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CONTENTS 1

ABSTRACT

In this paper we investigate quasilinear systems of reaction-diffusion
equations with mixed Dirichlet-Neumann bondary conditions on non smooth
domains. Using techniques from maximal regularity and heat-kernel esti-
mates we prove existence of a unique solution to systems of this type.
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1 Introduction

The theory of quasilinear parabolic systems has many applications to evo-
lution problems in natural sciences, see e.g. [2], [1], [4], [5], [19], [9], [30]
and |38|. In this paper we investigate in particular systems of reaction-
diffusion equations with mixed Dirichlet-Neumann boundary conditions on
non-smooth domains 2 C R" for n = 2,3 of the form

up, — div(Gr(v)puVor) = Ri(t,v, Vo), te (1o, T),x € Q,
up = by Fip(vp), te[lh,T),z€Q,

v - ,lLkV'Uk = 0, t e [TQ,T),ZL' € FN, (].].)
Vp = ¢k7 t e [T(],T),Jf € FDv
ve(To) = vor, r €.

Here v = (v1,...,Un), i € L®(Q, M,yx,) are diffusion coefficients, b, €
L>(Q) reference densities and Ry, Gy, F}, denote the reaction, diffusion and
superposition terms for k € {1,...,m}.

In many concrete problems which are described as a system of the form
(1.1), the underlying domain is non-smooth and the coefficient functions
bi and py are discontinuous. We therefore aim for minimal smoothness
assumptions on the boundary 02 of €2, the coefficient functions by and gy
as well as on the interface between the Neumann boundary part 'y of
02 and the Dirichlet boundary part I'p = 9Q \ I'y. More precisely, we
generally assume that 0 C R™ is a Lipschitz domain (see [23]) and QU 'y
is regular in the sense of Groger (see [24]). Our approach includes reaction
terms Ry which depend discontinously on time ¢, which is important in many
examples (see [38], [25], [30]), in particular in the control theory of parabolic
equations. Alternatively, the reader should think e.g. of a manufacturing
process for semiconductors, where at a certain moment light is switched
on/off and, of course, parameters in the chemical process change abruptely.
Note that the original formulation of the evolution equation in terms of
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balance laws takes the form (see [36, Chap. 21|, see also [4])

0 U dl‘+/ v jrdo = / Rpdr 5 gk = je(v) = Gr(v) Vo
ot Jor o5y '

(1.2)
where €' stands for any (Lipschitzian) subdomain of Q. Within the vari-
ational theory of weak solutions, however, the indicator functions of the
subdomains are not admissible test functions. Therefore the integral for-
mulation (1.2) is equivalent to the above evolution equation only if the
weak solutions have some additional regularity. It is the main advantage of
the present concept that the divergence of the corresponding current ji(v)
indeed is a function, not only a distribution. In a strict sense, only this jus-
tifies the application of Gauss’ theorem to calculate the normal components
of the currents over boundaries of suitable subdomains. Moreover, the fact
div jx € LP is also of importance for the numerical treatment of (1.1), as the
formulation (1.2) is the basis of finite volume methods (see [17]) namely
in the sense of local balances.
Global existence results for (1.1) cannot be expected within such a general
approach (see e.g. |16] or [5| and the references therein, see also [27]), and
are thus outside the scope of this paper.
In contrast to many papers where existence and uniqueness results for quasi-
linear parabolic systems are based on the construction of an appropriate
evolution operator (see e.g. |1]), our approach relies heavily on maximal
LP-estimates for the linear part of (1.1). In fact, after rewriting equation
(1.1) as an abstract evolution equation in LP(Q)™ of the form

w' — H(t,w)(div(pVw)) = S(t,w)
w(Ty) = wvo— (o), (1.3)

our strategy to solve (1.3) follows the approach of Clément and Li |9] and
Priiss [34]. The advantage in the given situation (1.1) is that subtle tech-
niques from harmonic analysis as well as heat-kernel methods can be used
to prove the central LP-estimates of the linear part. In order to apply these
methods in our situation one needs embedding properties of certain inter-
polation spaces between the domain of the LP-realization of the underlying
elliptic operators and L?() into W1?P(Q2). This embedding property rests



on the assumption that the operators formally defined by
—V eV + 1 W (Q) — Wi (Q)

provide topological ismorphisms for some ¢ > n. Note that this assumption
is in fact fulfilled for many geometric constellations and coefficient functions;
see Section 4.

