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Abstract

We present an asymptotic analysis of time-delayed feedback control of steady
states for large delay time. By scaling arguments, and a detailed comparison with
exact solutions, we establish the parameter ranges for successful stabilization of an
unstable fixed point of focus type. Insight into the control mechanism is gained by
analysing the eigenvalue spectrum, which consists of a pseudo-continuous spectrum
and up to two strongly unstable eigenvalues. Although the standard control scheme
generally fails for large delay, we find that if the uncontrolled system is sufficiently
close to its instability threshold, control does work even for relatively large delay
times.

1 1introduction

The stabilization of unstable and chaotic systems is the subject of extensive investigations
in physics, chemistry, biology, and medicine [1, 2, 3]. Starting with the work of Ott, Grebogi
and Yorke [4] a variety of methods for chaos control have been developed in order to stabilize
unstable periodic orbits (UPOs) embedded in a chaotic attractor. A particularly simple
and efficient scheme is time-delayed feedback which uses the difference s(t) — s(t — 7) of a
signal s at a time ¢ and a delayed time ¢ — 7 as suggested by Pyragas [5]. This method is
noninvasive since the stabilized state exists already - though unstable - in the uncontrolled
system, and the control force vanishes when a UPO of period 7 is reached. This scheme
was improved by Socolar et al. [6] by considering multiple delays in form of an infinite
series (extended time-delay autosynchronization or ETDAS), and other variants have also
been elaborated |7, 8, 9, 10, 11, 12|. Some analytical results on the conditions for control
can be obtained from the Floquet spectrum of the UPOs [13, 14, 15, 16, 17|, and a detailed
numerical bifurcation analysis has been performed [18|.

Time-delayed feedback with appropriate time delay can also be used to stabilize unsta-
ble steady states [19]. This scheme is more robust than derivative control of fixed points
|20, 21|, and has been applied to electrochemical systems |22, 23| and nonlinear electronic
circuits [24]. All-optical realizations are another important application of time-delay au-
tosynchronisation. In particular, a time-delayed optical feedback occurs naturally in semi-
conductor lasers [25, 26, 27, 28|, and often the delay time is rather large [29, 30|. Time-
delayed feedback control of steady states has been studied in semiconductor lasers under
resonant feedback from a Fabry-Perot resonator [31].



It is the purpose of this paper to obtain deeper analytical insight into the time-delayed
feedback control of steady states for large delay by relating asymptotic properties of the
eigenvalue spectrum with the exact solutions, and by discussing the shape of the control
domain in the space of the control parameters. It has been shown that time-delayed
feedback control fails if the number of positive eigenvalues of the fixed point (or more
generally: positive Floquet exponents of the UPO) is odd |14, 15|, hence we consider an
unstable fixed point of focus type with two complex conjugate eigenvalues A = A\tiw, A > 0.
If A — 0, a reverse Hopf bifurcation occurs, and the fixed point becomes stable. Three
different timescales are of importance in such a control problem: (i) the inverse divergence
rate of trajectories around the unstable fixed point 1/A, (ii) the period of undamped
oscillations around the fixed point Ty = 27 /w, where w is the oscillation frequency, and (iii)
the delay time 7 used in the feedback control loop. Here we consider the case 7 > 1/, and
study a generic model equation which describes an unstable focus above a Hopf bifurcation.
The paper is organized as follows. In Sect. Il we present the analytical solution of the
complex spectrum as a function of delay time using the Lambert function. In Sect. III
the scaling properties of the spectrum for large delay are derived. From this the control
domain close to the Hopf bifurcation of the fixed point is constructed (Sect. IV). The
appendix contains the explicit analytical form of the boundary of the control domain.

2 Stabilization of unstable fixed point

The stability of a fixed point x* in a general nonlinear dynamic system is obtained by
linearizing the vector field around x*. Hence, in order to study the stabilization of fixed
points by time-delayed feedback control it is sufficient to consider the generic model of
a two-variable linear system which, in the absence of delay, has an unstable focus at
x* = 0,y* = 0 with eigenvalues of the Jacobian A\ +iw, A > 0, w # 0.

