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AbstratAn important lass of �nite-strain elastoplastiity is based on the multi-pliative deomposition of the strain tensor F = FelFpl and hene leads toomplex geometri nonlinearities. This survey desribes reent advanes onthe analytial treatment of time-inremental minimization problems with orwithout regularizing terms involving strain gradients. For a regularization on-trolling all of∇Fpl we provide an existene theory for the time-ontinuous rate-independent evolution problem, whih is based on a reently developed ener-geti formulation for rate-independent systems in abstrat topologial spaes.In systems without gradient regularization one enounters the formationof mirostrutures, whih an be desribed by sequential laminates or moregeneral gradient Young measures. We provide a mathematial framework forthe evolution of suh mirostruture and disuss algorithms for solving the as-soiated spae-time disretizations. We outline in a �nite-step-sized inremen-tal setting of standard dissipative materials details of relaxation-indued mi-rostruture development for strain softening von Mises plastiity and single-slip rystal plastiity. The numerial implementations are based on simpli�edassumptions onerning the omplexity of the mirostrutures.1 IntrodutionWe study the theory of elastoplastiity in the ase of �nite strains in appliationssuh as visualized in Fig. 1, where the deformation gradient F = ∇ϕ is onsidered asa matrix with positive determinant. Moreover, we work under the basi assumptionthat the multipliative deomposition
F = ∇ϕ = Fel P with P = Fplan be used to desribe the elasti properties via the elasti part Fel of the deforma-tion tensor and the plasti evolution via the plasti tensor P. In ontrast to this, theadditive deomposition ε = εel+εpl is well-established in small-strain elastoplastiityand has nie mathematial features sine it an be easily ombined with onvexitytools. The assumption of �nite strains and the multipliative split destroy lassialonvexity properties and the more general notions of poly- and quasi-onvexity needto be employed for the energy-storage potential

ψ(F,P, p) = ψ̃(FP−1, p) ,where p are additional hardening variables.The subsequent mathematial analysis as well as the numerial implementations arebased on the time-inremental minimization problems introdued in Set. 2 whihare phrased in terms of the full stored energy
E(t,ϕ,P, p) =

∫

B

ψ(∇ϕ,P, p)+U(P, p,∇P,∇p)dx− 〈Πext(t),ϕ〉1
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(a) (b)()Figure 1: Experiments and numerial simulations of �nite plasti deformations. (a)Neking of a polyrystalline material. (b) Nek propagation in a tensile test of anamorphous glassy polymerand a dissipation distane

D((P0, p0), (P1, p1)) =

∫

B

D(P0, p0), (P1, p1))dx .For a given partition 0 = t0 < t1 < · · · < tN = T of the time interval [0, T ] thetime-inremental minimization problem has the form(IP) (ϕj ,Pj, pj) ∈ Arg Min
eϕ,eP,ep

(
E(tj, ϕ̃, P̃, p̃)+D((Pj−1, pj−1), (P̃, p̃))

)
.In Setion 2.2 (f. [Mie03a℄) it is shown that this inremental problem ours natu-rally as the fully impliit (bakward Euler) sheme for the energeti formulation (S)& (E), whih is a weak formulation of the time-ontinuous problem onsisting of theelasti equilibrium together with the plasti �ow law, see (2.3). In Set. 2.3 we dis-uss the arising nonlinearities, whih are best understood when onsidering the ma-trix groups GL+(d) = {F ∈ Rd×d | detF > 0} and SL(d) = {P ∈ Rd×d | detP = 1}as Lie groups.In Setion 3 several existene results are surveyed. In the situation without anylength sale (i.e., the term U involving ∇P in E is not present) the variables P and

p an be minimized pointwise for eah x ∈ B in the inremental problem (IP). Thisleads to the ondensed potential
W cond((P0, p0);F) = min{ ψ(F,P1, p1) +D((P0, p0), (P1, p1)) | (P1, p1) } ,whih plays a fundamental r�le in the existene theory in Set. 3.1. Under the as-sumptions thatW cond((I, p0); ·) is polyonvex and that it satis�es the usual oerivityassumptions, an existene theory for (IP) was derived in [Mie04b℄. If polyonvexityof W cond fails, then existene of solutions is not to be expeted beause of the for-mation of mirostruture. In this situation the relaxation tehniques of Set. 4 haveto be used to derive e�etive properties. 2



PSfrag replaements
(a) (b)()Figure 2: Experiment and numerial simulation of mirostrutures in �nite plastideformations. (a) Experimentally observed mirostruture. (b) Numerial simula-tion based on rank�one laminate mirostrutureIn Set. 3.2 a regularization of (IP) is onsidered whih involves the geometri dis-loation tensor GP = (curlP)P⊤ via the potential U in E , namely U(P,∇P) =

V (GP). In [MM06b℄ it was observed that the multipliative deomposition Fel =
∇ϕP−1 is perfetly suited to be ontrolled in the sense of polyonvexity, if curlPan be bounded by the energy. Hene, the solvability of (IP) an be proved undersuitable assumptions on the dissipation distane.Finally, in Set. 3.3 we disuss work in progress (f. [MM06a℄) whih uses a fullregularization of the internal variables (P, p) in the energy-storage funtional E , i.e.,
U(P, p,∇P,∇p) ≥ c|(∇P,∇p)|r. Using the abstrat theory for rate-independentsystems developed in [MM05, Mie05b, FM06℄, it is possible to show �rst existeneof solutions for (IP) and then to pass to the limit for time step going to 0. The limitfuntion obtained along a arefully hosen subsequene an �nally be identi�ed asa solution of the original energeti formulation (S) & (E).In Setion 4 we de�ne material instabilities in rate independent standard dissipativesolids based on �nite-step-sized inremental energy minimization priniples and ap-ply the results in Setions 5 and 6 to the predition of deformation mirostruturesin strain-softening von Mises and single-slip rystal plastiity. The formulation o�erstwo important perspetives. First, the de�nition of material stability of standarddissipative materials is based on weak onvexity onditions of inremental stress po-tentials in analogy to �nite hyper-elastiity. Seond, mirostruture developments inunstable inelasti solids suh as visualized in Fig. 2 are assoiated with non-onvexinremental stress potentials similar to elasti phase transformation problems. Thesedeformation mirostrutures an be resolved by a relaxation of inremental energyfuntionals based on a onvexi�ation of the non-onvex stress potential. The sub-sequent developments are strutured into three parts as overviewed in Table 1.An inremental variational formulation for standard dissipative materials is outlinedin the works [Mie02a, MSL02, Mie03a℄, whih generalized treatments on the defor-mation theory of plastiity [Mar75℄, its appliation to a �nite-step-sized inrementalsetting [OR99, OS99℄ and the formulation [CHM02℄ restrited to �nite plastiity. It3



desribes the response of an inelasti material by only two salar funtions: the en-ergy storage funtion and the dissipation funtion. The general set up of this generitype of material model an be traed bak to the works [Bio65, Zie63, Ger73℄. Itovers a broad spetrum of models in visoelastiity, plastiity and damage me-hanis. For this lass of materials we de�ne a variational formulation, where aquasi-hyperelasti stress potential at disrete time is obtained from a loal mini-mization problem of the onstitutive response, in Table 1 denoted by problem (C).Algorithms for a disrete setting of this onstitutive minimization problem are out-lined in the works [OS99, MA04, MAL02, MS04a, MS04b℄ for di�erent approahesto �nite plastiity.A key advantage of the outlined variational formulation is the opportunity to de�nethe stability of the inremental inelasti response in terms of terminologies usedin elastiity theory, see for example [Da89, Kra86, Cia88, MH94, �il97℄. Here, aneessary ondition for the existene of minimizers fores the energy funtional tobe sequentially weakly lower semiontinuous (s.w.l.s.). An important impliationof this desired property is the quasionvexity of the stored elasti energy funtion,a terminology introdued in [Mor52℄. The above outlined onstitutive variationalformulation enables us to extend these results to the �nite-step-sized inrementalresponse of inelastiity. To this end, we introdue an inremental energy minimiza-tion priniple for standard dissipative solids that ontains the inremental stresspotential. The inelasti solid is then onsidered to be stable if this potential is qua-sionvex, see ondition (S) in Table 1. However, quasionvexity is a global integralondition whih is hard to verify in pratie. More manageable is the slightly weakerrank-one onvexity that is onsidered to be a lose approximation of quasionvexity.As presented in [ML03b, ML03a, MLG04℄, lassial onditions of material stabil-ity of elasti-plasti solids outlined in [Tho61, Hil62, Ri76℄ are onsistent with thein�nitesimal form of the rank-one onvexity, i.e. the strong elliptiity or Legendre-Hadamard ondition.As pointed out in the reent papers [LMD03, ML03b, ML03a, MLG04, GM06℄ the in-remental variational formulation for the inelasti response opens up the opportunityto resolve a developing mirostruture in unstable standard dissipative solids by a re-laxation of the assoiated non-onvex inremental variational problem, in Table 1 de-noted by problem (R). If the above outlined material stability analysis detets a non-onvex inremental stress potential, an energy-minimizing deformation mirostru-ture is assumed to develop suh as indiated in Fig. 2. A relaxation is assoiatedwith a onvexi�ation of the non-onvex stress potential by onstruting its quasi-orrank-one onvex envelope. We refer to [KS86, Da89, �il97, M�99, Dol03℄ for a soundmathematial basis. The onept of relaxation has been applied to elasti phase de-omposition problems in [Koh91, Lus96, CP97, DD00, GMH02, AFO03, KMR05℄,single rystal plastiity in [OR99, ORS00, MLG04℄, strain-softening von Mises plas-tiity in [LMD03, ML03b, ML03a℄ and damage mehanis in [GM06℄. We ommenton these results in Setions 5 and 6.
4



