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Abstra
t. DAN The present paper is 
on
erned with investigating the 
apability ofthe smoothness preserving �
titious domain method from [22℄ to shape optimizationproblems. We 
onsider the problem of maximizing the Diri
hlet energy fun
tional in the
lass of all simply 
onne
ted domains with �xed volume, where the state equation involvesan ellipti
 se
ond order di�erential operator with non-
onstant 
oe�
ients. Numeri
alexperiments in two dimensions validate that we arrive at a fast and robust algorithm forthe solution of the 
onsidered 
lass of problems. The proposed method keeps appli
ablefor three dimensional shape optimization problems.Introdu
tionIn several papers (see [8, 9℄ for example), two of the authors developed e�
ient algorithmsfor the solution of several ellipti
 shape optimization problems. A boundary variationalapproa
h was proposed in 
ombination with boundary integral representations of theshape gradient and the shape Hessian. The 
onsidered 
lass of model problems allowedthe use of boundary integral equations to 
ompute all ingredients of the fun
tional, thegradient, and the Hessian, that arise from the state equation. In 
ombination with afast wavelet Galerkin method to solve the boundary integral equations, we obtained verye�
ient �rst and se
ond order algorithms for shape problems in two and three spatialdimensions. In parti
ular, the use of boundary element methods requires only a dis-
retization of the free boundary. In our opinion this is very advantageous sin
e, on theone hand, modern boundary integral methods redu
e the 
omplexity, and on the otherhand, large deformations of the domains are realizable without remeshing. Moreover,exterior boundary value problems are treatable, like in the 
omputation of free surfa
esof liquid bubbles or drops levitating in an ele
tromagneti
 �eld, 
f. [10, 11℄.However, to be able to realize the optimal e�
ien
y from these advantages, it is of greathelp if the 
onstraints and shape derivatives 
an be formulated in terms of boundaryintegrals. Consequently, further assertions on the obje
tive have to be made for thepowerful appli
ation of boundary element methods, see [8℄ for the details.In 
ase of 
ompa
tly supported 
ost fun
tionals one 
an over
ome this restri
tion by 
ou-pling �nite and boundary elements (see [12℄). Thus, the advantages of both methods areretained, namely fast a

ess to values on the 
ompa
t subset by �nite elements on a �xedtriangulation and the simple treatment of the free boundary by boundary elements. Nev-ertheless, the restri
tion to state equations involving di�erential operators with 
onstant
oe�
ients remains.However, the above mentioned te
hniques are not appli
able to state equations involvingellipti
 di�erential operators with non-
onstant 
oe�
ients. Fi
titious domain methodso�er obviously a 
onvenient tool to deal with su
h shape optimization problems while the
ompli
ated remeshing, required for �nite element methods, is still avoided, see Haslingeret al. [15, 16℄, Kunis
h/Pei
hl [21℄, Neitaanmäki/Tiba [25℄, and Slawig [29, 30℄.Up to now, the su

ess of �
titious domain methods was limited sin
e traditional meth-ods su�er from low orders of 
onvergen
e. For instan
e, the �
titious domain-Lagrange1