2 Preliminaries

Let Q C R™ be a bounded Lipschitz domain and assume that n = 2 or
n = 3. Denote by I' C 02 an open subset of 0. For 1 < ¢ < oo we define
Wh(Q) as the closure of

{¢lo : v € CZ(R"), suppy N (OQ\I') = 0}.

in the Sobolev space W14(Q). If ¢ = 2, we write H'(Q) or HL(Q) instead
of Wh2(Q) or WE2(Q). Of course, if T = @, then W(Q) = W Q).
Moreover, throughout this work we always suppose that Q U 'y is regular
in the sense of Groger (|24]), this means: for all z € 0 there exist open
sets U,, V, C R™ and a bi-Lipschitz transform ¥, from U, onto V, such that
x €U, V,(z) =0and V¥, (U, N (QUTy)) coincides with one of the sets

E, = {zeR": max |z < 1,2, <0},
E, = {xeRn:zP}aX |z < 1,2, <0},
Es = {r€FEy:x, <0oraz >0}

It is not hard to see that every Lipschitz domain and also its closure is
regular in the sense of Groger, the corresponding model sets are then E}
or Es, respectively, see [23]. Moreover, if Q C R? is a bounded Lipschitz
domain and 09\ Iy is the finite union of (non-degenerate) closed arc pieces
from the boundary, then QU Iy is regular in the sense of Groger. It is also
known (see [20], Satz 1. 103 or [21]) that if Q U 'y is regular in the sense
or Groger, then one has the following coincidence:

Wr? (Q) ={ e W (Q) 1 tr ¢ = 0 ace. on IQ\I'w}. (2.1)
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Finally, for k € {1,...,m}, let py, € L>®°(Q, M), where M, denotes the
set of all real, symmetric n x n matrices. Suppose that additionally

inf inf : . 2.2
2§, i, ela)s -5 >0 =

For a closed subspace V' C H'(Q) such that HJ(2) C V we define the form
ap:V xV — R by

ar(u,v) := —/,ukVu -Vodz, wuvelV.
o)

The form induces a continuous mapping A, : V' — V' such that
ag(u,v) = (Agulv), wu,ve V. (2.3)

Here, for v € L*(Q), f,(u) := (v|u)p2 defines an element f, € V' and
vi— f, : L*(Q) — V' defines a continuous injection. In the following, we
identify v with f,. We then define the operator Ay as

D(Ay) = {ueV:3feL*(Q),a(u,0) = (flo) Vo €V} (2.4)
Apu = f. (2.5)

It is well known that Aj; generates an analytic semigroup on L?(Q2) which
is positivity preserving. Furthermore, this semigroup extends to a Cpy-
semigroup of contractions on LP(2) for all 1 < p < oo, see [22]. The
realization of its generator in L is denoted by Af.

3 Main result

We start this section by giving precise assumptions on the coefficients and
functions being involved in problem (1.1). In order to do so, let 0 < Ty < Ty
and set J := (Ty, T1). For k € {1,...,m} let pup € L>®(Q, M, ) and assume
that (2.2) is satisfied.

Moreover, let for every k € {1..m} the functions b, € L>®(Q;R) be
bounded from below by some positive constant.

We assume the following for all k € {1...,m}



Op) There exists p > 5 such that each A —1d is a topological isomorphism
from WI}N%(Q) onto WF_]VI’2P(Q). For all what follows we fix a number

r > 24—”.
p—n

Su) There exists f € C*(R), positive, with strictly positive derivative,
such that Fj is the superposition operator induced by fy.
Ga) The mapping Gy, : (W?(Q))™ — W?(Q) is locally Lipschitz.

Gb) For any ball in (W12(2))™ there exists § > 0 such that Gy(u) > ¢
for all w from this ball.

Ra) The function Ry : J x (Wh#(Q))" — LP(Q) is of Caratheodory type,
i. e. Ry(-,u) is measurable for all u € (WH2(Q))™ and Ry(t,) is
continuous for a.a. t € J.

m

Rb) Ri(-,0) € L"(J,L*(2)) and for 3 > 0 there exists g3 € L"(J) such
that
[ Rt u) = Ri(t, @) || e < g(@)[lu—tllwroe, €T

provided max(||u|[y1.2e, ||@||wi2) < S5

BC) ¢p € C(J;Wh(Q)) n WL (J; LP(Q)) and  Aggp(t) = 0 for all
tel.

