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Abstract

An important class of finite-strain elastoplasticity is based on the multi-
plicative decomposition of the strain tensor F = FyF and hence leads to
complex geometric nonlinearities. This survey describes recent advances on
the analytical treatment of time-incremental minimization problems with or
without regularizing terms involving strain gradients. For a regularization con-
trolling all of VF,; we provide an existence theory for the time-continuous rate-
independent evolution problem, which is based on a recently developed ener-
getic formulation for rate-independent systems in abstract topological spaces.

In systems without gradient regularization one encounters the formation
of microstructures, which can be described by sequential laminates or more
general gradient Young measures. We provide a mathematical framework for
the evolution of such microstructure and discuss algorithms for solving the as-
sociated space-time discretizations. We outline in a finite-step-sized incremen-
tal setting of standard dissipative materials details of relaxation-induced mi-
crostructure development for strain softening von Mises plasticity and single-
slip crystal plasticity. The numerical implementations are based on simplified
assumptions concerning the complexity of the microstructures.

1 Introduction

We study the theory of elastoplasticity in the case of finite strains in applications
such as visualized in Fig. 1, where the deformation gradient F = V¢ is considered as
a matrix with positive determinant. Moreover, we work under the basic assumption
that the multiplicative decomposition

FIVQOIFolP WithP:Fpl

can be used to describe the elastic properties via the elastic part F, of the deforma-
tion tensor and the plastic evolution via the plastic tensor P. In contrast to this, the
additive decomposition € = g +¢€y, is well-established in small-strain elastoplasticity
and has nice mathematical features since it can be easily combined with convexity
tools. The assumption of finite strains and the multiplicative split destroy classical
convexity properties and the more general notions of poly- and quasi-convexity need
to be employed for the energy-storage potential

W(F,P,p)=(FP~',p),
where p are additional hardening variables.

The subsequent mathematical analysis as well as the numerical implementations are
based on the time-incremental minimization problems introduced in Sect. 2 which
are phrased in terms of the full stored energy

E(t, . P,p) = /B UV, P, p)+U(P, p, VP, Vp)de — (T (£), @)
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Figure 1: Experiments and numerical simulations of finite plastic deformations. (a)
Necking of a polycrystalline material. (b) Neck propagation in a tensile test of an
amorphous glassy polymer

(a) (b)

and a dissipation distance

D((Py, po), (P, p1)) = / D(Po.py). (Pr.p1))dz

For a given partition 0 = ¢, < t; < --- < ty = T of the time interval [0, 7] the
time-incremental minimization problem has the form

(IP) (g, P,.p) € ArgMin (£(t,, 3, B.5)+D((P,_1.pymr). (P.5)) ).
PPp

In Section 2.2 (cf. [Mie03a]) it is shown that this incremental problem occurs natu-
rally as the fully implicit (backward Euler) scheme for the energetic formulation (S)
& (E), which is a weak formulation of the time-continuous problem consisting of the
elastic equilibrium together with the plastic flow law, see (2.3). In Sect. 2.3 we dis-
cuss the arising nonlinearities, which are best understood when considering the ma-
trix groups GL(d) = {F € R>?| detF > 0} and SL(d) = {P € R™? | detP =1}
as Lie groups.

In Section 3 several existence results are surveyed. In the situation without any
length scale (i.e., the term U involving VP in £ is not present) the variables P and
p can be minimized pointwise for each € B in the incremental problem (IP). This
leads to the condensed potential

We((Pg, po); F) = min{ ¢ (F, P1,p1) + D((Po, po), (P1,p1)) | (P1,p1) }

which plays a fundamental réle in the existence theory in Sect. 3.1. Under the as-
sumptions that Wed((T, py); -) is polyconvex and that it satisfies the usual coercivity
assumptions, an existence theory for (IP) was derived in [Mie04b|. If polyconvexity
of Weord fails, then existence of solutions is not to be expected because of the for-
mation of microstructure. In this situation the relaxation techniques of Sect. 4 have
to be used to derive effective properties.



(a) &

Figure 2: Experiment and numerical simulation of microstructures in finite plastic
deformations. (a) Experimentally observed microstructure. (b) Numerical simula-
tion based on rank—one laminate microstructure

In Sect. 3.2 a regularization of (IP) is considered which involves the geometric dis-
location tensor Gp = (curl P)P" via the potential U in &, namely U(P,VP) =
V(Gp). In [MMO6b| it was observed that the multiplicative decomposition Fg =
Ve P~ is perfectly suited to be controlled in the sense of polyconvexity, if curl P
can be bounded by the energy. Hence, the solvability of (IP) can be proved under
suitable assumptions on the dissipation distance.

Finally, in Sect. 3.3 we discuss work in progress (cf. [MMO06a]) which uses a full
regularization of the internal variables (P, p) in the energy-storage functional &, i.e.,
UP,p,VP,Vp) > ¢|/(VP,Vp)|". Using the abstract theory for rate-independent
systems developed in [MMO05, Mie05b, FMO06], it is possible to show first existence
of solutions for (IP) and then to pass to the limit for time step going to 0. The limit
function obtained along a carefully chosen subsequence can finally be identified as
a solution of the original energetic formulation (S) & (E).

In Section 4 we define material instabilities in rate independent standard dissipative
solids based on finite-step-sized incremental energy minimization principles and ap-
ply the results in Sections 5 and 6 to the prediction of deformation microstructures
in strain-softening von Mises and single-slip crystal plasticity. The formulation offers
two important perspectives. First, the definition of material stability of standard
dissipative materials is based on weak convexity conditions of incremental stress po-
tentials in analogy to finite hyper-elasticity. Second, microstructure developments in
unstable inelastic solids such as visualized in Fig. 2 are associated with non-convex
incremental stress potentials similar to elastic phase transformation problems. These
deformation microstructures can be resolved by a relazation of incremental enerqy
functionals based on a convexification of the non-convex stress potential. The sub-
sequent developments are structured into three parts as overviewed in Table 1.

An incremental variational formulation for standard dissipative materials is outlined
in the works [Mie02a, MSL02, Mie03a|, which generalized treatments on the defor-
mation theory of plasticity [Mar75|, its application to a finite-step-sized incremental
setting [OR99, OS99| and the formulation |CHMO2| restricted to finite plasticity. It



describes the response of an inelastic material by only two scalar functions: the en-
ergy storage function and the dissipation function. The general set up of this generic
type of material model can be traced back to the works [Bio65, Zie63, Ger73|. It
covers a broad spectrum of models in viscoelasticity, plasticity and damage me-
chanics. For this class of materials we define a variational formulation, where a
quasi-hyperelastic stress potential at discrete time is obtained from a local mini-
mization problem of the constitutive response, in Table 1 denoted by problem (C).
Algorithms for a discrete setting of this constitutive minimization problem are out-
lined in the works |OS99, MA04, MAL02, MS04a, MS04b| for different approaches
to finite plasticity.

A key advantage of the outlined variational formulation is the opportunity to define
the stability of the incremental inelastic response in terms of terminologies used
in elasticity theory, see for example |Dac89, Kra86, Cia88, MH94, gi197]. Here, a
necessary condition for the existence of minimizers forces the energy functional to
be sequentially weakly lower semicontinuous (s.w.l.s.). An important implication
of this desired property is the quasiconvexity of the stored elastic energy function,
a terminology introduced in [Mor52|. The above outlined constitutive variational
formulation enables us to extend these results to the finite-step-sized incremental
response of inelasticity. To this end, we introduce an incremental energy minimiza-
tion principle for standard dissipative solids that contains the incremental stress
potential. The inelastic solid is then considered to be stable if this potential is qua-
siconvex, see condition (S) in Table 1. However, quasiconvexity is a global integral
condition which is hard to verify in practice. More manageable is the slightly weaker
rank-one convexity that is considered to be a close approximation of quasiconvexity.
As presented in [MLO03b, ML03a, MLGO04|, classical conditions of material stabil-
ity of elastic-plastic solids outlined in [Tho61, Hil62, Ric76| are consistent with the
infinitesimal form of the rank-one convexity, i.e. the strong ellipticity or Legendre-
Hadamard condition.