multiplier approa
h 
onverges only as O(h1/2) in the energy norm when approximatingfrom uniform grids with mesh size h (see [18℄). Even the rate of 
onvergen
e of stan-dard (i.e. based on isotropi
 re�nements) adaptive methods is limited by O(N−1/2) and
O(N−1/4) in two and three dimensions, respe
tively, when spending N degrees of free-dom, independently of the order of the approximation spa
es (see [23℄ for a more detaileddis
ussion).These di�
ulties arise from non-smooth extensions of the solutions outside the intrinsi
domain. In [22, 23℄, one of the authors proposed a rather novel and promising smoothnesspreserving �
titious domain method whi
h realizes higher orders of 
onvergen
e due tosmooth extensions of the solution. The present paper is devoted to demonstrate the
apability of this method when used in the 
ontext of shape optimization problems.We 
onsider the problem of maximizing the Diri
hlet energy fun
tional in the 
lass ofall 
onne
ted domains of 
lass C2, where the state solves a standard ellipti
 boundaryvalue problem of se
ond order. To ensure uniqueness the sought domain is supposed tohave a given volume. For sake of 
learness in representation, we restri
t ourselves tothe two dimensional setting. However, we emphasize that the present algorithms 
an bestraightforwardly extended to three spatial dimensions.The paper is organized as follows. Se
tion 1 is dedi
ated to shape optimization. Weintrodu
e our model problem of maximizing the Diri
hlet energy fun
tional under a vol-ume 
onstraint. After deriving the shape derivatives, we 
onsider a standard augmentedLagrangian algorithm to treat the volume 
onstraint. The minimization problems in theinner loop are solved by a nonlinear Ritz-Galerkin method for the ne
essary 
ondition. Ave
tor valued boundary perturbation ansatz is employed in order to des
ribe the bound-ary and its update. On the one hand, any domain of gender zero 
an be represented, onthe other hand, the boundary representation is non-unique. Sin
e therefore the surfa
emesh might degenerate, we add a regularization term to the obje
tive. In Se
tion 2 wepresent the numeri
al s
heme to 
ompute the state fun
tion. We introdu
e the smooth-ness preserving �
titious domain method and dis
uss the evaluation of domain integralsby numeri
al quadrature. In the last se
tion (Se
tion 3) we present numeri
al results todemonstrate the 
apability of our approa
h.1. Shape Optimization1.1. The model problem. Let Ω ⊂ R

2 be a domain with boundary Γ := ∂Ω. We
onsider the Diri
hlet energy fun
tional(1.1) J(Ω) =

∫

Ω

〈A∇u,∇u〉dx =

∫

Ω

fudx,where the state fun
tion u solves the boundary value problem(1.2) −÷ (A∇u) = f in Ω,

u = 0 on Γ = ∂Ω.2



Herein, we assume that the inhomogenity f : D → R and the symmetri
 and positivematrix A(x) = [aij(x)]2i,j=1 are su�
iently regular and de�ned in a su�
iently large holdall D ⊂ R
2.The goal of the present paper is to maximize the the Diri
hlet energy (1.1) over the 
lass

Υ of admissible domains. We assign Υ to be the set of all simply 
onne
ted domains ofthe 
lass C2. To ensure uniqueness we shall impose an equality 
onstraint on the volumeof the domain(1.3) V (Ω) :=

∫

Ω

dx
!
= V0.Consequently, we arrive at the following problem:

−J(Ω) → min
Ω∈Υ

subje
t to V (Ω) = V0.(P )1.2. Shape 
al
ulus. We brie�y re
all well known fa
ts about the �rst order shape
al
ulus, useful for the dis
ussion of the ne
essary 
ondition and the numeri
al algorithms.For a general overview on shape 
al
ulus, mainly based on the perturbation of identity(Murat and Simon) or the speed method (Sokolowski and Zolesio), we refer the readerfor example to Murat and Simon [24, 28℄, Pironneau [27℄, Sokolowski and Zolesio [31℄,Delfour and Zolesio [4℄, and the referen
es therein.Let n denote the outer unit normal to the boundary Γ and 
onsider a C2-smooth boundaryperturbation �eld U : Γ → R
2. Then, the shape gradient to the fun
tional (1.1) reads as(1.4) ∇J(Ω)[U] =

∫

Γ

〈U,n〉〈A∇u,∇u〉dσ,sin
e the lo
al shape derivative du = du[U] satis�es
÷(A∇du) = 0 in Ω,

du = −〈U,n〉
∂u

∂n
on Γ.The gradient of the volume reads as(1.5) ∇V (Ω)[U] =

∫

Γ

〈U,n〉dσ.1.3. Relaxation of the 
onstraints. The minimization problem (P ) implies to �nd thesolution (Ω⋆, λ⋆) ∈ Υ × R of the saddle point problem
(Ω⋆, λ⋆) = arg inf

Ω∈Υ
sup
λ∈R

Lα(Ω, λ),where Lα(Ω, λ) denotes the augmented Lagrangian fun
tional(1.6) Lα(Ω, λ) = −J(Ω) + λ
(
V (Ω) − V0

)
+

α

2

(
V (Ω) − V0

)2
.Of 
ourse, the 
hoi
e α = 0 yields the pure Lagrangian while λ = 0 and α → ∞ is knownas standard quadrati
 penalty method. However, both 
hoi
es have some drawba
ks fromthe numeri
al point of view, 
f. [5, 19℄, for example.3