IC) vor — é(To) € (LP(Q), D(Ay)), 2

_;77»-

The assumptions imply that the system (1.1) may be (formally) rewritten
as a quasilinear system of the form

w;—Hk(t,w)Akwk = Tk(t,w), k = 1,...,m (31)
w(To) = vo—(To),

where

Tt w) o= (befr(we + 6(1) 7 [VGr(w + &(1) - [V (wr, + ér(1))]]

+Qk(t> ’LU) - a5%(0
(3.2)
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with
_ _Gilzto) L e ()™
Hi(t,z) = ATk ted, ze (WHr(Q)) (3.3)
_ Rtz +9(t) Lo
Qr(t,z) = b Tt oelD) teld, ze (WhH»(Q)) (3.4)

We are now in the position to state the main result of this paper.

3.1 Theorem. Let 1 < r,p < oo such that r > 2;—311, where n € {2,3}.

Assume that the assumptions (Op), (Su), (Ga), (Gb), (Ra), (Rb), (BC)
and (IC) are satisfied. Then there exists a unique local solution w =
(w1, ..., wy) for equation (3.1) on an interval I = (Ty,T') satisfying

wy, € WH(I; LP(Q)) N L™ (I; D(Ay)), ke {l,...,m}. (3.5)

3.2 Corollary. Fach wy 1s Hélder continuous simultaneously in space and
time.

Some remarks at this point are in order.

3.3 Remarks. a) We refer to section 4 for precise geometric and smooth-
ness conditions implying the validity of Assumption (Op).

b) Besides the exponential, a typical example for a function f satisfying
assumption Su) is the Fermi-Dirac distribution function

2 [
f(t)'_ﬁ0/1+es—t

¢) Suppose that vy, coincides on I'p with a function ¢ € C1(J, W2 (Q)).
Then there exists ¢y, satisfying Assumption BC).

d) Note that Condition (BC) implies v+, V¢, = 0 on I'y. This, together
with the property (3.5) yields the Neumann boundary condition for
v on I'y, see [18], [8].



4 Examples

Consider €2 and I'y, the subset of 02 on which the Neumann boundary con-
dition is prescribed. In this section we describe geometric configurations for
which the above Theorem 3.1 holds true. Furthermore, we present concrete
examples of mappings G} and reaction terms Ry, fitting in our framework.

We start with a result, due to Groger [24], which completely covers the
two-dimensional case.

4.1 Proposition. Assume that Q Uy is reqular in the sense of Griger.
Then there exists ¢ > 2 such that Ay — Id is a topological isomorphism from
Wﬁ}g(Q) onto W{;Q(Q)

Admissable three-dimensional settings may be described as follows.

4.2 Proposition. Let QO C R? be a bounded domain. Then there exists
q > 3 such that Ay, — Id is a topological isomorphism from Wﬁg(@) onto

W{l’q(Q) provided there is a finite localization of 2 and 'y such that the

N
localized sets satisfy one of the following conditions:

i) Q has a Lipschitz boundary (see [23]), Ty = 0, up = 1.
ii) Q has a Lipschitz boundary, I'y = 0Q, py. = 1.

iii) ) is a three dimensional Lipschitzian polyhedron, Ty = 0. There
are hyperplanes H,...H,, in R® which meet at most in a vertex of the
polyhedron such that the coefficient function u is constantly a real,
symmetric, positive definite 3 X 3 matrix on each of the connected
components of Q\ U H;. Moreover, for every edge on the boundary,
induced by a hetero interface H;, the angles between the outer boundary
plane and the hetero interface do not exceed m and at most one of them
may equal .

iv) Q has a Lipschitz boundary. Ty =0 or Ty = 9Q. Q. C Q is another
domain which is C* and which does not touch the boundary of €.
tila, € BUC(,) and prlovg, € BUC(Q\ §2,).
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v) Q has a Lipschitz boundary. Ty = 0. Q, C Q is a Lipschitz domain,
such that 0Q, N Q is a C' surface and o8 and OSs meet suitably.
prlo, € BUC(,) and pg|ova, € BUC(2\ €).

