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21 Introdu
tionThe theory of quasilinear paraboli
 systems has many appli
ations to evo-lution problems in natural s
ien
es, see e.g. [2℄, [1℄, [4℄, [5℄, [19℄, [9℄, [30℄and [38℄. In this paper we investigate in parti
ular systems of rea
tion-di�usion equations with mixed Diri
hlet-Neumann boundary 
onditions onnon-smooth domains Ω ⊂ R
n for n = 2, 3 of the form

u′k − div(Gk(v)µk∇vk) = Rk(t, v,∇v), t ∈ (T0, T ), x ∈ Ω,

uk = bk Fk(vk), t ∈ [T0, T ), x ∈ Ω,

ν · µk∇vk = 0, t ∈ [T0, T ), x ∈ ΓN , (1.1)
vk = φk, t ∈ [T0, T ), x ∈ ΓD,

vk(T0) = v0k, x ∈ Ω.Here v = (v1, . . . , vm), µk ∈ L∞(Ω,Mn×n) are di�usion 
oe�
ients, bk ∈
L∞(Ω) referen
e densities and Rk, Gk, Fk denote the rea
tion, di�usion andsuperposition terms for k ∈ {1, . . . , m}.In many 
on
rete problems whi
h are des
ribed as a system of the form(1.1), the underlying domain is non-smooth and the 
oe�
ient fun
tions
bk and µk are dis
ontinuous. We therefore aim for minimal smoothnessassumptions on the boundary ∂Ω of Ω, the 
oe�
ient fun
tions bk and µkas well as on the interfa
e between the Neumann boundary part ΓN of
∂Ω and the Diri
hlet boundary part ΓD = ∂Ω \ ΓN . More pre
isely, wegenerally assume that Ω ⊂ R

n is a Lips
hitz domain (see [23℄) and Ω ∪ ΓNis regular in the sense of Gröger (see [24℄). Our approa
h in
ludes rea
tiontermsRk whi
h depend dis
ontinously on time t, whi
h is important in manyexamples (see [38℄, [25℄, [30℄), in parti
ular in the 
ontrol theory of paraboli
equations. Alternatively, the reader should think e.g. of a manufa
turingpro
ess for semi
ondu
tors, where at a 
ertain moment light is swit
hedon/o� and, of 
ourse, parameters in the 
hemi
al pro
ess 
hange abruptely.Note that the original formulation of the evolution equation in terms of



1 Introdu
tion 3balan
e laws takes the form (see [36, Chap. 21℄, see also [4℄)
∂

∂t

∫

Ω′

uk dx+

∫

∂Ω′

ν · jk dσ =

∫

Ω′

Rk dx ; jk = jk(v) = Gk(v)µk∇vk(1.2)where Ω′ stands for any (Lips
hitzian) subdomain of Ω. Within the vari-ational theory of weak solutions, however, the indi
ator fun
tions of thesubdomains are not admissible test fun
tions. Therefore the integral for-mulation (1.2) is equivalent to the above evolution equation only if theweak solutions have some additional regularity. It is the main advantage ofthe present 
on
ept that the divergen
e of the 
orresponding 
urrent jk(v)indeed is a fun
tion, not only a distribution. In a stri
t sense, only this jus-ti�es the appli
ation of Gauss' theorem to 
al
ulate the normal 
omponentsof the 
urrents over boundaries of suitable subdomains. Moreover, the fa
t
div jk ∈ Lp is also of importan
e for the numeri
al treatment of (1.1), as theformulation (1.2) is the basis of �nite volume methods (see [17℄) � namelyin the sense of lo
al balan
es.Global existen
e results for (1.1) 
annot be expe
ted within su
h a generalapproa
h (see e.g. [16℄ or [5℄ and the referen
es therein, see also [27℄), andare thus outside the s
ope of this paper.In 
ontrast to many papers where existen
e and uniqueness results for quasi-linear paraboli
 systems are based on the 
onstru
tion of an appropriateevolution operator (see e.g. [1℄), our approa
h relies heavily on maximal
Lp-estimates for the linear part of (1.1). In fa
t, after rewriting equation(1.1) as an abstra
t evolution equation in Lp(Ω)m of the form

w′ −H(t, w)
(
div(µ∇w)

)
= S(t, w)

w(T0) = v0 − φ(T0), (1.3)our strategy to solve (1.3) follows the approa
h of Clément and Li [9℄ andPrüss [34℄. The advantage in the given situation (1.1) is that subtle te
h-niques from harmoni
 analysis as well as heat-kernel methods 
an be usedto prove the 
entral Lp-estimates of the linear part. In order to apply thesemethods in our situation one needs embedding properties of 
ertain inter-polation spa
es between the domain of the Lp-realization of the underlyingellipti
 operators and Lp(Ω) into W 1,2p(Ω). This embedding property rests



4on the assumption that the operators formally de�ned by
−∇ · µk∇ + 1 : W 1,q

ΓN
(Ω) →W−1,q

ΓN
(Ω)provide topologi
al ismorphisms for some q > n. Note that this assumptionis in fa
t ful�lled for many geometri
 
onstellations and 
oe�
ient fun
tions;see Se
tion 4.2 PreliminariesLet Ω ⊂ R

n be a bounded Lips
hitz domain and assume that n = 2 or
n = 3. Denote by Γ ⊂ ∂Ω an open subset of ∂Ω. For 1 < q < ∞ we de�ne
W 1,q

