modeling of Rate-Independent Elastoplasti
ity2.1 Standard Generalized MaterialsWe 
onsider a body with referen
e 
on�guration B ⊂ Rd. The deformation is de-noted by ϕ : B → Rd, and the deformation gradient F = ∇ϕ is 
alled strain tensor.Additionally, in the sense of standard generalized materials (
f. [ZW87, Ha
97℄)we 
onsider a set of internal variables I : B → Z, where Z is a suitable �nite-dimensional manifold. The theory is based on the elasti
 potential ψ and the dissi-pation potential φ as the underlying 
onstitutive fun
tions
ψ = ψ(F,I) and φ = φ(I, İ) ≥ 0 ,Finite-strain elastoplasti
ity is based on the multipli
ative de
ompositionF = ∇ϕ =

Fel Fpl of the deformation gradient, where Fel is the elasti
 part of the strain tensorand P := Fpl the plasti
 part, shortly the plasti
 tensor. The internal variable takesthe form I = (P, p) ∈ Z, where p ∈ Rm denotes some hardening variable. Forsimpli
ity we negle
t any dependen
e on the material point x ∈ BThe deformation gradient F is best 
onsidered as an element of the Lie group
GL+(d) = { F ∈ Rd×d | detF > 0 } and the plasti
 tensor P is usually assumedto have determinant 1, i.e. P is element of the spe
ial linear group SL(d) = { P ∈
Rd×d | detP = 1 }. We will investigate the arising geometri
 nonlinearities in Se
t.2.3. Consequently, φ is de�ned on the tangent bundle TZ of the manifold Z ofinternal variables. The multipli
ative de
omposition or equivalently the axiom ofplasti
 indi�eren
e (
f. (Sy2) on p. 359 in [Mie03a℄) means

ψ = ψ(F,I) = ψ(F,P, p) = ψ̃(Fel, p) = ψ̃(FP−1, p), (2.1)
φ = φ(I, İ) = φ(P, p, Ṗ, p) = φ̃(p, ṖP−1, ṗ). (2.2)Rate-independen
y is expressed in the fa
t, that φ is homogeneous of degree 1 inthe rate İ = (Ṗ, ṗ), i.e., φ(I, δİ) = δφ(I, İ) for all δ ≥ 0.The lo
al balan
e laws involve the 
onjugated for
es

P = ∂Fψ(F,I) = ∂Fel
ψ̃(Fel,I)P−⊤ and F = −∂Iψ(F,I) ∈ T∗

I
Zand take the following form

−divP = fext and 0 ∈ ∂
İ
φ(I, İ) −F in B. (2.3)The �rst equation, together with suitable boundary 
onditions, is the elasti
 equi-librium equation and the se
ond is the plasti
 �ow law whi
h is de�ned on T∗

I
Z.2.2 Energeti
 Formulation Using Dissipation Distan
esWe now use the abstra
t theory developed in [MTL02, MT04℄ in the Bana
h spa
esetting and in [MM05, Mie05b, FM06℄ in the fully nonlinear setting to formulate5



time-
ontinuous problem, whi
h 
ontains the full initial-boundary value problem ofelastoplasti
ity. Be
ause of the rate-independen
e and the strong non
onvexities we
annot expe
t that the rates İ exist and hen
e we need a derivative-free formulation.The fun
tion φ 
an be understood as an in�nitesimal metri
 on I whi
h de�nes a(global) distan
e D, 
alled dissipation distan
e in the sequel:
D(I0,I1) = inf{

∫ 1

0
φ(I(s),İ(s))ds | I∈C1([0,1],Z), I(0)=I0, I(1)=I1 } .The de�nition provides immediately the triangle inequality

D(I1,I3) ≤ D(I1,I2) +D(I2,I3) for all I1,I2,I3 ∈ Z . (2.4)The plasti
 indi�eren
e (2.2) provides the invarian
e
D((P0P∗, p0), (P1P∗, p1)) = D((P0, p0), (P1, p1)) (2.5)for all P0,P1,P∗ and p0, p1.For deformations ϕ : B 7→ Rd and internal states I : B 7→ Z we de�ne global energyfun
tionals by integration over the whole body B as follows
E(t,ϕ,I) =

∫
B
ψ(∇ϕ(x),I(x))dx− 〈Πext(t),ϕ〉,

D(I0,I1) =
∫
B
D(I0(x),I1(x))dx,

(2.6)where Πext(t) denotes the external loading depending on the pro
ess time t ∈ [0, T ].Here, E(t,ϕ,P, p) is the Gibbs energy at time t asso
iated with the state (ϕ,I) :
B → Rd × Z, and D(I0,I1) is the minimal amount of dissipation o

urring whenthe internal state I0 is 
hanged 
ontinuously into I1.A pair (ϕ,I) : [0, T ]×B 7→ Rd×Z is 
alled an energeti
 solution for the fun
tionals
(E ,D), if it satis�es for all t ∈ [0, T ] the following stability 
ondition (S) and theenergy balan
e (E):(S) Stability: For all 
omparison states (ϕ̃, Ĩ) we have

E(t,ϕ(t),I(t)) ≤ E(t, ϕ̃, Ĩ) + D(I(t), Ĩ) .(E) Energy balan
e:
E(t,ϕ(t),I(t))+DissD(I, [0,t]) ≤ E(0,ϕ(0),I(t))−

∫ t

0
〈Π̇ext(s),ϕ(s)〉ds .The dissipated energy DissD(I, [r, s]) along a pro
ess I : [0, T ] × B 7→ Z is

DissD(I, [r, s]) = sup{
∑N

1 D(I(tj−1),I(tj)) | r ≤ t0 < t1 < · · · < tN ≤ s }and 
oin
ides with ∫ s

r

∫
B
φ(I(x, t), İ(x, t))dxds for smooth pro
esses.The energeti
 formulation (S) & (E) 
hara
terizes the pro
ess 
ompletely and it doesneither involve derivatives of F = ∇ϕ and I with respe
t to t or x nor derivativesof the 
onstitutive fun
tions ψ and φ. It is shown in [Mie03a, Mie05b℄ that theenergeti
 formulation is 
onsistent with the 
lassi
al lo
al balan
e laws (2.3), i.e.,6



they are satis�ed for any su�
iently smooth energeti
 solution. Moreover, in smoothand 
onvex 
ases we have uniqueness of energeti
 solutions if a suitable initial state
(ϕ0,I0) is spe
i�ed.The energeti
 formulation is intrinsi
ally linked to the time-in
remental problem,whi
h has the major advantage that it is a minimization problem. For a givenpartition 0 = t0 < t1 · · · < tN = T of the time interval [0, T ] and a given initial value
(ϕ0,I0) we de�ne the in
remental problem(IP) In
remental minimization problem:Find iteratively (ϕj,Ij) for j = 1, ..., N su
h that

(ϕj,Ij) ∈ Arg min{ E(tj, ϕ̃, Ĩ) + D(Ij−1, Ĩ) | all (ϕ̃, Ĩ) } .This is a fully ba
kward, hen
e fully impli
it s
heme whi
h is di�
ult to solvenumeri
ally. Moreover, the dissipation distan
e D : Z × Z → [0,∞], whi
h de�nes
D, is usually not known expli
itly. Hen
e, the algorithms dis
ussed in [Mie02a,MAL02, MSL02℄ are suitable variants of (IP).The big advantage of (IP) is its mathemati
al 
onsisten
y whi
h arises from D sat-isfying the triangle inequality (2.4). Just using this and the minimization property,we obtain that every solution (ϕj,Ij)j=1,...,N of (IP) satis�es for j = 1, ..., N thefollowing dis
retize versions of (S) and (E):

E(tj ,ϕj,Ij) ≤ E(tj, ϕ̃, Ĩ) + D(Ij , Ĩ) for all (ϕ̃, Ĩ) , (2.7)
E(tj,ϕj ,Ij)+D(Ij−1,Ij)

≤ E(tj−1,ϕj−1,Ij−1) +
∫ tj

tj−1
∂sE(s, (ϕj−1,Ij−1))ds .