vi) 0 is a convex polyhedron, T N (OQ\I'x) is a finite union of line
segments, pr = 1.

vii) Q is a bounded domain with Lipschitz boundary. Additionally, for
each x € Ty N (OQ\I'y) the mapping ¥, defined in Section 2 is a
Cl-diffeomorphism from U, onto V, u. € BUC(Q)

A proof of the assertion of Proposition 4.2 can be found for i) in 28], for
ii) in [39], for iii) in |[13], for iv) and v) in |14], for vi) in |[10] and for vii) in
[15]. The localization principle is described in [24] and [15]. O

In the following we illustrate two admissable three-dimensional settings.
In the figure on the left hand side one assumes Neumann conditions on the
top of the upper cuboid, otherwise Dirichlet conditions. In the figure on the
right hand side, the boundary of the cylinder is subject to Dirchlet condi-
tions exept for the upper “hat”, where Neumann conditions are prescribed.

N I

/FN

FD\-
I'p ——=

“_~

Next we give two examples for the operators G:

4.3 Example. Let g; : R™ —]0, 00[ be a twice continuously differentiable
function and define Gy,(z)(z) = gi(2(z)) if z € (W)™ and z € Q.

In many applications g, depends only on one variable and is a multiple of
the exponential function.
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As the second example we present a nonlocal operator arising in the
diffusion of bacteria; see [6], [7] and references therein.

4.4 Example. Let n be a continuously differentiable function on R which
is bounded from above and below by positive constants. Assume ¢ € L*(£2)
and define

Gr(z) == 7;(/Q zredr),  z=(21,...,2m) € (W1’2p)m.

Now we give two examples for mappings Rj:

4.5 Example. Assume that [7p,77) = U‘gzl[tl,tl+1) is a (disjoint) decom-
position of [Ty, T7) and let for [ € {1,...,j}

SR xR"™ — R

be a function which satisfies the following condition: For any compact set
K C R™ there is a constant Ly such that for any a,a € K, b,b € R™ the
inequality

Si(a, b) — Sy(a,b)| < Lila — alzm (|b[n + |blEam)

+ Lg|b— B|an (|b|an + |B|an)
holds. We define a mapping S : [Ty, T1 [xR™ x R™ — R by setting
S(t,a, b) = S[(a, b), if te [tl,tl+1).

The function S defines a mapping R in the following way: If z is the restric-
tion of a R™-valued, continuously differentiable function on R™ to €2, then
we put

R(t,z,Vz)(z) = S(t, 2(x),(Vz)(z)) forz e Q (4.1)
and afterwards extend R by continuity to the whole set [Ty, 71) x (W12P(Q))™.

4.6 Example. Assume o : R — (0,00) to be a continuously differentiable
function. Further, let S : WH2P +— WL2P be the mapping which assigns to
z € WY the solution ¢ of the (inhomogeneous) Dirichlet problem

—V -0(2)Vp =0.
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If one defines
R(z) = o(2)|V(S(2))

then, under a reasonable supposition on the boundary value of @, the map-
ping R satisfies Assumption (Ra,).

This second example comes from a model which describes electrical heat
conduction; see [5] and the references therein.

5 Tools for the proof of Theorem 3.1

Let 1 < s < oo and B be a densely defined sectorial operator in a Banach
space X. Let again J = (Ty, T1) for some T, T7 > 0. We say that the linear
evolution equation

u+ Bu = f, (5.1)
U(T()) = 0,
admits maximal L® regularity on J if for any f € L*(J; X) there exists a

unique function v € Wh(J; X) N L*(J; D(B)) satisfying (5.1) in the L*-
sense. In that case, we write B € M R(s, X). Observe that

WL (J; X) N L*(J; D(B)) — C(7; X,), (5.2)

where X is the real interpolation space (X, D(B)),_1 ,. Consider now the
quasilinear problem

u'(t) + B(t,u(t))u(t) = F(t,u(t)), teJ, (5.3)
U(To) = Ug.
Here ug € Xs, B := B(1y,up) and B : J x Xy — L(D(B); X) is continuous.

