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Abstra
tWe present an asymptoti
 analysis of time-delayed feedba
k 
ontrol of steadystates for large delay time. By s
aling arguments, and a detailed 
omparison withexa
t solutions, we establish the parameter ranges for su

essful stabilization of anunstable �xed point of fo
us type. Insight into the 
ontrol me
hanism is gained byanalysing the eigenvalue spe
trum, whi
h 
onsists of a pseudo-
ontinuous spe
trumand up to two strongly unstable eigenvalues. Although the standard 
ontrol s
hemegenerally fails for large delay, we �nd that if the un
ontrolled system is su�
iently
lose to its instability threshold, 
ontrol does work even for relatively large delaytimes.1 introdu
tionThe stabilization of unstable and 
haoti
 systems is the subje
t of extensive investigationsin physi
s, 
hemistry, biology, and medi
ine [1, 2, 3℄. Starting with the work of Ott, Grebogiand Yorke [4℄ a variety of methods for 
haos 
ontrol have been developed in order to stabilizeunstable periodi
 orbits (UPOs) embedded in a 
haoti
 attra
tor. A parti
ularly simpleand e�
ient s
heme is time-delayed feedba
k whi
h uses the di�eren
e s(t)− s(t− τ) of asignal s at a time t and a delayed time t − τ as suggested by Pyragas [5℄. This method isnoninvasive sin
e the stabilized state exists already - though unstable - in the un
ontrolledsystem, and the 
ontrol for
e vanishes when a UPO of period τ is rea
hed. This s
hemewas improved by So
olar et al. [6℄ by 
onsidering multiple delays in form of an in�niteseries (extended time-delay autosyn
hronization or ETDAS), and other variants have alsobeen elaborated [7, 8, 9, 10, 11, 12℄. Some analyti
al results on the 
onditions for 
ontrol
an be obtained from the Floquet spe
trum of the UPOs [13, 14, 15, 16, 17℄, and a detailednumeri
al bifur
ation analysis has been performed [18℄.Time-delayed feedba
k with appropriate time delay 
an also be used to stabilize unsta-ble steady states [19℄. This s
heme is more robust than derivative 
ontrol of �xed points[20, 21℄, and has been applied to ele
tro
hemi
al systems [22, 23℄ and nonlinear ele
troni

ir
uits [24℄. All-opti
al realizations are another important appli
ation of time-delay au-tosyn
hronisation. In parti
ular, a time-delayed opti
al feedba
k o

urs naturally in semi-
ondu
tor lasers [25, 26, 27, 28℄, and often the delay time is rather large [29, 30℄. Time-delayed feedba
k 
ontrol of steady states has been studied in semi
ondu
tor lasers underresonant feedba
k from a Fabry-Perot resonator [31℄.1



It is the purpose of this paper to obtain deeper analyti
al insight into the time-delayedfeedba
k 
ontrol of steady states for large delay by relating asymptoti
 properties of theeigenvalue spe
trum with the exa
t solutions, and by dis
ussing the shape of the 
ontroldomain in the spa
e of the 
ontrol parameters. It has been shown that time-delayedfeedba
k 
ontrol fails if the number of positive eigenvalues of the �xed point (or moregenerally: positive Floquet exponents of the UPO) is odd [14, 15℄, hen
e we 
onsider anunstable �xed point of fo
us type with two 
omplex 
onjugate eigenvalues Λ = λ±iω, λ > 0.If λ → 0, a reverse Hopf bifur
ation o

urs, and the �xed point be
omes stable. Threedi�erent times
ales are of importan
e in su
h a 
ontrol problem: (i) the inverse divergen
erate of traje
tories around the unstable �xed point 1/λ, (ii) the period of undampedos
illations around the �xed point T0 = 2π/ω, where ω is the os
illation frequen
y, and (iii)the delay time τ used in the feedba
k 
ontrol loop. Here we 
onsider the 
ase τ ≫ 1/λ, andstudy a generi
 model equation whi
h des
ribes an unstable fo
us above a Hopf bifur
ation.The paper is organized as follows. In Se
t. II we present the analyti
al solution of the
omplex spe
trum as a fun
tion of delay time using the Lambert fun
tion. In Se
t. IIIthe s
aling properties of the spe
trum for large delay are derived. From this the 
ontroldomain 
lose to the Hopf bifur
ation of the �xed point is 
onstru
ted (Se
t. IV). Theappendix 
ontains the expli
it analyti
al form of the boundary of the 
ontrol domain.2 Stabilization of unstable �xed pointThe stability of a �xed point x
∗ in a general nonlinear dynami
 system is obtained bylinearizing the ve
tor �eld around x