(2.8)These estimates will be 
ru
ial for the subsequent analysis.2.3 Lie Groups and Geometri
 NonlinearitiesBefore dealing with an existen
e theory for the energeti
 formulation we work out alittle more the geometry whi
h arises from the fa
t that we are dealing with �nitestrains and that we are using the multipli
ative de
omposition. In �nite-strainelasti
ity the stored-energy density ψ should be 
onsidered as a mapping from theLie group
G := GL+(d) = { F ∈ Rd×d | detF > 0 } .The plasti
 tensor P is assumed to lie in the Lie subgroup
P := SL(d) = { P ∈ Rd×d | detP = 1 },or even a smaller subgroup. Note that P 
an be seen as the matrix group that mapsthe 
rystal latti
e onto itself. We write Z = P × H for the manifold of internalstates, where I = (P, p) with p ∈ H . 7



The 
onjugated for
es have the following properties
P = ∂Fψ(F,P, p) ∈ T∗

FG ,
Q = −∂Pψ(F,P, p) ∈ T∗

PP ,
q = −∂pψ(F,P, p) ∈ T∗

pH .However, using the multipli
ative stru
ture of the Lie groups it is more advantageousto use the multipli
ative derivatives de�ned via
K:A = d

ds
ψ(esAF,P, p)|s=0 = ∂Fel

ψ̃(Fel, p)F
⊤
el :A for A ∈ TIG ,

M:B = − d
ds
ψ(F, esBP, p)|s=0 = F⊤

el ∂Fel
ψ̃(Fel, p)P

−⊤:B for B ∈ TIP .Hen
e, we �nd stress tensor in the dual Lie algebras g and p:
K = ∂Fel

ψ̃(Fel, p)F
⊤
el ∈ g := T∗

IG and M = F⊤
el ∂Fel

ψ̃(Fel, p) ∈ p := T∗
IP .The tensors are know as the Kir
hho� stress tensor K = PFT and the Mandel stresstensor M = QP⊤.The �rst fa
t about these tensors is that we obtain another insight into the �owlaw 0 ∈ ∂

İ
φ(I; İ) − F whi
h is a di�erential in
lusion on T∗

I
Z. Using the plasti
invarian
e of φ we de�ne the elasti
 domain at P = I via

Q(p) = ∂(P,p)φ((I, p), (0, 0))

= { (M, q) | ∀ İ ∈ Z: φ((I, p), Ĩ) ≥ (M, q):Ĩ } ⊂ p × T∗
pHand obtain, with M = QP⊤, the �ow law in invariant form

(ṖP−1, ṗ) ∈ N(M,q)Q(p) = ∂XQ(p)(M, q) ⊂ p × TpH .The se
ond fa
t about these tensors is that they satisfy mu
h better estimates interms of the energy potential ψ. In fa
t, following [Bal02℄ it is reasonable to workwith the following multipli
ative stress 
ontrol estimates:
∃CK > 0 ∀Fel ∈ G : |K(Fel, p)| ≤ CK

(
ψ(Fel, p)+1

)
, (2.9)

∃CM > 0 ∀Fel ∈ G : |M(Fel, p)| ≤ CM

(
ψ(Fel, p)+1

)
, (2.10)In fa
t, (2.10) implies (2.9) but not vi
e versa. These 
onditions are satis�ed bypoly
onvex potentials ψ that go to ∞ for detFel → 0. In fa
t, most Ogden materialssatisfy both 
onditions. For instan
e 
onsider

ψ(Fel, p) = c1|Fel|
r1 + c2(detFel)

−r2 + c3(detFel)
r3 + γ(p)with cj, rj > 0 and γ(p) ≥ 0. Using ∂F detF = cof F and (cof F)F⊤ = F⊤ cof F =

(detF)I it is easy to see that (2.9) and (2.10) hold. A similar estimate does nothold for P(Fel, p), sin
e (detFel)
−1−r2 cof F 
annot be estimated by (detFel)

−r2. Itwas observed in [FM06, KM06℄ that these estimates 
an be used e�e
tively in rate-independent system to 
ontrol the power of the external for
es.8



On the Lie groups G it is possible to introdu
e right-invariant distan
e
dG(F0,F1) = inf{

∫ 1

0
|Ḟ(s)F(s)−1|ds | F∈C1([0,1],G),F(0)=F0,F(1)=F1 },whi
h satis�es dG(F0,F1) = dG(F0F

−1
1 , I). Only in very few 
ases dG 
an be 
al
u-lated expli
itly, see [Mie02b, HMM03℄. The 
ondition (2.9) or (2.10) now impliesthat log(ψ+1) is globally Lips
hitz 
ontinuous

∣∣∣log
(
ψ(F, p)+1

)
− log

(
ψ(F̃, p)+1

)∣∣∣ ≤ CLipdG(F, F̃) for all F, F̃ ∈ G .Sin
e dG(F, I) ≈
∣∣log(F⊤F)

∣∣, the energy potential ψ satis�es the upper estimate
ψ(F, p) ≤ Cupp(p)

(
|F|+|F−1|

)γ
.This upper bound is 
onsistent with the lower estimates also 
alled 
oer
ivity:

ψ(Fel, p) ≥ c1|Fel|
rF+c2|p|

rp−C2 for all (Fel, p) ∈ G ×H . (2.11)We will need that the dissipation distan
e D : Z × Z → [0,∞], whi
h is asso
iatedwith the dissipation potential φ : TZ → [0,∞], is 
oer
ive as well, namely
D((P, p), (I, p∗)) ≥ c3

(
|P|+|P−1|)rP−C3 for all (P, p) ∈ Z = P ×H . (2.12)To see that that this 
oer
ivity estimate needs a signi�
ant amount of hardening wetreat the simplest example with a s
alar hardening parameter p ≥ 0 and a hardeningfun
tion h : [0,∞) → (0,∞):

φ̃(p,V, ṗ) =

{
h′(p)ṗ if ṗ ≥ |V|p ,
∞ else .A

ording to [Mie03a℄ we �nd

D((P0, p0), (P1, p1)) =

{
h(p1)−h(p0) if p1 ≥ p0+dP(P0,P1) ,

∞ else .Thus, assuming p∗ = 0 and h(0) = 0 we obtain the lower estimate
D((P, p), (I, p∗)) ≥ h(dG(I,P)) ≥ c4

(
|P|+|P−1|)rP − C4only if h(p) ≥ c5e

γp−C5 for some c5, γ > 0, sin
e dG(I,P) grows only logarithmi
ally.3 Existen
e ResultsThe existen
e results dis
ussed in this se
tion 
on
ern solutions without mi
rostru
-ture. These solutions relate to 
lassi
al meso and ma
ros
opi
 models for �nite-strain elastoplasti
ity whi
h are used for des
ribing deep drawing or other plasti
9



pro
esses involving large strains. In the highly non
onvex situation we have to �ndassumptions on the 
onstitutive laws whi
h are 
ompatible with the above geometri
nonlinearities and still are good enough to prevent the formation of mi
rostru
ture,whi
h turns out to be a rather 
ommon feature in �nite-strain elastoplasti
ity, see[OR99, CHM02, ML03a, MLG04, HH03, Mie04a, BCHH04, CT05℄.We 
hoose fun
tion spa
es and fun
tionals. The admissible deformations are sup-posed to lie in the set
W = { ϕ ∈ W1,rϕ (B,Rd) | ϕ|ΓDir

= id } .For the internal variables we 
hoose the set
Z = { (P, p) ∈ LrP(B,Rd×d) × Lrp(B,Rm) | (P(x), p(x)) ∈ P ×H a.e. in B } .The 
hoi
e of the Lebesgue exponents rϕ, rF, rP and rp will be a 
ru
ial step in thefurther analysis.All our existen
e results will be based on the notion of poly
onvexity , whi
h meansthat there exists a 
onvex and lower semi-
ontinuous fun
tion g : Rmd → [0,∞] su
hthat ψ(F) = g(M(F)) holds, where M(F) is the ve
tor of all minors (subdetermi-nants) of F ∈ Rd×d. The more general 
ondition of quasi
onvexity is not developedenough to handle integrands ψ whi
h take the value +∞. In fa
t, in the quasi-
onvex 
ase the lower semi-
ontinuity results are usually based on the upper bound

ψ(F, p) ≤ C(1+|F|)r for all F ∈ Rd×d. This 
learly 
ontradi
t �nite-strain elasti
itywhere ψ(F, p) = +∞ for detF ≤ 0 is imposed to prevent lo
al interpenetration.In 
ontrast, the multipli
ative stress-
ontrol estimates (2.9) and (2.10) only lead toupper estimates on G.3.1 Existen
e Results for the In
remental ProblemWe survey the results in [Mie04b℄, where the in
remental problem for system withoutany regularization is investigated. The energy fun
tional E0 and the dissipationdistan
e D are as de�ned via (2.6) with the spe
i�
ation of ψ and D as above. Weadded the subs
ript �0� to E to indi
ate that no regularization is added.A 
entral r�le in this formulation is played by the 
ondensed energy density
W cond((P0, p0);F) = min{ ψ(F,P1, p1) +D((P0, p0), (P1, p1)) | (P1, p1) },whi
h 
ontains the 
ondensed information on the interplay of energy storage via ψand energy dissipation via φ. Its importan
e derives from the fa
t that the minimiza-tion of ∫

B
ψ(∇ϕP−1, p)+D((Pj, pj), (P, p))dx 
an be done pointwise in I = (P, p)under the integral giving the de�nition of W cond. Starting from Se
t. 4 (see Table1) the 
ondensed stored energy W cond is repla
ed by the in
remental stress potential