F:Jx X, — X isa Caratheodory map. We assume the following Lipschitz
conditions on B and F":

(B): For each R > 0 there exists a constant C'z > 0, such that
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IB(t, u)v = B(t, a)vlx < Cr [lu—allx.[[vllps), t € Ju,a e X, [[ulls,

l|a||ls < R, v e D(B).
(5.4)
(F): F(-,0) € L°(J; X) and for each R > 0 there is a function ng € L*(J)
such that
[F @ u)=F @) x <na(t) u—dlls, a. a.t e J uae X, |lulls, |lufs < R.
(5.5)

Then the following existence and uniqueness result due to Clément and
Li [9] and Priiss [34] holds true.

5.1 Proposition. Assume that (B) and (F) are satisfied and that B :=
B(Ty, ug) has the property of mazimal L*-reqularity. Then there exists T €
(To,Th) such that (5.3) admits a unique solution u on I := (Ty, T) satisfying

we W (I; X)n L*(I; D(B)).
In order to verify the crucial condition that B = B(T}, up) has maximal
L#-regularity in our situation we need the following results on traces, heat

kernels, their multiplicative perturbations and maximal L°-regularity. We
start with the following result on traces.

5.2 Lemma. Let Q C R™ be a Lipschitz domain. Then the trace mapping
tr: HY(Q2) — L*(09) is order preserving.

For a proof we refer to [33], Ch. 6.6.1.
5.3 Lemma. Let Q C R" be any domain. Assume that u, — u in H(S).
Then |u,| — |u|, uf — u™ and inf(u,, 1) — inf(u, 1) in H(Q).

A proof is given in [3], see also [32] and references therein.

Consider a closed subspace V of H'(Q2) which includes HJ(2). Let o €
L>®(Q, M, ) and assume it to be elliptic in the sense of (2.2). Define a
bilinear form a: V x V — R on V by

a(u,v):—/QVu~Vudx, u,v € V.
Q
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Let A be the operator associated to a in L2(Q) and (¢!);>( be the semigroup
on L*(2) generated by A. The following result gives sufficient conditions on
the subspace V' such that (etA)tZO satisfies an upper Gaussian bound. More
precisely, the following holds, see |3|.

5.4 Proposition. Assume that V is a closed subspace of H*(Q2) satisfying

a) Hy(Q) SV,
b) V has the L* — H' extension property,
c) uw €V implies |ul, inf(|ul,1) € V,

d) ueV,ve HY(Q), |v| <u impliesv e V.

Then e satisfies an upper Gaussian estimate, i.e.

(e f)(a /Ktxy Yy, 7 €0, fe LX)

for some measurable function K; : Q x 2 — Ry and there exists constants
v,a >0 and w € R such that

Yo —ale—yl®

O§Kt(9§,y)§t—ﬁe o e, t>0, aa. x,y € (5.6)

2

5.5 Lemma. Let H} (Q) be defined as above. Then V := Hy (Q) satisfies
the assumptions a) - d) of Proposition (5.4).

Proof. Assertion a) is obvious. Concerning b) it seems that the required ex-
tension result for H*(€2) is known only for domains with Lipschitz boundary
and not for Lipschitz domains. Hence, in the following we give a proof of
the subsequent claim which implies the desired L' — H' extension property:
Claim: If Q is a Lipschitz domain, then there exists a (linear, continuous)
extension operator € : L'(Q) — L'(R") whose restriction to H'(Q2) maps
this space continuously into H*(R™).

By definition of Lipschitz domains (see [23|), for every = € 0f2 there is
an open neighbourhood U, of x and a bi-Lipschitz mapping ¥, : U, — R"
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such that U,(z) = 0 and ¥ (U, N Q) is the half cube £, = {z € R" :
jmax |z| < 1,2, < 0}. Since the image of U, under ¥, is open, there is a

number ¢, € (0,1) such that (, £ C V¥, (U, NQ), where E is the cube F =
{zr e R™: max |z;| < 1}. Define O, as the image of (, £ under ¥, !. For

x € Qlet O, be a ball around x whose closure is a subset of €). Clearly, the
system {O,}, g is an open covering of Q. Let O, ..., Oz;, 04,15, Oy, be
a finite subcovering, where x4, ....,z; € Q and z4q,...,2; € 0Q. Let ny,..., 1
be a partition of unity over Q, subordinated to the covering O,,, ..., Oy,.
Obviously, then for any ¢ € L'(Q) it holds ¢ = 22:1 nep. Moreover, if
o € H'(Q) then this equation holds also true as an equation in H'({2).
Further, one has suppnpp C suppne C O,, . Therefore, if k € {1,..., j}, the
functions 7, can be extended by zero (norm preserving) to whole R"™ and
one obtains again a function from L'(R"™) or H!(R"), respectively. For any
ke {j+1,..,1} the function np may be transformed via ¥, to a function
nke on (g, 1, which is then from L'({,, E1) or from H'((,, F1), respectively.
We define the function 7,¢ on (,, E as