As pointed out in the recent papers [LMD03, ML03b, ML03a, MLG04, GMO6| the in-
cremental variational formulation for the inelastic response opens up the opportunity
to resolve a developing microstructure in unstable standard dissipative solids by a re-
laxation of the associated non-convex incremental variational problem, in Table 1 de-
noted by problem (R). If the above outlined material stability analysis detects a non-
convex incremental stress potential, an energy-minimizing deformation microstruc-
ture is assumed to develop such as indicated in Fig. 2. A relaxation is associated
with a convexification of the non-convex stress potential by constructing its quasi-or
rank-one convex envelope. We refer to [KS86, Dac89, Si197, M99, Dol03] for a sound
mathematical basis. The concept of relaxation has been applied to elastic phase de-
composition problems in |[Koh91, Lus96, CP97, DD00, GMH02, AFO03, KMRO05|,
single crystal plasticity in [OR99, ORS00, MLGO04|, strain-softening von Mises plas-
ticity in [LMDO03, ML03b, ML03a| and damage mechanics in [GMO06|. We comment
on these results in Sections 5 and 6.



2 Modeling of Rate-Independent Elastoplasticity

2.1 Standard Generalized Materials

We consider a body with reference configuration B C R%. The deformation is de-
noted by ¢ : B — R? and the deformation gradient F = V¢ is called strain tensor.
Additionally, in the sense of standard generalized materials (cf. [ZW87, Hac97|)
we consider a set of internal variables Z : B — Z, where Z is a suitable finite-
dimensional manifold. The theory is based on the elastic potential ¢ and the dissi-
pation potential ¢ as the underlying constitutive functions

¢ =v¢(F,Z) and ¢ = ¢(Z,Z) >0,

Finite-strain elastoplasticity is based on the multiplicative decomposition F = V¢ =
F. F,; of the deformation gradient, where F, is the elastic part of the strain tensor
and P := F, the plastic part, shortly the plastic tensor. The internal variable takes
the form Z = (P,p) € Z, where p € R™ denotes some hardening variable. For
simplicity we neglect any dependence on the material point z € B

The deformation gradient F is best considered as an element of the Lie group
GLy(d) = {F € R™¥ | detF > 0} and the plastic tensor P is usually assumed
to have determinant 1, i.e. P is element of the special linear group SL(d) = { P €
R4 | det P =1 }. We will investigate the arising geometric nonlinearities in Sect.
2.3. Consequently, ¢ is defined on the tangent bundle TZ of the manifold Z of
internal variables. The multiplicative decomposition or equivalently the axiom of
plastic indifference (cf. (Sy2) on p. 359 in [Mie03a|) means

¥ = (F,T) = (F,P,p) = (Fa,p) = (FP~',p), (2.1)
¢=o(Z,T)=o6(P,p,P,p) = o(p, PP, p). (2.2)

Rate-independency is expressed in the fact, that ¢ is homogeneous of degree 1 in

the rate Z = (P, p), i.e., ¢(Z,0T) = 6¢(Z,T) for all § > 0.
The local balance laws involve the conjugated forces
P = 9p¢)(F,T) = 9g,0(Fa, TP~ and F = 970 (F,T) € T5Z
and take the following form
—divP = fo and 0€0;0(Z,Z)—F inB. (2.3)

The first equation, together with suitable boundary conditions, is the elastic equi-
librium equation and the second is the plastic flow law which is defined on T%Z.

2.2 Energetic Formulation Using Dissipation Distances

We now use the abstract theory developed in [MTL02, MT04] in the Banach space
setting and in [MMO05, Mie05b, FMO06] in the fully nonlinear setting to formulate
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time-continuous problem, which contains the full initial-boundary value problem of
elastoplasticity. Because of the rate-independence and the strong nonconvexities we
cannot expect that the rates Z exist and hence we need a derivative-free formulation.

The function ¢ can be understood as an infinitesimal metric on Z which defines a
(global) distance D, called dissipation distance in the sequel:

D(ZyZ,) = inf{ fo Z(s))ds | ZeCY([0,1],2), Z(0)=Zy, Z(1)=Z; } .
The definition provides immediately the triangle inequality
D(Z,,T3) < D(Z,,T,) + D(Z3,Zs) for all T,,Z,, T3 € Z . (2.4)
The plastic indifference (2.2) provides the invariance

D((PoP., po), (P1P.,p1)) = D((Po, po), (P1,p1)) (2.5)

for all Po, Pl, P* and Po, P1-

For deformations ¢ : B +— R? and internal states Z : B+ Z we define global energy
functionals by integration over the whole body B as follows

t 507 fB ZL’ ($>)d$ - <HeXt(t)a 90>>

D( IO,.’Z'l fB (x) 1(:E))dat, (2.6)

where I (t) denotes the external loading depending on the process time ¢ € [0, T7.
Here, £(t,, P, p) is the Gibbs energy at time t associated with the state (¢, Z) :
B — RY x Z, and D(Zy,Z,) is the minimal amount of dissipation occurring when
the internal state Z, is changed continuously into Z.

A pair (¢, Z) : [0,T] x B +— R4 x Z is called an energetic solution for the functionals
(€,D), if it satisfies for all ¢ € [0,7] the following stability condition (S) and the
energy balance (E):

(S) Stability: For all comparison states (Cé,i') we have
E(t, (1), Z(t) < E(t,@,T) + D(Z(t),T) .
(E) Energy balance:
E(t, p(1), T(1)+Dissp(T, [0.]) < E(0,p(0), T(1))— (Tl (5), 9(5)) ds

The dissipated energy Dissp(Z, [r, s]) along a process Z : [0, T] X B 7 is

Dissp(Z, [r, s]) = sup{ Z?D(I(tj_l),l'(tj)) |r<to<t;<---<ty<s}

and coincides with [ [, ¢(Z(x,t),Z(x,t))dzds for smooth processes.

The energetic formulation (S) & (E) characterizes the process completely and it does
neither involve derivatives of F = V¢ and Z with respect to t or x nor derivatives
of the constitutive functions ¢» and ¢. It is shown in [Mie03a, Mie05b| that the
energetic formulation is consistent with the classical local balance laws (2.3), i.e
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they are satisfied for any sufficiently smooth energetic solution. Moreover, in smooth
and convex cases we have uniqueness of energetic solutions if a suitable initial state
(¢, Zo) is specified.

The energetic formulation is intrinsically linked to the time-incremental problem,
which has the major advantage that it is a minimization problem. For a given
partition 0 =ty < t; --- < ty = T of the time interval [0, 7] and a given initial value
(0, Zo) we define the incremental problem

(IP) Incremental minimization problem:
Find iteratively (¢,,Z;) for j =1,..., N such that

(¢, ;) € Argmin{ £(t;, 3, T) + D(Z;-1, Z) | all (3,T)} .

This is a fully backward, hence fully implicit scheme which is difficult to solve
numerically. Moreover, the dissipation distance D : Z x Z — [0, 00, which defines
D, is usually not known explicitly. Hence, the algorithms discussed in |Mie02a,
MALO02, MSLO02| are suitable variants of (IP).

The big advantage of (IP) is its mathematical consistency which arises from D sat-
isfying the triangle inequality (2.4). Just using this and the minimization property,
we obtain that every solution (¢;,Z;);=1,.. .~ of (IP) satisfies for j = 1,..., N the
following discretize versions of (S) and (E):

E(t, 0, L)) < E(t;, 8, T) + D(Z;, T) for all (p,T) (2.7)

. 2.8
< E(orpy 1 Ty) + [ 0E(s. (0 1. Ty1))ds (2.8)

These estimates will be crucial for the subsequent analysis.

2.3 Lie Groups and Geometric Nonlinearities

Before dealing with an existence theory for the energetic formulation we work out a
little more the geometry which arises from the fact that we are dealing with finite
strains and that we are using the multiplicative decomposition. In finite-strain
elasticity the stored-energy density 1 should be considered as a mapping from the
Lie group

®:=GL,(d)={FeR> | detF>0}.

The plastic tensor P is assumed to lie in the Lie subgroup
B :=SL(d) ={PeR™ | detP =1},

or even a smaller subgroup. Note that 3 can be seen as the matrix group that maps
the crystal lattice onto itself. We write Z = 8 x H for the manifold of internal
states, where Z = (P, p) with p € H.



The conjugated forces have the following properties

P= aF,lvb(F?Pap) € T;‘Qj )
q=—00(F,P,p)e T H.

However, using the multiplicative structure of the Lie groups it is more advantageous
to use the multiplicative derivatives defined via

K:A = L4(e*AF, P, p)| oo = Or, ¥ (Fu, p)FJ:A for A € 16
M:B = —% (F,e*BP, p)|s=o = F,] Op,¢(F,p)P~":B for B € Tr'B3 .

Hence, we find stress tensor in the dual Lie algebras g and p:
K = 0, 0(F,p)F, € g:=Ti® and M =F, g, (Fa,p) € p := TR .
The tensors are know as the Kirchhoff stress tensor K = PF? and the Mandel stress

tensor M = QP .