W , whi
h di�ers from W cond by a 
onstant only.10



First, for any solution pro
ess the deformation ϕ(t) : B 7→ Rd must be a minimizerof the 
ondensed fun
tional
Econd(I(t); t,ϕ) :=

∫
B
W cond(I(t, x);∇ϕ(x))dx− 〈Πext(t),ϕ〉 ,whi
h follows from the stability 
ondition (S). Hen
e, W cond 
ontains signi�
ant in-formation on the possibility of formation of mi
rostru
ture (via loss of quasi
onvexity[OR99, CHM02, HH03, Mie03a, MLG04℄) or failure via fra
ture or lo
alization, see[ML03b, ML03a, LMD03℄. In Se
t. 4 and thereafter E cond is repla
ed by E , whi
his obtained as E cond when W cond is repla
ed by W . Hen
e, the two de�nitions justdi�er by a 
onstant, and thus hvae the same minimizers.Se
ond, the in
remental problem (IP) 
an be redu
ed to the following 
ondensedin
remental problem:(CIP) Find iteratively (ϕj ,Ij) ∈ W ×Z as follows:

ϕj ∈ Arg min{ E cond(Ij−1; tj ,ϕ) | ϕ ∈ W }

Ij(x) ∈ Arg min{ ψ(∇ϕ(x),I)+D(Ij−1(x),I) | I ∈ Z }Thus, to guarantee existen
e of minimizers for (CIP) we impose the very restri
tive
ondition, namely
W cond(I; t, ·) : Rd×d → [0,∞] is poly
onvex. (3.13)Theorem 3.3 in [Mie04b℄ provides the following existen
e result for (IP).Theorem 3.1 Let W, Z, E0 and D be de�ned as above. Assume thatW cond satis�es(3.13). Further let the 
oer
ivity assumptions (2.11) and (2.12) be satis�ed with

rϕ, rP and rp su
h that
1

rF
+

1

rP
=:

1

rϕ

<
1

d
. (3.14)If additionally Πext ∈ C1([0, T ],W1,rϕ(B,Rd)∗), then (IP) asso
iated with (E0,D)has, for ea
h initial datum I0 ∈ Z with D((I, p∗),I0) < ∞ and ea
h partition 0 =

t0 < t1 < · · · < tN = T , at least one solution (ϕj,Ij)j=1,...,N in W ×Z. Moreover,there exists a 
onstant C (depending on the data only) su
h that all solutions satisfy,for j = 1, ..., N ,
‖ϕj‖1,rϕ

+ ‖Pj‖rP + ‖P−1
j ‖rP + ‖pj‖rp

+ E0(tj ,ϕj ,Ij) +
j∑

k=1

D(Ik−1,Ik) ≤ C .The proof relies on solving (CIP) with a 
areful bookkeeping based on the a prioriestimates (2.8). The ne
essary 
oer
ivity of W cond follows from those of ψ and D,after employing the invarian
e from W cond((P, p);F) = W cond((I, p0);FP−1) andthe Hölder inequality
|FP−1|rF ≥

(
|F|/|P|

)rF ≥ cr|F|
rϕ − dr|P|rP .11



The major drawba
k of the present theory is that the poly
onvexity 
ondition (3.13)is extremely di�
ult to 
he
k. The fun
tionW cond is de�ned impli
itly via ψ and D,but D itself is de�ned impli
itly from φ. Hen
e, there are only very few 
ases where
W cond 
an be 
al
ulated expli
itly. One 
ase is in dimension d = 1 and another
ase is treated in [Mie04b℄. It is an isotropi
 situation in dimension d = 2 using anabstra
t 
hara
terization of [Mie05a℄ for isotropi
, poly
onvex energy densities.3.2 Partially Regularized In
remental ProblemsThe se
ond result result 
on
erns a model whi
h uses a partial regularization whi
his based on the so-
alled geometri
 dislo
ation tensor

GP =
1

detP

(
curlP

)
P⊤ ∈ R3×3where the �
url� of a matrix is applied row-wise. Be
ause of our standing assumption

detP = 1 we 
an use a simpler form. The energy now reads
Ecurl(t,ϕ,P, p) = E0(t,ϕ,P, p) +

∫
B
V

(
(curlP)P⊤

)
dx ,where the potential V : R3×3 → [0,∞] satis�es

V is 
onvex and V (G) ≥ c6|G|rG−C6 on R3×3. (3.15)In [MM06b℄ a general lower semi-
ontinuity result is derived for general fun
tionalsof the form
I(ϕ,P) =

∫

B

U(∇ϕP−1,P, (curlP)P⊤)dx .Under the assumption that U : R3×3 × R3×3 × R3×3 → [0,∞] is poly
onvex in the�rst two arguments and 
onvex in the third argument and that U is suitably 
oer
iveit is shown that I is weakly lower semi
ontinuous on the asso
iated Sobolev spa
es.Consider a weakly 
onverging sequen
e (ϕj ,Pj) ⇀ (ϕ,P). Along sequen
es withbounded energies I(ϕj ,Pj) ≤ C the terms ∇ϕjP
−1
j , Pj, GPj

are 
ontrolled insuitable Lebesgue spa
es. This implies a bound on curl Pj and thus, a suitableversion of the div-
url lemma 
an be used to show that M(Pj) ⇀ M(P) and
GPj

⇀ GP. The spe
ial form of the multipli
ative de
omposition ∇ϕP−1 togetherwith detP = 1 provide the minor relations
FP−1 = F(cof P)⊤, cof(FP−1) = (cof F)P⊤, det(FP−1) = det F .Hen
e, again applying the div-
url lemma we obtain also the 
onvergen
eM(FjP

−1
j ) ⇀

M(FP−1) and the weak lower semi-
ontinuity follows using (poly-) 
onvexity.This result is then applied to the in
remental problem (IP) asso
iated with Ecurl and
D. Again, a 
ondensation, like in Se
t. 3.1, is done for the variable p ∈ H , whi
hdoes not have a derivative. We assume ψ(Fel, p) = ψel(Fel) + ψhard(p) and let

Dcond((P0, p0);P) := min{ ψhard(p) +D((P0, p0), (P, p)) | p ∈ H } .12



Then, the in
remental problem involves the integrand U(Fel,P,G) = ψel(Fel) +
Dcond(Ij−1(x);P) + V (G). Thus, the 
ru
ial assumption we have to make is that

Dcond(I; ·) : R3×3 → [0,∞] is poly
onvex. (3.16)The following result is established in [MM06b℄.Theorem 3.2 Let W, Z, Ecurl and D be de�ned as above. Assume that V and
Dcond satisfy (3.15) and (3.16), respe
tively . Further let the 
oer
ivity assumptions(2.11) and (2.12) be satis�ed with rϕ, rP, rp and rG su
h that

1

rF
+

1

rP
=:

1

rϕ

<
1

d
,

1

rG
+

2

rP
< 1 , and rG > d . (3.17)If additionally Πext ∈ C1([0, T ],W1,rϕ(B,Rd)∗), then (IP) asso
iated with (Ecurl,D)has, for ea
h initial datum I0 ∈ Z with D((I, p∗),I0) < ∞ and ea
h partition 0 =

t0 < t1 < · · · < tN = T , at least one solution (ϕj,Ij)j=1,...,N in W ×Z. Moreover,there exists a 
onstant C (depending on the data only) su
h that all solutions satisfy,for j = 1, ..., N ,
‖ϕj‖1,rϕ

+ ‖Pj‖rP + ‖P−1
j ‖rP + ‖pj‖rp

+ E0(tj ,ϕj ,Ij) +
j∑

k=1

D(Ik−1,Ik) ≤ C .Again the poly
onvexity 
ondition (3.16) for the 
ondensed dissipation distan
e ishard to satisfy. However, we have 
onsiderably more freedom than in the 
ase of the
ondensed energy potential W cond. Here the 
ondition is based on the dissipationdistan
e only, and we are able to take any poly
onvex fun
tion ψel for the elasti
storage. Examples are given in Se
tion 4 of [MM06b℄.However, the theory is still restri
tive as we do not have good examples of dissipationdistan
es and we do not know what type of hardening leads to poly
onvexity. Inthe light of the example of at the end of Se
tion 2.3 it is a natural question to askwhether the fun
tions
P ∋ P 7→ exp

(
γdP(I,P)