mp(y) =9 .
P15 s Yn1, —Yn) it (Y1, s Un—1, —Un) € (o, B

Then 7yp € L' E) and 7p € HY((, E) if ¢ € H'(Q). Additionally,
176B Il (¢ By = 20|00l 1o 1) 28 Well as ||kl 1., my = 20T0B | (¢, 1)
Moreover, suppirp C (;, E. We transform 7,¢ back under ¥,, and obtain
a function which has its support within O,, , coincides with 7, ¢ on O,, NQ
and belongs to L*(O,,) or H'(O,,), respectively. Trivially, by the support
property, each of these functions may be extended by zero (hence norm
preserving) to whole R™. Clearly, this extension then also belongs to L' (R")
or H'(R™), respectively.

In order to prove the first assertion of c), notice first that it suffices to show
that u € V implies ut € V. Hence, let u € V and let {w}, C C*(R")
with suppu; N (OQ\T'y) = 0 and w|q — v in H'(Q). Clearly, then also
supp u; N (OQ\I'y) = 0, and by Lemma (5.3) we have v/ |q — u™ in H*(Q).
A mollifier argument then yields the claim. The second assertion of c)
follows similarly by Lemma 5.3.

In order to prove assertion d) note that Lemma (5.2) a) implies that 0 <
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tr |v] <trwae. on 0Q. By (2.1), tr u =0 a.e. on 9Q\I'y. Hence, tr v =10
a.e. on IO\I'y, which yields, again by (2.1), that v € V = H] (). O

Consider the semigroup e'4* on L?(2) generated by A associated to the
form ay, defined in (2.3) with V' = H}. (). It follows from Proposition (5.4)
and Lemma (5.5) that e!* is a positive semigroup on L?(2) satisfying an
upper Gaussian bound. Hence, (e!*);5q extends to a positive Cy-semigroup
of contractions on L?(2) for all 1 < ¢ < 0.

5.6 Theorem. Let b € L>®(Q,R) such that in{f2 |b(x)| > § for some § > 0.
S
Let 1 < s,q < co. Then bA, € MR(s, LY(Q)) for all k € {1,...,m}.

Proof. Let k € {1,...,m}. By the above remark, e is a positive con-
traction semigroup on L7(€2) satisfying an upper Gaussian bound. Hence,
the kernel K, of eAx=eld)) _; satisfies (5.6) with w = 0 for suitable a € R.
Moreover, Ay — ald is self-adjoint in L?(Q2). By a result due to Duong
and Ouhabaz [12], the semigroup on L?(Q) generated by b(A, — ald) sat-
isfies an upper Gaussian bound with w = 0 as well. Thus b(A; — ald) €
MR(s,Li(2)) by a result of Hieber and Priiss (see |26] or [11]|). Finally,
bA, € MR(s,L%(2)) due to the lower order perturbation result of maximal
regularity; see [11]. O

n

5.7 Proposition. Let p > 5 be the number from Assumption (Op) and

assume 0 € (5 + 15> 1]. Then
[L?, D(A})]g = Wy (Q)

A proof for the three dimensional case is given in |35]; the two dimensional
case requires only obvious modifications. A complete, but technically more
involved proof for the two dimensional case is contained in [29].

5.8 Corollary. Let r > Z;—fn' Then

(L7, D(A])), s, — W()

T

Proof. Let 6 be any number from the interval ]%+%, 1— % [. By interpolation
(L, D(A)1-1,, = (L7, D(AL))oa — [LP, D(A})]o.