Γ (Ω) as the 
losure of
{ψ|Ω : ψ ∈ C∞

c (Rn), suppψ ∩ (∂Ω\Γ) = ∅}.in the Sobolev spa
e W 1,q(Ω). If q = 2, we write H1(Ω) or H1
Γ(Ω) insteadof W 1,2(Ω) or W 1,2

Γ (Ω). Of 
ourse, if Γ = ∅, then W 1,q
Γ (Ω) = W 1,q

0 (Ω).Moreover, throughout this work we always suppose that Ω ∪ ΓN is regularin the sense of Gröger ([24℄), this means: for all x ∈ ∂Ω there exist opensets Ux, Vx ⊂ R
n and a bi-Lips
hitz transform Ψx from Ux onto Vx su
h that

x ∈ Ux,Ψx(x) = 0 and Ψx(Ux ∩ (Ω ∪ ΓN)) 
oin
ides with one of the sets
E1 := {x ∈ R

n : max
l=1...,n

|xl| < 1, xn < 0},

E2 := {x ∈ R
n : max

l=1,...,n
|xl| < 1, xn ≤ 0},

E3 := {x ∈ E2 : xn < 0 or x1 > 0}.It is not hard to see that every Lips
hitz domain and also its 
losure isregular in the sense of Gröger, the 
orresponding model sets are then E1or E2, respe
tively, see [23℄. Moreover, if Ω ⊂ R
2 is a bounded Lips
hitzdomain and ∂Ω\ΓN is the �nite union of (non-degenerate) 
losed ar
 pie
esfrom the boundary, then Ω∪ ΓN is regular in the sense of Gröger. It is alsoknown (see [20℄, Satz 1. 103 or [21℄) that if Ω ∪ ΓN is regular in the senseor Gröger, then one has the following 
oin
iden
e:

W 1,q
ΓN

(Ω) = {ψ ∈W 1,q (Ω) : tr ψ = 0 a.e. on ∂Ω\ΓN}. (2.1)



3 Main result 5Finally, for k ∈ {1, . . . , m}, let µk ∈ L∞(Ω,Mn×n), where Mn×n denotes theset of all real, symmetri
 n× n matri
es. Suppose that additionally
inf
x∈Ω

inf
|ς|=1

µk(x)ς · ς > 0. (2.2)For a 
losed subspa
e V ⊆ H1(Ω) su
h that H1
0 (Ω) ⊆ V we de�ne the form

ak : V × V → R by
ak(u, v) := −

∫

Ω

µk∇u · ∇v dx, u, v ∈ V.The form indu
es a 
ontinuous mapping Ak : V → V ′ su
h that
ak(u, v) = (Aku|v), u, v ∈ V. (2.3)Here, for v ∈ L2(Ω), fv(u) := (v|u)L2 de�nes an element fv ∈ V ′ and

v 7→ fv : L2(Ω) → V ′ de�nes a 
ontinuous inje
tion. In the following, weidentify v with fv. We then de�ne the operator Ak as
D(Ak) := {u ∈ V : ∃f ∈ L2(Ω), ak(u, φ) = (f |φ) ∀φ ∈ V } (2.4)
Aku := f. (2.5)It is well known that Ak generates an analyti
 semigroup on L2(Ω) whi
his positivity preserving. Furthermore, this semigroup extends to a C0-semigroup of 
ontra
tions on Lp(Ω) for all 1 < p < ∞, see [22℄. Therealization of its generator in Lp is denoted by Apk.3 Main resultWe start this se
tion by giving pre
ise assumptions on the 
oe�
ients andfun
tions being involved in problem (1.1). In order to do so, let 0 ≤ T0 < T1and set J := (T0, T1). For k ∈ {1, . . . , m} let µk ∈ L∞(Ω,Mn×n) and assumethat (2.2) is satis�ed.Moreover, let for every k ∈ {1...m} the fun
tions bk ∈ L∞(Ω; R) bebounded from below by some positive 
onstant.We assume the following for all k ∈ {1 . . . , m}



6Op) There exists p > n
2
su
h that ea
h Ak−Id is a topologi
al isomorphismfrom W 1,2p

ΓN
(Ω) onto W−1,2p

ΓN
(Ω). For all what follows we �x a number

r > 4p
2p−n

.Su) There exists fk ∈ C2(R), positive, with stri
tly positive derivative,su
h that Fk is the superposition operator indu
ed by fk.Ga) The mapping Gk :
(
W 1,2p(Ω)

)m →W 1,2p(Ω) is lo
ally Lips
hitz.Gb) For any ball in (
W 1,2p(Ω)

)m there exists δ > 0 su
h that Gk(u) ≥ δfor all u from this ball.Ra) The fun
tion Rk : J×
(
W 1,2p(Ω)

)m → Lp(Ω) is of Caratheodory type,i. e. Rk(·, u) is measurable for all u ∈
(
W 1,2p(Ω)

)m and Rk(t, ·) is
ontinuous for a.a. t ∈ J .Rb) Rk(·, 0) ∈ Lr(J, Lp(Ω)) and for β > 0 there exists gβ ∈ Lr(J) su
hthat
‖Rk(t, u) − Rk(t, ũ)‖Lp ≤ g(t)‖u− ũ‖W 1,2p, t ∈ Jprovided max(‖u‖W 1,2p, ‖ũ‖W 1,2p) ≤ β.BC) φk ∈ C(J ;W 1,2p(Ω)) ∩ W 1,r(J ;Lp(Ω)) and Akφk(t) = 0 for all

t ∈ J .IC) v0k − φk(T0) ∈ (Lp(Ω), D(Apk))1− 1

r
,r.The assumptions imply that the system (1.1) may be (formally) rewrittenas a quasilinear system of the form

w′
k −Hk(t, w)Akwk = Tk(t, w), k = 1, . . . , m (3.1)

w(T0) = v0 − φ(T0),where
Tk(t, w) := (bkf

′
k(wk + φk(t)))