)
,if extended by +∞ outside of P, is poly
onvex for su�
iently large γ > 0. It is
lear that this 
an only hold if dP is lo
ally Lips
hitz 
ontinuous with respe
t to the
lassi
al metri
 in Rd×d. Thus, sub-Riemannian or sub-Finslerian metri
s are notallowed.3.3 Strain-Gradient Plasti
ityIn [MM06a℄ a theory is developed for the 
ase that the full gradient (∇P,∇p) isused for regularization. For mi
rome
hani
ally motivated nonlo
al 
rystal plasti
-ity models, see [Be
06, FMAH94, Gur02, MB06, Ste96, Sve02℄. This 
ase relatesto the regularized theory that was developed for other rate-independent material13



models like shape-memory materials, damage, brittle fra
ture, magnetostri
tion orpiezoele
tri
ity. We refer to the survey [Mie06a℄ in this volume.In the present theory the in
remental problem will be used as a tool to 
onstru
tpie
ewise 
onstant solutions for partitions with smaller and smaller step sizes. Weare then able to extra
t a subsequen
e whi
h 
onverges to a solution of the time-
ontinuous problem (S) and (E) as derived in Se
tion 2.2. The analysis follows
losely the abstra
t approa
h for general rate-independent systems on topologi
alspa
es as developed in [MM05, Mie05b, FM06℄.We only treat the simplest 
ase and 
onsider the energy fun
tional
Ereg(t,ϕ,P, p) = E0(t,ϕ,P, p) +

∫
B
c1|∇P|r1+c2|∇p|

r2 dx ,where c1, c2 > 0 and r1, r2 > 1. The dissipation distan
e D is kept as above.For the admissible deformations ϕ we keep the fun
tion spa
e W ⊂ W1,rϕ (B,Rd)equipped with the weak topology. For the internal variables we now set Zreg =
ZP ×Zp with

ZP := { P ∈ W1,r1(B,Rd×d) | P(x) ∈ P a.e. on B } and
Zp := { p ∈ W1,r2(B,Rm) | p(x) ∈ H a.e. on B } ,where Zreg 
arries the weak topology of W1,r1(B,Rd×d) × W1,r1(B,Rm).Using poly
onvexity of F 7→ ψ(·, p) and the above 
oer
ivity assumptions it is possi-ble to show that the in
remental problem (IP) asso
iated with (Ereg,D) has at leastone solution ((ϕk

j ,I
k
j ))j=1,...,Nk

, where we already assumed that we have a sequen
e ofpartitions indexed by k ∈ N su
h that the �neness φk = max{tkj−t
k
j−1 | j = 1, ..., Nk}tends to 0. We de�ne the pie
ewise 
onstant interpolants (qk,Ik) : [0, T ] → W×Zregwith

(qk(t),Ik(t)) = (ϕk
j−1,I

k
j−1) for t ∈ [tkj−1, t

k
j )and (qk(T ),Ik(T )) = (ϕk

Nk
,Ik

Nk
).A

ording to (2.7) these pie
ewise 
onstant solutions satisfy the stability 
onditions(S) on ea
h point of the partition, i.e., (qk(t

k
j ),Ik(t

k
j )) ∈ S(tkj ) with

S(t) := { (ϕ,I) | ∀ (ϕ̃, Ĩ): Ereg(t,ϕ,I) ≤ Ereg(t, ϕ̃, Ĩ) + D(I, Ĩ) } .Moreover, the energy estimate (2.8) provides the energy bounds
Ereg(t

k
j ,ϕk(t

k
j ),Ik(t

k
j )) + DissD(Ik, [0, t

k
j ])

≤ Ereg(0,ϕ0,I0) +
∫ tkj
0 ∂sEreg(s,ϕk(s),Ik(s))ds .

(3.18)They give rise to the bounds
‖(ϕk,Ik)‖L∞([0,T ],W1,rϕ×W1,r1×W1,r2 ) ≤ C ,

supt∈[0,T ] Ereg(t
k
j ,ϕk(t

k
j ),Ik(t

k
j )) ≤ C, DissD(Ik, [0, T ]) ≤ C .14



Thus, by using a suitable version of Helly's sele
tion prin
iple (
f., [MM05℄) it ispossible to extra
t a subsequen
e and to �nd a limit pro
ess (ϕ,I) : [0, T ] →
W ×Zreg, whi
h is a 
andidate for an energeti
 solution.Using weak lower semi-
ontinuity the energy bound (3.18) easily supplies the upperenergy estimate

Ereg(t,ϕ(t),I(t))+DissD(I , [0,t]) ≤ Ereg(0,ϕ0,I0)+
t∫

0

∂sEreg(s,ϕ(s),I(s))ds .The 
ru
ial step in the 
onvergen
e proof is to show that the sets S(t) of stablestates are sequentially 
losed in the weak Bana
h spa
e topology. This step is easyif D is weakly 
ontinuous but it also works in more realisti
 
ases with hardening,whi
h is irreversible, see [MM06a℄. If this step is done we know that the limit pro
esssatis�es (S) and, moreover, a general abstra
t proposition yields the lower energyestimate and hen
e (E) holds as well.We summarize the result as follows.Theorem 3.3 Let W, Zreg, Ereg and D be given as above with ψ and D satisfyingthe 
oer
ivity estimates (2.11) and (2.12) with 1
rF

+ 1
rP

= 1
rϕ

< 1
d
. Moreover, assume

Πext ∈ C1([0, T ],W1,rϕ(B,Rd)∗). Then, for ea
h stable initial state (ϕ0,I0) ∈ S(0)the energeti
 formulation (S) and (E) has at least one solution (ϕ,I) : [0, T ] →
W ×Zreg. All solutions satisfy

(ϕ,P, p) ∈ L∞([0, T ],W1,rϕ(B,Rd) × W1,r1(B,Rd×d) × W1,r2(B,Rm))and DissD((P, p), [0, T ]) <∞.3.4 Time-Dependent Boundary ConditionsThe existen
e results of Se
tions 3.1 to 3.3 rely on the fa
t that the spa
e W ofadmissible deformations is independent of time. For many appli
ations one needs togeneralize this assumption. For the in
remental problem (IP) it is not too di�
ult towork with W(t), however for the energeti
 formulation it is not 
lear how to de�nethe power ∂tE(t, q) of the external loadings that are due to 
hanges of W(t).The usual way to implement time-dependent Diri
hlet data is to substra
t a su�-
iently smooth fun
tion that has the 
orre
t boundary value and then try to �nd thehomogeneous part. In the 
ase of small strain, when working with u : x 7→ ϕ(x)−xthis means u(t, x) = uDir(t, x) + v(t, x) with v(t, ·)|ΓDir
= 0. We let W = { v ∈

W1,p(B,Rd) | v|ΓDir=0 } and de�ne the shifted energy Ẽ(t,v,I) = E(t,uDir(t)+v,I).The power of the external loading now takes the form
∂tẼ(t,v,I) =

∫
B

∂Fψ(∇(uDir(t)+v),I):∇u̇Dir(t) dx

−〈Π̇ext(t),uDir(t)+v〉 − 〈Πext(t), u̇Dir(t)〉 .15



However, in the 
ase of �nite-strain elasti
ity we 
annot guarantee that the integrand
∂Fψ lies in L1(B), sin
e we 
annot 
ontrol the Piola-Kir
ho� stress P = ∂Fψ by ψitself.In the 
ase of �nite-strain elasti
ity the stored energy density ψ takes the value +∞and ∂Fψ(F,I) exists only on G. In order to use the multipli
ative stress 
ontrol(2.9) for the Kir
hho� stress K we assume that time-dependent Diri
hlet data ϕDirare given. We then de
ompose the desired solution ϕ via 
omposition of fun
tions

ϕ(t, x) = ϕDir(t, ξ(t, x)) = (ϕDir(t, ·) ◦ ξ(t, ·))(x) .Here, we assume that ϕDir 
an be extended su
h that ϕDir ∈ C2([0, T ] × Rd,Rd)and that ∇xϕDir and (∇xϕDir)
−1 are bounded on [0, T ]×Rd. The set of admissibledeformations is now W = {ξ ∈ W1,p(B,Rd) | ξ|ΓDir

= id} with p > d and the shiftedenergy is Ê(t, ξ,I) = E(t,ϕDir(t) ◦ ξ,I). Using the 
lassi
al 
hain rule formula
∇x(ϕDir(t) ◦ ξ)(x) = ∇yϕDir(t, ξ(x))∇xξ(x)and the de�nition of K in Se
tion 2.3 we �nd the expression for the power

∂tÊ(t, ξ,I) =
∫
B
K(∇ϕDir∇ξ,I):(∇ϕDir)

−1∇ϕ̇Dir dx

−〈Π̇ext(t),ϕDir ◦ ξ〉 − 〈Πext(t), ϕ̇Dir ◦ ξ〉 .Here, for Ẽ(t, q) < ∞ we may 
on
lude via (2.9) that K ∈ L1(B,Rd×d) while
(∇ϕDir)

−1∇ϕ̇Dir lies in C0(B,Rd×d). Hen
e, the right-hand side is indeed well de-�ned and the power 
ontrol
|∂tẼ(t, ξ,I)| ≤ cE1