The first fact about these tensors is that we obtain another insight into the flow
law 0 € 0;¢(Z;Z) — F which is a differential inclusion on T%Z. Using the plastic
invariance of ¢ we define the elastic domain at P = I via

Qp) = dwpo((Lp), (0,0)) N
={(M,q) |VT € Z: 6((L,p),Z) > (M, q):ZT } Cp x T5H

and obtain, with M = QP T, the flow law in invariant form

(PP, p) € N Q(p) = 09Xy (M. q) C p x T,H .

The second fact about these tensors is that they satisfy much better estimates in
terms of the energy potential ¢. In fact, following [Bal02| it is reasonable to work
with the following multiplicative stress control estimates:

3Ck > 0VFy € & |K(Fu,p)| < Ck (¢(Fa,p)+1) , (2.9)
3Cm > 0VFy € &1 [M(Fa,p)| < Om(¢(Fa,p)+1) , (2.10)

In fact, (2.10) implies (2.9) but not vice versa. These conditions are satisfied by
polyconvex potentials ¢ that go to co for det F;; — 0. In fact, most Ogden materials
satisfy both conditions. For instance consider

Y(Fa,p) = c1|Fa|™ + co(det Fo) ™™ + c3(det Fo )™ + v(p)

with ¢;,7; > 0 and (p) > 0. Using dp det F = cof F and (cof F)F" = F' cof F =
(det F)I it is easy to see that (2.9) and (2.10) hold. A similar estimate does not
hold for P(F,, p), since (det Fy)~17"2 cof F cannot be estimated by (det Fy)™. It
was observed in [FM06, KMO06| that these estimates can be used effectively in rate-
independent system to control the power of the external forces.
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On the Lie groups & it is possible to introduce right-invariant distance
de(Fo,F1) = inf{ [} |F(s)F(s)""|ds | FeC'([0,1],8), F(0)=Fy, F(1)=F },

which satisfies dg(Fo, F1) = de(FoF; ', I). Only in very few cases dg can be calcu-
lated explicitly, see [Mie02b, HMMO03|. The condition (2.9) or (2.10) now implies
that log(1)+1) is globally Lipschitz continuous

‘1og(¢(F,p)+1) _ log(@b(f‘,p)—l—l)‘ < Cpipde(F.F) for all F,F € & .

Since dg(F,I) ~ ‘log(FTF) , the energy potential 1) satisfies the upper estimate

O(F, p) < Cupp(p) ([F|+[FH])7.

This upper bound is consistent with the lower estimates also called coercivity:

UV(Fa,p) > c1|Fa| T +ca|p|™”—Cs for all (Fy,p) € & x H . (2.11)

We will need that the dissipation distance D : Z x Z — [0, 0o], which is associated
with the dissipation potential ¢ : TZ — [0, o], is coercive as well, namely

D((P,p),(I,p.)) > 03(|P|+|P_1|)’"P—C’3 forall (P,p)e Z =B x H . (2.12)

To see that that this coercivity estimate needs a significant amount of hardening we
treat the simplest example with a scalar hardening parameter p > 0 and a hardening
function A : [0, 00) — (0, c0):

g(p,V,]ﬁ) _ { P'(p)p if p> |V|P )

00 else .

According to |[Mie03a| we find

h(pr)=h if p1 > po+dap(Po, Py)
D((P07p0)7(P17p1)) :{ (pl)oo (pO) lelsil— Po ‘B( 0 1)

Thus, assuming p, = 0 and ~(0) = 0 we obtain the lower estimate
D((P>p)a (Iap*)) > h(dﬁ(]:a P)) > C4(|P|+|P_l|)rp - C4

only if h(p) > e5e7 —C5 for some c5,v > 0, since dg(I, P) grows only logarithmically.

3 Existence Results

The existence results discussed in this section concern solutions without microstruc-
ture. These solutions relate to classical meso and macroscopic models for finite-
strain elastoplasticity which are used for describing deep drawing or other plastic
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processes involving large strains. In the highly nonconvex situation we have to find
assumptions on the constitutive laws which are compatible with the above geometric
nonlinearities and still are good enough to prevent the formation of microstructure,
which turns out to be a rather common feature in finite-strain elastoplasticity, see

|[OR99, CHMO02, ML03a, MLG04, HH03, Mie04a, BCHHO04, CT05|.

We choose function spaces and functionals. The admissible deformations are sup-
posed to lie in the set

W = { pc WLT‘P(BJRCZ) | LP|FDir = ld} :
For the internal variables we choose the set
Z={(P,p) € L"»(B,R>%) x L"»(B,R™) | (P(x),p(z)) € P x H a.e.in B} .

The choice of the Lebesgue exponents ry, rg, rp and 7, will be a crucial step in the
further analysis.

All our existence results will be based on the notion of polyconvexity, which means
that there exists a convex and lower semi-continuous function ¢ : R — [0, oo such
that ¢(F) = g(M(F)) holds, where M(F) is the vector of all minors (subdetermi-
nants) of F € R¥?. The more general condition of quasiconverity is not developed
enough to handle integrands ¢ which take the value +o00. In fact, in the quasi-
convex case the lower semi-continuity results are usually based on the upper bound
Y(F,p) < C(1+|F|)" for all F € R™?. This clearly contradict finite-strain elasticity
where ¥(F,p) = 400 for det F < 0 is imposed to prevent local interpenetration.
In contrast, the multiplicative stress-control estimates (2.9) and (2.10) only lead to
upper estimates on &.

3.1 Existence Results for the Incremental Problem

We survey the results in [Mie04b|, where the incremental problem for system without
any regularization is investigated. The energy functional & and the dissipation
distance D are as defined via (2.6) with the specification of ¢ and D as above. We
added the subscript “y” to £ to indicate that no regularization is added.

A central role in this formulation is played by the condensed energy density

Wcond((Po,Po)§ F) = min{ ¥(F, Py, p1) + D((Po, po), (P1,p1)) | (P1,p1) },

which contains the condensed information on the interplay of energy storage via v
and energy dissipation via ¢. Its importance derives from the fact that the minimiza-
tion of [, (VP! p)+D((P;,p;), (P,p))dx can be done pointwise in Z = (P, p)
under the integral giving the definition of ", Starting from Sect. 4 (see Table
1) the condensed stored energy W is replaced by the incremental stress potential
W, which differs from W™ by a constant only.
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First, for any solution process the deformation ¢(t) : B — R? must be a minimizer
of the condensed functional

EMUI(t)it ) = [y WNZ(t,2); Vep()) da — (Texe(t), )

which follows from the stability condition (S). Hence, "4 contains significant in-
formation on the possibility of formation of microstructure (via loss of quasiconvexity
|[OR99, CHMO02, HHO03, Mie03a, MLGO04|) or failure via fracture or localization, see
IMLO03b, MLO03a, LMDO03|. In Sect. 4 and thereafter £<°*¢ is replaced by £, which
is obtained as £°" when W< is replaced by W. Hence, the two definitions just
differ by a constant, and thus hvae the same minimizers.

Second, the incremental problem (IP) can be reduced to the following condensed
incremental problem:

Find iteratively (¢,,Z;) € W x Z as follows:
(CIP) @; € Argmin{ E(T;_1;tj, ) | e W}
T,(x) € Argmin{ ¢(Vep(x), L)+ D(T; (), T) | T € 7}

Thus, to guarantee existence of minimizers for (CIP) we impose the very restrictive
condition, namely

Werd(Z;¢,-) . R — [0, 00] is polyconvex. (3.13)
Theorem 3.3 in [Mie04b| provides the following existence result for (IP).

Theorem 3.1 Let W, Z, & and D be defined as above. Assume that W< satisfies
(3.13).  Further let the coercivity assumptions (2.11) and (2.12) be satisfied with

Te, TP and 1, such that
1 1 1

LA R 3.14

e * Tp T = d ( )
If additionally M. € CH[0,T], Whre(B,RY)*), then (IP) associated with (Ey, D)
has, for each initial datum Ty € Z with D((I,p.),Zo) < oo and each partition 0 =

-----

there exists a constant C (depending on the data only) such that all solutions satisfy,
forj=1,...,N,

j
ljllrg + IPjllve + 1P5 e + sl + €0ty 05, L) + X2 DT, Ti) < C'.
k=1

The proof relies on solving (CIP) with a careful bookkeeping based on the a priori
estimates (2.8). The necessary coercivity of W< follows from those of 1) and D,
after employing the invariance from W ((P,p); F) = Wend((1,p,); FP~!) and
the Holder inequality

[FPY[™ > ([F|/|P])™ > ¢ [F|"e —d,[P[™.
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The major drawback of the present theory is that the polyconvexity condition (3.13)
is extremely difficult to check. The function W< is defined implicitly via ¢ and D,
but D itself is defined implicitly from ¢. Hence, there are only very few cases where
Weend can be calculated explicitly. One case is in dimension d = 1 and another
case is treated in [Mie04b|. It is an isotropic situation in dimension d = 2 using an
abstract characterization of [MieO5a| for isotropic, polyconvex energy densities.