Then the assertion follows from the embedding property of the complex
interpolation space into Wlljfp(Q) established in Proposition 5.7. O

T
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6 Proof of the main result

We first set X = (LP(Q))", D = x7,D(A}) and X, := (X,D)
for r as above. By Assumption (IC), wy € X,. Further, for every pair
(t,2) € [Ty, T1) x WH2P(Q)™ we define the mapping H(t, z) : X — X via

1—%,7‘

0= (1, Pm) — (Hl(t, 2)p1, - Hplt, z)gpm) (6.1)

Since Hy(t,z) € L*(Q) and since Hj, possesses a strictly positive lower
bound, it follows that

D(Hy(t, 2)Ay) = D(AR).

In particular, D(Hy(Ty, wo)A})) is dense in LP(Q) (see [22] Thm. 4.5 and
Thm. 4.7).

Consider the mapping B : J x X, — L(D; X) given by
B(t,z)p == H(t,z)(ATpr, ..., AL om),  © = (1, 0m) € D.
By Corollary 5.8 and Morrey’s theorem we have
X, o (@)™ (C(@)”
for some o > 0. Thus, the assumed properties on Fj, G and ¢y, imply that
B:JxX,— L(D;X)
is continuous. Moreover, for 3 > 0 there exists C'z > 0 such that
[H(t,2) = H(t, )]l < Cpllz = Z[[wr2

provided t € J and ||z]|x, and ||Z]|x, < (. Hence, (5.4) from Assertion (B)
is fulfilled.

Furthermore, (5.5) from Assertion (F) holds due to the assumed prop-
erties of Fj, Gy, ¢, R and Proposition 5.8. It remains to verify the key
condition of Proposition 5.1, namely that B := B(Ty, wy) has the property
of maximal regularity. To this end, recall that H (T, wp) € (L°°(Q))m with
a strictly positive lower bound in each component. Thus, B € M R(r, X) by
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Proposition 5.6. Finally, an application of Proposition 5.1 ends the proof of
Theorem 3.1.

It remains to show that if w is a solution of (3.1) then v := w+ ¢ provides
a solution of (1.1). This will be done in the Appendix. O

We now give a proof of Corollary 3.2; in fact we prove the following
sharper result:

6.1 Lemma. There exists 3 > 0 such that each component wy, of the solu-
tion w of (3.1) belongs to the space CP((Ty, T); WE*(Q)) — CP((Ty, T);
().

Proof. We write for short Dy = D(Ay) and [ = (Ty,T). Then
WH(I; LP) 0 L' (I; Dy,) = CO(I; (L, Dy),_1,.) = C(I; [L”, DyJo),
if e (0,1—1).

Moreover, we have the embedding

1
W (I; LP) < C°(I; LP) with 6 =1— —.
T
Fix 0 € (5 + ol - 1) and let A € (0,1) be given such that
1 n
ON> -+ —.
2 + 4p

In view of Proposition 5.7 and the reiteration theorem for complex interpo-
lation ( see |37]) we obtain

[w(t) — wi(s)llw 2
‘t _ S|5(1—>\) —

lwoe®) = we oy 1O =W 1 1 ]

B |t — s[o0-%) ~ It — s[5 =
 we(t) — wi ()|
< oy ) — w9l o, =

I
>

(L) = lary ' (g a5, )

|t - S|6 sel
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7 Appendix

It remains to show that if w is a solution of (3.1) then v := w + ¢ provides
a solution of (1.1). One easily recognizes that all the manipulations which
transfrom (1.1) into (3.1) are straight forward to justify within the distri-
butional calculus - except one. Therefore, we will give a strict justification
of this point in the following lemma. Throughout this appendix f : R +— R
is always assumed to be twice continuously differentiable.

7.1 Lemma. Assume p,r €]1,00[ andv € Wt (JTy, T'[; LP)NC([Tp, T]; C(Q)).
Then the function 1Ty, T[> t — f(v(t)) belongs to WE(|Ty, T[; LP) and
its distributional derivative is the function |Ty, T[> t — f'(v(t))V'(t) €
L™ (|Ty, T[; LP).

7.2 Remark. We denote by C(]Ty, T'[; L) the space of all LP-valued, con-
tinuously differentiable functions on |7y, T with bounded derivatives on
|To, T7.

In order to give a proof of Lemma 7.1 we use the following result.

7.3 Lemma. Let [Ty, T] >t — (¢, ) be a mapping belonging to C([1o, T};
C(Q)NCY(JTy, T[; LP). Then the mapping

[To, T[5> t = f((2,-)) (7.1)

takes its values in C(Q) — LP. It is continuously differentiable when re-
garded as LP valued and its derivative in a point s €|Ty, T[ is equal to the

LP-function f'(1(s, )Y (s).