(
Ẽ(t, ξ,I)+cE0

)
an be established easily. We refer to Se
tion 5 in [FM06℄ for more details 
on
erningthe full existen
e result for energeti
 solutions in the 
ase of time-dependent Diri
hletdata.In [KM06℄ very similar ideas are used to derive formulas for the energy-release ratein 
ra
k propagation for the 
ase of �nite-strain elasti
ity. Also a very restri
ted
ase of temperature dependen
e 
an be treated by this method of energy 
ontrol,see [Mie06b℄ and Se
t. 5.4 in [Mie06a℄.4 Modeling of Mi
rostru
ture via RelaxationIn prin
iple, the time in
remental problem (IP) and the energeti
 formulation (S) &(E) introdu
ed in Se
t. 2.2 is a very �exible tool to treat the relaxation as well. Werefer to [Mie03b, Mie04a, MRS06b, MO06, MT06℄ for some re
ent developments.However, the analyti
al methods are not yet adapted to the spe
i�
 nonlinearitiesinvolved in �nite-strain elastoplasti
ity. In parti
ular, there is no theory whi
h
ombines the theory of gradient Young measure with �nite-strain plasti
ity. Thus,16



the evolutionary theory for gradient Young measures used in models for shape-memory alloys in [KMR05℄ 
annot be generalized to the present situation. Despiteof the la
king mathemati
al tools in this area, the following se
tions show that thealgorithmi
al approa
h for these problems has advan
ed 
onsiderably over the lastde
ade.4.1 In
remental Stability of Standard Dissipative SolidsAs pointed out in [ML03b, ML03a, MLG04℄ a key advantage of the variationalformulation outlined brie�y in Table 1 is the opportunity to analyze the in
rementalstability of inelasti
 solids in terms of terminologies used in �nite elasti
ity. In thefollowing we de�ne the material stability of standard dissipative solids based onglobal weak 
onvexity properties of the in
remental stress potential.The existen
e of the 
onstitutive minimization problem allows the introdu
tion ofan in
remental minimization formulation of the boundary-value problem of �niteinelasti
ity for standard dissipative solids. Now 
onsider a fun
tional E of the 
urrentdeformation �eld ϕn+1at the right boundary of the in
rement [tn, tn+1]:
E(ϕn+1) =

∫

B

W (Fn+1) dx− [ Πext(ϕn+1) − Πext(ϕn) ] , (4.19)with the global load potential fun
tion Πext(ϕ) =
∫
B

ϕ · γ dx+
∫

∂Bt
ϕ · t dx of deadbody for
es γ(x, t) in B and surfa
e tra
tions t(x, t) on ∂Bt. As outlined in Se
t.3.1, see also [ML03b, ML03a, MLG04℄, the 
urrent deformation map of inelasti
standard dissipative materials 
an then be determined by a prin
iple of minimumin
remental energy for standard dissipative solids

E(ϕ∗
n+1) = inf

ϕn+1∈W
E(ϕn+1) , (4.20)subje
t to the essential boundary 
onditions of a pres
ribed deformation ϕ̄ on ∂Bϕ,written in the form ϕn+1 ∈ W := { ϕ ∈ W1,p(B) | ϕ(x) = ϕ̄(x) on ∂Bϕ }. Asusual, we 
onsider a de
omposition of the surfa
e into a part where the deformationis pres
ribed and a part where the tra
tions are given, i.e. ∂B = ∂Bϕ ∪ ∂Bt and

∂Bϕ ∩ ∂Bt = ∅. The minimization problem (4.20) governs the response of theinelasti
 solid in the �nite in
rement [tn, tn+1] in a stru
ture identi
al to the prin
ipleof minimum potential energy in �nite elasti
ity.4.1.1 Quasi
onvexity of the In
remental Stress PotentialExtending results of the existen
e theory in �nite elasti
ity as summarized in [Bal77,Cia88, Da
89, MH94, �il97℄ to the in
remental response of standard dissipative solidsin the �nite step [tn, tn+1], we 
onsider the sequentially weakly lower semi
ontinuity(s.w.l.s.) of the fun
tional (4.19) as the key property for the existen
e of su�
ientlyregular minimizers of the variational problem (4.20). The internal part of the fun
-tional (4.19) is sequentially weakly lower semi
ontinuous, if the in
remental stress17
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(a) (b) (
)Figure 3: Interpretation of in
remental energeti
 stability 
onditions of an inelasti
material. A given homogeneous deformation state Fn+1 of the material su
h as thepure shear mode of Figure (a) is stable if superimposed �ne-s
ale �u
tuation pat-terns (b) (quasi
onvexity) with support on the boundary ∂D or �rst-order laminates(
) (rank-one 
onvexity) in
rease the averaged in
remental stress potential on Dpotential de�ned by the 
onstitutive minimization problem is quasi
onvex and alsoit satis�es some te
hni
al growth 
ondition, see for example [Da
89, AF84, �il97℄.We regard the quasi
onvexity introdu
ed in [Mor52℄ of the in
remental stress po-tential W as the fundamental 
riterion for the in
remental material stability of theinelasti
 solid. W is said to be quasi
onvex at Fn+1 if 
ondition
W (Fn+1) ≤ inf

w∈W0

1

|D|

∫

D

W (Fn+1 + ∇w(y))dx , (4.21)holds with y ∈ D subje
t to the 
onstraint w ∈ W0 := {w ∈ W1,∞(D)|w =
0 on ∂D} providing a support on ∂D. Here, D ⊂ R3 is an arbitrarily 
hosen part ofthe inelasti
 solid. The 
ondition states that for all �u
tuations w onD with supporton ∂D the homogeneous deformation given by Fn+1 provides an absolute minimizerof the in
remental potential in D. Thus the 
ondition rules out internal bu
kling,the development of lo
al �ne-s
ale mi
rostru
tures and phase de
omposition of ahomogeneous lo
al deformation state. This me
hani
al interpretation is visualizedin Fig. 3. The material is stable if the superimposed �u
tuation �eld of Fig. 3(b)with w = 0 on ∂D yields a higher energy level than the homogeneous deformation
Fn+1 of Fig. 3(a).The well-motivated 
on
ept of quasi
onvexity is based on a global integral 
onditionin spa
e whi
h is hard to verify in pra
ti
e. The 
entral di�
ulty is to �nd the�u
tuation �eld w ∈ W0 on D that minimizes the integral in (4.21). However, re
allthat weak 
onvexity 
onditions are related via
onvexity ⇒ poly
onvexity ⇒ quasi
onvexity ⇒ rank-one 
onvexity , (4.22)and that the slightly weaker rank-one 
onvexity 
ondition is 
onsidered as a 
loseapproximation of the quasi
onvexity 
ondition, see for example [Da
89℄. In whatfollows, we fo
us on the rank-one 
onvexity as a 
riterion for material stability.18



4.1.2 Rank-one Convexity of the In
remental Stress PotentialThe de�nition of rank-one 
onvexity 
an be tra
ed ba
k to the work of Corall andGraves, see for example [�il97℄. The in
remental stress potential W is said to berank-one 
onvex at Fn+1 if the 
ondition
W (Fn+1) ≤ inf

ξ,F+,F−

{ ξW (F+) + (1 − ξ)W (F−) } , (4.23)holds for the laminate deformations F+ and F− whi
h satisfy the 
onditions
Fn+1 = ξF+ + (1 − ξ)F− and rank[F+ − F−] ≤ 1 , (4.24)in terms of the volume fra
tion ξ ∈ [0, 1]. Condition (4.24)1 states that the volumeaverage of the mi
ro-deformations F± yields the ma
ros
opi
 homogeneous defor-mation Fn+1. The 
ompatibility of the mi
ro-phases (±) along their interfa
e isensured by (4.24)2. The rank-one 
onvexity 
ondition (4.23) rules out the develop-ment of lo
al �ne-s
ale mi
rostru
tures in the form of �rst-order laminates de�nedby a rank-one deformation tensor. The material is stable if the superimposed �rst-order laminate-type �u
tuation �eld of Fig. 3(
) yields a higher energy level than thehomogeneous deformation Fn+1 of Fig. 3(a). A qualitative pi
ture of a non-
onvex,unstable in
remental response is given in Fig. 4. Observe 
arefully, that (4.23) is aglobal stability 
riterion that needs the knowledge about the global range of instabil-ity between F− and F+. The material stability 
annot be dire
tly de
ided in termsof a given lo
al deformation Fn+1, but needs the rank-one 
onvex hull 
onstru
tiongoverned by F− and F+. The lo
al form of the rank-one 
onvexity 
ondition is the
lassi
al Legendre-Hadamard or ellipti
ity 
ondition

(M⊗ N) : ∂2
FFW (Fn+1) : (M⊗ N) ≥ 0 , (4.25)in terms of the 
onsistent tangent modulus for arbitrary unit ve
tors M and N,see [Had03, TN65℄. As shown in [ML03b, ML03a℄, 
lassi
al 
onditions of materialstability of elasti
-plasti
 solids outlined in [Tho61, Hil62, Ri
76℄ are 
onsistentwith this lo
al 
onvexity 
ondition, whi
h is often motivated by 
onsidering wavepropagation in solids. As shown in Fig. 4, the asso
iated range of instability isdi�erent from the one predi
ted by the global 
ondition (4.23). Re
all that both
onditions are mathemati
al de�nitions related to the existen
e of regular solutionsof the variational problem (4.20). The question whether the global or lo
al 
onditions(4.23) and (4.25) are relevant depends on the physi
al ability of an inelasti
 solidmaterial to develop deformation mi
rostru
tures in the asso
iated unstable ranges.This 
an only be 
lari�ed by experimental investigations.In what follows we rewrite the rank-one 
onvexity 
ondition (4.23) for two-dimensionalproblems. To this end, we introdu
e the ansatz