3.2 Partially Regularized Incremental Problems

The second result result concerns a model which uses a partial regularization which
is based on the so-called geometric dislocation tensor

p (curl P)PT € R¥

T det P

where the “curl” of a matrix is applied row-wise. Because of our standing assumption
det P =1 we can use a simpler form. The energy now reads

gcurl(ta ®; P>p) - gO(ta ®; Pap) + fB V((CU.I'I P)PT) dx )
where the potential V : R**3 — [0, oo] satisfies

V is convex and V(G) > ¢g|G|"¢—Cg on R¥*3 (3.15)

In [MMO6b| a general lower semi-continuity result is derived for general functionals
of the form

I(p,P) = /BU(VQOP‘l,P, (curl P)P ") dz .

Under the assumption that U : R33 x R3*3 x R3*3 — [0, 00| is polyconvex in the
first two arguments and convex in the third argument and that U is suitably coercive
it is shown that 7 is weakly lower semicontinuous on the associated Sobolev spaces.

Consider a weakly converging sequence (¢;,P;) — (¢, P). Along sequences with
bounded energies Z(¢p,,P;) < C the terms VgojP;1, P;, Gp, are controlled in
suitable Lebesgue spaces. This implies a bound on curl P; and thus, a suitable
version of the div-curl lemma can be used to show that M(P;) — M(P) and
Gp, — Gp. The special form of the multiplicative decomposition VP! together
with det P = 1 provide the minor relations

FP™' = F(cof P)", cof(FP™!) = (cof F)P", det(FP™') = detF .

Hence, again applying the div-curl lemma we obtain also the convergence M(Fij_l) -
M(FP~1) and the weak lower semi-continuity follows using (poly-) convexity.

This result is then applied to the incremental problem (IP) associated with &, and
D. Again, a condensation, like in Sect. 3.1, is done for the variable p € H, which
does not have a derivative. We assume ¢(Fy, p) = e1(Fo) + Ynara(p) and let

Dcond((P07p0)§ P) := min{ Ynara(p) + D((Po,po), (P,p)) |p€ H } .

12



Then, the incremental problem involves the integrand U(F,, P, G) = ¢ (Fq) +
Der(Z; i (x); P) + V(G). Thus, the crucial assumption we have to make is that

DT ) R¥® — [0, 00 is polyconvex. (3.16)
The following result is established in [MMO06b)].

Theorem 3.2 Let W, Z, E.u and D be defined as above. Assume that V' and
Deond satisfy (3.15) and (3.16), respectively . Further let the coercivity assumptions
(2.11) and (2.12) be satisfied with vy, rp,r, and rg such that

1 1 1 1 1 2
—F—=—<=, —+—<1,andrg>d. (3.17)
e TP re d re Tp

If additionally ey € CH[0,T], WhTe (B, RY)*), then (IP) associated with (Eeu, D)
has, for each initial datum Ty € Z with D((I,p.),Zo) < oo and each partition 0 =
to <ty <--- <ty =T, at least one solution (p;,L;)j=1,..~ in VW X Z. Moreover,
there ezists a constant C' (depending on the data only) such that all solutions satisfy,

forj=1,...,N,

j
l;llrg + IPsllve + 1PF e + 15l + €0t 5, L) + I;D(Ik—l,fk) <C.

Again the polyconvexity condition (3.16) for the condensed dissipation distance is
hard to satisfy. However, we have considerably more freedom than in the case of the
condensed energy potential " Here the condition is based on the dissipation
distance only, and we are able to take any polyconvex function 1, for the elastic
storage. Examples are given in Section 4 of [MMO6b].

However, the theory is still restrictive as we do not have good examples of dissipation
distances and we do not know what type of hardening leads to polyconvexity. In
the light of the example of at the end of Section 2.3 it is a natural question to ask
whether the functions

B >P — exp (ydm(I, P)) ,

if extended by +oo outside of B, is polyconvex for sufficiently large v > 0. It is
clear that this can only hold if dg is locally Lipschitz continuous with respect to the
classical metric in R%?. Thus, sub-Riemannian or sub-Finslerian metrics are not
allowed.

3.3 Strain-Gradient Plasticity

In [MMO06a| a theory is developed for the case that the full gradient (VP,Vp) is
used for regularization. For micromechanically motivated nonlocal crystal plastic-
ity models, see [Bec06, FMAH94, Gur02, MB06, Ste96, Sve02]. This case relates
to the regularized theory that was developed for other rate-independent material
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models like shape-memory materials, damage, brittle fracture, magnetostriction or
piezoelectricity. We refer to the survey [MieO6al in this volume.

In the present theory the incremental problem will be used as a tool to construct
piecewise constant solutions for partitions with smaller and smaller step sizes. We
are then able to extract a subsequence which converges to a solution of the time-
continuous problem (S) and (E) as derived in Section 2.2. The analysis follows
closely the abstract approach for general rate-independent systems on topological
spaces as developed in [MMO05, Mie05b, FMO06|.

We only treat the simplest case and consider the energy functional
greg(t Soa ) gO(t QO> ap + fB Cl|v]':)|rl_|_c2|vp|T2 dI

where ¢1,co > 0 and 71,79 > 1. The dissipation distance D is kept as above.

For the admissible deformations ¢ we keep the function space W C Wi (B, R9)

equipped with the weak topology. For the internal variables we now set Z., =
Zp X Z, with

Zp i ={P e Wi (B,R™?) | P(x) € P a.e. on B} and
Z,={peW2(B,R™) | p(x) € H a.e. on B},
where Z,., carries the weak topology of WL (B, R%*4) x Wi (B R™).

Using polyconvexity of F — (-, p) and the above coercivity assumptions it is possi-
ble to show that the incremental problem (IP) associated with (&, D) has at least
one solution ((go;?, If))jzl,myNk, where we already assumed that we have a sequence of
partitions indexed by k& € N such that the fineness ¢, = max{tf—tf_l |i=1,..., Ny}

tends to 0. We define the piecewise constant interpolants (g, Zy) : [0, 7] — WX Zyeq

with
( (t)j (1) = (@h_1, T5_,) for t € [th_,,th)
d (q,(T), T (T)) = (QONkvl' )-

According to (2.7) these piecewise constant solutions satisfy the stability conditions
(S) on each point of the partition, i.e., (g,(t¥), Z,(t})) € S(t¥) with

St) :={ (o, T) |V(B,T): Ereglt, 0, T) < Eres(t, @, L) + D(Z,T) } .
Moreover, the energy estimate (2.8) provides the energy bounds

greg( g on(tk) Ik(tk)) + DISSD(Ika [Oa t?])

7 (3.18)
< Evesl0, 0. To) + fy7 0uEuen(5.(5), Tuls)) s

They give rise to the bounds

||(¢k>fk)||L°°([O,T],W1”"P cwirxwirey < C
SUP¢e(0,1] grcg(t;?v@k(t;?)vl-k(t?)) < C7 DiSSD(Ikv [Ov T]) <C.
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Thus, by using a suitable version of Helly’s selection principle (cf., [MMO05]) it is
possible to extract a subsequence and to find a limit process (¢,Z) : [0,7] —
W X Z,, which is a candidate for an energetic solution.

Using weak lower semi-continuity the energy bound (3.18) easily supplies the upper
energy estimate

t

Ere(1,p(1),Z(1))+Dissp(Z, [0,t]) < Ere (0,00, Z0)+ Of OsEreg(s,p(s),Z(s)) ds .

The crucial step in the convergence proof is to show that the sets S(t) of stable
states are sequentially closed in the weak Banach space topology. This step is easy
if D is weakly continuous but it also works in more realistic cases with hardening,
which is irreversible, see [MMO06a|. If this step is done we know that the limit process
satisfies (S) and, moreover, a general abstract proposition yields the lower energy
estimate and hence (E) holds as well.

We summarize the result as follows.

Theorem 3.3 Let W, Z,oy, Eeg and D be given as above with v and D satisfying
the coercivity estimates (2.11) and (2.12) with % + % = % < 1. Moreover, assume
Hexi € CL[0, T), Whre (B, RY)*). Then, for each stable initial state (¢4, Zo) € S(0)
the energetic formulation (S) and (E) has at least one solution (¢, T) : [0,T] —
W X Zieg. All solutions satisfy

(¢, P.p) € L=([0,T], W' (B, RY) x W (B,R™") x W'™(B,R™))

and Dissp((P,p),[0,7T]) < oo.