2 Modeling of Rate-Independent Elastoplastiity2.1 Standard Generalized MaterialsWe onsider a body with referene on�guration B ⊂ Rd. The deformation is de-noted by ϕ : B → Rd, and the deformation gradient F = ∇ϕ is alled strain tensor.Additionally, in the sense of standard generalized materials (f. [ZW87, Ha97℄)we onsider a set of internal variables I : B → Z, where Z is a suitable �nite-dimensional manifold. The theory is based on the elasti potential ψ and the dissi-pation potential φ as the underlying onstitutive funtions
ψ = ψ(F,I) and φ = φ(I, İ) ≥ 0 ,Finite-strain elastoplastiity is based on the multipliative deompositionF = ∇ϕ =

Fel Fpl of the deformation gradient, where Fel is the elasti part of the strain tensorand P := Fpl the plasti part, shortly the plasti tensor. The internal variable takesthe form I = (P, p) ∈ Z, where p ∈ Rm denotes some hardening variable. Forsimpliity we neglet any dependene on the material point x ∈ BThe deformation gradient F is best onsidered as an element of the Lie group
GL+(d) = { F ∈ Rd×d | detF > 0 } and the plasti tensor P is usually assumedto have determinant 1, i.e. P is element of the speial linear group SL(d) = { P ∈
Rd×d | detP = 1 }. We will investigate the arising geometri nonlinearities in Set.2.3. Consequently, φ is de�ned on the tangent bundle TZ of the manifold Z ofinternal variables. The multipliative deomposition or equivalently the axiom ofplasti indi�erene (f. (Sy2) on p. 359 in [Mie03a℄) means

ψ = ψ(F,I) = ψ(F,P, p) = ψ̃(Fel, p) = ψ̃(FP−1, p), (2.1)
φ = φ(I, İ) = φ(P, p, Ṗ, p) = φ̃(p, ṖP−1, ṗ). (2.2)Rate-independeny is expressed in the fat, that φ is homogeneous of degree 1 inthe rate İ = (Ṗ, ṗ), i.e., φ(I, δİ) = δφ(I, İ) for all δ ≥ 0.The loal balane laws involve the onjugated fores

P = ∂Fψ(F,I) = ∂Fel
ψ̃(Fel,I)P−⊤ and F = −∂Iψ(F,I) ∈ T∗

I
Zand take the following form

−divP = fext and 0 ∈ ∂
İ
φ(I, İ) −F in B. (2.3)The �rst equation, together with suitable boundary onditions, is the elasti equi-librium equation and the seond is the plasti �ow law whih is de�ned on T∗

I
Z.2.2 Energeti Formulation Using Dissipation DistanesWe now use the abstrat theory developed in [MTL02, MT04℄ in the Banah spaesetting and in [MM05, Mie05b, FM06℄ in the fully nonlinear setting to formulate5



time-ontinuous problem, whih ontains the full initial-boundary value problem ofelastoplastiity. Beause of the rate-independene and the strong nononvexities weannot expet that the rates İ exist and hene we need a derivative-free formulation.The funtion φ an be understood as an in�nitesimal metri on I whih de�nes a(global) distane D, alled dissipation distane in the sequel:
D(I0,I1) = inf{

∫ 1

0
φ(I(s),İ(s))ds | I∈C1([0,1],Z), I(0)=I0, I(1)=I1 } .The de�nition provides immediately the triangle inequality

D(I1,I3) ≤ D(I1,I2) +D(I2,I3) for all I1,I2,I3 ∈ Z . (2.4)The plasti indi�erene (2.2) provides the invariane
D((P0P∗, p0), (P1P∗, p1)) = D((P0, p0), (P1, p1)) (2.5)for all P0,P1,P∗ and p0, p1.For deformations ϕ : B 7→ Rd and internal states I : B 7→ Z we de�ne global energyfuntionals by integration over the whole body B as follows
E(t,ϕ,I) =

∫
B
ψ(∇ϕ(x),I(x))dx− 〈Πext(t),ϕ〉,

D(I0,I1) =
∫
B
D(I0(x),I1(x))dx,

(2.6)where Πext(t) denotes the external loading depending on the proess time t ∈ [0, T ].Here, E(t,ϕ,P, p) is the Gibbs energy at time t assoiated with the state (ϕ,I) :
B → Rd × Z, and D(I0,I1) is the minimal amount of dissipation ourring whenthe internal state I0 is hanged ontinuously into I1.A pair (ϕ,I) : [0, T ]×B 7→ Rd×Z is alled an energeti solution for the funtionals
(E ,D), if it satis�es for all t ∈ [0, T ] the following stability ondition (S) and theenergy balane (E):(S) Stability: For all omparison states (ϕ̃, Ĩ) we have

E(t,ϕ(t),I(t)) ≤ E(t, ϕ̃, Ĩ) + D(I(t), Ĩ) .(E) Energy balane:
E(t,ϕ(t),I(t))+DissD(I, [0,t]) ≤ E(0,ϕ(0),I(t))−

∫ t

0
〈Π̇ext(s),ϕ(s)〉ds .The dissipated energy DissD(I, [r, s]) along a proess I : [0, T ] × B 7→ Z is

DissD(I, [r, s]) = sup{
∑N

1 D(I(tj−1),I(tj)) | r ≤ t0 < t1 < · · · < tN ≤ s }and oinides with ∫ s

r

∫
B
φ(I(x, t), İ(x, t))dxds for smooth proesses.The energeti formulation (S) & (E) haraterizes the proess ompletely and it doesneither involve derivatives of F = ∇ϕ and I with respet to t or x nor derivativesof the onstitutive funtions ψ and φ. It is shown in [Mie03a, Mie05b℄ that theenergeti formulation is onsistent with the lassial loal balane laws (2.3), i.e.,6



they are satis�ed for any su�iently smooth energeti solution. Moreover, in smoothand onvex ases we have uniqueness of energeti solutions if a suitable initial state
(ϕ0,I0) is spei�ed.The energeti formulation is intrinsially linked to the time-inremental problem,whih has the major advantage that it is a minimization problem. For a givenpartition 0 = t0 < t1 · · · < tN = T of the time interval [0, T ] and a given initial value
(ϕ0,I0) we de�ne the inremental problem(IP) Inremental minimization problem:Find iteratively (ϕj,Ij) for j = 1, ..., N suh that

(ϕj,Ij) ∈ Arg min{ E(tj, ϕ̃, Ĩ) + D(Ij−1, Ĩ) | all (ϕ̃, Ĩ) } .This is a fully bakward, hene fully impliit sheme whih is di�ult to solvenumerially. Moreover, the dissipation distane D : Z × Z → [0,∞], whih de�nes
D, is usually not known expliitly. Hene, the algorithms disussed in [Mie02a,MAL02, MSL02℄ are suitable variants of (IP).The big advantage of (IP) is its mathematial onsisteny whih arises from D sat-isfying the triangle inequality (2.4). Just using this and the minimization property,we obtain that every solution (ϕj,Ij)j=1,...,N of (IP) satis�es for j = 1, ..., N thefollowing disretize versions of (S) and (E):

E(tj ,ϕj,Ij) ≤ E(tj, ϕ̃, Ĩ) + D(Ij , Ĩ) for all (ϕ̃, Ĩ) , (2.7)
E(tj,ϕj ,Ij)+D(Ij−1,Ij)

≤ E(tj−1,ϕj−1,Ij−1) +
∫ tj

tj−1
∂sE(s, (ϕj−1,Ij−1))ds .