In order to avoid these di�
ulties, we 
hoose α > 0 and 
onsider the following standardaugmented Lagrangian algorithm:
• initialization: 
hoose initial guesses λ(0) for λ⋆ and Ω(0) for Ω⋆,
• inner iteration: solve(1.7) Ω(n+1) := argmin Lα(Ω, λ(n))with initial guess Ω(n),
• outer iteration: update

λ(n+1) := λ(n) − α
(
V (Ω(n+1)) − V0

)
.It is well known that the this algorithm 
onverges to (Ω⋆, λ⋆) provided that α is appro-priately 
hosen [5, 19℄.Noti
e that the ne
essary 
ondition to (1.6) is equivalent to the identity

〈A∇u,∇u〉 ≡ λ⋆ on Γ⋆.1.4. Ritz-Galerkin approximation of the shape problem. The boundary of a do-main Ω ∈ Υ 
an be parameterized by a bije
tive positive oriented 
urve(1.8) γ : [0, 1] → Γ, γ(φ) =

[
γx(φ)

γy(φ)

]
,su
h that

γx, γy ∈ C2per([0, 1]) :=
{
f ∈ C2([0, 1]) : f (i)(0) = f (i)(1), i = 0, 1, 2

}
.Setting(1.9) ϕΓ

−N := sin(2πNφ), ϕΓ
1−N := sin

(
2π(N − 1)φ

)
, . . . , ϕΓ

−1 := sin(2πφ),

ϕΓ
0 := 1, ϕΓ

1 := cos(2πφ), . . . , ϕΓ
N := cos(2πNφ),we de�ne the spa
e(1.10) V Γ

N = span{ϕΓ
−N , ϕΓ

1−N , . . . , ϕΓ
N} ⊂ C2per([0, 1])of all trigonometri
 polynomials of degree ≤ 2N . To dis
retize the shape optimizationproblem we make the ansatz(1.11) γN =

N∑

k=−N

[
ak

bk

]
ϕΓ

k ∈ V Γ
N × V Γ

Nwith 
oe�
ient ve
tors [ak, bk]
T ∈ R

2. Identifying the approximate domain ΩN with thisboundary 
urve, problem (1.7) be
omes �nite dimensional
Ω⋆

N := argmin Lα(ΩN , λ(n)).This dis
rete problem leads to a nonlinear Ritz-Galerkin s
heme for the ne
essary 
ondi-tion: seek γ
⋆
N ∈ V Γ

N × V Γ
N su
h that ∇Lα(Ω⋆

N , λ⋆)[vN ] = 0 for all vN ∈ V Γ
N × V Γ

N .4



For the numeri
al solution of this nonlinear variational equation we apply the quasi-Newton method updated by the inverse BFGS-rule without damping. A se
ond orderapproximation is proposed for performing the line sear
h update if a des
ent fails. For allthe details we refer to [5, 13, 14, 19℄ and the referen
es therein.Remark 1.1. In the three dimensional 
ase one 
onsiders the unit sphere S
2 as parameterspa
e and the ansatz spa
es V Γ

N 
onsisting of spheri
al harmoni
s of order ≤ N . Then,
γN : S

2 → Γ is de�ned a

ording to
γN =

∑

k

akϕ
Γ
k ∈ V Γ

N × V Γ
N × V Γ

Nwith 
oe�
ients ak ∈ R
3. This ansatz has been used in e.g. [20℄.1.5. Regularization. The ansatz (1.11) does not impose any restri
tion to the topologyof the domain ex
ept for its gender. However, even though both 
omponents of γ areelements of C2per([0, 1]), we 
annot guarantee that Ω ∈ C2. Furthermore, the parametri
representation (1.8) of the domain Ω is not unique. In fa
t, if Ξ : [0, 1] → [0, 1] denotesany smooth 1-periodi
 bije
tive mapping, then the boundary 
urve γ◦Ξ des
ribes anotherparameterization of Ω.To avoid degenerated boundary representations we shall in
lude a regularization term. Itis quite obvious that, for numeri
al 
omputations, a �ni
e� parameterization distributesequidistant grid points of [0, 1] equidistantly on Γ. This means that the mesh fun
tional(1.12) M(Ω) =