F± := Fn+1L
± with {

L+ := 1 +(1 − ξ)dM⊗ N ,
L− := 1 − ξdM⊗ N ,

(4.26)19
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onvex in
remental stress potential andits 
onvexi�
ation. l and g 
hara
terize the ranges where the lo
al and the global
onvexity 
riterion are not satis�ed, respe
tively. (a) At Fn+1 the stress potential
W is not rank-one 
onvex (dashed). As a 
onsequen
e, the ma
ros
opi
 deformationstate Fn+1 is not stable and de
omposes into mi
ro-phases F± whi
h determine therank-one 
onvex envelope (solid). (b) The relaxed stress-strain relation 
hara
terizesa snap-through behavior between the mi
ro-phases F± due to the 
onstant slope ofthe rank-one 
onvex envelopefor the two deformation phases that satis�es the 
onditions (4.24). It models a�rst-order laminate in terms of the two Lagrangian unit ve
tors M and N, whi
h
orrespond with those used in the Hadamard 
ondition (4.25). For two-dimensionalproblems, these ve
tors 
an be parameterized by two angles ϕ and χ, i.e. M(ϕ) =
[cosϕ sinϕ]T and N(χ) = [cosχ sinχ]T . The s
alar d des
ribes the intensity of thebifur
ation on the mi
ro-s
ale. ξ is the volume fra
tion of the phase (+) and 
anbe understood as a probability measure in the sense of [You69℄. Hen
e, for a two-dimensional des
ription of the rank-one laminate, deformations mi
rostru
tures are
hara
terized by four mi
ro-variables q = [ξ, d, ϕ, χ]T ∈ Q , whi
h are 
onstrained tolie in the admissible domain Q := {q | 0 ≤ ξ ≤ 1 , d ≥ 0 , 0 ≤ ϕ ≤ π , 0 ≤ χ ≤ π} .With this notation at hand, we write the global rank-one 
onvexity 
ondition (4.23)for two-dimensional problems as the minimization problem

W (Fn+1) ≤ inf
q∈Q

{W̄ h(Fn+1,q)} , (4.27)in terms of the fun
tion
W̄ h(Fn+1,q) = ξW (F+(Fn+1,q)) + (1 − ξ)W (F−(Fn+1,q)) , (4.28)that represents the the volume average of the potentials in the two deformationphases. Figure 4(a) provides a visual demonstration for a non-
onvex in
rementalstress potential W . The in
remental stress potential W (Fn+1) is greater than theinterpolation of the potentials W (F+) and W (F−) of the phases. As a 
onsequen
e,the homogeneous deformation state is not stable and de
omposes into the mi
ro-deformations F± whi
h minimize the fun
tion W̄ h. In a typi
al in
remental analysisof an inelasti
 solid, the a

ompanying 
he
k of in
remental rank-one 
onvexity in20



[tn, tn+1] needs the solution of the lo
al minimization problem (4.27)
inf
q∈Q

{W̄ h(Fn+1,q)}

{
= W (Fn+1) : rank-one 
onvex at Fn+1

< W (Fn+1) : not rank-one 
onvex at Fn+1
, (4.29)for the four variables q de�ned before. The ne
essary 
ondition of the minimizationproblem

W̄ h
,q = 0 , (4.30)is a nonlinear equation for the determination of the mi
ro-variables q. Note that

W̄ h is not 
onvex and for the solution of (4.30) the Newton iteration 
annot dire
tlybe applied. We refer to [ML03b, ML03a, MLG04℄ for solution pro
edures.4.2 Relaxation of a Non-Convex Constitutive ResponseAs pointed out in the re
ent papers [LMD03, ML03b, ML03a, MLG04℄, the in
re-mental variational formulation for the 
onstitutive response opens up the oppor-tunity to resolve the developing mi
rostru
ture in non-stable standard dissipativesolids by a relaxation of the asso
iated non-
onvex in
remental variational problem.If the above outlined material stability analysis dete
ts a non-
onvex in
rementalstress potential W , an energy-minimizing deformation mi
rostru
ture is assumed todevelop su
h as indi
ated in Fig. 3. A relaxation is asso
iated with a 
onvexi�
a-tion of the non-
onvex fun
tion W by 
onstru
ting its 
onvex envelopes WQ. The
onvexi�
ation is 
on
erned with the determination of a developing mi
rostru
ture.This se
tion develops a framework for a �rst-order rank-one relaxation of standarddissipative solids.4.2.1 Quasi-Convexi�ed Relaxed In
remental Variational ProblemIf material instabilities are dete
ted at a point X ∈ B of the solid by a failure of
onditions (4.23) or (4.27), we fa
e a non-
onvexity of the in
remental potential
W in some region of the inelasti
 solid. If the in
remental potential fun
tion Wis not quasi
onvex, the internal part of the fun
tional (4.19) is assumed to be notsequentially weakly lower semi
ontinuous. Then the existen
e of solutions of (4.20)is not ensured. In other words, the minimum of the in
remental boundary-valueproblem (4.20) is not attained. Following [Da
89, AF84℄ we 
onsider the relaxedenergy fun
tional

EQ(ϕn+1) =

∫

B

WQ(Fn+1) dx− [ Πext(ϕn+1) − Πext(ϕn) ] , (4.31)where the internal part of the relaxed energy fun
tional is obtained by repla
ingthe non-
onvex integrand W in (4.19) by its quasi
onvex envelope WQ. The 
ur-rent deformation �eld of the elasti
-plasti
 solid is then determined by the relaxedin
remental variational prin
iple
EQ(ϕ∗

n+1) = inf
ϕn+1∈W

EQ(ϕn+1) , (4.32)21



that minimizes the relaxed in
remental potential energy EQ. The quasi
onvexi�edin
remental stress potential WQ is de�ned by the minimization problem
WQ(Fn+1) = inf

w∈W0

1

|D|

∫

D

W (Fn+1 + ∇w(y))dx , (4.33)with respe
t to the mi
ros
opi
 �u
tuation �eld w that 
onstitutes the developmentof a deformation mi
rostru
ture, subje
t to a boundary 
ondition providing a sup-port on ∂D. The �rst and se
ond derivatives of the relaxed potential WQ fun
tionde�ne relaxed stresses and tangent moduli
P̄n+1 := ∂FWQ(Fn+1) and C̄n+1 := ∂2

FFWQ(Fn+1) . (4.34)The relaxed problem (4.32) is 
onsidered to be a well-posed problem as 
lose as pos-sible to the unstable problem (4.20). The minimization problem (4.33) determinesa mi
ro-�u
tuation �eld w as indi
ated in Fig. 3(b). However, as already men-tioned the basi
 di�
ulty is the dete
tion of relevant fun
tions w whi
h de�ne theminimizing mi
rostru
ture.4.2.2 Rank-One-Convexi�ed Relaxed In
remental Variational ProblemA failure of rank-one 
onvexity 
onditions (4.23) or (4.27) indi
ates the instabilityof the homogeneous deformation state Fn+1 and the development of a pattern of�rst- and higher-order laminates as indi
ated in Fig. 3(
). We 
onsider the relaxedenergy fun
tional
ER(ϕn+1) =

∫

B

WR(Fn+1) dx− [ Πext(ϕn+1) − Πext(ϕn) ] , (4.35)where the internal part of the relaxed energy fun
tional is obtained by repla
ing thenon-
onvex integrandW in (4.19) by its rank-one-
onvex envelopeWR, whi
h is 
on-sidered to be 
lose to the quasi-
onvex envelope WQ. The 
urrent deformation �eldof the elasti
-plasti
 solid is then determined by the relaxed in
remental variationalprin
iple
ER(ϕ∗

n+1) = inf
ϕn+1∈W

ER(ϕn+1) , (4.36)that minimizes the relaxed in
remental potential energy ER for the admissible defor-mation �eld. In [KS86℄ a 
onstru
tion was proposed to 
hara
terize the rank-one
onvexi�
ation based on a re
ursion formula. Starting withWR0
(Fn+1) = W (Fn+1),one 
omputes the fun
tions

WRk
(Fn+1) = inf

ξ+,ξ−,F+,F−

{ξ+WRk−1
(F+) + ξ−WRk−1

(F−)} with k ≥ 1 , (4.37)for the s
ales k = 1, 2, 3.... After an in�nite number of steps k → ∞ the exa
trank-one 
onvexi�ed in
remental stress potential
WR(Fn+1) = lim

k→∞
WRk

(Fn+1) , (4.38)22
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onvexi�
ation and development of sequential laminates. Therank-one 
onvexi�
ation WRk