Applying the standard diagonal time-delayed feedback control scheme, we obtain the basic
model equation for stabilizing unstable steady states [19]

i(t) = Ax(t) +wy(t) — K[z(t) — 2 —7)], (1)
y(t) = —wz(t)+ \y(t) — K [y(t) —yt —71)],
where K is the feedback control strength, and 7 is a feedback delay time. In the absence
of control, the zero fixed point has the eigenvalues A = X\ +iw, A > 0, i.e., the parameters

A > 0 and w are a measure for the distance from the instability threshold, e.g., a Hopf
bifurcation, and the intrinsic eigenfrequency, respectively.

In the presence of the control, the stability of the fixed point is determined by the roots A
of the characteristic equation

A+ K(1—e™) =2 +w? =0
This equation can be further simplified to

Atiw=A+K(1—e"). (2)
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Note that due to the presence of the delay, Eq. (2) possesses infinitely many solutions.
Nevertheless, the stability of the fixed point is determined by a finite number of critical roots
with largest real parts [32]. As a result, the stabilization problem consists in determining
these critical eigenvalues and describing their behavior. In particular, successful control is
achieved by providing conditions in terms of the control parameters K and 7 for which all
critical eigenvalues have negative real parts.

Using the Lambert function W, which is defined as the inverse function of g(z) = ze* for
complex z |32, the solution of Eq. (2) can be expressed as

At = W (KTe_(’\iiw)T+KT) + (AN tiw)T — K. (3)

Fig. 1 shows the real parts of the critical eigenvalues A as a function of 7 for different values
of K. The insets show the same eigenvalues as curves in the complex plane, parametrized
by 7. Note that the eigenvalue originating from the uncontrolled system (red online) is
the most unstable one for sufficiently small K and does not couple to the eigenvalues
generated by the delay (see Figs. 1(a,b)). The countable set of eigenvalues generated by
the delay originates from ReA = —oo for 7 — 0, and shows the typical nonmonotic
behavior that leads to stability islands for appropriate 7 and K [19]|. For larger values of
K, the eigenvalue originating from the uncontrolled system is no longer separated from
those which are generated by the delay (see Figs. 1(c,d)). Moreover, one can observe a
scaling behavior of the real parts of the eigenvalues for large 7: in Figs. 1(a)-(c¢), there is a
single eigenvalue retaining a positive real part, whereas all the other real parts tend to zero
for large 7. The insets show that the eigenvalues in fact accumulate along the imaginary
axis. This observation will be studied in detail in the following section.

3 Asymptotic properties of the spectrum for large delay

The scaling behavior of eigenvalues of general linear delay-differential equations for large
delay 7 has been analysed in [33|. In particular, it turns out that one can distinguish

e strongly unstable eigenvalues A, which have positive real parts that do not tend to
zero with increasing 7, i.e., A, — const and Re A, > § for some 6 > 0 as 7 — oc.

e pseudo-continuous spectrum (PS) of eigenvalues A, with real parts that scale as 1/,
le, A, = %'y +1 (Q + %gp) + O (T—lz) with some 7, €2, and ¢. A spectrum with this

scaling behavior and positive real part leads to so-called weak instabilities (for more
details, see |34, 33|).

In order to obtain the strongly unstable eigenvalues, we insert A; = const into Eq. (2)
and assume 7 — 00. Since ReA,; > §, the exponential term vanishes and we arrive at the

expression for A,:
Ay =) — K fiw,
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Figure 1: (color online) Real parts of the complex eigenvalues A as a function of 7 calculated
from the characteristic Eq. (2) for 10 modes with the largest real parts. (a) K = 0.25, (b)
K = 0.5, (¢) K =0.75, and (d) K = 1.0. Inset: eigenmodes A in the complex plane for
7 € [0,20]. Red curves: Eigenvalue originating from the uncontrolled system; black curves:
eigenmodes created by the delay control. Parameters: w =m, A = 1.



which holds for A — K > 0. Thus we obtain the following statement:

(i) For K < A, there exist two eigenvalues of the controlled stationary state, Ay and its
complex conjugate Ny, such that Ayy — N — K + 1w as 7 — oo. The real parts of these
eigenvalues are positive and, hence, the stationary state is strongly unstable (cf. Figs. 1(a)