−1[∇Gk(w + φ(t)) · [µk∇(wk + φk(t))]]

+Qk(t, w) − ∂φk

∂t
(t) (3.2)



3 Main result 7with
Hk(t, z) :=

Gk(z + φ(t))

bk f ′
k(zk + φk(t))

, t ∈ J, z ∈
(
W 1,2p(Ω)

)m (3.3)
Qk(t, z) :=

Rk(t, z + φ(t))

bk f ′
k(zk + φk(t))

, t ∈ J, z ∈
(
W 1,2p(Ω)

)m (3.4)We are now in the position to state the main result of this paper.3.1 Theorem. Let 1 < r, p < ∞ su
h that r > 4p
2p−n

, where n ∈ {2, 3}.Assume that the assumptions (Op), (Su), (Ga), (Gb), (Ra), (Rb), (BC)and (IC) are satis�ed. Then there exists a unique lo
al solution w =
(w1, . . . , wm) for equation (3.1) on an interval I = (T0, T ) satisfying

wk ∈W 1,r(I;Lp(Ω)) ∩ Lr(I;D(Ak)), k ∈ {1, . . . , m}. (3.5)3.2 Corollary. Ea
h wk is Hölder 
ontinuous simultaneously in spa
e andtime.Some remarks at this point are in order.3.3 Remarks. a) We refer to se
tion 4 for pre
ise geometri
 and smooth-ness 
onditions implying the validity of Assumption (Op).b) Besides the exponential, a typi
al example for a fun
tion f satisfyingassumption Su) is the Fermi-Dira
 distribution fun
tion
f(t) :=

2√
π

∞∫

0

√
s

1 + es−t
ds.
) Suppose that vk 
oin
ides on ΓD with a fun
tion φ ∈ C1(J,W 1,2p(Ω)).Then there exists φk satisfying Assumption BC).d) Note that Condition (BC) implies ν ·µk∇φk = 0 on ΓN . This, togetherwith the property (3.5) yields the Neumann boundary 
ondition for

vk on ΓN , see [18℄, [8℄.



84 ExamplesConsider Ω and ΓN , the subset of ∂Ω on whi
h the Neumann boundary 
on-dition is pres
ribed. In this se
tion we des
ribe geometri
 
on�gurations forwhi
h the above Theorem 3.1 holds true. Furthermore, we present 
on
reteexamples of mappings Gk and rea
tion terms Rk �tting in our framework.We start with a result, due to Gröger [24℄, whi
h 
ompletely 
overs thetwo-dimensional 
ase.4.1 Proposition. Assume that Ω ∪ ΓN is regular in the sense of Gröger.Then there exists q > 2 su
h that Ak−Id is a topologi
al isomorphism from
W 1,q

ΓN
(Ω) onto W−1,q

ΓN
(Ω).Admissable three-dimensional settings may be des
ribed as follows.4.2 Proposition. Let Ω ⊂ R

3 be a bounded domain. Then there exists
q > 3 su
h that Ak − Id is a topologi
al isomorphism from W 1,q

ΓN
(Ω) onto

W−1,q
ΓN

(Ω) provided there is a �nite lo
alization of Ω and ΓN su
h that thelo
alized sets satisfy one of the following 
onditions:i) Ω has a Lips
hitz boundary (see [23℄), ΓN = ∅, µk ≡ 1.ii) Ω has a Lips
hitz boundary, ΓN = ∂Ω, µk ≡ 1.iii) Ω is a three dimensional Lips
hitzian polyhedron, ΓN = ∅. Thereare hyperplanes H1...Hn in R
3 whi
h meet at most in a vertex of thepolyhedron su
h that the 
oe�
ient fun
tion µk is 
onstantly a real,symmetri
, positive de�nite 3 × 3 matrix on ea
h of the 
onne
ted
omponents of Ω \∪nl=1Hl. Moreover, for every edge on the boundary,indu
ed by a hetero interfa
eHl, the angles between the outer boundaryplane and the hetero interfa
e do not ex
eed π and at most one of themmay equal π.iv) Ω has a Lips
hitz boundary. ΓN = ∅ or ΓN = ∂Ω. Ω◦ ⊂ Ω is anotherdomain whi
h is C1 and whi
h does not tou
h the boundary of Ω.

µk|Ω◦ ∈ BUC(Ω◦) and µk|Ω\Ω̄◦
∈ BUC(Ω \ Ω̄◦).



4 Examples 9v) Ω has a Lips
hitz boundary. ΓN = ∅. Ω◦ ⊂ Ω is a Lips
hitz domain,su
h that ∂Ω◦ ∩ Ω is a C1 surfa
e and ∂Ω and ∂Ω◦ meet suitably.
µk|Ω◦ ∈ BUC(Ω◦) and µk|Ω\Ω̄◦

∈ BUC(Ω \ Ω̄◦).vi) Ω is a 
onvex polyhedron, ΓN ∩ (∂Ω\ΓN ) is a �nite union of linesegments, µk ≡ 1.vii) Ω is a bounded domain with Lips
hitz boundary. Additionally, forea
h x ∈ ΓN ∩ (∂Ω\ΓN ) the mapping Ψx de�ned in Se
tion 2 is a
C1-di�eomorphism from Ux onto Vx, µk ∈ BUC(Ω)A proof of the assertion of Proposition 4.2 
an be found for i) in [28℄, forii) in [39℄, for iii) in [13℄, for iv) and v) in [14℄, for vi) in [10℄ and for vii) in[15℄. The lo
alization prin
iple is des
ribed in [24℄ and [15℄.In the following we illustrate two admissable three-dimensional settings.In the �gure on the left hand side one assumes Neumann 
onditions on thetop of the upper 
uboid, otherwise Diri
hlet 
onditions. In the �gure on theright hand side, the boundary of the 
ylinder is subje
t to Dir
hlet 
ondi-tions exept for the upper �hat�, where Neumann 
onditions are pres
ribed.