(Fn+1) based on Kohn-Strang's re
ursion formula im-plies the development of a sequential laminate. Starting from the homogeneousdeformation state Fn+1 any phase of level k − 1 de
omposes into two phases (+)and (−) of level k. As a 
onsequen
e, a typi
al binary tree stru
ture emergesis obtained. Similar to (4.34), relaxed stresses and tangent moduli are de�ned as
P̄n+1 := ∂FWR(Fn+1) and C̄n+1 := ∂2

FFWR(Fn+1). A

ording to re
ursive approa
hby [KS86℄ any phase of order k−1 de
omposes into two phases (+) and (−) of order
k and minimize the average of the 
orresponding in
remental stress potentials. Thedeveloping mi
ro-phases form a sequential laminate.Figure 5 shows the typi
al binary tree stru
ture of a rank-2 laminate. The un-stable ma
ros
opi
 deformation state Fn+1 de
omposes into two mi
ro-phases F+and F− of mi
ro-level 1 whi
h again split into two pairs of mi
ro-phases A+, A−and B+, B− of mi
ro-level 2. The rank-one 
onvexi�ed potential WR2

then 
on-sists of the volume average of the stress potentials W at the root of the tree, i.e.
WR2

(Fn+1) = ξF
+

[ξA
+

W (A+)+ξA
−

W (A−)]+ξF
−

[ξB
+

W (B+)+ξB
−

W (B−)]. In the
ontext of subgrain dislo
ation stru
tures in single 
rystal plasti
ity, [OR99, ORS00℄relax the in
remental 
onstitutive des
ription of the material based on the expli
it
onstru
tion of mi
rostru
tures by re
ursive lamination and their subsequent equi-libration. However, they applied, based on physi
al arguments, a strong approxi-mation by freezing the orientation of the laminates and the volume fra
tions dur-ing the deformation pro
ess. Su
h a strong assumption has also been applied by[ML03b, ML03a℄ for the analysis of mi
rostru
ture development in strain-softeningvon Mises plasti
ity. In 
ontrast to these approa
hes, in [MLG04, AFO03℄ a rank-one
onvexi�
ation has been proposed that determines both the developing orientationof the laminates as well as the volume fra
tion.4.2.3 First-Order Rank-One-Convexi�ed In
remental ProblemWe approximate the exa
t rank-one 
onvexi�
ation pro
edure outlined above by atwo-phase analysis that takes into a

ount only the �rst mi
ro-level of Fig. 5. Hen
e,an unstable ma
ro-deformation Fn+1 de
omposes into the two phases F+ and F−modeled by ansatz (4.26). Then the �rst-order rank-one 
onvexi�
ation of the non-
onvex fun
tion W is obtained for two-dimensional problems by the minimization23



problem
WR1

(Fn+1) = inf
q∈Q

W̄ h(Fn+1,q) , (4.39)for the fun
tion W̄ h de�ned in (4.28) with respe
t to the set of mi
ro-variables q.A problem similar to (4.39) was solved in [LMD03℄ for a one-dimensional strain-softening elasti
-plasti
 bar. The solution of the minimization problem (4.39) yieldssolutions of ξ, d, ϕ, χ, whi
h in the two-dimensional 
ontext determine two stablephases. The relaxed stresses and moduli are obtained by evaluation of derivativesof the fun
tion (4.28) with respe
t to F. The �rst derivative of (4.39) with respe
tto the deformation Fn+1 at the solution point q∗ reads
∂FWR1

= W̄ h
,F + [ W̄ h

,q ][q,F ] . (4.40)Here, the last term vanishes due to the ne
essary 
ondition (4.30) of the minimizationproblem. Thus we identify the ma
ro-stresses
P̄n+1 = W̄ h

,F . (4.41)The se
ond derivative of the potential reads
∂2
FFWR1

= W̄ h
,FF + [ W̄ h

,Fq ][q,F ] . (4.42)Here, the sensitivity of the �u
tuation with respe
t to the ma
ro-deformation isobtained by taking the linearization of (4.30), i.e. q,F = −[W̄ h
,qq]−1[W̄ h

,qF]. Insertioninto (4.42) �nally spe
i�es the relaxed moduli to
C̄n+1 = W̄ h

,FF − [ W̄ h
,Fq ][ W̄ h

,qq ]−1[ W̄ h
,qF ] . (4.43)Observe that the relaxed moduli 
onsist of the volume average of the moduli of thephases and a softening part. The latter is the 
onsequen
e of the �exibility of therank-one laminate due to the phase de
ay. The algorithm of �rst-order rank-one
onvexi�
ation is summarized in Table 2.5 Relaxation of Strain Softening Isotropi
 Plasti
ityThe relaxation te
hnique outlined in Se
t. 4 is applied to the treatment of shearbandlo
alizations in strain-softening isotropi
 elastoplasti
ity. The softening response ofthe model 
auses lo
alization phenomena whi
h is interpreted as mi
rostru
turedevelopments on multiple s
ales asso
iated with non-
onvex in
remental stress po-tentials. The strain softening inelasti
 materials with non-
onvex in
remental stresspotentials have been investigated in the 
ontext of one dimensional elasti
-plasti
bar in [LMD03℄, and in iso
hori
 damage me
hani
s in [GM06℄.The main goals of the numeri
al investigations are the analysis of the developing mi-
rostru
tures and the demonstration of the mesh-invarian
e of the relaxation te
h-nique proposed. We refer to [ML03b, ML03a℄ for details of the relaxation algorithm.The elasti
 energy storage fun
tion has the following form

ψ(Fel, α) =
µ

2
[ ‖Fel‖

2 − 3 ] +
µ2

λ
[ J−λ/µ − 1 ] +

1

2
hα2 , (5.44)24
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alization of Indentation Test at Plane Strain. Load displa
ement
urves for di�erent �nite element meshes (a) with non-relaxed formulation and (b)proposed relaxation te
hniquewith J := det Fel = detF, the shear modulus µ > 0, the Lame 
onstant λ > 0 andthe softening modulus h < 0. The level set fun
tion is given as

E = { (Σ, β) | ‖Σ‖ +

√
2

3
β ≤ c } , (5.45)where ϕ is the Mandel stress, β is the 
onjugate for
e to the hardening variable αand c is a material parameter. Then the dissipation fun
tion for the isotropi
 vonMises plasti
ity with softening 
an be formulated as

φ(Lpl, α̇) = sup
(Σ,β)∈E

{Σ : Lpl + βα̇} , (5.46)in terms of the plasti
 velo
ity gradient Lpl := ṖP−1 and the rate of hardeningvariable α̇.Here, we approximate the minimization problem (4.39) by introdu
tion of an a priorilength s
ale δ representing the width of mi
ro-shearband. Then, in the �nite element
ontext the volume fra
tion ξ at ea
h integration point is des
ribed as a fun
tion ofthe length s
ale δ and a 
hara
teristi
 geometri
 parameter g of the �nite element. Afurther simpli�
ation to the minimization problem is obtained by �xing the laminateorientation angle χ to the 
riti
al dire
tion θcr obtained from the a
ousti
 tensor
Q(α) := L(α) · ∂2

FFW (Fn+1) · L(α) , (5.47)where L(α) = [cos(α) sin(α)]T is a unit ve
tor to des
ribe the lo
alization dire
tion.The material stability is 
ontrolled by the following minimization problem for thedeterminant of the a
ousti
 tensor
min

α
{det[Q(α)]}

{
> 0 : stable atFn+1

≤ 0 : unstable atFn+1
, (5.48)and if the determinant be
omes zero or negative then the 
riti
al angle θcr and thelaminate orientation χ are determined as

χ = θcr = arg{min
α

[detQ(α)]} . (5.49)26



Furthermore we 
onsider M · N = 0 whi
h 
hara
terizes a shear band type failure.Then, the approximated relaxed energy is obtained by a minimization with respe
tto one s
alar variable d,
WR1