(c))-

In order to obtain the asymptotic expression for the remaining pseudo-continuous part of
the spectrum, we have to insert the scaling A, = %7 +1 (Q + %go) into Eq. (2). Up to the
leading order we obtain the equation

i+ K (1—ee™) =X\ +iw, (4)

and the additional condition Q = QU™ = 27xm/7, m = £1,+2,43,.... Eq. (4) can be
solved with respect to v(2)

M:_;m[(l_%)l(ﬂ;—;w)z

The fact that ReA, ~ 7(Q2)/7 and Im A, =~ Q up to the leading order means that the
eigenvalues A, accumulate in the complex plane along curves (y(€2), ), provided that the
real axis is scaled as TRe A. The actual positions of the eigenvalues on the curves can be
obtained by evaluating Q at points QU™ = 2wm/7. With increasing 7, the eigenvalues
cover the curves densely [33]. Hence, we obtain the second statement:

(5)

(i) The fized point of system (1) has a set of eigenvalues which behave asymptotically as
Ap(QW) = L5 (QW) i (QW) + Lp(QW)) with v(Q) given by (5). We have weak instability
if the maximum of () is positive, i.e.,

A
1——|>0
K )

Vmax = mgxy(ﬁ) = —1In

which is the case for K > \/2.

Figure 2 illustrates the spectrum of the fixed point of system (1) for 7 = 20. One can
clearly distinguish the two types of eigenvalues. For K < A/2 (Fig. 2(a)), the fixed point
has a pair of strongly unstable eigenvalues, whereas the PS is stable. Note that the symbols
(red online) show the spectrum computed numerically from the full eigenvalue equation,
whereas the dashed lines are the curves (7(Q2), ) from the asymptotic approximation where
the PS accumulates for large 7. At K = \/2 (cf. Fig. 2(b)), the PS touches the imaginary
axis resulting in the appearence of a weak instability for K > A\/2. This leads to the
coexistence of strong and weak instabilities for A\/2 < K < A, (Fig. 2(c)). At K = )\,
the strongly unstable eigenvalues disappear, being absorbed by the PS, which develops a
singularity at this moment, cf. Fig. 2(d). Finally, for K > X (Fig. 2(e)), there occurs only
a weak instability induced by the PS.

After inspecting all possibilities given in Fig. 2, we conclude that stabilization by the
feedback control scheme (1) always has an upper limit 7, such that for 7 > 7. it fails.
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Figure 2: (color online) Numerically computed spectrum of eigenvalues for 7 = 20 (as-
terisks, red online). The dashed lines depict the asymptotic pseudo-continuous spectrum.
(a) strong instability for K = 0.25 (K < A/2); (b) K = 0.5 = \/2, critical case at which
the weak instability occurs in addition to the strong one; (¢) K = 0.75 (A\/2 < K <)),
strong and weak instability; (d) K = 1.0 = A, critical case at which a strong instability
disappears via the singularity of the pseudo-continuous spectrum; (e) K = 1.25 (K > \),
weak instability. Parameters: w =7, A = 1.



Additionally, we note that for K < A and large delay, the stationary state is strongly
unstable with the complex conjugate eigenvalues Ay 5 = A — K +iw, and for K > \ weakly
unstable with a large number of unstable eigenvalues given by (4), the real parts of which
scale as 1/7.

4 Control domain close to the Hopf bifurcation

In this section we show that strongly delayed feedback can stabilize a fixed point in the case
when the fixed point is sufficiently close to the Hopf bifurcation. In our case this means
that A is small. In particular, we are going to prove that the delayed feedback control
scheme will be successful even for large delay within the range of order 1/\?. We will also
provide conditions for successful control.

For the fixed point which is close to the Hopf bifurcation, we assume K > A, and, hence
it has an unstable PS, as shown in Fig. 2(e). As A stays fixed, with increasing 7 the curve
of the PS will be densely filled with the eigenvalues (Q™ = 27m/7). The only possibility
for the fixed point to become stable is to assume that A is also scaled with increasing 7.
Particularly, we will show that in order to achieve control we have to scale it as A = \oe?
with fixed A\ (here for convenience we introduce the small parameter ¢ = 1/7).

Fig. 3 illustrates the part of the curve v(€2) which may induce an instability in the system.
More precisely, the interval of unstable frequencies is €2; < Q < €y, where ; and €2, are
given by the zeros of v(Q):

A 2
9172 = wtx K 1—(1—E)

For small A we can approximate this as

9172 =wxv 20K (6)

The length of the interval of unstable frequencies is AQ = Qs — Q; = 2v2AK.