∗. Hen
e, in order to study the stabilization of �xedpoints by time-delayed feedba
k 
ontrol it is su�
ient to 
onsider the generi
 model ofa two-variable linear system whi
h, in the absen
e of delay, has an unstable fo
us at
x∗ = 0, y∗ = 0 with eigenvalues of the Ja
obian λ ± iω, λ > 0, ω 6= 0.Applying the standard diagonal time-delayed feedba
k 
ontrol s
heme, we obtain the basi
model equation for stabilizing unstable steady states [19℄

ẋ(t) = λx(t) + ωy(t) − K [x(t) − x(t − τ)] , (1)
ẏ(t) = −ωx(t) + λy(t) − K [y(t) − y(t− τ)] ,where K is the feedba
k 
ontrol strength, and τ is a feedba
k delay time. In the absen
eof 
ontrol, the zero �xed point has the eigenvalues Λ = λ ± iω, λ > 0, i.e., the parameters

λ > 0 and ω are a measure for the distan
e from the instability threshold, e.g., a Hopfbifur
ation, and the intrinsi
 eigenfrequen
y, respe
tively.In the presen
e of the 
ontrol, the stability of the �xed point is determined by the roots Λof the 
hara
teristi
 equation
[

Λ + K
(

1 − e−Λτ
)

− λ
]2

+ ω2 = 0.This equation 
an be further simpli�ed to
λ ± iω = Λ + K

(

1 − e−Λτ
)

. (2)2



Note that due to the presen
e of the delay, Eq. (2) possesses in�nitely many solutions.Nevertheless, the stability of the �xed point is determined by a �nite number of 
riti
al rootswith largest real parts [32℄. As a result, the stabilization problem 
onsists in determiningthese 
riti
al eigenvalues and des
ribing their behavior. In parti
ular, su

essful 
ontrol isa
hieved by providing 
onditions in terms of the 
ontrol parameters K and τ for whi
h all
riti
al eigenvalues have negative real parts.Using the Lambert fun
tion W , whi
h is de�ned as the inverse fun
tion of g(z) = zez for
omplex z [32℄, the solution of Eq. (2) 
an be expressed as
Λτ = W

(

Kτe−(λ±iω)τ+Kτ
)

+ (λ ± iω)τ − Kτ. (3)Fig. 1 shows the real parts of the 
riti
al eigenvalues Λ as a fun
tion of τ for di�erent valuesof K. The insets show the same eigenvalues as 
urves in the 
omplex plane, parametrizedby τ . Note that the eigenvalue originating from the un
ontrolled system (red online) isthe most unstable one for su�
iently small K and does not 
ouple to the eigenvaluesgenerated by the delay (see Figs. 1(a,b)). The 
ountable set of eigenvalues generated bythe delay originates from Re Λ = −∞ for τ → 0, and shows the typi
al nonmonoti
behavior that leads to stability islands for appropriate τ and K [19℄. For larger values of
K, the eigenvalue originating from the un
ontrolled system is no longer separated fromthose whi
h are generated by the delay (see Figs. 1(
,d)). Moreover, one 
an observe as
aling behavior of the real parts of the eigenvalues for large τ : in Figs. 1(a)-(
), there is asingle eigenvalue retaining a positive real part, whereas all the other real parts tend to zerofor large τ. The insets show that the eigenvalues in fa
t a

umulate along the imaginaryaxis. This observation will be studied in detail in the following se
tion.3 Asymptoti
 properties of the spe
trum for large delayThe s
aling behavior of eigenvalues of general linear delay-di�erential equations for largedelay τ has been analysed in [33℄. In parti
ular, it turns out that one 
an distinguish

• strongly unstable eigenvalues Λs whi
h have positive real parts that do not tend tozero with in
reasing τ , i.e., Λs → const and Re Λs ≥ δ for some δ > 0 as τ → ∞.
• pseudo-
ontinuous spe
trum (PS) of eigenvalues Λp with real parts that s
ale as 1/τ ,i.e., Λp = 1