Next we give two examples for the operators Gk:4.3 Example. Let gk : R
m 7→]0,∞[ be a twi
e 
ontinuously di�erentiablefun
tion and de�ne Gk(z)(x) = gk(z(x)) if z ∈ (

W 1,2p
)m and x ∈ Ω.In many appli
ations gk depends only on one variable and is a multiple ofthe exponential fun
tion.



10As the se
ond example we present a nonlo
al operator arising in thedi�usion of ba
teria; see [6℄, [7℄ and referen
es therein.4.4 Example. Let η be a 
ontinuously di�erentiable fun
tion on R whi
his bounded from above and below by positive 
onstants. Assume ϕ ∈ L2(Ω)and de�ne
Gk(z) := η(

∫

Ω

zkϕdx), z = (z1, ..., zm) ∈
(
W 1,2p

)m
.Now we give two examples for mappings Rk:4.5 Example. Assume that [T0, T1) = ∪jl=1[tl, tl+1) is a (disjoint) de
om-position of [T0, T1) and let for l ∈ {1, ..., j}

Sl : R
m × R

nm 7→ Rbe a fun
tion whi
h satis�es the following 
ondition: For any 
ompa
t set
K ⊂ R

m there is a 
onstant LK su
h that for any a, ã ∈ K, b, b̃ ∈ R
nm theinequality

|Sl(a, b) − Sl(ã, b̃)| ≤ LK |a− ã|Rm

(
|b|2

Rnm + |b̃|2
Rnm

)

+ LK |b− b̃|Rnm

(
|b|Rnm + |b̃|Rnm

)holds. We de�ne a mapping S : [T0, T1[×R
m × R

nm 7→ R by setting
S(t, a, b) := Sl(a, b), if t ∈ [tl, tl+1).The fun
tion S de�nes a mapping R in the following way: If z is the restri
-tion of a R

m-valued, 
ontinuously di�erentiable fun
tion on R
n to Ω, thenwe put

R(t, z,∇z)(x) = S(t, z(x), (∇z)(x)) for x ∈ Ω (4.1)and afterwards extend R by 
ontinuity to the whole set [T0, T1)×
(
W 1,2p(Ω)

)m.4.6 Example. Assume σ : R 7→ (0,∞) to be a 
ontinuously di�erentiablefun
tion. Further, let S : W 1,2p 7→ W 1,2p be the mapping whi
h assigns to
z ∈W 1,2p the solution ϕ of the (inhomogeneous) Diri
hlet problem

−∇ · σ(z)∇ϕ = 0.



5 Tools for the proof of Theorem 3.1 11If one de�nes
R(z) = σ(z)|∇(S(z))|2then, under a reasonable supposition on the boundary value of ϕ, the map-ping R satis�es Assumption (Ra).This se
ond example 
omes from a model whi
h des
ribes ele
tri
al heat
ondu
tion; see [5℄ and the referen
es therein.

5 Tools for the proof of Theorem 3.1Let 1 < s < ∞ and B be a densely de�ned se
torial operator in a Bana
hspa
e X. Let again J = (T0, T1) for some T0, T1 > 0. We say that the linearevolution equation
u′ +Bu = f, (5.1)
u(T0) = 0,admits maximal Ls regularity on J if for any f ∈ Ls(J ;X) there exists aunique fun
tion u ∈ W 1,s(J ;X) ∩ Ls(J ;D(B)) satisfying (5.1) in the Ls-sense. In that 
ase, we write B ∈MR(s,X). Observe that

W 1,s(J ;X) ∩ Ls(J ;D(B)) →֒ C(J ;Xs), (5.2)where Xs is the real interpolation spa
e (X,D(B))1− 1

s
,s. Consider now thequasilinear problem

u′(t) + B(t, u(t))u(t) = F (t, u(t)), t ∈ J, (5.3)
u(T0) = u0.Here u0 ∈ Xs, B := B(T0, u0) and B : J ×Xs → L(D(B);X) is 
ontinuous.

F : J×Xs → X is a Caratheodory map. We assume the following Lips
hitz
onditions on B and F :(B): For ea
h R > 0 there exists a 
onstant CR > 0, su
h that



12
‖B(t, u)v − B(t, ũ)v‖X ≤ CR ||u− ũ||Xs

||v||D(B), t ∈ J, u, ũ ∈ Xs, ||u||s,
||ũ||s ≤ R, v ∈ D(B). (5.4)(F): F (·, 0) ∈ Ls(J ;X) and for ea
h R > 0 there is a fun
tion ηR ∈ Ls(J)su
h that