3.4 Time-Dependent Boundary Conditions

The existence results of Sections 3.1 to 3.3 rely on the fact that the space W of
admissible deformations is independent of time. For many applications one needs to
generalize this assumption. For the incremental problem (IP) it is not too difficult to
work with W(t), however for the energetic formulation it is not clear how to define
the power 0,E(t, q) of the external loadings that are due to changes of W(t).

The usual way to implement time-dependent Dirichlet data is to substract a suffi-
ciently smooth function that has the correct boundary value and then try to find the
homogeneous part. In the case of small strain, when working with u: x — @(x) —x
this means u(t,z) = upy(t,z) + v(t, ) with v(¢,-)|r,, = 0. We let W = {v €
W2 (B,RY) | v|r,. —o } and define the shifted energy E(t, v, T) = E(t, upy(t)+v, I).

The power of the external loading now takes the form

HE(t,v,I) = g8F¢(V(uDir(t)+v),I):Vl'lDir(t) da
_<Hext(t)a upir (t)+v) — (Tlext (t), Upic(t)) -
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However, in the case of finite-strain elasticity we cannot guarantee that the integrand

Op lies in LY(B), since we cannot control the Piola-Kirchoff stress P = 0t by v
itself.

In the case of finite-strain elasticity the stored energy density v takes the value +o00
and Opy)(F,T) exists only on &. In order to use the multiplicative stress control
(2.9) for the Kirchhoff stress K we assume that time-dependent Dirichlet data ¢,
are given. We then decompose the desired solution ¢ via composition of functions

e(t,2) = epi(t, €t 2)) = (Ppi(t, ) 0 €[t ) (@) -

Here, we assume that (pp; can be extended such that ¢, € C2([0,7] x R R?)
and that V,¢p;, and (V,pp;, )~ are bounded on [0, 7] x RY. The set of admissible
deformations is now W = {& € WH(B,R?) | €|r,,,, = id} with p > d and the shifted
energy is £(t,&,T) = E(t, p;(t) 0 €, T). Using the classical chain rule formula

Valppir(t) 0 £)(2) = Vyppi(t, £(x)) V€ (2)

and the definition of K in Section 2.3 we find the expression for the power

0EHLET) = [ K(VepuVE TD):(Veppi) ™ Veppy,
_<Hext (t)’ ¥Dir © £> - <Hext(t)> goDir © S) :

Here, for £(t,q) < oo we may conclude via (2.9) that K € L'(B,R™?) while
(Vep, ) 'Vepp;, lies in CO(B,R¥4). Hence, the right-hand side is indeed well de-
fined and the power control

0E(t.€,T)| < cf (E(t, &, T)+cf)

can be established easily. We refer to Section 5 in [FMO6]| for more details concerning
the full existence result for energetic solutions in the case of time-dependent Dirichlet
data.

In [KMOG6| very similar ideas are used to derive formulas for the energy-release rate
in crack propagation for the case of finite-strain elasticity. Also a very restricted
case of temperature dependence can be treated by this method of energy control,
see [Mie06b| and Sect. 5.4 in [Mie06a].

4 Modeling of Microstructure via Relaxation

In principle, the time incremental problem (IP) and the energetic formulation (S) &
(E) introduced in Sect. 2.2 is a very flexible tool to treat the relaxation as well. We
refer to |Mie03b, Mie04a, MRS06b, MO06, MT06| for some recent developments.
However, the analytical methods are not yet adapted to the specific nonlinearities
involved in finite-strain elastoplasticity. In particular, there is no theory which
combines the theory of gradient Young measure with finite-strain plasticity. Thus,
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the evolutionary theory for gradient Young measures used in models for shape-
memory alloys in [KMRO05| cannot be generalized to the present situation. Despite
of the lacking mathematical tools in this area, the following sections show that the
algorithmical approach for these problems has advanced considerably over the last
decade.

4.1 Incremental Stability of Standard Dissipative Solids

As pointed out in [MLO03b, ML03a, MLGO04| a key advantage of the variational
formulation outlined briefly in Table 1 is the opportunity to analyze the incremental
stability of inelastic solids in terms of terminologies used in finite elasticity. In the
following we define the material stability of standard dissipative solids based on
global weak convexity properties of the incremental stress potential.

The existence of the constitutive minimization problem allows the introduction of
an incremental minimization formulation of the boundary-value problem of finite
inelasticity for standard dissipative solids. Now consider a functional £ of the current
deformation field ¢, at the right boundary of the increment [t,,,¢,1]:

S(LPnH) = /BW(FnH) do — [Hext(‘PnH) — e ()] (4.19)

with the global load potential function Il () = [, -y dz + faBt @ -t dx of dead
body forces «(z,t) in B and surface tractions t(z,t) on dB;. As outlined in Sect.
3.1, see also [ML03b, ML03a, MLGO04|, the current deformation map of inelastic
standard dissipative materials can then be determined by a principle of minimum
incremental energy for standard dissipative solids

E(Pni) = <p iﬂgwg(S"nH) , (4.20)

n+1

subject to the essential boundary conditions of a prescribed deformation ¢ on 0B,
written in the form ¢, ., € W = { ¢ € WH(B) | ¢(z) = @(x) on B, }. As
usual, we consider a decomposition of the surface into a part where the deformation
is prescribed and a part where the tractions are given, i.e. 9B = 0B, U 0B; and
0B, N 0B, = (. The minimization problem (4.20) governs the response of the
inelastic solid in the finite increment [, t,11] in a structure identical to the principle
of minimum potential energy in finite elasticity.

4.1.1 Quasiconvexity of the Incremental Stress Potential

Extending results of the existence theory in finite elasticity as summarized in |Bal77,
Cia88, Dac89, MH94, éi197] to the incremental response of standard dissipative solids
in the finite step [t,,, t,+1], we consider the sequentially weakly lower semicontinuity
(s.w.l.s.) of the functional (4.19) as the key property for the existence of sufficiently
regular minimizers of the variational problem (4.20). The internal part of the func-
tional (4.19) is sequentially weakly lower semicontinuous, if the incremental stress
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(a) N by ()

Figure 3: Interpretation of incremental energetic stability conditions of an inelastic
material. A given homogeneous deformation state F,, 1 of the material such as the
pure shear mode of Figure (a) is stable if superimposed fine-scale fluctuation pat-
terns (b) (quasiconvexity) with support on the boundary 0D or first-order laminates
(c) (rank-one converity) increase the averaged incremental stress potential on D

potential defined by the constitutive minimization problem is quasiconvex and also
it satisfies some technical growth condition, see for example |[Dac89, AF84, §i197].
We regard the quasiconvezity introduced in [Mor52| of the incremental stress po-
tential W as the fundamental criterion for the incremental material stability of the
inelastic solid. W is said to be quasiconvex at F,,; if condition

weWp

1
D

holds with y € D subject to the constraint w € Wy := {w € WH*(D)|lw =
0 on D} providing a support on D. Here, D C R? is an arbitrarily chosen part of
the inelastic solid. The condition states that for all fluctuations w on D with support
on 0D the homogeneous deformation given by F,, | provides an absolute minimizer
of the incremental potential in D. Thus the condition rules out internal buckling,
the development of local fine-scale microstructures and phase decomposition of a
homogeneous local deformation state. This mechanical interpretation is visualized
in Fig. 3. The material is stable if the superimposed fluctuation field of Fig. 3(b)
with w = 0 on 0D yields a higher energy level than the homogeneous deformation
F,.1 of Fig. 3(a).