τ
γ + i

(

Ω + 1
τ
ϕ
)

+ O
(

1
τ2

) with some γ, Ω, and ϕ. A spe
trum with thiss
aling behavior and positive real part leads to so-
alled weak instabilities (for moredetails, see [34, 33℄).In order to obtain the strongly unstable eigenvalues, we insert Λs = const into Eq. (2)and assume τ → ∞. Sin
e ReΛs > δ, the exponential term vanishes and we arrive at theexpression for Λs:
Λs = λ − K ± iω,3
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020Figure 1: (
olor online) Real parts of the 
omplex eigenvalues Λ as a fun
tion of τ 
al
ulatedfrom the 
hara
teristi
 Eq. (2) for 10 modes with the largest real parts. (a) K = 0.25, (b)
K = 0.5, (
) K = 0.75, and (d) K = 1.0. Inset: eigenmodes Λ in the 
omplex plane for
τ ∈ [0, 20]. Red 
urves: Eigenvalue originating from the un
ontrolled system; bla
k 
urves:eigenmodes 
reated by the delay 
ontrol. Parameters: ω = π, λ = 1.
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whi
h holds for λ − K > 0. Thus we obtain the following statement:(i) For K < λ, there exist two eigenvalues of the 
ontrolled stationary state, Λs1 and its
omplex 
onjugate Λs2, su
h that Λs1 → λ − K + iω as τ → ∞. The real parts of theseeigenvalues are positive and, hen
e, the stationary state is strongly unstable (
f. Figs. 1(a)�(
)).In order to obtain the asymptoti
 expression for the remaining pseudo-
ontinuous part ofthe spe
trum, we have to insert the s
aling Λp = 1
τ
γ + i

(

Ω + 1
τ
ϕ
) into Eq. (2). Up to theleading order we obtain the equation

iΩ + K
(

1 − e−γe−iϕ
)

= λ ± iω, (4)and the additional 
ondition Ω = Ω(m) = 2πm/τ , m = ±1,±2,±3, .... Eq. (4) 
an besolved with respe
t to γ(Ω)

γ(Ω) = −1

2
ln

[

(

1 − λ

K

)2

+

(

Ω ± ω

K

)2
]

. (5)The fa
t that Re Λp ≈ γ(Ω)/τ and Im Λp ≈ Ω up to the leading order means that theeigenvalues Λp a

umulate in the 
omplex plane along 
urves (γ(Ω), Ω), provided that thereal axis is s
aled as τRe Λ. The a
tual positions of the eigenvalues on the 
urves 
an beobtained by evaluating Ω at points Ω(m) = 2πm/τ . With in
reasing τ , the eigenvalues
over the 
urves densely [33℄. Hen
e, we obtain the se
ond statement:(ii) The �xed point of system (1) has a set of eigenvalues whi
h behave asymptoti
ally as
Λp(Ω

(k)) = 1
τ
γ(Ω(k))+ i

(

Ω(k) + 1
τ
ϕ(Ω(k))

) with γ(Ω) given by (5). We have weak instabilityif the maximum of γ(Ω) is positive, i.e.,
γmax = max

Ω
γ(Ω) = − ln

∣

∣

∣

∣

1 − λ

K

∣

∣

∣

∣

> 0,whi
h is the 
ase for K > λ/2.Figure 2 illustrates the spe
trum of the �xed point of system (1) for τ = 20. One 
an
learly distinguish the two types of eigenvalues. For K < λ/2 (Fig. 2(a)), the �xed pointhas a pair of strongly unstable eigenvalues, whereas the PS is stable. Note that the symbols(red online) show the spe
trum 
omputed numeri
ally from the full eigenvalue equation,whereas the dashed lines are the 
urves (γ(Ω), Ω) from the asymptoti
 approximation wherethe PS a

umulates for large τ . At K = λ/2 (
f. Fig. 2(b)), the PS tou
hes the imaginaryaxis resulting in the appearen
e of a weak instability for K > λ/2. This leads to the
oexisten
e of strong and weak instabilities for λ/2 < K < λ, (Fig. 2(
)). At K = λ,the strongly unstable eigenvalues disappear, being absorbed by the PS, whi
h develops asingularity at this moment, 
f. Fig. 2(d). Finally, for K > λ (Fig. 2(e)), there o