‖F (t, u)−F (t, ũ)‖X ≤ ηR(t) ‖u−ũ‖s, a. a. t ∈ J, u, ũ ∈ Xs, ||u||s, ‖ũ‖s ≤ R.(5.5)Then the following existen
e and uniqueness result due to Clément andLi [9℄ and Prüss [34℄ holds true.5.1 Proposition. Assume that (B) and (F) are satis�ed and that B :=
B(T0, u0) has the property of maximal Ls-regularity. Then there exists T ∈
(T0, T1) su
h that (5.3) admits a unique solution u on I := (T0, T ) satisfying

u ∈W 1,s(I;X) ∩ Ls(I;D(B)).In order to verify the 
ru
ial 
ondition that B = B(T0, u0) has maximal
Ls-regularity in our situation we need the following results on tra
es, heatkernels, their multipli
ative perturbations and maximal Ls-regularity. Westart with the following result on tra
es.5.2 Lemma. Let Ω ⊂ R

n be a Lips
hitz domain. Then the tra
e mapping
tr : H1(Ω) → L2(∂Ω) is order preserving.For a proof we refer to [33℄, Ch. 6.6.1.5.3 Lemma. Let Ω ⊂ R

n be any domain. Assume that un → u in H1(Ω).Then |un| → |u|, u+
n → u+ and inf(un, 1) → inf(u, 1) in H1(Ω).A proof is given in [3℄, see also [32℄ and referen
es therein.Consider a 
losed subspa
e V of H1(Ω) whi
h in
ludes H1

0 (Ω). Let ̺ ∈
L∞(Ω,Mn×n) and assume it to be ellipti
 in the sense of (2.2). De�ne abilinear form a : V × V → R on V by

a(u, v) = −
∫

Ω

̺∇u · ∇u dx, u, v ∈ V.



5 Tools for the proof of Theorem 3.1 13Let A be the operator asso
iated to a in L2(Ω) and (etA)t≥0 be the semigroupon L2(Ω) generated by A. The following result gives su�
ient 
onditions onthe subspa
e V su
h that (etA)t≥0 satis�es an upper Gaussian bound. Morepre
isely, the following holds, see [3℄.5.4 Proposition. Assume that V is a 
losed subspa
e of H1(Ω) satisfyinga) H1
0 (Ω) ⊆ V ,b) V has the L1 −H1 extension property,
) u ∈ V implies |u|, inf(|u|, 1) ∈ V ,d) u ∈ V, v ∈ H1(Ω), |v| ≤ u implies v ∈ V .Then etA satis�es an upper Gaussian estimate, i.e.

(etAf)(x) =

∫

Ω

Kt(x, y)f(y)dy, x ∈ Ω, f ∈ L2(Ω)for some measurable fun
tion Kt : Ω × Ω → R+ and there exists 
onstants
γ, a > 0 and ω ∈ R su
h that

0 ≤ Kt(x, y) ≤
γ

t
n
2

e
−a|x−y|2

t eωt, t > 0, a.a. x, y ∈ Ω. (5.6)5.5 Lemma. Let H1
ΓN

(Ω) be de�ned as above. Then V := H1
ΓN

(Ω) satis�esthe assumptions a) - d) of Proposition (5.4).Proof. Assertion a) is obvious. Con
erning b) it seems that the required ex-tension result for H1(Ω) is known only for domains with Lips
hitz boundaryand not for Lips
hitz domains. Hen
e, in the following we give a proof ofthe subsequent 
laim whi
h implies the desired L1−H1 extension property:Claim: If Ω is a Lips
hitz domain, then there exists a (linear, 
ontinuous)extension operator E : L1(Ω) → L1(Rn) whose restri
tion to H1(Ω) mapsthis spa
e 
ontinuously into H1(Rn).By de�nition of Lips
hitz domains (see [23℄), for every x ∈ ∂Ω there isan open neighbourhood Ux of x and a bi-Lips
hitz mapping Ψx : Ux 7→ R
n



14su
h that Ψx(x) = 0 and Ψ(Ux ∩ Ω) is the half 
ube E1 = {x ∈ R
n :

max
l=1...,n

|xl| < 1, xn < 0}. Sin
e the image of Ux under Ψx is open, there is anumber ζx ∈ (0, 1) su
h that ζxE ⊆ Ψx(Ux ∩ Ω), where E is the 
ube E =
{x ∈ R

n : max
l=1...,n

|xl| < 1}. De�ne Ox as the image of ζxE under Ψ−1
x . For

x ∈ Ω let Ox be a ball around x whose 
losure is a subset of Ω. Clearly, thesystem {Ox}x∈Ω̄ is an open 
overing of Ω̄. Let Ox1
, ..., Oxj

, Oxj+1
, ..., Oxl

bea �nite sub
overing, where x1, ..., xj ∈ Ω and xj+1, ..., xl ∈ ∂Ω. Let η1, ..., ηlbe a partition of unity over Ω̄, subordinated to the 
overing Ox1
, ..., Oxl

.Obviously, then for any ϕ ∈ L1(Ω) it holds ϕ =
∑l

k=1 ηkϕ. Moreover, if
ϕ ∈ H1(Ω) then this equation holds also true as an equation in H1(Ω).Further, one has supp ηkϕ ⊆ supp ηk ⊆ Oxk

. Therefore, if k ∈ {1, ..., j}, thefun
tions ηkϕ 
an be extended by zero (norm preserving) to whole R
n andone obtains again a fun
tion from L1(Rn) or H1(Rn), respe
tively. For any

k ∈ {j + 1, ..., l} the fun
tion ηkϕ may be transformed via Ψx to a fun
tion
η̃kϕ on ζxk