The well-motivated concept of quasiconvexity is based on a global integral condition
in space which is hard to verify in practice. The central difficulty is to find the
fluctuation field w € Wy on D that minimizes the integral in (4.21). However, recall
that weak convexity conditions are related via

convexity = polyconvexity = quasiconvexity = rank-one convexity , (4.22)

and that the slightly weaker rank-one convexity condition is considered as a close
approximation of the quasiconvexity condition, see for example [Dac89|. In what
follows, we focus on the rank-one convexity as a criterion for material stability.
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4.1.2 Rank-one Convexity of the Incremental Stress Potential

The definition of rank-one converity can be traced back to the work of Corall and
Graves, see for example [Sil97]. The incremental stress potential 1 is said to be
rank-one convex at ¥, if the condition

W(E,) < _inf {(EW(E)+ (1= OW(E )}, (4.23)

holds for the laminate deformations F and F~ which satisfy the conditions
Fooi=&F"+(1-¢9F and rank[FT —F7] <1, (4.24)

in terms of the volume fraction £ € [0,1]. Condition (4.24); states that the volume
average of the micro-deformations F* yields the macroscopic homogeneous defor-
mation F, ;. The compatibility of the micro-phases (+) along their interface is
ensured by (4.24),. The rank-one convexity condition (4.23) rules out the develop-
ment of local fine-scale microstructures in the form of first-order laminates defined
by a rank-one deformation tensor. The material is stable if the superimposed first-
order laminate-type fluctuation field of Fig. 3(c) yields a higher energy level than the
homogeneous deformation F, 1 of Fig. 3(a). A qualitative picture of a non-convex,
unstable incremental response is given in Fig. 4. Observe carefully, that (4.23) is a
global stability criterion that needs the knowledge about the global range of instabil-
ity between F~ and FT. The material stability cannot be directly decided in terms
of a given local deformation F,, .1, but needs the rank-one convex hull construction
governed by F~ and F*. The local form of the rank-one convezity condition is the
classical Legendre-Hadamard or ellipticity condition

(M®@N) : 0ppgW(F,1): M®N) >0, (4.25)

in terms of the consistent tangent modulus for arbitrary unit vectors M and N,
see [Had03, TN65|. As shown in [MLO03b, ML03a], classical conditions of material
stability of elastic-plastic solids outlined in [Tho61, Hil62, Ric76] are consistent
with this local convexity condition, which is often motivated by considering wave
propagation in solids. As shown in Fig. 4, the associated range of instability is
different from the one predicted by the global condition (4.23). Recall that both
conditions are mathematical definitions related to the existence of regular solutions
of the variational problem (4.20). The question whether the global or local conditions
(4.23) and (4.25) are relevant depends on the physical ability of an inelastic solid
material to develop deformation microstructures in the associated unstable ranges.
This can only be clarified by experimental investigations.

In what follows we rewrite the rank-one convexity condition (4.23) for two-dimensional
problems. To this end, we introduce the ansatz

Lt:= 1 +(1-&dM®N |

L = 1 — é(dM®N | (4.26)

F* .= F, ;LT with {
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Figure 4: Qualitative representation of a non-convex incremental stress potential and
its convexification. [ and g characterize the ranges where the local and the global
convexity criterion are not satisfied, respectively. (a) At F,,; the stress potential
W is not rank-one convex (dashed). As a consequence, the macroscopic deformation
state F, 4, is not stable and decomposes into micro-phases F* which determine the
rank-one convex envelope (solid). (b) The relaxed stress-strain relation characterizes
a snap-through behavior between the micro-phases F* due to the constant slope of
the rank-one convex envelope

for the two deformation phases that satisfies the conditions (4.24). It models a
first-order laminate in terms of the two Lagrangian unit vectors M and N, which
correspond with those used in the Hadamard condition (4.25). For two-dimensional
problems, these vectors can be parameterized by two angles ¢ and y, i.e. M(p) =
[cosp sin]? and N(x) = [cos x sinx]|T . The scalar d describes the intensity of the
bifurcation on the micro-scale. £ is the volume fraction of the phase (+) and can
be understood as a probability measure in the sense of [You69]. Hence, for a two-
dimensional description of the rank-one laminate, deformations microstructures are
characterized by four micro-variables q = [€,d, p, x]* € Q , which are constrained to
lie in the admissible domain @ :=={q |0<{(<1,d>0,0< ¢ <7, 0<x<m}.
With this notation at hand, we write the global rank-one convexity condition (4.23)
for two-dimensional problems as the minimization problem

W(Fn 1) < égg{wh(Fn—Ha a)} (4.27)

in terms of the function

WHFpi1,q) = EW(FH(Frp1.q) + (1= EW(F (Frya,q)) (4.28)

that represents the the volume average of the potentials in the two deformation
phases. Figure 4(a) provides a visual demonstration for a non-convex incremental
stress potential W. The incremental stress potential W (F,, 1) is greater than the
interpolation of the potentials W (F*) and W (F~) of the phases. As a consequence,
the homogeneous deformation state is not stable and decomposes into the micro-
deformations F* which minimize the function W". In a typical incremental analysis
of an inelastic solid, the accompanying check of incremental rank-one convexity in
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[tn, tni1] needs the solution of the local minimization problem (4.27)

=W(F,41): rank-one convex at F,,;

. =rh
égg{W (Funi1, @)} { < W(F,41): not rank-one convex at F,, ;1 ’ (4.29)

for the four variables q defined before. The necessary condition of the minimization
problem

.

We=0, (4.30)

is a nonlinear equation for the determination of the micro-variables q. Note that

W' is not convex and for the solution of (4.30) the Newton iteration cannot directly
be applied. We refer to [ML03b, ML03a, MLGO04| for solution procedures.

4.2 Relaxation of a Non-Convex Constitutive Response

As pointed out in the recent papers [LMD03, ML03b, ML03a, MLGO04|, the incre-
mental variational formulation for the constitutive response opens up the oppor-
tunity to resolve the developing microstructure in non-stable standard dissipative
solids by a relaxation of the associated non-convex incremental variational problem.
If the above outlined material stability analysis detects a non-convex incremental
stress potential W, an energy-minimizing deformation microstructure is assumed to
develop such as indicated in Fig. 3. A relazation is associated with a convezifica-
tion of the non-convex function W by constructing its convex envelopes Wg. The
convexification is concerned with the determination of a developing microstructure.
This section develops a framework for a first-order rank-one relaxation of standard
dissipative solids.

4.2.1 Quasi-Convexified Relaxed Incremental Variational Problem

If material instabilities are detected at a point X € B of the solid by a failure of
conditions (4.23) or (4.27), we face a non-convexity of the incremental potential
W in some region of the inelastic solid. If the incremental potential function W
is not quasiconvex, the internal part of the functional (4.19) is assumed to be not
sequentially weakly lower semicontinuous. Then the existence of solutions of (4.20)
is not ensured. In other words, the minimum of the incremental boundary-value
problem (4.20) is not attained. Following [Dac89, AF84| we consider the relazed
energy functional

5@(‘Pn+1) = /BWQ(FnH) dr — [Hoxt(80n+1) — ext () ] (4.31)

where the internal part of the relaxed energy functional is obtained by replacing
the non-convex integrand W in (4.19) by its quasiconver envelope Wg. The cur-
rent deformation field of the elastic-plastic solid is then determined by the relaxed
incremental variational principle

olenn) = inf  Eoleni) . (4.32)

n+1e
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that minimizes the relazed incremental potential energy Eg. The quasiconvexified
incremental stress potential Wy, is defined by the minimization problem

Wo(Fot) = inf —— / W(F, 1+ Vw(y))dz (4.33)
weEWy |D| D

with respect to the microscopic fluctuation field w that constitutes the development

of a deformation microstructure, subject to a boundary condition providing a sup-

port on 9D. The first and second derivatives of the relaxed potential Wy function

define relaxed stresses and tangent moduli

FPTH—I = 8FWQ(Fn+1) and @n+1 = 8]%‘FWQ(FTL+1> . (434)

The relaxed problem (4.32) is considered to be a well-posed problem as close as pos-
sible to the unstable problem (4.20). The minimization problem (4.33) determines
a micro-fluctuation field w as indicated in Fig. 3(b). However, as already men-
tioned the basic difficulty is the detection of relevant functions w which define the
minimizing microstructure.

4.2.2 Rank-One-Convexified Relaxed Incremental Variational Problem

A failure of rank-one convexity conditions (4.23) or (4.27) indicates the instability
of the homogeneous deformation state F, ;; and the development of a pattern of
first- and higher-order laminates as indicated in Fig. 3(c). We consider the relazed
enerqgy functional

Enlpnr) = / Wa(Fos) dz — [To(@e) — Hew(pn) | (4.35)

where the internal part of the relaxed energy functional is obtained by replacing the
non-convex integrand W in (4.19) by its rank-one-convez envelope Wg, which is con-
sidered to be close to the quasi-convex envelope Wy. The current deformation field
of the elastic-plastic solid is then determined by the relaxed incremental variational
principle

Er(Pp1) = inf  Er(pniq) (4.36)

Prnt1 ew

that minimizes the relaxed incremental potential energy Eg for the admissible defor-
mation field. In [KS86] a construction was proposed to characterize the rank-one
convexification based on a recursion formula. Starting with Wg, (F,11) = W(F,11),
one computes the functions

WRk (Fn—i-l) = e+ 5}1}?& F7{£+WR1€71(F+> + g_WRk71(F_>} with &k >1 ) (437)
for the scales kK = 1,2,3.... After an infinite number of steps £k — oo the exact

rank-one convexified incremental stress potential

Wr(Fpi1) = lim W, (Fria) (4.38)
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Figure 5: Rank-one convexification and development of sequential laminates. The
rank-one convexification Wg, (F,,41) based on Kohn-Strang’s recursion formula im-
plies the development of a sequential laminate. Starting from the homogeneous
deformation state F,, .1 any phase of level £ — 1 decomposes into two phases (+)
and (—) of level k. As a consequence, a typical binary tree structure emerges

is obtained. Similar to (4.34), relaxed stresses and tangent moduli are defined as
P,y1 = OpWgr(F,11) and C, 11 1= 02zWr(F,11). According to recursive approach
by [KS86] any phase of order k£ — 1 decomposes into two phases (+) and (—) of order
k and minimize the average of the corresponding incremental stress potentials. The
developing micro-phases form a sequential laminate.