urs onlya weak instability indu
ed by the PS.After inspe
ting all possibilities given in Fig. 2, we 
on
lude that stabilization by thefeedba
k 
ontrol s
heme (1) always has an upper limit τc su
h that for τ > τc it fails.5
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Figure 2: (
olor online) Numeri
ally 
omputed spe
trum of eigenvalues for τ = 20 (as-terisks, red online). The dashed lines depi
t the asymptoti
 pseudo-
ontinuous spe
trum.(a) strong instability for K = 0.25 (K < λ/2); (b) K = 0.5 = λ/2, 
riti
al 
ase at whi
hthe weak instability o

urs in addition to the strong one; (
) K = 0.75 (λ/2 < K < λ),strong and weak instability; (d) K = 1.0 = λ, 
riti
al 
ase at whi
h a strong instabilitydisappears via the singularity of the pseudo-
ontinuous spe
trum; (e) K = 1.25 (K > λ),weak instability. Parameters: ω = π, λ = 1. 6



Additionally, we note that for K < λ and large delay, the stationary state is stronglyunstable with the 
omplex 
onjugate eigenvalues Λ1.2 = λ−K ± iω, and for K > λ weaklyunstable with a large number of unstable eigenvalues given by (4), the real parts of whi
hs
ale as 1/τ .4 Control domain 
lose to the Hopf bifur
ationIn this se
tion we show that strongly delayed feedba
k 
an stabilize a �xed point in the 
asewhen the �xed point is su�
iently 
lose to the Hopf bifur
ation. In our 
ase this meansthat λ is small. In parti
ular, we are going to prove that the delayed feedba
k 
ontrols
heme will be su

essful even for large delay within the range of order 1/λ2. We will alsoprovide 
onditions for su

essful 
ontrol.For the �xed point whi
h is 
lose to the Hopf bifur
ation, we assume K > λ, and, hen
eit has an unstable PS, as shown in Fig. 2(e). As λ stays �xed, with in
reasing τ the 
urveof the PS will be densely �lled with the eigenvalues (Ω(m) = 2πm/τ). The only possibilityfor the �xed point to be
ome stable is to assume that λ is also s
aled with in
reasing τ .Parti
ularly, we will show that in order to a
hieve 
ontrol we have to s
ale it as λ = λ0ε
2with �xed λ0 (here for 
onvenien
e we introdu
e the small parameter ε = 1/τ).Fig. 3 illustrates the part of the 
urve γ(Ω) whi
h may indu
e an instability in the system.More pre
isely, the interval of unstable frequen
ies is Ω1 < Ω < Ω2, where Ω1 and Ω2 aregiven by the zeros of γ(Ω):

Ω1,2 = ω ± K

√

1 −
(

1 − λ

K

)2For small λ we 
an approximate this as
Ω1,2 = ω ±

√
2λK. (6)The length of the interval of unstable frequen
ies is ∆Ω = Ω2 − Ω1 = 2

√
2λK.We note that the a
tual position of the eigenvalues on the 
urve 
orresponds to the valuesof Ω(m) = 2πmε with any integer m. It is easy to see that the distan
e between thefrequen
ies of neighboring eigenvalues Ω(m+1) − Ω(m) = 2πε s
ales as ε. Therefore, the
ontrol 
an be su

essful if λ = λ0ε

2. In this 
ase the length of the unstable interval is
∆Ω = 2ε

√
2λ0K and s
ales also as ε. The 
ontrol 
an be a
hieved if the length is smallerthan the distan
e between neighboring eigenvalues, i.e., ∆Ω = 2ε

√
2λ0K < 2πε, leading to

K <
π2

2λ0
. (7)Eq. (7) gives a ne
essary 
ondition for su

essful 
ontrol.7
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Figure 3: Curve of the pseudo-
ontinuous spe
trum. The a
tual position of the 
omplexeigenvalues Λ = 1
τ
γ + i