E1, whi
h is then from L1(ζxk
E1) or fromH1(ζxk

E1), respe
tively.We de�ne the fun
tion η̂kϕ on ζxk
E as

η̂kϕ(y) :=

{
η̃kϕ(y) if y ∈ ζxk

E1

η̃kϕ(y1, ..., yn−1,−yn) if (y1, ..., yn−1,−yn) ∈ ζxk
E1.Then η̂kϕ ∈ L1(ζxk

E) and η̂kϕ ∈ H1(ζxk
E) if ϕ ∈ H1(Ω). Additionally,

‖η̂kϕ‖L1(ζxk
E) = 2‖η̂kϕ‖L1(ζxk

E1) as well as ‖η̂kϕ‖H1(ζxk
E) = 2‖η̂kϕ‖H1(ζxk

E1).Moreover, suppη̂kϕ ⊂ ζxk
E. We transform η̂kϕ ba
k under Ψxk

and obtaina fun
tion whi
h has its support within Oxk
, 
oin
ides with ηxk

ϕ on Oxk
∩Ωand belongs to L1(Oxk

) or H1(Oxk
), respe
tively. Trivially, by the supportproperty, ea
h of these fun
tions may be extended by zero (hen
e normpreserving) to whole Rn. Clearly, this extension then also belongs to L1(Rn)or H1(Rn), respe
tively.In order to prove the �rst assertion of 
), noti
e �rst that it su�
es to showthat u ∈ V implies u+ ∈ V . Hen
e, let u ∈ V and let {ul}l ⊂ C∞

c (Rn)with supp ul ∩ (∂Ω\ΓN ) = ∅ and ul|Ω → u in H1(Ω). Clearly, then also
supp u+

l ∩ (∂Ω\ΓN ) = ∅, and by Lemma (5.3) we have u+
l |Ω → u+ in H1(Ω).A molli�er argument then yields the 
laim. The se
ond assertion of 
)follows similarly by Lemma 5.3.In order to prove assertion d) note that Lemma (5.2) a) implies that 0 ≤
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tr |v| ≤ tr u a.e. on ∂Ω. By (2.1), tr u = 0 a.e. on ∂Ω\ΓN . Hen
e, tr v = 0a.e. on ∂Ω\ΓN , whi
h yields, again by (2.1), that v ∈ V = H1

ΓN
(Ω).Consider the semigroup etAk on L2(Ω) generated by Ak asso
iated to theform ak de�ned in (2.3) with V = H1

ΓN
(Ω). It follows from Proposition (5.4)and Lemma (5.5) that etAk is a positive semigroup on L2(Ω) satisfying anupper Gaussian bound. Hen
e, (etAk)t≥0 extends to a positive C0-semigroupof 
ontra
tions on Lq(Ω) for all 1 ≤ q <∞.5.6 Theorem. Let b ∈ L∞(Ω,R) su
h that inf

x∈Ω
|b(x)| ≥ δ for some δ > 0.Let 1 < s, q <∞. Then bAk ∈MR(s, Lq(Ω)) for all k ∈ {1, . . . , m}.Proof. Let k ∈ {1, . . . , m}. By the above remark, etAk is a positive 
on-tra
tion semigroup on Lq(Ω) satisfying an upper Gaussian bound. Hen
e,the kernel Kt of et(Ak−αId))t≥0 satis�es (5.6) with ω = 0 for suitable α ∈ R.Moreover, Ak − αId is self-adjoint in L2(Ω). By a result due to Duongand Ouhabaz [12℄, the semigroup on L2(Ω) generated by b(Ak − αId) sat-is�es an upper Gaussian bound with ω = 0 as well. Thus b(Ak − αId) ∈

MR(s, Lq(Ω)) by a result of Hieber and Prüss (see [26℄ or [11℄). Finally,
bAk ∈MR(s, Lq(Ω)) due to the lower order perturbation result of maximalregularity; see [11℄.5.7 Proposition. Let p > n

2
be the number from Assumption (Op) andassume θ ∈ (1

2
+ n

4p
, 1]. Then

[Lp, D(Apk)]θ →֒W 1,2p
ΓN

(Ω)A proof for the three dimensional 
ase is given in [35℄; the two dimensional
ase requires only obvious modi�
ations. A 
omplete, but te
hni
ally moreinvolved proof for the two dimensional 
ase is 
ontained in [29℄.5.8 Corollary. Let r > 4p
2p−n

. Then
(Lp, D(Apk))1− 1

r
,r →֒ W 1,2p

ΓN
(Ω)Proof. Let θ be any number from the interval ]1

2
+ n

4p
, 1− 1

r
[. By interpolation

(Lp, D(Apk))1− 1

r
,r →֒ (Lp, D(Apk))θ,1 →֒ [Lp, D(Apk)]θ.Then the assertion follows from the embedding property of the 
omplexinterpolation spa
e into W 1,2p
ΓN

(Ω) established in Proposition 5.7.



166 Proof of the main resultWe �rst set X :=
(
Lp(Ω)

)m, D := ×m
k=1D(Apk) and Xr := (X,D)1− 1

r
,rfor r as above. By Assumption (IC), w0 ∈ Xr. Further, for every pair

(t, z) ∈ [T0, T1) ×W 1,2p(Ω)m we de�ne the mapping H(t, z) : X 7→ X via
ϕ := (ϕ1, . . . , ϕm) 7→

(
H1(t, z)ϕ1, . . . , Hm(t, z)ϕm

)
. (6.1)Sin
e Hk(t, z) ∈ L∞(Ω) and sin
e Hk possesses a stri
tly positive lowerbound, it follows that

D(Hk(t, z)A
p
k) = D(Apk).In parti
ular, D(Hk(T0, w0)A

p
k)) is dense in Lp(Ω) (see [22℄ Thm. 4.5 andThm. 4.7).Consider the mapping B : J ×Xr → L(D;X) given by