∫ 1

0

(〈γ ′, γ ′〉 − |Γ|2)2dφ,be
omes small sin
e it vanishes only if Ω is parameterized with respe
t to the ar
 length.This motivates to solve for small β > 0 the regularized shape problem
J(Ω) + βM(Ω) → min

Ω∈Υ
subje
t to V (Ω) = V0(P ′)instead of the original problem (P ). We mention that the best numeri
al results area
hieved when β → 0 during the optimization pro
edure.Remark 1.2. The three dimensional analogue of the mesh fun
tional (1.12) is

M(Ω) =

∫

S2

∥∥∥∥
[
〈γx, γx〉 〈γx, γy〉

〈γy, γx〉 〈γy, γy〉

]
−

|Γ|2

|S|2
I

∥∥∥∥
2

F

dσ,where ‖ · ‖F denotes the Frobenius norm. The mesh fun
tional is identi
al to zero i� the�rst fundamental tensor of di�erential geometry is on the whole parameter spa
e identi
alto |Γ|2/|S|2-times the identity matrix.2. Numeri
al Method to 
ompute the State2.1. The SPFD method. To 
ompute the state given by (1.2) we use a 
lose variantof the smoothness preserving �
titious domain (SPFD) method, introdu
ed in [22℄. The5



SPFD method is a fairly new domain embedding te
hnique that has yet to be fully under-stood from a theoreti
al point of view. It has, however, performed well in experimentalsettings before, and as will be seen in the numeri
al results, it 
an ful�ll its promise inmore applied settings.To solve a boundary value problem with any �
titious domain method, one embeds theintrinsi
 domain into a larger �
titious domain, for example, a periodi
 
ube T = (R\Z)2.The next step is to 
onstru
t from the original problem some auxiliary problem on the�
titious domain su
h that the solutions of this auxiliary and the original problem 
oin
ideon the intrinsi
 domain.We assume that the right hand side f is in L2(T). For sake of simpli
ity we shall assumefrom now on that the hold all satis�es D = T. Then, sin
e the boundary is C2, thesolution of the state equation will be in H2(Ω). Consider for a moment the more general,non-homogeneous boundary 
ondition u = g on Γ, with g ∈ H3/2(Γ), and 
onsider theleast-squares fun
tional on H2(T),(2.13) Φ(u+) = ‖C(Au+ − f)‖2
L2(T) + ‖Bu+ − g‖2

H3/2(Γ),where A : H2(T) → L2(T) is the di�erential operator, B : H2(T) → H3/2(Γ) is the tra
eoperator, and C : L2(T) → L2(T) is su
h that Cv is the extension by zero of the restri
tionto Ω of v ∈ L2(T).It is reasonably easy to 
he
k that Φ has a minimum, whi
h is not unique but 
an be
hosen to depend 
ontinuously on the data b := [f, g]T ∈ H := L2(T) × H3/2(Γ). Thus,the operator M : H2(T) → H asso
iated with Φ, given by the operator matrix
M =

[
CA

B

]
,is bounded, and, while it has a large kernel, it still has a bounded pseudoinverse. Further-more, every minimizer of Φ is an extension of the solution to the original problem (see[22℄). Thus, to 
ompute the state, we shall solve the least-squares problem(2.14) �nd u+ ∈ H2(T) su
h that ‖Mu+ − b‖H → min,and take u = u+

|Ω.2.2. Dis
retization and solution of the dis
rete problems. To approximate solu-tions of (2.14), we will use dyadi
 grids of mesh size hj := 2−j, with j ≥ 0 an integer. Wewrite
T =

⋃

k=(kx,ky)∈Zj

Qjk,where Zj := (Z/2j
Z)2, and Qjk := 2−j[kx, kx + 1) × [ky, ky + 1).When trying to dis
retize the operator M on the given mesh, one qui
kly realizes thatthe operator C 
an yield a potentially fatal problem for the numeri
al implementation,as it implies the 
omputation of quadrature problems on nontrivial domains, a task thatusually is expensive. To over
ome this problem, we approximate C by the operator Cj,6



de�ned as follows. Given v ∈ L2(T), Cjv is de�ned as the extension by zero of therestri
tion of v to Ωj , where
Ωj :=