(2.8)These estimates will be ruial for the subsequent analysis.2.3 Lie Groups and Geometri NonlinearitiesBefore dealing with an existene theory for the energeti formulation we work out alittle more the geometry whih arises from the fat that we are dealing with �nitestrains and that we are using the multipliative deomposition. In �nite-strainelastiity the stored-energy density ψ should be onsidered as a mapping from theLie group
G := GL+(d) = { F ∈ Rd×d | detF > 0 } .The plasti tensor P is assumed to lie in the Lie subgroup
P := SL(d) = { P ∈ Rd×d | detP = 1 },or even a smaller subgroup. Note that P an be seen as the matrix group that mapsthe rystal lattie onto itself. We write Z = P × H for the manifold of internalstates, where I = (P, p) with p ∈ H . 7



The onjugated fores have the following properties
P = ∂Fψ(F,P, p) ∈ T∗

FG ,
Q = −∂Pψ(F,P, p) ∈ T∗

PP ,
q = −∂pψ(F,P, p) ∈ T∗

pH .However, using the multipliative struture of the Lie groups it is more advantageousto use the multipliative derivatives de�ned via
K:A = d

ds
ψ(esAF,P, p)|s=0 = ∂Fel

ψ̃(Fel, p)F
⊤
el :A for A ∈ TIG ,

M:B = − d
ds
ψ(F, esBP, p)|s=0 = F⊤

el ∂Fel
ψ̃(Fel, p)P

−⊤:B for B ∈ TIP .Hene, we �nd stress tensor in the dual Lie algebras g and p:
K = ∂Fel

ψ̃(Fel, p)F
⊤
el ∈ g := T∗

IG and M = F⊤
el ∂Fel

ψ̃(Fel, p) ∈ p := T∗
IP .The tensors are know as the Kirhho� stress tensor K = PFT and the Mandel stresstensor M = QP⊤.The �rst fat about these tensors is that we obtain another insight into the �owlaw 0 ∈ ∂

İ
φ(I; İ) − F whih is a di�erential inlusion on T∗

I
Z. Using the plastiinvariane of φ we de�ne the elasti domain at P = I via

Q(p) = ∂(P,p)φ((I, p), (0, 0))

= { (M, q) | ∀ İ ∈ Z: φ((I, p), Ĩ) ≥ (M, q):Ĩ } ⊂ p × T∗
pHand obtain, with M = QP⊤, the �ow law in invariant form

(ṖP−1, ṗ) ∈ N(M,q)Q(p) = ∂XQ(p)(M, q) ⊂ p × TpH .The seond fat about these tensors is that they satisfy muh better estimates interms of the energy potential ψ. In fat, following [Bal02℄ it is reasonable to workwith the following multipliative stress ontrol estimates:
∃CK > 0 ∀Fel ∈ G : |K(Fel, p)| ≤ CK

(
ψ(Fel, p)+1

)
, (2.9)

∃CM > 0 ∀Fel ∈ G : |M(Fel, p)| ≤ CM

(
ψ(Fel, p)+1

)
, (2.10)In fat, (2.10) implies (2.9) but not vie versa. These onditions are satis�ed bypolyonvex potentials ψ that go to ∞ for detFel → 0. In fat, most Ogden materialssatisfy both onditions. For instane onsider

ψ(Fel, p) = c1|Fel|
r1 + c2(detFel)

−r2 + c3(detFel)
r3 + γ(p)with cj, rj > 0 and γ(p) ≥ 0. Using ∂F detF = cof F and (cof F)F⊤ = F⊤ cof F =

(detF)I it is easy to see that (2.9) and (2.10) hold. A similar estimate does nothold for P(Fel, p), sine (detFel)
−1−r2 cof F annot be estimated by (detFel)

−r2. Itwas observed in [FM06, KM06℄ that these estimates an be used e�etively in rate-independent system to ontrol the power of the external fores.8



On the Lie groups G it is possible to introdue right-invariant distane
dG(F0,F1) = inf{

∫ 1

0
|Ḟ(s)F(s)−1|ds | F∈C1([0,1],G),F(0)=F0,F(1)=F1 },whih satis�es dG(F0,F1) = dG(F0F

−1
1 , I). Only in very few ases dG an be alu-lated expliitly, see [Mie02b, HMM03℄. The ondition (2.9) or (2.10) now impliesthat log(ψ+1) is globally Lipshitz ontinuous

∣∣∣log
(
ψ(F, p)+1

)
− log

(
ψ(F̃, p)+1

)∣∣∣ ≤ CLipdG(F, F̃) for all F, F̃ ∈ G .Sine dG(F, I) ≈
∣∣log(F⊤F)

∣∣, the energy potential ψ satis�es the upper estimate
ψ(F, p) ≤ Cupp(p)

(
|F|+|F−1|

)γ
.This upper bound is onsistent with the lower estimates also alled oerivity:

ψ(Fel, p) ≥ c1|Fel|
rF+c2|p|

rp−C2 for all (Fel, p) ∈ G ×H . (2.11)We will need that the dissipation distane D : Z × Z → [0,∞], whih is assoiatedwith the dissipation potential φ : TZ → [0,∞], is oerive as well, namely
D((P, p), (I, p∗)) ≥ c3

(
|P|+|P−1|)rP−C3 for all (P, p) ∈ Z = P ×H . (2.12)To see that that this oerivity estimate needs a signi�ant amount of hardening wetreat the simplest example with a salar hardening parameter p ≥ 0 and a hardeningfuntion h : [0,∞) → (0,∞):

φ̃(p,V, ṗ) =

{
h′(p)ṗ if ṗ ≥ |V|p ,
∞ else .Aording to [Mie03a℄ we �nd

D((P0, p0), (P1, p1)) =

{
h(p1)−h(p0) if p1 ≥ p0+dP(P0,P1) ,

∞ else .Thus, assuming p∗ = 0 and h(0) = 0 we obtain the lower estimate
D((P, p), (I, p∗)) ≥ h(dG(I,P)) ≥ c4

(
|P|+|P−1|)rP − C4only if h(p) ≥ c5e

γp−C5 for some c5, γ > 0, sine dG(I,P) grows only logarithmially.3 Existene ResultsThe existene results disussed in this setion onern solutions without mirostru-ture. These solutions relate to lassial meso and marosopi models for �nite-strain elastoplastiity whih are used for desribing deep drawing or other plasti9



proesses involving large strains. In the highly nononvex situation we have to �ndassumptions on the onstitutive laws whih are ompatible with the above geometrinonlinearities and still are good enough to prevent the formation of mirostruture,whih turns out to be a rather ommon feature in �nite-strain elastoplastiity, see[OR99, CHM02, ML03a, MLG04, HH03, Mie04a, BCHH04, CT05℄.We hoose funtion spaes and funtionals. The admissible deformations are sup-posed to lie in the set
W = { ϕ ∈ W1,rϕ (B,Rd) | ϕ|ΓDir

= id } .For the internal variables we hoose the set
Z = { (P, p) ∈ LrP(B,Rd×d) × Lrp(B,Rm) | (P(x), p(x)) ∈ P ×H a.e. in B } .The hoie of the Lebesgue exponents rϕ, rF, rP and rp will be a ruial step in thefurther analysis.All our existene results will be based on the notion of polyonvexity , whih meansthat there exists a onvex and lower semi-ontinuous funtion g : Rmd → [0,∞] suhthat ψ(F) = g(M(F)) holds, where M(F) is the vetor of all minors (subdetermi-nants) of F ∈ Rd×d. The more general ondition of quasionvexity is not developedenough to handle integrands ψ whih take the value +∞. In fat, in the quasi-onvex ase the lower semi-ontinuity results are usually based on the upper bound

ψ(F, p) ≤ C(1+|F|)r for all F ∈ Rd×d. This learly ontradit �nite-strain elastiitywhere ψ(F, p) = +∞ for detF ≤ 0 is imposed to prevent loal interpenetration.In ontrast, the multipliative stress-ontrol estimates (2.9) and (2.10) only lead toupper estimates on G.3.1 Existene Results for the Inremental ProblemWe survey the results in [Mie04b℄, where the inremental problem for system withoutany regularization is investigated. The energy funtional E0 and the dissipationdistane D are as de�ned via (2.6) with the spei�ation of ψ and D as above. Weadded the subsript �0� to E to indiate that no regularization is added.A entral r�le in this formulation is played by the ondensed energy density
W cond((P0, p0);F) = min{ ψ(F,P1, p1) +D((P0, p0), (P1, p1)) | (P1, p1) },whih ontains the ondensed information on the interplay of energy storage via ψand energy dissipation via φ. Its importane derives from the fat that the minimiza-tion of ∫

B
ψ(∇ϕP−1, p)+D((Pj, pj), (P, p))dx an be done pointwise in I = (P, p)under the integral giving the de�nition of W cond. Starting from Set. 4 (see Table1) the ondensed stored energy W cond is replaed by the inremental stress potential

W , whih di�ers from W cond by a onstant only.10



First, for any solution proess the deformation ϕ(t) : B 7→ Rd must be a minimizerof the ondensed funtional
Econd(I(t); t,ϕ) :=

∫
B
W cond(I(t, x);∇ϕ(x))dx− 〈Πext(t),ϕ〉 ,whih follows from the stability ondition (S). Hene, W cond ontains signi�ant in-formation on the possibility of formation of mirostruture (via loss of quasionvexity[OR99, CHM02, HH03, Mie03a, MLG04℄) or failure via frature or loalization, see[ML03b, ML03a, LMD03℄. In Set. 4 and thereafter E cond is replaed by E , whihis obtained as E cond when W cond is replaed by W . Hene, the two de�nitions justdi�er by a onstant, and thus hvae the same minimizers.Seond, the inremental problem (IP) an be redued to the following ondensedinremental problem:(CIP) Find iteratively (ϕj ,Ij) ∈ W ×Z as follows:

ϕj ∈ Arg min{ E cond(Ij−1; tj ,ϕ) | ϕ ∈ W }

Ij(x) ∈ Arg min{ ψ(∇ϕ(x),I)+D(Ij−1(x),I) | I ∈ Z }Thus, to guarantee existene of minimizers for (CIP) we impose the very restritiveondition, namely
W cond(I; t, ·) : Rd×d → [0,∞] is polyonvex. (3.13)Theorem 3.3 in [Mie04b℄ provides the following existene result for (IP).Theorem 3.1 Let W, Z, E0 and D be de�ned as above. Assume thatW cond satis�es(3.13). Further let the oerivity assumptions (2.11) and (2.12) be satis�ed with

rϕ, rP and rp suh that
1

rF
+

1

rP
=:

1

rϕ

<
1

d
. (3.14)If additionally Πext ∈ C1([0, T ],W1,rϕ(B,Rd)∗), then (IP) assoiated with (E0,D)has, for eah initial datum I0 ∈ Z with D((I, p∗),I0) < ∞ and eah partition 0 =

t0 < t1 < · · · < tN = T , at least one solution (ϕj,Ij)j=1,...,N in W ×Z. Moreover,there exists a onstant C (depending on the data only) suh that all solutions satisfy,for j = 1, ..., N ,
‖ϕj‖1,rϕ

+ ‖Pj‖rP + ‖P−1
j ‖rP + ‖pj‖rp

+ E0(tj ,ϕj ,Ij) +
j∑

k=1

D(Ik−1,Ik) ≤ C .The proof relies on solving (CIP) with a areful bookkeeping based on the a prioriestimates (2.8). The neessary oerivity of W cond follows from those of ψ and D,after employing the invariane from W cond((P, p);F) = W cond((I, p0);FP−1) andthe Hölder inequality
|FP−1|rF ≥

(
|F|/|P|

)rF ≥ cr|F|
rϕ − dr|P|rP .11



The major drawbak of the present theory is that the polyonvexity ondition (3.13)is extremely di�ult to hek. The funtionW cond is de�ned impliitly via ψ and D,but D itself is de�ned impliitly from φ. Hene, there are only very few ases where
W cond an be alulated expliitly. One ase is in dimension d = 1 and anotherase is treated in [Mie04b℄. It is an isotropi situation in dimension d = 2 using anabstrat haraterization of [Mie05a℄ for isotropi, polyonvex energy densities.3.2 Partially Regularized Inremental ProblemsThe seond result result onerns a model whih uses a partial regularization whihis based on the so-alled geometri disloation tensor

GP =
1

detP

(
curlP

)
P⊤ ∈ R3×3where the �url� of a matrix is applied row-wise. Beause of our standing assumption

detP = 1 we an use a simpler form. The energy now reads
Ecurl(t,ϕ,P, p) = E0(t,ϕ,P, p) +

∫
B
V

(
(curlP)P⊤

)
dx ,where the potential V : R3×3 → [0,∞] satis�es

V is onvex and V (G) ≥ c6|G|rG−C6 on R3×3. (3.15)In [MM06b℄ a general lower semi-ontinuity result is derived for general funtionalsof the form
I(ϕ,P) =

∫

B

U(∇ϕP−1,P, (curlP)P⊤)dx .Under the assumption that U : R3×3 × R3×3 × R3×3 → [0,∞] is polyonvex in the�rst two arguments and onvex in the third argument and that U is suitably oeriveit is shown that I is weakly lower semiontinuous on the assoiated Sobolev spaes.Consider a weakly onverging sequene (ϕj ,Pj) ⇀ (ϕ,P). Along sequenes withbounded energies I(ϕj ,Pj) ≤ C the terms ∇ϕjP
−1
j , Pj, GPj

are ontrolled insuitable Lebesgue spaes. This implies a bound on curl Pj and thus, a suitableversion of the div-url lemma an be used to show that M(Pj) ⇀ M(P) and
GPj

⇀ GP. The speial form of the multipliative deomposition ∇ϕP−1 togetherwith detP = 1 provide the minor relations
FP−1 = F(cof P)⊤, cof(FP−1) = (cof F)P⊤, det(FP−1) = det F .Hene, again applying the div-url lemma we obtain also the onvergeneM(FjP

−1
j ) ⇀

M(FP−1) and the weak lower semi-ontinuity follows using (poly-) onvexity.This result is then applied to the inremental problem (IP) assoiated with Ecurl and
D. Again, a ondensation, like in Set. 3.1, is done for the variable p ∈ H , whihdoes not have a derivative. We assume ψ(Fel, p) = ψel(Fel) + ψhard(p) and let

Dcond((P0, p0);P) := min{ ψhard(p) +D((P0, p0), (P, p)) | p ∈ H } .12



Then, the inremental problem involves the integrand U(Fel,P,G) = ψel(Fel) +
Dcond(Ij−1(x);P) + V (G). Thus, the ruial assumption we have to make is that

Dcond(I; ·) : R3×3 → [0,∞] is polyonvex. (3.16)The following result is established in [MM06b℄.Theorem 3.2 Let W, Z, Ecurl and D be de�ned as above. Assume that V and
Dcond satisfy (3.15) and (3.16), respetively . Further let the oerivity assumptions(2.11) and (2.12) be satis�ed with rϕ, rP, rp and rG suh that

1

rF
+

1

rP
=:

1

rϕ

<
1

d
,

1

rG
+

2

rP
< 1 , and rG > d . (3.17)If additionally Πext ∈ C1([0, T ],W1,rϕ(B,Rd)∗), then (IP) assoiated with (Ecurl,D)has, for eah initial datum I0 ∈ Z with D((I, p∗),I0) < ∞ and eah partition 0 =

t0 < t1 < · · · < tN = T , at least one solution (ϕj,Ij)j=1,...,N in W ×Z. Moreover,there exists a onstant C (depending on the data only) suh that all solutions satisfy,for j = 1, ..., N ,
‖ϕj‖1,rϕ

+ ‖Pj‖rP + ‖P−1
j ‖rP + ‖pj‖rp

+ E0(tj ,ϕj ,Ij) +
j∑

k=1

D(Ik−1,Ik) ≤ C .Again the polyonvexity ondition (3.16) for the ondensed dissipation distane ishard to satisfy. However, we have onsiderably more freedom than in the ase of theondensed energy potential W cond. Here the ondition is based on the dissipationdistane only, and we are able to take any polyonvex funtion ψel for the elastistorage. Examples are given in Setion 4 of [MM06b℄.However, the theory is still restritive as we do not have good examples of dissipationdistanes and we do not know what type of hardening leads to polyonvexity. Inthe light of the example of at the end of Setion 2.3 it is a natural question to askwhether the funtions
P ∋ P 7→ exp

(
γdP(I,P)

)
,if extended by +∞ outside of P, is polyonvex for su�iently large γ > 0. It islear that this an only hold if dP is loally Lipshitz ontinuous with respet to thelassial metri in Rd×d. Thus, sub-Riemannian or sub-Finslerian metris are notallowed.3.3 Strain-Gradient PlastiityIn [MM06a℄ a theory is developed for the ase that the full gradient (∇P,∇p) isused for regularization. For miromehanially motivated nonloal rystal plasti-ity models, see [Be06, FMAH94, Gur02, MB06, Ste96, Sve02℄. This ase relatesto the regularized theory that was developed for other rate-independent material13



models like shape-memory materials, damage, brittle frature, magnetostrition orpiezoeletriity. We refer to the survey [Mie06a℄ in this volume.In the present theory the inremental problem will be used as a tool to onstrutpieewise onstant solutions for partitions with smaller and smaller step sizes. Weare then able to extrat a subsequene whih onverges to a solution of the time-ontinuous problem (S) and (E) as derived in Setion 2.2. The analysis followslosely the abstrat approah for general rate-independent systems on topologialspaes as developed in [MM05, Mie05b, FM06℄.We only treat the simplest ase and onsider the energy funtional
Ereg(t,ϕ,P, p) = E0(t,ϕ,P, p) +

∫
B
c1|∇P|r1+c2|∇p|

r2 dx ,where c1, c2 > 0 and r1, r2 > 1. The dissipation distane D is kept as above.For the admissible deformations ϕ we keep the funtion spae W ⊂ W1,rϕ (B,Rd)equipped with the weak topology. For the internal variables we now set Zreg =
ZP ×Zp with

ZP := { P ∈ W1,r1(B,Rd×d) | P(x) ∈ P a.e. on B } and
Zp := { p ∈ W1,r2(B,Rm) | p(x) ∈ H a.e. on B } ,where Zreg arries the weak topology of W1,r1(B,Rd×d) × W1,r1(B,Rm).Using polyonvexity of F 7→ ψ(·, p) and the above oerivity assumptions it is possi-ble to show that the inremental problem (IP) assoiated with (Ereg,D) has at leastone solution ((ϕk

j ,I
k
j ))j=1,...,Nk

, where we already assumed that we have a sequene ofpartitions indexed by k ∈ N suh that the �neness φk = max{tkj−t
k
j−1 | j = 1, ..., Nk}tends to 0. We de�ne the pieewise onstant interpolants (qk,Ik) : [0, T ] → W×Zregwith

(qk(t),Ik(t)) = (ϕk
j−1,I

k
j−1) for t ∈ [tkj−1, t

k
j )and (qk(T ),Ik(T )) = (ϕk

Nk
,Ik

Nk
).Aording to (2.7) these pieewise onstant solutions satisfy the stability onditions(S) on eah point of the partition, i.e., (qk(t

k
j ),Ik(t

k
j )) ∈ S(tkj ) with

S(t) := { (ϕ,I) | ∀ (ϕ̃, Ĩ): Ereg(t,ϕ,I) ≤ Ereg(t, ϕ̃, Ĩ) + D(I, Ĩ) } .Moreover, the energy estimate (2.8) provides the energy bounds
Ereg(t

k
j ,ϕk(t

k
j ),Ik(t

k
j )) + DissD(Ik, [0, t

k
j ])

≤ Ereg(0,ϕ0,I0) +
∫ tkj
0 ∂sEreg(s,ϕk(s),Ik(s))ds .