B(t, z)ϕ := H(t, z)(Ap1ϕ1, . . . , A
p
mϕm), ϕ = (ϕ1, ..., ϕm) ∈ D.By Corollary 5.8 and Morrey's theorem we have

Xr →֒
(
W 1,2p

ΓN
(Ω)

)m →֒
(
Cα(Ω)

)mfor some α > 0. Thus, the assumed properties on Fk, Gk and φk imply that
B : J ×Xr → L(D;X)is 
ontinuous. Moreover, for β > 0 there exists Cβ > 0 su
h that

‖H(t, z) −H(t, z̃)‖∞ ≤ Cβ‖z − z̃‖W 1,2pprovided t ∈ J and ‖z‖Xr
and ‖z̃‖Xr

≤ β. Hen
e, (5.4) from Assertion (B)is ful�lled.Furthermore, (5.5) from Assertion (F) holds due to the assumed prop-erties of Fk, Gk, φ, Rk and Proposition 5.8. It remains to verify the key
ondition of Proposition 5.1, namely that B := B(T0, w0) has the propertyof maximal regularity. To this end, re
all that H(T0, w0) ∈
(
L∞(Ω)

)m witha stri
tly positive lower bound in ea
h 
omponent. Thus, B ∈ MR(r,X) by



6 Proof of the main result 17Proposition 5.6. Finally, an appli
ation of Proposition 5.1 ends the proof ofTheorem 3.1.It remains to show that if w is a solution of (3.1) then v := w+φ providesa solution of (1.1). This will be done in the Appendix.We now give a proof of Corollary 3.2; in fa
t we prove the followingsharper result:6.1 Lemma. There exists β > 0 su
h that ea
h 
omponent wk of the solu-tion w of (3.1) belongs to the spa
e Cβ((T0, T );W 1,2p
Γ (Ω)) →֒ Cβ((T0, T );

Cα(Ω)).Proof. We write for short Dk = D(Ak) and I = (T0, T ). Then
W 1,r(I;Lp) ∩ Lr(I;Dk) →֒ C(Ī; (Lp, Dk)1− 1

r
,r) →֒ C(Ī; [Lp, Dk]θ),if θ ∈ (0, 1 − 1

r
).Moreover, we have the embedding
W 1,r(I;Lp) →֒ Cδ(I;Lp) with δ = 1 − 1

r
.Fix θ ∈ (1

2
+ n

4p
, 1 − 1

r
) and let λ ∈ (0, 1) be given su
h that

θλ >
1

2
+

n

4p
.In view of Proposition 5.7 and the reiteration theorem for 
omplex interpo-lation ( see [37℄) we obtain

‖wk(t) − wk(s)‖W 1,2p

|t− s|δ(1−λ)
≤

≤ c
‖wk(t) − wk(s)‖[Lp,Dk]θλ

|t− s|δ(1−λ)
∼

‖wk(t) − wk(s)‖[
Lp,[Lp,Dk]θ

]
λ

|t− s|δ(1−λ)
≤

≤ ĉ
‖wk(t) − wk(s)‖1−λ

Lp

|t− s|δ(1−λ)
‖wk(t) − wk(s)‖λ[Lp,Dk]θ

=

= ĉ
(‖wk(t) − wk(s)‖Lp

|t− s|δ
)1−λ(

2 sup
s∈Ī

‖wk(s)‖[Lp,Dk]θ

)λ
.
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7 AppendixIt remains to show that if w is a solution of (3.1) then v := w + φ providesa solution of (1.1). One easily re
ognizes that all the manipulations whi
htransfrom (1.1) into (3.1) are straight forward to justify within the distri-butional 
al
ulus - ex
ept one. Therefore, we will give a stri
t justi�
ationof this point in the following lemma. Throughout this appendix f : R 7→ Ris always assumed to be twi
e 
ontinuously di�erentiable.7.1 Lemma. Assume p, r ∈]1,∞[ and v ∈W 1,r(]T0, T [;Lp)∩C([T0, T ];C(Ω̄)).Then the fun
tion ]T0, T [∋ t 7→ f(v(t)) belongs to W 1,r(]T0, T [;Lp) andits distributional derivative is the fun
tion ]T0, T [∋ t 7→ f ′(v(t))v′(t) ∈
Lr(]T0, T [;Lp).7.2 Remark. We denote by C1(]T0, T [;Lp) the spa
e of all Lp-valued, 
on-tinuously di�erentiable fun
tions on ]T0, T [ with bounded derivatives on
]T0, T [.In order to give a proof of Lemma 7.1 we use the following result.7.3 Lemma. Let [T0, T ] ∋ t 7→ ψ(t, ·) be a mapping belonging to C([T0, T ];
C(Ω̄)) ∩ C1(]T0, T [;Lp). Then the mapping

]T0, T [∋ t 7→ f(ψ(t, ·)) (7.1)takes its values in C(Ω̄) →֒ Lp. It is 
ontinuously di�erentiable when re-garded as Lp valued and its derivative in a point s ∈]T0, T [ is equal to the
Lp-fun
tion f ′(ψ(s, ·))ψ′(s).Proof. The �rst assertion is obvious. Con
erning the se
ond one, the set
{ψ(t, x)/x ∈ Ω, t ∈ [T0, T ]} is bounded. Sin
e f is twi
e 
ontinuously di�er-entiable, for s, t ∈]T0, T [ and x ∈ Ω one may apply Taylor's formulae:

f(ψ(t, x)) − f(ψ(s, x))

t− s
= f ′(ψ(s, x))