⋃

k∈Zj

{Qjk : Qjk ∩ Ω 6= ∅}.In pra
ti
e, this 
hoi
e also enhan
es the stability of the method.Noti
e that this approximation is not as 
rude as it looks. It has been shown in [22℄ thatif C(Au+ − f) = 0, and Au+ − f ∈ Hs(T) for s > 0 su
h that s − 1/2 is not an integer,then
‖Cj(Au+ − f)‖L2(T) . hs

j‖Au+ − f‖Hs(T).Sin
e one 
an always �nd su
h an extension u+ whenever u ∈ Hs+2(Ω), this proves thatthe minimum of the modi�ed least-squares fun
tional(2.15) Φj(u
+) = ‖Cj(Au+ − f)‖2

L2(T) + ‖Bu+ − g‖2
H3/2(Γ)
onverges rapidly towards the minimum of Φ.Next, let us 
hoose suitable approximation spa
es. In H2(T) we will approximate fromthe spa
es

V T

j = span{ϕT

j,k : k ∈ Zj}of periodi
 
ardinal B-splines ϕT

j,k of order m > 2 on the given grid. These are Cm−2-fun
tions that are multi-polynomials of degree m− 1 on ea
h 
ube Qjk. In L2(T) we willapproximate using the spa
es
V 0

j = span{ϕ0
j,k,l : k ∈ Zj , l ∈ I},where I := {l = (lx, ly) : 0 ≤ lx, ly < n}, 
onsisting of di
ontinuous pie
ewise multi-polynomials of order n. The orthonormal basis fun
tions ϕ0

j,k,l are supported on Qjk, de-�ned as tensor produ
ts of Legendre polynomials up to degree n−1. Note that CjV
0
j ⊂ V 0

jgreatly simpli�es the 
al
ulation of entries in the system matrix. Finally, to approximatein H3/2(Γ), we use (after identifying Γ with [0, 1] by means of the parameterization (1.11))the spa
e V Γ
j := V Γ

N , where V Γ
N is as de�ned in (1.10) with N = 2j.Next, we should introdu
e the dis
rete system matri
es and load ve
tors. We have to
ompute

[Aj](k,l),k′ = −

∫

Ωj

÷(A∇ϕT

j,k′)ϕ0
j,k,ldx, [fj ](k,l) =

∫

Ωj

fϕ0
j,k,ldx,

[Bj]k,k′ =

∫ 1

0

(ϕT

j,k′ ◦ γ)ϕΓ
kdφ, [gj]k =

∫ 1

0

(g ◦ γ)ϕΓ
kdφ.where γ denotes a suitable parameterization to Γ a

ording to (1.8).In order to ta
kle the di�erent norms we need some suitable pre
onditioners. To 
omputethe H3/2(Γ)-norm of a fun
tion gj ∈ V Γ

j we simply have to s
ale the 
oe�
ients of sin(kφ),and of cos(kφ), by k3/2. Thus, we shall introdu
e the diagonal matrix
[Dj ]k,l = |k|3/2δk,l.7



For pre
onditioning of the operator M we 
ould use (as is done in [22℄) a suitable wavelettransform, see e.g. [3℄. Instead, we use the Bramble-Pas
iak-Xu (BPX) multilevel pre
on-ditioner [2℄ asso
iated with the dis
retization of I −÷(A∇). We indi
ate its appli
ationby the matrix Tj.We are now in the position to present the dis
rete least-squares problem: solve(2.16) ∥∥∥∥
[

Aj

DjBj

]
Tjvj −

[
fj

Djgj

]∥∥∥∥ → minand take u+
j = Tjvj .We use the iterative least-squares solver LSQR [26℄ to solve the dis
rete least-squaresproblem (2.16) iteratively within a nested iteration. Moreover, it is not ne
essary toassemble the matrix Bj sin
e matrix-ve
tor produ
ts Bjx and BT

j x 
an be e�
ientlyevaluated by using the (inverse) fast Fourier transform.2.3. Error estimates. The energy spa
e of the least-squares formulation (2.13) is theSobolev spa
e H2(T). Therefore, sin
e we use ansatz fun
tions that are exa
t of order m,the best possible 
onvergen
e rate is limited by h2m−4
j , a
hieved in the H4−m(T)-norm if

u+ ∈ Hm(T).Theorem 2.1. Assume that there exists an n ∈ [0, m − 2] su
h that(2.17) ‖u − uj‖H2−n(Ω) . h2n
j ‖u‖H2+n(Ω)provided that u ∈ H2+n(Ω). Then, if Γ is su�
iently smooth, the approximate shapefun
tional and gradient