Proof. The first assertion is obvious. Concerning the second one, the set
{(t,z)/x € Q,t € [Ty, T]} is bounded. Since f is twice continuously differ-
entiable, for s,t €]Ty, T and x € Q one may apply Taylor’s formulae:

St x) — f(¥(s, x)) [W(t x) — (s, )]

t—s t—s

= ['(¥(s,2)) + (7.2)
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[W(t,z) —¥(s,2)]”

t—s

+/0 (1 =7)f"((1 = 7)o(t, x) + 7¢(s, 2)) dT (73)

The family {f’(@/}(s, ))W} converges by the supposition on the

t
differentiablity of the mapping ¢ +— 1 (t,-) in LP to f'(i(s, )Y/ (s) if t ap-
proaches s . It remains to show that the expression in (7.3) approaches
zero in LP. This follows easily from the uniform boundedness of the values

(1 = 71)¢(t,z) + 7(s, x)), the boundedness of {M} in L? and
t

t—s
the convergence of [1)(t,-) — 9(s,-)] to zero in C(Q) for ¢t approaching s.
The continuity of the derivative follows from the continuity of 1" and the
continuity of the function ¢ — f'(¢(¢,-)) in C(2). O

7.4 Lemma. Let v € WY (|Ty, T[; LP) N C([Ty, T]; C(Q)). Then there is a
sequence {Y}, in C([Ty, T); C()) N CY(|To, T[; LP(Q)) such that 1y — v in
C([To, T} C(Q) and = o' in L7 (|To, T; L7).

Proof. Let us define a continuous extension v to all of R which additionally
has compact support as follows: we put

v(To + (To —t)) if ¢ €]Ty — (T = To), To|
o) = L v(t) it te [Ty, T] (7.4)
(I —(t-T)it te€|, T+ (T —-1Tp)|

(reflection at Tp, T', respectively). Afterwards we multiply v by a real valued,
continuously differentiable function which is identical 1 on [T}, 7’| and which
has its support in |To—(T'—T15) /2, T+ (T —Tp)/2]. We define this product as
0 and identify ¢ with its extension by zero to whole R. Oviously, 0|5, 71 = v;
further one verifies the property © € W' (R; LP) N C(R; C(2)). Let 9 be
the usual mollifier function

1
9(s) =4 fe T7as
0 else on R

e if |s| <1

and J;(s) := 9(l s). Now we put

Dt) = {fT (0 % 9)(s) ds + (0% 0))(Tp), if t>T,

L@ % 0)(s) ds + (0% 0)(Ty), if t<Ty. (7.5)
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Then 1), is nothing else but @ * ;. This yields v, — v in C([Ty, T]; C(Q)).
On the other hand, (7.5) immediately gives ¢, = o’ % ;. This means that
Yy — 0" in L"(R; LP), which implies |z, 7 — v" in L"(|To, T'[; LP). O

We now turn to the proof of Lemma 7.1: Let {¢;}, be the sequence from
the previous lemma and ¢ € C§°(|Tp, T'[). Then, considering the function
|10, T[> t — f(v(t)) as a LP-valued distribution, one gets by the definition
of the weak derivative

(F() (9) = —f)@) == [ Ffu(s)¢'(s) ds =

To

== [l Fs) e s) ds = Jim = [ )G ds.

T, l—00

By Lemma 7.3, each f(¢;) even has a strong (time) derivative which
equals f’(¢;)]. From this and integrating by parts one gets

~ /. f(s))¢'(s) ds = . F'(@Wi()di(s)p(s)ds.

By construction, ¢; — v in C([Ty, T];C(Q)), o] — o' in L"(JTy, T[; LP),
what implies f'(¢;(-))j¢ — f'(v(-))v'p in L7(|Ty, T'[; LP). But the integral
is a continuous mapping from L"(]Ty, T'[; LP?) into LP; this finally gives

T

. f'w(s)n'(s)e(s) ds =/ lim f*(yhi(s))(s)p(s)ds =

Ty l—o00

lim ; F' (Wi (s))i(s)p(s)ds = lim — . f@h(s))@'(s) ds = (f(v)) ().

l—o0 o0

Thus, Lemma 7.1 is proved.
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