[ψ(t, x) − ψ(s, x)]

t− s
+ (7.2)
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+

∫ 1

0

(1 − τ)f ′′((1 − τ)ψ(t, x) + τψ(s, x)) dτ
[ψ(t, x) − ψ(s, x)]2

t− s
(7.3)The family {

f ′(ψ(s, ·)) [ψ(t,·)−ψ(s,·)]
t−s

}
t

onverges by the supposition on thedi�erentiablity of the mapping t 7→ ψ(t, ·) in Lp to f ′(ψ(s, ·))ψ′(s) if t ap-proa
hes s . It remains to show that the expression in (7.3) approa
heszero in Lp. This follows easily from the uniform boundedness of the values

f ′′((1 − τ)ψ(t, x) + τψ(s, x)), the boundedness of {
[ψ(t,·)−ψ(s,·)]

t−s

}
t
in Lp andthe 
onvergen
e of [ψ(t, ·) − ψ(s, ·)] to zero in C(Ω̄) for t approa
hing s.The 
ontinuity of the derivative follows from the 
ontinuity of ψ′ and the
ontinuity of the fun
tion t 7→ f ′(ψ(t, ·)) in C(Ω̄).7.4 Lemma. Let v ∈ W 1,r(]T0, T [;Lp) ∩ C([T0, T ];C(Ω̄)). Then there is asequen
e {ψl}l in C([T0, T ];C(Ω̄)) ∩ C1(]T0, T [;Lp(Ω)) su
h that ψl 7→ v in

C([T0, T ];C(Ω̄)) and ψ′
l 7→ v′ in Lr(]T0, T [;Lp).Proof. Let us de�ne a 
ontinuous extension ṽ to all of R whi
h additionallyhas 
ompa
t support as follows: we put

v̂(t) :=





v(T0 + (T0 − t)) if t ∈]T0 − (T − T0), T0[

v(t) if t ∈ [T0, T ]

v(T − (t− T ) if t ∈]T, T + (T − T0)[

(7.4)(re�e
tion at T0, T , respe
tively). Afterwards we multiply v̂ by a real valued,
ontinuously di�erentiable fun
tion whi
h is identi
al 1 on [T0, T ] and whi
hhas its support in ]T0−(T−T0)/2, T+(T−T0)/2[. We de�ne this produ
t as
ṽ and identify ṽ with its extension by zero to whole R. Oviously, ṽ|[T0,T ] = v;further one veri�es the property ṽ ∈ W 1,r(R;Lp) ∩ C(R;C(Ω̄)). Let ϑ bethe usual molli�er fun
tion

ϑ(s) =





1
R

e
− 1

1−s2 ds

e
− 1

1−s2 if |s| < 1

0 else on Rand ϑl(s) := lϑ(l s). Now we put
ψl(t) :=

{∫ t

T0

(
ṽ′ ∗ ϑl)(s) ds+ (ṽ ∗ ϑl)(T0), if t ≥ T0

−
∫ T0

t

(
ṽ′ ∗ ϑl)(s) ds+ (ṽ ∗ ϑl)(T0), if t < T0.

(7.5)



20Then ψl is nothing else but ṽ ∗ ϑl. This yields ψl 7→ v in C([T0, T ];C(Ω̄)).On the other hand, (7.5) immediately gives ψ′
l = ṽ′ ∗ ϑl. This means that

ψ′
l 7→ ṽ′ in Lr(R;Lp), whi
h implies ψ′

l|]T0,T [ 7→ v′ in Lr(]T0, T [;Lp).We now turn to the proof of Lemma 7.1: Let {ψl}l be the sequen
e fromthe previous lemma and ϕ ∈ C∞
0 (]T0, T [). Then, 
onsidering the fun
tion

]T0, T [∋ t 7→ f(v(t)) as a Lp-valued distribution, one gets by the de�nitionof the weak derivative
(
f(v)

)′
(ϕ) = −f(v)(ϕ′) = −

∫ T

T0

f(v(s))ϕ′(s) ds =

= −
∫ T

T0

lim
l 7→∞

f(ψl(s))ϕ
′(s) ds = lim

l 7→∞
−

∫ T

T0

f(ψl(s))ϕ
′(s) ds.By Lemma 7.3, ea
h f(ψl) even has a strong (time) derivative whi
hequals f ′(ψl)ψ

′
l. From this and integrating by parts one gets

−
∫ T

T0

f(ψl(s))ϕ
′(s) ds =

∫ T

T0

f ′(ψl(s))ψ
′
l(s)ϕ(s)ds.By 
onstru
tion, ψl 7→ v in C([T0, T ];C(Ω̄)), ψ′

l 7→ v′ in Lr(]T0, T [;Lp),what implies f ′(ψl(·))ψ′
lϕ 7→ f ′(v(·))v′ϕ in Lr(]T0, T [;Lp). But the integralis a 
ontinuous mapping from Lr(]T0, T [;Lp) into Lp; this �nally gives

∫ T

T0

f ′(v(s))v′(s)ϕ(s) ds =

∫ T

T0

lim
l 7→∞

f ′(ψl(s))ψ
′
l(s)ϕ(s)ds =

lim
l 7→∞

∫ T

T0

f ′(ψl(s))ψ
′
l(s)ϕ(s)ds = lim

l 7→∞
−

∫ T

T0

f(ψl(s))ϕ
′(s) ds =

(
f(v)

)′
(ϕ).Thus, Lemma 7.1 is proved.A
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