(3.18)They give rise to the bounds
‖(ϕk,Ik)‖L∞([0,T ],W1,rϕ×W1,r1×W1,r2 ) ≤ C ,

supt∈[0,T ] Ereg(t
k
j ,ϕk(t

k
j ),Ik(t

k
j )) ≤ C, DissD(Ik, [0, T ]) ≤ C .14



Thus, by using a suitable version of Helly's seletion priniple (f., [MM05℄) it ispossible to extrat a subsequene and to �nd a limit proess (ϕ,I) : [0, T ] →
W ×Zreg, whih is a andidate for an energeti solution.Using weak lower semi-ontinuity the energy bound (3.18) easily supplies the upperenergy estimate

Ereg(t,ϕ(t),I(t))+DissD(I , [0,t]) ≤ Ereg(0,ϕ0,I0)+
t∫

0

∂sEreg(s,ϕ(s),I(s))ds .The ruial step in the onvergene proof is to show that the sets S(t) of stablestates are sequentially losed in the weak Banah spae topology. This step is easyif D is weakly ontinuous but it also works in more realisti ases with hardening,whih is irreversible, see [MM06a℄. If this step is done we know that the limit proesssatis�es (S) and, moreover, a general abstrat proposition yields the lower energyestimate and hene (E) holds as well.We summarize the result as follows.Theorem 3.3 Let W, Zreg, Ereg and D be given as above with ψ and D satisfyingthe oerivity estimates (2.11) and (2.12) with 1
rF

+ 1
rP

= 1
rϕ

< 1
d
. Moreover, assume

Πext ∈ C1([0, T ],W1,rϕ(B,Rd)∗). Then, for eah stable initial state (ϕ0,I0) ∈ S(0)the energeti formulation (S) and (E) has at least one solution (ϕ,I) : [0, T ] →
W ×Zreg. All solutions satisfy

(ϕ,P, p) ∈ L∞([0, T ],W1,rϕ(B,Rd) × W1,r1(B,Rd×d) × W1,r2(B,Rm))and DissD((P, p), [0, T ]) <∞.3.4 Time-Dependent Boundary ConditionsThe existene results of Setions 3.1 to 3.3 rely on the fat that the spae W ofadmissible deformations is independent of time. For many appliations one needs togeneralize this assumption. For the inremental problem (IP) it is not too di�ult towork with W(t), however for the energeti formulation it is not lear how to de�nethe power ∂tE(t, q) of the external loadings that are due to hanges of W(t).The usual way to implement time-dependent Dirihlet data is to substrat a su�-iently smooth funtion that has the orret boundary value and then try to �nd thehomogeneous part. In the ase of small strain, when working with u : x 7→ ϕ(x)−xthis means u(t, x) = uDir(t, x) + v(t, x) with v(t, ·)|ΓDir
= 0. We let W = { v ∈

W1,p(B,Rd) | v|ΓDir=0 } and de�ne the shifted energy Ẽ(t,v,I) = E(t,uDir(t)+v,I).The power of the external loading now takes the form
∂tẼ(t,v,I) =

∫
B

∂Fψ(∇(uDir(t)+v),I):∇u̇Dir(t) dx

−〈Π̇ext(t),uDir(t)+v〉 − 〈Πext(t), u̇Dir(t)〉 .15



However, in the ase of �nite-strain elastiity we annot guarantee that the integrand
∂Fψ lies in L1(B), sine we annot ontrol the Piola-Kirho� stress P = ∂Fψ by ψitself.In the ase of �nite-strain elastiity the stored energy density ψ takes the value +∞and ∂Fψ(F,I) exists only on G. In order to use the multipliative stress ontrol(2.9) for the Kirhho� stress K we assume that time-dependent Dirihlet data ϕDirare given. We then deompose the desired solution ϕ via omposition of funtions

ϕ(t, x) = ϕDir(t, ξ(t, x)) = (ϕDir(t, ·) ◦ ξ(t, ·))(x) .Here, we assume that ϕDir an be extended suh that ϕDir ∈ C2([0, T ] × Rd,Rd)and that ∇xϕDir and (∇xϕDir)
−1 are bounded on [0, T ]×Rd. The set of admissibledeformations is now W = {ξ ∈ W1,p(B,Rd) | ξ|ΓDir

= id} with p > d and the shiftedenergy is Ê(t, ξ,I) = E(t,ϕDir(t) ◦ ξ,I). Using the lassial hain rule formula
∇x(ϕDir(t) ◦ ξ)(x) = ∇yϕDir(t, ξ(x))∇xξ(x)and the de�nition of K in Setion 2.3 we �nd the expression for the power

∂tÊ(t, ξ,I) =
∫
B
K(∇ϕDir∇ξ,I):(∇ϕDir)

−1∇ϕ̇Dir dx

−〈Π̇ext(t),ϕDir ◦ ξ〉 − 〈Πext(t), ϕ̇Dir ◦ ξ〉 .Here, for Ẽ(t, q) < ∞ we may onlude via (2.9) that K ∈ L1(B,Rd×d) while
(∇ϕDir)

−1∇ϕ̇Dir lies in C0(B,Rd×d). Hene, the right-hand side is indeed well de-�ned and the power ontrol
|∂tẼ(t, ξ,I)| ≤ cE1

(
Ẽ(t, ξ,I)+cE0

)an be established easily. We refer to Setion 5 in [FM06℄ for more details onerningthe full existene result for energeti solutions in the ase of time-dependent Dirihletdata.In [KM06℄ very similar ideas are used to derive formulas for the energy-release ratein rak propagation for the ase of �nite-strain elastiity. Also a very restritedase of temperature dependene an be treated by this method of energy ontrol,see [Mie06b℄ and Set. 5.4 in [Mie06a℄.4 Modeling of Mirostruture via RelaxationIn priniple, the time inremental problem (IP) and the energeti formulation (S) &(E) introdued in Set. 2.2 is a very �exible tool to treat the relaxation as well. Werefer to [Mie03b, Mie04a, MRS06b, MO06, MT06℄ for some reent developments.However, the analytial methods are not yet adapted to the spei� nonlinearitiesinvolved in �nite-strain elastoplastiity. In partiular, there is no theory whihombines the theory of gradient Young measure with �nite-strain plastiity. Thus,16



the evolutionary theory for gradient Young measures used in models for shape-memory alloys in [KMR05℄ annot be generalized to the present situation. Despiteof the laking mathematial tools in this area, the following setions show that thealgorithmial approah for these problems has advaned onsiderably over the lastdeade.4.1 Inremental Stability of Standard Dissipative SolidsAs pointed out in [ML03b, ML03a, MLG04℄ a key advantage of the variationalformulation outlined brie�y in Table 1 is the opportunity to analyze the inrementalstability of inelasti solids in terms of terminologies used in �nite elastiity. In thefollowing we de�ne the material stability of standard dissipative solids based onglobal weak onvexity properties of the inremental stress potential.The existene of the onstitutive minimization problem allows the introdution ofan inremental minimization formulation of the boundary-value problem of �niteinelastiity for standard dissipative solids. Now onsider a funtional E of the urrentdeformation �eld ϕn+1at the right boundary of the inrement [tn, tn+1]:
E(ϕn+1) =

∫

B

W (Fn+1) dx− [ Πext(ϕn+1) − Πext(ϕn) ] , (4.19)with the global load potential funtion Πext(ϕ) =
∫
B

ϕ · γ dx+
∫

∂Bt
ϕ · t dx of deadbody fores γ(x, t) in B and surfae trations t(x, t) on ∂Bt. As outlined in Set.3.1, see also [ML03b, ML03a, MLG04℄, the urrent deformation map of inelastistandard dissipative materials an then be determined by a priniple of minimuminremental energy for standard dissipative solids

E(ϕ∗
n+1) = inf

ϕn+1∈W
E(ϕn+1) , (4.20)subjet to the essential boundary onditions of a presribed deformation ϕ̄ on ∂Bϕ,written in the form ϕn+1 ∈ W := { ϕ ∈ W1,p(B) | ϕ(x) = ϕ̄(x) on ∂Bϕ }. Asusual, we onsider a deomposition of the surfae into a part where the deformationis presribed and a part where the trations are given, i.e. ∂B = ∂Bϕ ∪ ∂Bt and