Figure 5 shows the typical binary tree structure of a rank-2 laminate. The un-
stable macroscopic deformation state F,,,; decomposes into two micro-phases F*
and F~ of micro-level 1 which again split into two pairs of micro-phases A™, A~
and BT, B~ of micro-level 2. The rank-one convexified potential Wg, then con-
sists of the volume average of the stress potentials W at the root of the tree, i.e.
Wiy (Frp1) = €7 € W(AT) +64 WA +EF [€BW(BY)+£5 W(B7)). In the
context of subgrain dislocation structures in single crystal plasticity, [OR99, ORS00]
relax the incremental constitutive description of the material based on the explicit
construction of microstructures by recursive lamination and their subsequent equi-
libration. However, they applied, based on physical arguments, a strong approxi-
mation by freezing the orientation of the laminates and the volume fractions dur-
ing the deformation process. Such a strong assumption has also been applied by
[MLO03b, MLO03a| for the analysis of microstructure development in strain-softening
von Mises plasticity. In contrast to these approaches, in [MLG04, AFO03| a rank-one
convexification has been proposed that determines both the developing orientation
of the laminates as well as the volume fraction.

4.2.3 First-Order Rank-One-Convexified Incremental Problem

We approximate the exact rank-one convexification procedure outlined above by a
two-phase analysis that takes into account only the first micro-level of Fig. 5. Hence,
an unstable macro-deformation F,,; decomposes into the two phases F™ and F~
modeled by ansatz (4.26). Then the first-order rank-one convexification of the non-
convex function W is obtained for two-dimensional problems by the minimization
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problem B
Wiy (Foy1) = inf W"(Fpi1,4) (4.39)

for the function W" defined in (4.28) with respect to the set of micro-variables q.
A problem similar to (4.39) was solved in |[LMDO3| for a one-dimensional strain-
softening elastic-plastic bar. The solution of the minimization problem (4.39) yields
solutions of £, d, ¢, x, which in the two-dimensional context determine two stable
phases. The relaxed stresses and moduli are obtained by evaluation of derivatives
of the function (4.28) with respect to F. The first derivative of (4.39) with respect
to the deformation F,,; at the solution point q* reads

OpWr, =W+ [Wellar]. (4.40)

Here, the last term vanishes due to the necessary condition (4.30) of the minimization
problem. Thus we identify the macro-stresses

Pri1=Wh . (4.41)
The second derivative of the potential reads
pWr, = W}}L‘F + [W,}fq][Q,F] . (4.42)
Here, the sensitivity of the fluctuation with respect to thg macro:deformation is
obtained by taking the linearization of (4.30), i.e. qp = —[W2 ]~ [Whg]. Insertion
into (4.42) finally specifies the relaxed moduli to
@n+1 = V_VhFF - [W,%q][wh ]_1[W,ZF] . (4-43)

»dd

Observe that the relaxed moduli consist of the volume average of the moduli of the
phases and a softening part. The latter is the consequence of the flexibility of the
rank-one laminate due to the phase decay. The algorithm of first-order rank-one
convexification is summarized in Table 2.

5 Relaxation of Strain Softening Isotropic Plasticity

The relaxation technique outlined in Sect. 4 is applied to the treatment of shearband
localizations in strain-softening isotropic elastoplasticity. The softening response of
the model causes localization phenomena which is interpreted as microstructure
developments on multiple scales associated with non-convex incremental stress po-
tentials. The strain softening inelastic materials with non-convex incremental stress
potentials have been investigated in the context of one dimensional elastic-plastic
bar in [LMDO03], and in isochoric damage mechanics in [GMO6].

The main goals of the numerical investigations are the analysis of the developing mi-
crostructures and the demonstration of the mesh-invariance of the relaxation tech-
nique proposed. We refer to [ML03b, ML03a| for details of the relaxation algorithm.
The elastic energy storage function has the following form

_H 2 ,u2 -/ 1 2
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(b)

Figure 6: Localization of Indentation Test at Plane Strain. Comparison of the
30 x 18 and the 45 x 27 element meshes. (a) Deformed meshes with equivalent
plastic strains, (b) Relevant localization directions

Figure 7: Indentation Test at Plane Strain. Deformed mesh with zoomed-out micro-
structures of shaded elements at the center Gauss point for the (a) 25 x 15 and (b)
45 x 27 element mesh
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Figure 8: Localization of Indentation Test at Plane Strain. Load displacement
curves for different finite element meshes (a) with non-relaxed formulation and (b)
proposed relaxation technique

with J := det Fo = det F, the shear modulus g > 0, the Lame constant A > 0 and
the softening modulus A < 0. The level set function is given as

E={(%70)] ||2||+\/gﬁ§0}, (5.45)

where ¢ is the Mandel stress, § is the conjugate force to the hardening variable «
and ¢ is a material parameter. Then the dissipation function for the isotropic von
Mises plasticity with softening can be formulated as

¢(Lpl,d) = sup {E : Lp1 + 60&} y (546)
(%,8)€E

in terms of the plastic velocity gradient Ly := PP~! and the rate of hardening
variable a.

Here, we approximate the minimization problem (4.39) by introduction of an a priori
length scale § representing the width of micro-shearband. Then, in the finite element
context the volume fraction £ at each integration point is described as a function of
the length scale § and a characteristic geometric parameter g of the finite element. A
further simplification to the minimization problem is obtained by fixing the laminate
orientation angle y to the critical direction 6., obtained from the acoustic tensor

Q(a) = L(a) - 0gpW (F,i1) - L(a) (5.47)

where L(a) = [cos(a) sin(a)]T is a unit vector to describe the localization direction.
The material stability is controlled by the following minimization problem for the
determinant of the acoustic tensor

. >0 stable at F,, 11
Irgn{det[Q(a)]} { <0: unstable at F,,

and if the determinant becomes zero or negative then the critical angle 6., and the
laminate orientation y are determined as

X =0, = arg{rrgin[det Q(a)l} . (5.49)

, (5.48)
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Furthermore we consider M - N = 0 which characterizes a shear band type failure.
Then, the approximated relaxed energy is obtained by a minimization with respect
to one scalar variable d,

Wi,y (Fop1) = inf [(WF (Fop, d) + (1= W (Fopy, d) ] (5.50)

Having computed W, the relaxed stresses P and the relaxed moduli C can be
computed from (4.41) and (4.43), respectively.

As a representative example, we consider next a plane strain indentation test where
a localization in the form of curved shear bands are observed experimentally. The
equivalent plastic strains and the formation of shear bands with corresponding lo-
calization directions are plotted in Fig. 6. In Fig. 7 the development of microstruc-
tures is visualized at the selected integration points for two discretizations. In order
to prove the mesh objectivity of the proposed relaxation algorithm load-deflection
curves are plotted in Fig. 8 for four different mesh densities. The non-relaxed formu-
lation in Fig. 8(a) shows a clear mesh dependency whereas the proposed relaxation
algorithm in Fig. 8(b) exhibits no mesh dependency in the post-critical regime.

6 Relaxation of Non-Convex Single-Slip Plasticity

We now point out details of the first-order rank-one convexification analysis intro-
duced in Sect. 4 for the model problem of single slip plasticity. Different from
the strain softening example discussed in Sect. 5, the non-convexity appears in the
single-slip plasticity as a result of geometric constraints related with the orientation
of a slip-system. The model problem of single slip crystal plasticity has already been
investigated in several works, see |[CHM02, BCHHO04, Mie04a, CT05, CO05, MLGO04|.