We note that the actual position of the eigenvalues on the curve corresponds to the values
of Q™ = 27me with any integer m. It is easy to see that the distance between the
frequencies of neighboring eigenvalues Q") — Q™ = 27¢ scales as €. Therefore, the
control can be successful if A\ = \ge?. In this case the length of the unstable interval is
A = 2e4/200K and scales also as €. The control can be achieved if the length is smaller
than the distance between neighboring eigenvalues, i.e., AQ) = 2e1/2) g K < 27e, leading to

71.2

K< —.
< o (7)

Eq. (7) gives a necessary condition for successful control.



{(Q)

Figure 3: Curve of the pseudo-continuous spectrum. The actual position of the complex
eigenvalues A = 1y 4+ i (Q+ O(21)) on the curve corresponds to QU = 2wme, m =
+1,42,43,..., e = 1/7. The fixed point is stable if the imaginary parts of the eigenvalues
are outside of the interval ; < Q < 5. Such a case with Q™) < Q, < Q, < QUmo+1) g
illustrated, in which the leading eigenvalues A0 and A0+ have negative real parts.

The relative phase of the delay plays an additional important role. Depending on this
phase, control occurs periodically with 7. In order to quantify this effect, let us introduce
w, = 27/7T to be the frequency associated with the delay. Then the ratio of the internal
frequency w and w; is given by w/w, = v, mod 1. Here 0 < 7, < 1 measures the detuning
from the resonance between the internal frequency and the delay-induced one. Using this
notation and (6), we can rewrite

Qo = mow, + Yrws £ /20K = Qo) 4 (27r% + 2>\0K> .

Here my is some integer number. The necessary and sufficient condition for the stability
is (cf. Fig. 3) QMo < Q) < Qy < Qo+ which leads to

V2MK < 2rmin {v,,1—~;}

or
272 5 272 wT wT 2

i XU ) B

i 1= 20))* = 2 (min{ [57] 1= 5], 0

where [%}f is the fractional part of £= [35]. Fig. 4 shows the domain of control given by

Eq. (8) for A = \o/72.

In order to return to unscaled parameters, we have to substitute Ay = \/e? = A72. Fig. 5(a)
shows the obtained domain of control for fixed small A = 0.01. The maximum allowed



Figure 4: Shaded region: Domain of control in the (7, K')—plane for the fixed point close to
the Hopf bifurcation, given by the asymptotic formula Eq. (8) for A = \g/72. Parameters:
w=m, A\g = L.

values of K decrease as 1/72. More precisely, we have

7T2

Konax(T) = N2 (9)

The application of the asymptotic analysis allows to reveal many essential features and
mechanisms of the stabilization control scheme (1) for large delay 7. On the other hand,
the obtained approximations are valid as soon as K is much larger than \. Figure 5 shows
a comparison of the boundaries of the control domain, which are given by the asymptotic
methods and exact analytical formulas derived in Appendix A. Very close to the Hopf
bifurcation (A = 0.01) the agreement is excellent even at small values of 7 (Fig. 5a), while
for larger A (Fig. 5b) the deviations become more visible. In addition, the approximate
solution does not give the lower boundary of the control domain for small K which only
shows up in Fig. 6. The analytical approach which we give in Appendix A also allows
us to identify the “peaks” of the control domains, which occur at 7. = (2n + 1)7/w,
n = 0,1,2,..., as double-Hopf bifurcation points. The critical time delay, above which
control fails, is given by 7. = 2/\.

5 Conclusions

Time delays occur naturally in a variety of optical, electronic, chemical, biological and
other nonlinear systems. This feature can be used in a simple and easily realizable way to
stabilize unstable steady states by time-delayed difference feedback control. However, the
control scheme may fail if the delay time 7 and the control amplitude K are not chosen

9



Figure 5: (color online) Domain of control in the (7, K')—plane, and largest positive real
part of the complex eigenvalues A(K, 7) (in color code) calculated from the characteristic
equation using the Lambert function [Eq. (3)]. Dashed lines (blue): asymptotic approxi-
mation Eq. (8) of stability boundary; dotted line (blue): approximate maxima Eq. (9).
Solid lines: exact stability boundaries, cf. Eqs. (12) and (13). Parameters: (a) w = 7,