(

Ω + O( 1
τ
)
) on the 
urve 
orresponds to Ω(m) = 2πmε, m =

±1,±2,±3, ..., ε = 1/τ . The �xed point is stable if the imaginary parts of the eigenvaluesare outside of the interval Ω1 < Ω < Ω2. Su
h a 
ase with Ω(m0) < Ω1 < Ω2 < Ω(m0+1) isillustrated, in whi
h the leading eigenvalues Λ(m0) and Λ(m0+1) have negative real parts.The relative phase of the delay plays an additional important role. Depending on thisphase, 
ontrol o

urs periodi
ally with τ . In order to quantify this e�e
t, let us introdu
e
ωτ = 2π/τ to be the frequen
y asso
iated with the delay. Then the ratio of the internalfrequen
y ω and ωτ is given by ω/ωτ = γτ mod 1. Here 0 < γτ < 1 measures the detuningfrom the resonan
e between the internal frequen
y and the delay-indu
ed one. Using thisnotation and (6), we 
an rewrite

Ω1,2 = m0ωτ + γτωτ ± ε
√

2λ0K = Ω(m0) + ε
(

2πγτ ±
√

2λ0K
)

.Here m0 is some integer number. The ne
essary and su�
ient 
ondition for the stabilityis (
f. Fig. 3) Ω(m0) < Ω1 < Ω2 < Ω(m0+1), whi
h leads to
√

2λ0K < 2π min {γτ , 1 − γτ}or
K <

2π2

λ0

(min {γτ , 1 − γτ})2 =
2π2

λ0

(

min

{

[ωτ

2π

]

f
, 1 −

[ωτ

2π

]

f

})2

, (8)where [

ωτ
2π

]

f
is the fra
tional part of ωτ

2π
[35℄. Fig. 4 shows the domain of 
ontrol given byEq. (8) for λ = λ0/τ

2.In order to return to uns
aled parameters, we have to substitute λ0 = λ/ε2 = λτ 2. Fig. 5(a)shows the obtained domain of 
ontrol for �xed small λ = 0.01. The maximum allowed8
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Figure 4: Shaded region: Domain of 
ontrol in the (τ, K)−plane for the �xed point 
lose tothe Hopf bifur
ation, given by the asymptoti
 formula Eq. (8) for λ = λ0/τ
2. Parameters:

ω = π, λ0 = 1.values of K de
rease as 1/τ 2. More pre
isely, we have
Kmax(τ) =

π2

2λτ 2
. (9)The appli
ation of the asymptoti
 analysis allows to reveal many essential features andme
hanisms of the stabilization 
ontrol s
heme (1) for large delay τ . On the other hand,the obtained approximations are valid as soon as K is mu
h larger than λ. Figure 5 showsa 
omparison of the boundaries of the 
ontrol domain, whi
h are given by the asymptoti
methods and exa
t analyti
al formulas derived in Appendix A. Very 
lose to the Hopfbifur
ation (λ = 0.01) the agreement is ex
ellent even at small values of τ (Fig. 5a), whilefor larger λ (Fig. 5b) the deviations be
ome more visible. In addition, the approximatesolution does not give the lower boundary of the 
ontrol domain for small K whi
h onlyshows up in Fig. 6. The analyti
al approa
h whi
h we give in Appendix A also allowsus to identify the �peaks� of the 
ontrol domains, whi
h o

ur at τmax = (2n + 1)π/ω,

n = 0, 1, 2, ..., as double-Hopf bifur
ation points. The 
riti
al time delay, above whi
h
ontrol fails, is given by τc = 2/λ.5 Con
lusionsTime delays o

ur naturally in a variety of opti
al, ele
troni
, 
hemi
al, biologi
al andother nonlinear systems. This feature 
an be used in a simple and easily realizable way tostabilize unstable steady states by time-delayed di�eren
e feedba
k 
ontrol. However, the
ontrol s
heme may fail if the delay time τ and the 
ontrol amplitude K are not 
hosen9
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olor 
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hara
teristi
equation using the Lambert fun
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appropriately. In this paper we have elaborated analyti
al 
onditions for su

essful 
on-trol of a �xed point of fo
us type. By asymptoti
 expansion methods for large delay, anda detailed 
omparison with exa
t solutions we have established the parameter ranges forsu