∂Bϕ ∩ ∂Bt = ∅. The minimization problem (4.20) governs the response of theinelasti solid in the �nite inrement [tn, tn+1] in a struture idential to the prinipleof minimum potential energy in �nite elastiity.4.1.1 Quasionvexity of the Inremental Stress PotentialExtending results of the existene theory in �nite elastiity as summarized in [Bal77,Cia88, Da89, MH94, �il97℄ to the inremental response of standard dissipative solidsin the �nite step [tn, tn+1], we onsider the sequentially weakly lower semiontinuity(s.w.l.s.) of the funtional (4.19) as the key property for the existene of su�ientlyregular minimizers of the variational problem (4.20). The internal part of the fun-tional (4.19) is sequentially weakly lower semiontinuous, if the inremental stress17
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(a) (b) ()Figure 3: Interpretation of inremental energeti stability onditions of an inelastimaterial. A given homogeneous deformation state Fn+1 of the material suh as thepure shear mode of Figure (a) is stable if superimposed �ne-sale �utuation pat-terns (b) (quasionvexity) with support on the boundary ∂D or �rst-order laminates() (rank-one onvexity) inrease the averaged inremental stress potential on Dpotential de�ned by the onstitutive minimization problem is quasionvex and alsoit satis�es some tehnial growth ondition, see for example [Da89, AF84, �il97℄.We regard the quasionvexity introdued in [Mor52℄ of the inremental stress po-tential W as the fundamental riterion for the inremental material stability of theinelasti solid. W is said to be quasionvex at Fn+1 if ondition
W (Fn+1) ≤ inf

w∈W0

1

|D|

∫

D

W (Fn+1 + ∇w(y))dx , (4.21)holds with y ∈ D subjet to the onstraint w ∈ W0 := {w ∈ W1,∞(D)|w =
0 on ∂D} providing a support on ∂D. Here, D ⊂ R3 is an arbitrarily hosen part ofthe inelasti solid. The ondition states that for all �utuations w onD with supporton ∂D the homogeneous deformation given by Fn+1 provides an absolute minimizerof the inremental potential in D. Thus the ondition rules out internal bukling,the development of loal �ne-sale mirostrutures and phase deomposition of ahomogeneous loal deformation state. This mehanial interpretation is visualizedin Fig. 3. The material is stable if the superimposed �utuation �eld of Fig. 3(b)with w = 0 on ∂D yields a higher energy level than the homogeneous deformation
Fn+1 of Fig. 3(a).The well-motivated onept of quasionvexity is based on a global integral onditionin spae whih is hard to verify in pratie. The entral di�ulty is to �nd the�utuation �eld w ∈ W0 on D that minimizes the integral in (4.21). However, reallthat weak onvexity onditions are related viaonvexity ⇒ polyonvexity ⇒ quasionvexity ⇒ rank-one onvexity , (4.22)and that the slightly weaker rank-one onvexity ondition is onsidered as a loseapproximation of the quasionvexity ondition, see for example [Da89℄. In whatfollows, we fous on the rank-one onvexity as a riterion for material stability.18



4.1.2 Rank-one Convexity of the Inremental Stress PotentialThe de�nition of rank-one onvexity an be traed bak to the work of Corall andGraves, see for example [�il97℄. The inremental stress potential W is said to berank-one onvex at Fn+1 if the ondition
W (Fn+1) ≤ inf

ξ,F+,F−

{ ξW (F+) + (1 − ξ)W (F−) } , (4.23)holds for the laminate deformations F+ and F− whih satisfy the onditions
Fn+1 = ξF+ + (1 − ξ)F− and rank[F+ − F−] ≤ 1 , (4.24)in terms of the volume fration ξ ∈ [0, 1]. Condition (4.24)1 states that the volumeaverage of the miro-deformations F± yields the marosopi homogeneous defor-mation Fn+1. The ompatibility of the miro-phases (±) along their interfae isensured by (4.24)2. The rank-one onvexity ondition (4.23) rules out the develop-ment of loal �ne-sale mirostrutures in the form of �rst-order laminates de�nedby a rank-one deformation tensor. The material is stable if the superimposed �rst-order laminate-type �utuation �eld of Fig. 3() yields a higher energy level than thehomogeneous deformation Fn+1 of Fig. 3(a). A qualitative piture of a non-onvex,unstable inremental response is given in Fig. 4. Observe arefully, that (4.23) is aglobal stability riterion that needs the knowledge about the global range of instabil-ity between F− and F+. The material stability annot be diretly deided in termsof a given loal deformation Fn+1, but needs the rank-one onvex hull onstrutiongoverned by F− and F+. The loal form of the rank-one onvexity ondition is thelassial Legendre-Hadamard or elliptiity ondition

(M⊗ N) : ∂2
FFW (Fn+1) : (M⊗ N) ≥ 0 , (4.25)in terms of the onsistent tangent modulus for arbitrary unit vetors M and N,see [Had03, TN65℄. As shown in [ML03b, ML03a℄, lassial onditions of materialstability of elasti-plasti solids outlined in [Tho61, Hil62, Ri76℄ are onsistentwith this loal onvexity ondition, whih is often motivated by onsidering wavepropagation in solids. As shown in Fig. 4, the assoiated range of instability isdi�erent from the one predited by the global ondition (4.23). Reall that bothonditions are mathematial de�nitions related to the existene of regular solutionsof the variational problem (4.20). The question whether the global or loal onditions(4.23) and (4.25) are relevant depends on the physial ability of an inelasti solidmaterial to develop deformation mirostrutures in the assoiated unstable ranges.This an only be lari�ed by experimental investigations.In what follows we rewrite the rank-one onvexity ondition (4.23) for two-dimensionalproblems. To this end, we introdue the ansatz

F± := Fn+1L
± with {

L+ := 1 +(1 − ξ)dM⊗ N ,
L− := 1 − ξdM⊗ N ,

(4.26)19
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W (Fn+1) ≤ inf
q∈Q

{W̄ h(Fn+1,q)} , (4.27)in terms of the funtion
W̄ h(Fn+1,q) = ξW (F+(Fn+1,q)) + (1 − ξ)W (F−(Fn+1,q)) , (4.28)that represents the the volume average of the potentials in the two deformationphases. Figure 4(a) provides a visual demonstration for a non-onvex inrementalstress potential W . The inremental stress potential W (Fn+1) is greater than theinterpolation of the potentials W (F+) and W (F−) of the phases. As a onsequene,the homogeneous deformation state is not stable and deomposes into the miro-deformations F± whih minimize the funtion W̄ h. In a typial inremental analysisof an inelasti solid, the aompanying hek of inremental rank-one onvexity in20



[tn, tn+1] needs the solution of the loal minimization problem (4.27)
inf
q∈Q

{W̄ h(Fn+1,q)}

{
= W (Fn+1) : rank-one onvex at Fn+1

< W (Fn+1) : not rank-one onvex at Fn+1
, (4.29)for the four variables q de�ned before. The neessary ondition of the minimizationproblem

W̄ h
,q = 0 , (4.30)is a nonlinear equation for the determination of the miro-variables q. Note that

W̄ h is not onvex and for the solution of (4.30) the Newton iteration annot diretlybe applied. We refer to [ML03b, ML03a, MLG04℄ for solution proedures.4.2 Relaxation of a Non-Convex Constitutive ResponseAs pointed out in the reent papers [LMD03, ML03b, ML03a, MLG04℄, the inre-mental variational formulation for the onstitutive response opens up the oppor-tunity to resolve the developing mirostruture in non-stable standard dissipativesolids by a relaxation of the assoiated non-onvex inremental variational problem.If the above outlined material stability analysis detets a non-onvex inrementalstress potential W , an energy-minimizing deformation mirostruture is assumed todevelop suh as indiated in Fig. 3. A relaxation is assoiated with a onvexi�a-tion of the non-onvex funtion W by onstruting its onvex envelopes WQ. Theonvexi�ation is onerned with the determination of a developing mirostruture.This setion develops a framework for a �rst-order rank-one relaxation of standarddissipative solids.4.2.1 Quasi-Convexi�ed Relaxed Inremental Variational ProblemIf material instabilities are deteted at a point X ∈ B of the solid by a failure ofonditions (4.23) or (4.27), we fae a non-onvexity of the inremental potential
W in some region of the inelasti solid. If the inremental potential funtion Wis not quasionvex, the internal part of the funtional (4.19) is assumed to be notsequentially weakly lower semiontinuous. Then the existene of solutions of (4.20)is not ensured. In other words, the minimum of the inremental boundary-valueproblem (4.20) is not attained. Following [Da89, AF84℄ we onsider the relaxedenergy funtional

EQ(ϕn+1) =

∫

B

WQ(Fn+1) dx− [ Πext(ϕn+1) − Πext(ϕn) ] , (4.31)where the internal part of the relaxed energy funtional is obtained by replaingthe non-onvex integrand W in (4.19) by its quasionvex envelope WQ. The ur-rent deformation �eld of the elasti-plasti solid is then determined by the relaxedinremental variational priniple
EQ(ϕ∗

n+1) = inf
ϕn+1∈W

EQ(ϕn+1) , (4.32)21



that minimizes the relaxed inremental potential energy EQ. The quasionvexi�edinremental stress potential WQ is de�ned by the minimization problem
WQ(Fn+1) = inf

w∈W0

1

|D|

∫

D

W (Fn+1 + ∇w(y))dx , (4.33)with respet to the mirosopi �utuation �eld w that onstitutes the developmentof a deformation mirostruture, subjet to a boundary ondition providing a sup-port on ∂D. The �rst and seond derivatives of the relaxed potential WQ funtionde�ne relaxed stresses and tangent moduli
P̄n+1 := ∂FWQ(Fn+1) and C̄n+1 := ∂2