(Fn+1) = inf
d

[ ξW+(Fn+1, d) + (1 − ξ)W−(Fn+1, d) ] . (5.50)Having 
omputed WR1
the relaxed stresses P̄ and the relaxed moduli C̄ 
an be
omputed from (4.41) and (4.43), respe
tively.As a representative example, we 
onsider next a plane strain indentation test wherea lo
alization in the form of 
urved shear bands are observed experimentally. Theequivalent plasti
 strains and the formation of shear bands with 
orresponding lo-
alization dire
tions are plotted in Fig. 6. In Fig. 7 the development of mi
rostru
-tures is visualized at the sele
ted integration points for two dis
retizations. In orderto prove the mesh obje
tivity of the proposed relaxation algorithm load-de�e
tion
urves are plotted in Fig. 8 for four di�erent mesh densities. The non-relaxed formu-lation in Fig. 8(a) shows a 
lear mesh dependen
y whereas the proposed relaxationalgorithm in Fig. 8(b) exhibits no mesh dependen
y in the post-
riti
al regime.6 Relaxation of Non-Convex Single-Slip Plasti
ityWe now point out details of the �rst-order rank-one 
onvexi�
ation analysis intro-du
ed in Se
t. 4 for the model problem of single slip plasti
ity. Di�erent fromthe strain softening example dis
ussed in Se
t. 5, the non-
onvexity appears in thesingle-slip plasti
ity as a result of geometri
 
onstraints related with the orientationof a slip-system. The model problem of single slip 
rystal plasti
ity has already beeninvestigated in several works, see [CHM02, BCHH04, Mie04a, CT05, CO05, MLG04℄.The main goals of the numeri
al investigations are the analysis of the developing mi-
rostru
tures and the demonstration of the mesh-invarian
e of the relaxation te
h-nique proposed. We refer to [MLG04℄ for details of the relaxation algorithm basedon �rst-order rank-one 
onvexi�
ation. As a 
on
rete form, we apply a 
ompressibleNeo-Hookean material

ψ(Fel) =
µ

2
[‖Fel‖

2 − 3] +
κ

4
[J2 − 2(1 + 2

µ

κ
) ln J − 1] , (6.51)with J := detFel = detF. κ > 0 and µ > 0 denote the bulk and the shear moduli,respe
tively. The dissipation fun
tion for the linear hardening model of single-slipplasti
ity is

φ(Lpl) = [τ0 + hγ] |Lpl : (S ⊗T)| , (6.52)in terms of the S
hmid stress τ asso
iated with the slip system of single-slip plas-ti
ity and the linear hardening modulus h. The slip system is des
ribed by the slipdire
tion S and the slip normal T with S · T = 0.Here, a key 
ontribution is the derivation of a semi-analyti
al solution that redu
esfor two-dimensional problems the independent mi
ro-variables from four in q to just27
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oin
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all the ne
essary 
onditions (4.30) of the minimization problem ofrelaxation

W̄ h
,ξ = W+ −W− − d [ξP+ + (1 − ξ)P−] : (FM ⊗ N) = 0

W̄ h
,d = ξ(1 − ξ) [P+ − P−] : (FM ⊗N) = 0

W̄ h
,ϕ = ξ(1 − ξ) d [P+ − P−] : (FM,ϕ ⊗ N) = 0

W̄ h
,χ = ξ(1 − ξ) d [P+ − P−] : (FM ⊗N,χ) = 0





, (6.53)in terms of the four mi
ro-variables q := [ξ, d, ϕ, χ]T . Note that �rst two 
onditionsin (6.53) are the physi
al and the 
on�gurational for
e equilibrium 
onditions onthe interfa
e between two phases. In the sequel, we will evaluate these 
onditionsand derive a semi-analyti
al solution for the minimizing laminate F±. The plasti
deformation P± and the hardening variable in the phases (±) are denoted
P± = P⋆(1 ± ∆γ±S ⊗T) and γ± = γ⋆ + ∆γ± , (6.54)where ∆γ± = (γ − γn)± are the in
remental plasti
 ar
 lengths. P⋆ and γ⋆ are theplasti
 deformation and γ⋆ the hardening variable of the last stable homogeneousstate, respe
tively. Equation (6.54) points out the 
ause of the phase de
ay forthe model problem of single slip plasti
ity that results from the bifur
ation of theplasti
 deformation starting from P⋆ with ∆γ±. The equilibrium of the S
hmidtstresses τ+ = τ− yields the identity ∆γ+ = ∆γ− = ∆γ of the in
remental slips. Ifone postulates the preservation of the volumetri
 deformation det[F+] = det[F−] =det[F] it turns out that the Lagrangian laminate ve
tors are orthogonal, i.e. N·M =

0. This result allows for the parameterization of these ve
tors in terms of the ve
torsof the slip system N = cos θ S − sin θ T and M = sin θ S + cos θ T where θ is anin-plane orientation angle. Exploitation of these results leads to the identi�
ationof the in
lination angle and a formula for the mi
ro-intensity
tan θ = −P⋆ : S⊗ T and d =

2∆γ

cos2 θ (1 + ∆γ2)
. (6.55)29
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1

2
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cMM

+ tan θ

]
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remental plasti
multiplier ∆γ 
an be determined by algebrai
 manipulations as

∆γ =
2d+ E

cos2 θ d2 + F
, (6.57)in terms of the 
oe�
ients E = −4(hγ⋆ +c)/(µcMM) and F = [4h/µ+4 cos2 θ (cNN −

c2
NM
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7 Con
lusionsThe energeti
 formulation for �nite-strain elastoplasti
ity has been proved as a very�exible mathemati
al tool that links the heavily used time-in
remental minimizationproblem to a suitable weak time-
ontinuous problem. Moreover, the theory of thethe 
al
ulus of variations 
an be used to provide existen
e results for the in
rementalproblem as well as for the time-
ontinuous one. For the latter 
ase we still need toassume spatial regularizations to prevent the formation of mi
rostru
ture. At presentthe global existen
e theory has proved to be su

essful in the simplest situations, butfurther developments is needed to explore the 
apability of the method for providing
lassi
al solutions, i.e., without mi
rostru
ture. Moreover, it will be essential toderive reliable and e�
ient numeri
al algorithms in the spirit of [MR05, MRS06b℄.The energeti
 formulation has the major drawba
k that the stability 
ondition (S)is a global 
ondition, whereas a lo
al 
ondition would be more physi
al and betterfor numeri
al purposes. First results to understand rate-independent systems aslimits of systems with small vis
osity are presented in [EM06℄, but this theory isrestri
ted to �nite-dimensional Hilbert spa
es. Generalizations to in�nite dimensionsin
luding abstra
t metri
 spa
es are developed in [MRS06a℄, but there appli
abilityin elastoplasti
ity is still out of rea
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Table 1: Overview: Minimization Prin
iples for Standard Dissipative Solids(M) Constitutive Model. F ∈ GL+(3) at x ∈ B is the lo
aldeformation and I ∈ Z a generalized ve
tor of inter-nal variables. Set of lo
al material equations has thestru
turestresses P = ∂Fψ(F,I)evolution equation 0 ∈ ∂Iψ(F,I) + ∂ ˙
I
φ(İ,I) , I(0) = I0de�ned in terms of an energy storage and a dissipationfun
tion ψ, φ.(C) In
remental Variational Formulation of ConstitutiveModel. In a �nite time in
rement [tn, tn+1], the min-imization problem of the 
onstitutive responsestresses Pn+1 = ∂FW (Fn+1)stress potential W (Fn+1) = infI

∫ tn+1

tn
[ ψ̇ + φ ] dt , I(tn) = Indetermines the 
urrent internal state In+1 ∈ Z and pro-vides a potential for the stresses at time tn+1.(S) Stability of In
remental Constitutive Response. In

[tn, tn+1] the material is lo
ally stable if the in
rementalstress potential W is quasi�
onvexstable response W (Fn+1) ≤ infw
1
|D|

∫
D
W (Fn+1 + ∇w(y)) dxfor all possible �u
tuations w(y) on the domain D.(R) Mi
rostru
ture Development in Non�Stable Materials.For an unstable non�
onvex response, the in
rementalminimization problem of 
onvexi�
ationma
ro�stresses PQn+1 = ∂FWQ(Fn+1)relaxation WQ(Fn+1) = infw

1
|D|

∫
D
W (Fn+1 + ∇w(y)) dxprovides a relaxed quasi�
onvex hull WQ of W anddetermines the 
urrent mi
rostru
ture �u
tuation �eld

w(y).
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Table 2: First�Order Rank�One Convexi�
ation of In
remental Response1. Database {Fn+1,I
+
n ,I

−
n } and starting value q0 :=

{ξ, d,N,M}0 given.2. Set mi
ro�deformation phases
F± := Fn+1L

± with {
L+ := 1 +(1 − ξ)dM⊗N ,
L− := 1 − ξdM⊗ N .3. Evaluate the potential W̄ h(Fn+1,q) = ξW (F+) + (1 −

ξ)W (F−)and its derivatives W̄ h
,F, W̄ h

,q, W̄ h
,FF, W̄ h

,qq, W̄ h
,qF̄

.4. Convergen
e 
he
k: If (‖ W̄ h
,q ‖ ≤ tol) go to 6.5. Newton update of mi
ro�variables q ⇐ q −

[ W̄ h
,qq ]−1[ W̄ h

,q ] .6. Set relaxed ma
ro�stresses and tangent ma
ro�moduli
P̄n+1 = W̄ h

,F̄ and C̄n+1 = W̄ h
,F̄F̄

−[ W̄ h
,F̄q

][ W̄ h
,qq ]−1[ W̄ h

,qF̄
] .
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