The main goals of the numerical investigations are the analysis of the developing mi-
crostructures and the demonstration of the mesh-invariance of the relaxation tech-
nique proposed. We refer to [MLGO04| for details of the relaxation algorithm based
on first-order rank-one convexification. As a concrete form, we apply a compressible
Neo-Hookean material
_H 2 K2 H
(Fq) = §[HF01H — 3]+ Z[J —2(1+ 2;) InJ—1], (6.51)
with J := detF, = detF. x > 0 and g > 0 denote the bulk and the shear moduli,
respectively. The dissipation function for the linear hardening model of single-slip
plasticity is
¢(Lpl) = [’7‘0 + h’}/] |Lp1 . (S X T)| s (652)

in terms of the Schmid stress 7 associated with the slip system of single-slip plas-
ticity and the linear hardening modulus h. The slip system is described by the slip
direction S and the slip normal T with S-T = 0.

Here, a key contribution is the derivation of a semi-analytical solution that reduces
for two-dimensional problems the independent micro-variables from four in q to just
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Figure 9: Simple shear test. Comparison of evolution of microstructures for simple
shear test with three different slip system (a) o = 145°, (b) a = 135°, (¢) o = 125°.
After loss of material stability microstructures develop which are modeled as first-
order rank-one laminates
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Figure 10: Simple shear test. Comparison of relaxed and non-relaxed Kirchhoff
stress components for plane strain tension test and two different slip systems. (a)
a =135° (b) a = 125°. The shape of the governing stress coordinate 7j5 represents
a snap-through behavior within the non-convex range. After recovery of the stable
homogeneous state the relaxed and the non-relaxed stress responses coincide again

one variable. Recall the necessary conditions (4.30) of the minimization problem of
relaxation

Wt o= Wt —W- —d [P+ (1-&P]: (FM®N) =0

Wi = ¢1-¢ [P*-P]:(FM ®N) =0 60
Wh = ¢1—-¢)d[P"—P7]: (FM,®N) =0 [’ '
Wh = ¢1-¢dPr—P]: (FM ®N,) =0

in terms of the four micro-variables q := [¢,d, ¢, x]T. Note that first two conditions

in (6.53) are the physical and the configurational force equilibrium conditions on
the interface between two phases. In the sequel, we will evaluate these conditions
and derive a semi-analytical solution for the minimizing laminate F£. The plastic
deformation P* and the hardening variable in the phases (£) are denoted

Pt =P*(1+Ay*S®T) and ~* =~"4+ A", (6.54)

where Ay = (7 — v,)* are the incremental plastic arc lengths. P* and ~* are the
plastic deformation and +* the hardening variable of the last stable homogeneous
state, respectively. Equation (6.54) points out the cause of the phase decay for
the model problem of single slip plasticity that results from the bifurcation of the
plastic deformation starting from P* with Ay*. The equilibrium of the Schmidt
stresses 77 = 77 yields the identity Ay" = Ay~ = A~ of the incremental slips. If
one postulates the preservation of the volumetric deformation det[F*] = det[F~] =
det[F] it turns out that the Lagrangian laminate vectors are orthogonal, i.e. N-M =
0. This result allows for the parameterization of these vectors in terms of the vectors
of the slip system N = cosf S —sinf T and M = sinf S + cosf T where 6 is an
in-plane orientation angle. Exploitation of these results leads to the identification
of the inclination angle and a formula for the micro-intensity

2Ax

= —-P*: T d = .
tan @ S® and d 020 (11 A7)

(6.55)
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Figure 12: Rectangular specimen in tension. Load-displacement curves for five
different finite element meshes in terms of (a) the non-relaxed (non-objective) for-
mulation (the finer the mesh the softer the response) (b) the proposed relaxation
technique

Having gomputed d, the volume fraction &, the relaxed stresses P and the relaxed
moduli C can be computed from (6.56), (4.41) and (4.43), respectively.

First, we investigate a homogeneous simple shearing with different slip systems
shown in Fig. 9. Because of a specific choice of the orientation of the slip-systems
the material stability of the homogeneous deformation can be lost and microstruc-
tures may arise. The development of the first-order rank-one laminate type mi-
crostructures is plotted in Fig. 9 for various level of deformation. During the macro
deformation the plastic slip-systems start to rotate and align to the principal load-
ing mode. The stronger the blocking of the principal deformation the longer the
non-convex range. The shear component of the Kirchhoff stress for the relaxed and
the non relaxed solutions are plotted in Fig. 10 where the range of the non-convex
domain is clearly dependent on the chosen slip system orientation.

Next, a plane strain tension test is considered where the slip direction vector is taken
to be 10° counterclockwise from the horizontal. In Fig. 11 the development of mi-
crostructures is visualized for two different mesh densities. The specific orientation
of the slip system causes the non-convex incremental potential which is relaxed by
the proposed algorithm in terms of first-order laminates. In order to prove the mesh
objectivity of the proposed relaxation algorithm load-deflection curves are plotted
in Fig. 12 for different mesh densities. Although there is no softening in the model,
the non-relaxed formulation shows mesh dependency due to non-convexity in the
problem whereas the proposed relaxation algorithm exhibits no mesh dependency.

Final example is concerned with a rectangular specimen in shear where the slip
direction is chosen to be 135° counterclockwise from the horizontal. In Fig. 13, the
development, of microstructures is visualized by considering two different levels of
deformation where the evolution of volume fractions and laminate orientations can
be seen.
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Figure 13: Rectangular specimen in shear. Visualization of microstructure develop-

ments at selected Gauss points at (a) v = 20mm (b) u = 30mm
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7 Conclusions

The energetic formulation for finite-strain elastoplasticity has been proved as a very
flexible mathematical tool that links the heavily used time-incremental minimization
problem to a suitable weak time-continuous problem. Moreover, the theory of the
the calculus of variations can be used to provide existence results for the incremental
problem as well as for the time-continuous one. For the latter case we still need to
assume spatial regularizations to prevent the formation of microstructure. At present
the global existence theory has proved to be successful in the simplest situations, but
further developments is needed to explore the capability of the method for providing
classical solutions, i.e., without microstructure. Moreover, it will be essential to
derive reliable and efficient numerical algorithms in the spirit of [MR05, MRSO06b].

The energetic formulation has the major drawback that the stability condition (S)
is a global condition, whereas a [ocal condition would be more physical and better
for numerical purposes. First results to understand rate-independent systems as
limits of systems with small viscosity are presented in [EMO6|, but this theory is
restricted to finite-dimensional Hilbert spaces. Generalizations to infinite dimensions
including abstract metric spaces are developed in [MRS06a|, but there applicability
in elastoplasticity is still out of reach.
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Table 1: Overview: Minimization Principles for Standard Dissipative Solids

(M)

Constitutive Model. F € GL,(3) at = € B is the local
deformation and Z € Z a generalized vector of inter-
nal variables. Set of local material equations has the
structure

P = 0py(F,T)

stresses

evolution equation 0 € Opy(F,T) + 01-gz5(i', ), T

defined in terms of an energy storage and a dissipation
function 1, ¢.

Incremental Variational Formulation of Constitutive
Model. In a finite time increment [t,,t,.1], the min-
imization problem of the constitutive response

IEDn—i-l = aFW(Fn-i-l)

W(F,1) =infg [ 4+ ¢] dt
determines the current internal state Z,,,; € Z and pro-
vides a potential for the stresses at time ¢,,.

stresses
stress potential

Stability of Incremental Constitutive Response. In
[tn, tni1] the material is locally stable if the incremental

stress potential W is quasi convez
W(F,41) <infy ﬁ fD W(Fpq1 +

for all possible fluctuations w(y) on the domain D.

stable response

Microstructure Development in Non—Stable Materials.
For an unstable non convex response, the incremental
minimization problem of convexification

PQTH—I = aFVVQ (Fn—l-l)

macro stresses
relazation

provides a relaxed quasi-convex hull Wg of W and
determines the current microstructure fluctuation field

w(y).

WQ(Fn+1) = iIlfw |IF| fD W(Fn+1 +

Vw(y)) dz

Vw(y)) dz
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Table 2: First Order Rank One Convexification of Incremental Response

1. Database {F,.,1,Z,Z,} and starting value qy :=
{57 d7 N7 M}O given'

2. Set micro deformation phases

. Lt= 1 +(1-&dMaN

= _ =

P2 = Foal™ with { L= 1 - &M@eN.

3. Evaluate the potential W"(F,1,q) = EW(F*) + (1 —
SW(FT)

and its derivatives W%, W,Z, W,’]_E«F, Wﬁlq,

Th

W’qF.

4. Convergence check: If (|| W2 || < tol) go to 6.

5. Newton wupdate of micro-variables q < q —
(Wi T W1

6. Set relaxed macro stresses and tangent macro moduli

Py =W and Coay = Whep—[ Wl W 17 [ Ws ]
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