essful 
ontrol. Thereby we have not only obtained the pre
ise shape of the islands of
ontrol in the (τ, K) parameter plane, but have also gained insight into the me
hanismof 
ontrol by analysing the eigenvalue spe
trum of the �xed point of the delay-di�erentialequation, whi
h 
onsists of a pseudo-
ontinuous spe
trum and up to two strongly unstable
omplex eigenvalues. Although our analysis has shown that the standard 
ontrol s
hemegenerally fails for large delay, we have found that if the un
ontrolled system is su�
iently
lose to its instability threshold, i.e., a Hopf bifur
ation, 
ontrol does work even for rela-tively large delay times, 
ompared to the intrinsi
 os
illation period T0 = 2π/ω, 
f. Fig.5(a). These results may be of interest, e.g., in appli
ation to laser systems where os
il-latory instabilities may o

ur above the �rst laser threshold, but stable 
w operation isoften desired [25℄. By suitable opti
al or optoele
troni
 feedba
k using for instan
e external
avities and Fabry-Perot resonators, time-delayed feedba
k 
ontrol may be realized.A Boundaries of the 
ontrol domainThe exa
t boundaries of the 
ontrol domain 
an be obtained analyti
ally [19℄ from the
hara
teristi
 Eq.(2) by setting the real part of the 
omplex eigenvalue Λ equal to zero,i.e., Λ = iΩ. We then obtain the two real equations
λ = K(1 − cos Ωτ) (10)

±ω = Ω + K sin Ωτ. (11)Solving this system of trans
endental equations and observing the positivity of the delaytime τ and the parameters λ, ω, K, we �nd three families of bran
hes of solutions, wherethe nonnegative integer n takes 
are of the di�erent leaves of the involved multivaluedfun
tions:
τ1(K, n) =

2nπ + arccos K−λ
K

ω −
√

(2K − λ)λ
,

λ

2
≤ K <

ω2 + λ2

2λ
(12)

τ2(K, n) =
2(n + 1)π − arccos K−λ

K

ω +
√

(2K − λ)λ
,

λ

2
≤ K (13)

τ3(K, n) =
2(n + 1)π − arccos K−λ

K

−ω +
√

(2K − λ)λ
,

ω2 + λ2

2λ
< K (14)The 
orresponding eigenvalues Λ = iΩ are given by

Ω1,3 = ±
(

ω −
√

(2K − λ)λ
)

Ω2 = ±
(

ω +
√

(2K − λ)λ
)12



For the boundaries of the stability islands only the bran
hes τ1 and τ2 are relevant. Notethat at the points
K = Kmin =

λ

2

τ = τmin(n) =
(2n + 1)π

ωthe bran
h τ1(K, n) ends, but is 
ontinued by τ2(K, n). As it is shown in [19℄, these pairsof 
urves, Eqs. (12) and (13), form the boundaries of the 
ontrol domains in the (τ, K)parameter plane, as depi
ted by solid lines in Figs. 5 and 6. These islands be
ome smallerfor in
reasing n and the 
orresponding values for K are 
on�ned by
Kmin ≤ K ≤ Kmax(n),where the maximal value Kmax(n) is given by an interse
tion point of the two bran
hes

τ1(K, n) and τ2(K, n). These interse
tion points 
orrespond to double-Hopf points of 
odi-mension two. They are given by solutions of the trans
endental equation
arccos

λ − K

K
=

(2n + 1)π

ω

√

(2K − λ)λ. (15)The 
orresponding values of τ are given by
τmax(n) = τmin(n) =

(2n + 1)π

ω
. (16)Note that the 
ondition (15) is satis�ed also for K = Kmin. The stability domain vanishesif Kmin and Kmax 
oin
ide. Forming the derivative of (15) with respe
t to K we obtain

1

K
=

(2n + 1)π

ω
.Inserting K = Kmin = λ/2 �nally gives the relation

ω =
(2n + 1)πλ

2
.If this relation is satis�ed, we have a resonant double-Hopf point of 
odimension three.Sin
e n has to be an integer, this happens only for parti
ular 
hoi
es of λ and ω. Otherwise,the integer part of the value n obtained from this relation gives the number of nondegeneratestability islands.Using (16), the maximum delay time τc whi
h allows for stabilization is obtained as

τc =
2

λ
,Note that this boundary is sharp only if τ is an odd integer multiple of π/ω. For

ω

λ
<

π

2
,even the �rst stability island vanishes and stabilization is not possible.13
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