FFWQ(Fn+1) . (4.34)The relaxed problem (4.32) is onsidered to be a well-posed problem as lose as pos-sible to the unstable problem (4.20). The minimization problem (4.33) determinesa miro-�utuation �eld w as indiated in Fig. 3(b). However, as already men-tioned the basi di�ulty is the detetion of relevant funtions w whih de�ne theminimizing mirostruture.4.2.2 Rank-One-Convexi�ed Relaxed Inremental Variational ProblemA failure of rank-one onvexity onditions (4.23) or (4.27) indiates the instabilityof the homogeneous deformation state Fn+1 and the development of a pattern of�rst- and higher-order laminates as indiated in Fig. 3(). We onsider the relaxedenergy funtional
ER(ϕn+1) =

∫

B

WR(Fn+1) dx− [ Πext(ϕn+1) − Πext(ϕn) ] , (4.35)where the internal part of the relaxed energy funtional is obtained by replaing thenon-onvex integrandW in (4.19) by its rank-one-onvex envelopeWR, whih is on-sidered to be lose to the quasi-onvex envelope WQ. The urrent deformation �eldof the elasti-plasti solid is then determined by the relaxed inremental variationalpriniple
ER(ϕ∗

n+1) = inf
ϕn+1∈W

ER(ϕn+1) , (4.36)that minimizes the relaxed inremental potential energy ER for the admissible defor-mation �eld. In [KS86℄ a onstrution was proposed to haraterize the rank-oneonvexi�ation based on a reursion formula. Starting withWR0
(Fn+1) = W (Fn+1),one omputes the funtions

WRk
(Fn+1) = inf

ξ+,ξ−,F+,F−

{ξ+WRk−1
(F+) + ξ−WRk−1

(F−)} with k ≥ 1 , (4.37)for the sales k = 1, 2, 3.... After an in�nite number of steps k → ∞ the exatrank-one onvexi�ed inremental stress potential
WR(Fn+1) = lim

k→∞
WRk

(Fn+1) , (4.38)22
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Figure 5: Rank-one onvexi�ation and development of sequential laminates. Therank-one onvexi�ation WRk

(Fn+1) based on Kohn-Strang's reursion formula im-plies the development of a sequential laminate. Starting from the homogeneousdeformation state Fn+1 any phase of level k − 1 deomposes into two phases (+)and (−) of level k. As a onsequene, a typial binary tree struture emergesis obtained. Similar to (4.34), relaxed stresses and tangent moduli are de�ned as
P̄n+1 := ∂FWR(Fn+1) and C̄n+1 := ∂2

FFWR(Fn+1). Aording to reursive approahby [KS86℄ any phase of order k−1 deomposes into two phases (+) and (−) of order
k and minimize the average of the orresponding inremental stress potentials. Thedeveloping miro-phases form a sequential laminate.Figure 5 shows the typial binary tree struture of a rank-2 laminate. The un-stable marosopi deformation state Fn+1 deomposes into two miro-phases F+and F− of miro-level 1 whih again split into two pairs of miro-phases A+, A−and B+, B− of miro-level 2. The rank-one onvexi�ed potential WR2

then on-sists of the volume average of the stress potentials W at the root of the tree, i.e.
WR2

(Fn+1) = ξF
+

[ξA
+

W (A+)+ξA
−

W (A−)]+ξF
−

[ξB
+

W (B+)+ξB
−

W (B−)]. In theontext of subgrain disloation strutures in single rystal plastiity, [OR99, ORS00℄relax the inremental onstitutive desription of the material based on the expliitonstrution of mirostrutures by reursive lamination and their subsequent equi-libration. However, they applied, based on physial arguments, a strong approxi-mation by freezing the orientation of the laminates and the volume frations dur-ing the deformation proess. Suh a strong assumption has also been applied by[ML03b, ML03a℄ for the analysis of mirostruture development in strain-softeningvon Mises plastiity. In ontrast to these approahes, in [MLG04, AFO03℄ a rank-oneonvexi�ation has been proposed that determines both the developing orientationof the laminates as well as the volume fration.4.2.3 First-Order Rank-One-Convexi�ed Inremental ProblemWe approximate the exat rank-one onvexi�ation proedure outlined above by atwo-phase analysis that takes into aount only the �rst miro-level of Fig. 5. Hene,an unstable maro-deformation Fn+1 deomposes into the two phases F+ and F−modeled by ansatz (4.26). Then the �rst-order rank-one onvexi�ation of the non-onvex funtion W is obtained for two-dimensional problems by the minimization23



problem
WR1

(Fn+1) = inf
q∈Q

W̄ h(Fn+1,q) , (4.39)for the funtion W̄ h de�ned in (4.28) with respet to the set of miro-variables q.A problem similar to (4.39) was solved in [LMD03℄ for a one-dimensional strain-softening elasti-plasti bar. The solution of the minimization problem (4.39) yieldssolutions of ξ, d, ϕ, χ, whih in the two-dimensional ontext determine two stablephases. The relaxed stresses and moduli are obtained by evaluation of derivativesof the funtion (4.28) with respet to F. The �rst derivative of (4.39) with respetto the deformation Fn+1 at the solution point q∗ reads
∂FWR1

= W̄ h
,F + [ W̄ h

,q ][q,F ] . (4.40)Here, the last term vanishes due to the neessary ondition (4.30) of the minimizationproblem. Thus we identify the maro-stresses
P̄n+1 = W̄ h

,F . (4.41)The seond derivative of the potential reads
∂2
FFWR1

= W̄ h
,FF + [ W̄ h

,Fq ][q,F ] . (4.42)Here, the sensitivity of the �utuation with respet to the maro-deformation isobtained by taking the linearization of (4.30), i.e. q,F = −[W̄ h
,qq]−1[W̄ h

,qF]. Insertioninto (4.42) �nally spei�es the relaxed moduli to
C̄n+1 = W̄ h

,FF − [ W̄ h
,Fq ][ W̄ h

,qq ]−1[ W̄ h
,qF ] . (4.43)Observe that the relaxed moduli onsist of the volume average of the moduli of thephases and a softening part. The latter is the onsequene of the �exibility of therank-one laminate due to the phase deay. The algorithm of �rst-order rank-oneonvexi�ation is summarized in Table 2.5 Relaxation of Strain Softening Isotropi PlastiityThe relaxation tehnique outlined in Set. 4 is applied to the treatment of shearbandloalizations in strain-softening isotropi elastoplastiity. The softening response ofthe model auses loalization phenomena whih is interpreted as mirostruturedevelopments on multiple sales assoiated with non-onvex inremental stress po-tentials. The strain softening inelasti materials with non-onvex inremental stresspotentials have been investigated in the ontext of one dimensional elasti-plastibar in [LMD03℄, and in isohori damage mehanis in [GM06℄.The main goals of the numerial investigations are the analysis of the developing mi-rostrutures and the demonstration of the mesh-invariane of the relaxation teh-nique proposed. We refer to [ML03b, ML03a℄ for details of the relaxation algorithm.The elasti energy storage funtion has the following form

ψ(Fel, α) =
µ

2
[ ‖Fel‖

2 − 3 ] +
µ2

λ
[ J−λ/µ − 1 ] +

1

2
hα2 , (5.44)24
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Figure 8: Loalization of Indentation Test at Plane Strain. Load displaementurves for di�erent �nite element meshes (a) with non-relaxed formulation and (b)proposed relaxation tehniquewith J := det Fel = detF, the shear modulus µ > 0, the Lame onstant λ > 0 andthe softening modulus h < 0. The level set funtion is given as

E = { (Σ, β) | ‖Σ‖ +

√
2

3
β ≤ c } , (5.45)where ϕ is the Mandel stress, β is the onjugate fore to the hardening variable αand c is a material parameter. Then the dissipation funtion for the isotropi vonMises plastiity with softening an be formulated as

φ(Lpl, α̇) = sup
(Σ,β)∈E

{Σ : Lpl + βα̇} , (5.46)in terms of the plasti veloity gradient Lpl := ṖP−1 and the rate of hardeningvariable α̇.Here, we approximate the minimization problem (4.39) by introdution of an a priorilength sale δ representing the width of miro-shearband. Then, in the �nite elementontext the volume fration ξ at eah integration point is desribed as a funtion ofthe length sale δ and a harateristi geometri parameter g of the �nite element. Afurther simpli�ation to the minimization problem is obtained by �xing the laminateorientation angle χ to the ritial diretion θcr obtained from the aousti tensor
Q(α) := L(α) · ∂2

FFW (Fn+1) · L(α) , (5.47)where L(α) = [cos(α) sin(α)]T is a unit vetor to desribe the loalization diretion.The material stability is ontrolled by the following minimization problem for thedeterminant of the aousti tensor
min

α
{det[Q(α)]}

{
> 0 : stable atFn+1

≤ 0 : unstable atFn+1
, (5.48)and if the determinant beomes zero or negative then the ritial angle θcr and thelaminate orientation χ are determined as