A=0.01, (b)w=m A=0.1.
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Figure 6: (color online) Enlargement of Fig. 5: Deviation of the asymptotic results (dashed)
from the exact stability boundary (solid) for small K or large A.
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appropriately. In this paper we have elaborated analytical conditions for successful con-
trol of a fixed point of focus type. By asymptotic expansion methods for large delay, and
a detailed comparison with exact solutions we have established the parameter ranges for
successful control. Thereby we have not only obtained the precise shape of the islands of
control in the (7, K) parameter plane, but have also gained insight into the mechanism
of control by analysing the eigenvalue spectrum of the fixed point of the delay-differential
equation, which consists of a pseudo-continuous spectrum and up to two strongly unstable
complex eigenvalues. Although our analysis has shown that the standard control scheme
generally fails for large delay, we have found that if the uncontrolled system is sufficiently
close to its instability threshold, i.e., a Hopf bifurcation, control does work even for rela-
tively large delay times, compared to the intrinsic oscillation period Ty = 27 /w, cf. Fig.
5(a). These results may be of interest, e.g., in application to laser systems where oscil-
latory instabilities may occur above the first laser threshold, but stable cw operation is
often desired [25]. By suitable optical or optoelectronic feedback using for instance external
cavities and Fabry-Perot resonators, time-delayed feedback control may be realized.

A Boundaries of the control domain

The exact boundaries of the control domain can be obtained analytically [19] from the
characteristic Eq.(2) by setting the real part of the complex eigenvalue A equal to zero,
i.e., A =i). We then obtain the two real equations

A = K(1—cosQr) (10)
tw = Q4+ KsinQr. (11)
Solving this system of transcendental equations and observing the positivity of the delay

time 7 and the parameters A\, w, K, we find three families of branches of solutions, where
the nonnegative integer n takes care of the different leaves of the involved multivalued

functions:
Inm + arccos £=2 A w? + N2
Ti(K,n) = K_ — <K< 12
1(K,m) w— /2K — M)A 2 2\ (12)
2 D — K=X
n(Kon) = (n + 1) — arccos | é <K (13)
w+ /2K — VA 2
2(n+ 1) — E22 24\
A(Kon) = (n 4 1)7 — arccos =% | w4 A K (14)
—w+ /(2K — M)A 2\

The corresponding eigenvalues A = {2 are given by
9173 = 4+ <w - (2K - )\))\)
0, = + <w + V2K — A)A)
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For the boundaries of the stability islands only the branches 7 and 7, are relevant. Note
that at the points

K = Kmin = =
2
2 1
T = Tmn(n) = (2n+ Lm
w
the branch 7 (K, n) ends, but is continued by 75(K,n). As it is shown in [19], these pairs
of curves, Egs. (12) and (13), form the boundaries of the control domains in the (7, K)
parameter plane, as depicted by solid lines in Figs. 5 and 6. These islands become smaller

for increasing n and the corresponding values for K are confined by
Kmin S K S Kmax(”)?

where the maximal value K., (n) is given by an intersection point of the two branches
71(K,n) and 75(K,n). These intersection points correspond to double-Hopf points of codi-
mension two. They are given by solutions of the transcendental equation

arccos A ;(K = (2n + 1)7T\/ (2K — M)A (15)

w

The corresponding values of 7 are given by

(1) = Toin(n) = @ (16)

Note that the condition (15) is satisfied also for K = K,;,. The stability domain vanishes
if K and K.y coincide. Forming the derivative of (15) with respect to K we obtain

I @2n+Dr
K w '
Inserting K = K, = A/2 finally gives the relation
~ (@2n+ D)7
=

If this relation is satisfied, we have a resonant double-Hopf point of codimension three.
Since n has to be an integer, this happens only for particular choices of A and w. Otherwise,
the integer part of the value n obtained from this relation gives the number of nondegenerate
stability islands.

Using (16), the maximum delay time 7, which allows for stabilization is obtained as
2

\

Note that this boundary is sharp only if 7 is an odd integer multiple of 7/w. For

Te =

w s

J— < -,
A2
even the first stability island vanishes and stabilization is not possible.
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