χ = θcr = arg{min
α

[detQ(α)]} . (5.49)26



Furthermore we onsider M · N = 0 whih haraterizes a shear band type failure.Then, the approximated relaxed energy is obtained by a minimization with respetto one salar variable d,
WR1

(Fn+1) = inf
d

[ ξW+(Fn+1, d) + (1 − ξ)W−(Fn+1, d) ] . (5.50)Having omputed WR1
the relaxed stresses P̄ and the relaxed moduli C̄ an beomputed from (4.41) and (4.43), respetively.As a representative example, we onsider next a plane strain indentation test wherea loalization in the form of urved shear bands are observed experimentally. Theequivalent plasti strains and the formation of shear bands with orresponding lo-alization diretions are plotted in Fig. 6. In Fig. 7 the development of mirostru-tures is visualized at the seleted integration points for two disretizations. In orderto prove the mesh objetivity of the proposed relaxation algorithm load-de�etionurves are plotted in Fig. 8 for four di�erent mesh densities. The non-relaxed formu-lation in Fig. 8(a) shows a lear mesh dependeny whereas the proposed relaxationalgorithm in Fig. 8(b) exhibits no mesh dependeny in the post-ritial regime.6 Relaxation of Non-Convex Single-Slip PlastiityWe now point out details of the �rst-order rank-one onvexi�ation analysis intro-dued in Set. 4 for the model problem of single slip plastiity. Di�erent fromthe strain softening example disussed in Set. 5, the non-onvexity appears in thesingle-slip plastiity as a result of geometri onstraints related with the orientationof a slip-system. The model problem of single slip rystal plastiity has already beeninvestigated in several works, see [CHM02, BCHH04, Mie04a, CT05, CO05, MLG04℄.The main goals of the numerial investigations are the analysis of the developing mi-rostrutures and the demonstration of the mesh-invariane of the relaxation teh-nique proposed. We refer to [MLG04℄ for details of the relaxation algorithm basedon �rst-order rank-one onvexi�ation. As a onrete form, we apply a ompressibleNeo-Hookean material

ψ(Fel) =
µ

2
[‖Fel‖

2 − 3] +
κ

4
[J2 − 2(1 + 2

µ

κ
) ln J − 1] , (6.51)with J := detFel = detF. κ > 0 and µ > 0 denote the bulk and the shear moduli,respetively. The dissipation funtion for the linear hardening model of single-slipplastiity is

φ(Lpl) = [τ0 + hγ] |Lpl : (S ⊗T)| , (6.52)in terms of the Shmid stress τ assoiated with the slip system of single-slip plas-tiity and the linear hardening modulus h. The slip system is desribed by the slipdiretion S and the slip normal T with S · T = 0.Here, a key ontribution is the derivation of a semi-analytial solution that reduesfor two-dimensional problems the independent miro-variables from four in q to just27
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W̄ h
,ξ = W+ −W− − d [ξP+ + (1 − ξ)P−] : (FM ⊗ N) = 0

W̄ h
,d = ξ(1 − ξ) [P+ − P−] : (FM ⊗N) = 0

W̄ h
,ϕ = ξ(1 − ξ) d [P+ − P−] : (FM,ϕ ⊗ N) = 0

W̄ h
,χ = ξ(1 − ξ) d [P+ − P−] : (FM ⊗N,χ) = 0





, (6.53)in terms of the four miro-variables q := [ξ, d, ϕ, χ]T . Note that �rst two onditionsin (6.53) are the physial and the on�gurational fore equilibrium onditions onthe interfae between two phases. In the sequel, we will evaluate these onditionsand derive a semi-analytial solution for the minimizing laminate F±. The plastideformation P± and the hardening variable in the phases (±) are denoted
P± = P⋆(1 ± ∆γ±S ⊗T) and γ± = γ⋆ + ∆γ± , (6.54)where ∆γ± = (γ − γn)± are the inremental plasti ar lengths. P⋆ and γ⋆ are theplasti deformation and γ⋆ the hardening variable of the last stable homogeneousstate, respetively. Equation (6.54) points out the ause of the phase deay forthe model problem of single slip plastiity that results from the bifuration of theplasti deformation starting from P⋆ with ∆γ±. The equilibrium of the Shmidtstresses τ+ = τ− yields the identity ∆γ+ = ∆γ− = ∆γ of the inremental slips. Ifone postulates the preservation of the volumetri deformation det[F+] = det[F−] =det[F] it turns out that the Lagrangian laminate vetors are orthogonal, i.e. N·M =

0. This result allows for the parameterization of these vetors in terms of the vetorsof the slip system N = cos θ S − sin θ T and M = sin θ S + cos θ T where θ is anin-plane orientation angle. Exploitation of these results leads to the identi�ationof the inlination angle and a formula for the miro-intensity
tan θ = −P⋆ : S⊗ T and d =

2∆γ

cos2 θ (1 + ∆γ2)
. (6.55)29
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(b)Figure 11: Retangular speimen in plane strain tension. Visualization of mi-rostruture developments at seleted Gauss points for disretizations with (a) 6×12and (b) 20 × 40 elementsInsertion of the above obtained results in the neessary onditions (6.53)1,4 yieldsan expression for the volume fration
ξ =

1

2
+ d−1

[
cNM

cMM

+ tan θ

]
, (6.56)where we have introdued the abbreviation cXY = X ·C ·Y. The inremental plastimultiplier ∆γ an be determined by algebrai manipulations as

∆γ =
2d+ E

cos2 θ d2 + F
, (6.57)in terms of the oe�ients E = −4(hγ⋆ +c)/(µcMM) and F = [4h/µ+4 cos2 θ (cNN −

c2
NM
/cMM)]/cMM . Note, that the inremental slip is only a funtion of the miro-intensity.As a onsequene, insertion of (6.57) into (6.55)2 leads to a polynomial of degree �vethat p(d) whih only depends on the miro-intensity. The solutions of the polynomial

p(d) is the relevant miro-intensity d∗ that minimizes the volume average of thestress-potentials in the two miro-phases
d∗ = arg{ inf

d∈D
[W̄ h] } with D ∈ {d|p(d) = 0} . (6.58)30
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(a)

(b)Figure 13: Retangular speimen in shear. Visualization of mirostruture develop-ments at seleted Gauss points at (a) u = 20mm (b) u = 30mm
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Table 1: Overview: Minimization Priniples for Standard Dissipative Solids(M) Constitutive Model. F ∈ GL+(3) at x ∈ B is the loaldeformation and I ∈ Z a generalized vetor of inter-nal variables. Set of loal material equations has thestruturestresses P = ∂Fψ(F,I)evolution equation 0 ∈ ∂Iψ(F,I) + ∂ ˙
I
φ(İ,I) , I(0) = I0de�ned in terms of an energy storage and a dissipationfuntion ψ, φ.(C) Inremental Variational Formulation of ConstitutiveModel. In a �nite time inrement [tn, tn+1], the min-imization problem of the onstitutive responsestresses Pn+1 = ∂FW (Fn+1)stress potential W (Fn+1) = infI

∫ tn+1

tn
[ ψ̇ + φ ] dt , I(tn) = Indetermines the urrent internal state In+1 ∈ Z and pro-vides a potential for the stresses at time tn+1.(S) Stability of Inremental Constitutive Response. In

[tn, tn+1] the material is loally stable if the inrementalstress potential W is quasi�onvexstable response W (Fn+1) ≤ infw
1
|D|

∫
D
W (Fn+1 + ∇w(y)) dxfor all possible �utuations w(y) on the domain D.(R) Mirostruture Development in Non�Stable Materials.For an unstable non�onvex response, the inrementalminimization problem of onvexi�ationmaro�stresses PQn+1 = ∂FWQ(Fn+1)relaxation WQ(Fn+1) = infw

1
|D|

∫
D
W (Fn+1 + ∇w(y)) dxprovides a relaxed quasi�onvex hull WQ of W anddetermines the urrent mirostruture �utuation �eld

w(y).
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Table 2: First�Order Rank�One Convexi�ation of Inremental Response1. Database {Fn+1,I
+
n ,I

−
n } and starting value q0 :=

{ξ, d,N,M}0 given.2. Set miro�deformation phases
F± := Fn+1L

± with {
L+ := 1 +(1 − ξ)dM⊗N ,
L− := 1 − ξdM⊗ N .3. Evaluate the potential W̄ h(Fn+1,q) = ξW (F+) + (1 −

ξ)W (F−)and its derivatives W̄ h
,F, W̄ h

,q, W̄ h
,FF, W̄ h

,qq, W̄ h
,qF̄

.4. Convergene hek: If (‖ W̄ h
,q ‖ ≤ tol) go to 6.5. Newton update of miro�variables q ⇐ q −

[ W̄ h
,qq ]−1[ W̄ h

,q ] .6. Set relaxed maro�stresses and tangent maro�moduli
P̄n+1 = W̄ h

,F̄ and C̄n+1 = W̄ h
,F̄F̄

−[ W̄ h
,F̄q

][ W̄ h
,qq ]−1[ W̄ h

,qF̄
] .
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