J̃(Ω) =

∫

Ω

fujdx, ∇̃J(Ω)[U] =

∫

Γ

〈U,n〉〈A∇uj,∇uj〉dσ,satisfy the error estimates
|J(Ω) − J̃(Ω)| = O(h2n

j ), |∇J(Ω)[U] − ∇̃J(Ω)[U]| = O(h
min{2n,n+1}
j ).Proof. The approximation error of the shape fun
tional is estimated a

ording to

|J(Ω) − J̃(Ω)| =

∣∣∣∣
∫

Ω

fudx−

∫

Ω

fujdx

∣∣∣∣
. ‖f‖Hn−2(Ω)‖u − uj‖H2−n(Ω)

. h2n
j ‖f‖Hn−2(Ω)‖u‖Hn−2(Ω).In 
ase of the shape gradient we derive the assertion by

|∇J(Ω)[U] − ∇̃J(Ω)[U]| =

∣∣∣∣
∫

Γ

〈U,n〉
{
〈A∇u,∇u〉 − 〈A∇uj,∇uj〉

}
dσ

∣∣∣∣

≤

∣∣∣∣
∫

Γ

〈U,n〉〈A∇(u− uj),∇(u − uj)〉dσ

∣∣∣∣ + 2

∣∣∣∣
∫

Γ

〈A∇u〈U,n〉,∇(u− uj)〉dσ

∣∣∣∣
. ‖〈U,n〉‖L∞(Γ)‖u − uj‖

2
H1(Γ) + 2‖∇u〈U,n〉‖H1/2(Γ)‖u − uj‖H1/2(Γ).8



Using (2.17) together with the inverse inequality yields for the �rst term
‖〈U,n〉‖L∞(Γ)‖u − uj‖

2
H1(Γ) . h2n

j ‖〈U,n〉‖L∞(Γ)‖u‖
2
H2+n(Γ).Invoking additionally the tra
e theorem the se
ond term 
an be likewise estimated by

‖∇u〈U,n〉‖H1/2(Γ)‖u − uj‖H1/2(Γ) . ‖∇u〈U,n〉‖H1/2(Γ)‖u − uj‖H1(Ω)

. h
min{2n,n+1}
j ‖〈U,n〉‖C1(Γ)‖u‖

2
H2+n(Ω).

�2.4. Computing domain integrals. At least in order to evaluate the Diri
hlet energy(1.1) we have to approximate domain integrals(2.18) I(Ω) :=

∫

Ω

f(x)dxfor f ∈ C(Ω). This will be done as follows.We 
ompute the points of interse
tion of the boundary 
urve Γ and the underlying grid⋃
k∈Z

∂Qj,k. Then, we repla
e the boundary 
urve Γ by the pie
ewise linear 
urve Γ̃ whi
h
onne
ts these points by straight lines. The en
losed polygonal domain will be denotedby Ω̃.

Figure 2.1. Triangulation of the domain.We will next 
onstru
t a suitable triangulation of Ω̃. We subdivide all elements Qj,k thatinterse
t the boundary Γ̃ into suitable triangles to triangulate Qj,k ∩ Ω̃. In the remainingpart of Ω̃ we subdivide the elements Qj,k into two triangles. Finally, we apply appropriate9



quadrature formulae for triangles. Figure 2.1 exempli�es a triangulation produ
ed by ouralgorithm.Theorem 2.2. Assume that Ω ∈ C2 and f ∈ C2(D). Then, the above quadrature al-gorithm 
omputes the integral I(Ω) from (2.18) with a

ura
y O(h2
j) provided that theelement quadrature formulae are exa
t for linear polynomials.Proof. The triangulation 
onsists of O(h−2

j ) elements of volume O(h2
j ). Consequently,sin
e the element quadrature formulae are exa
t of order two, we get an error of quadrature

O(h4
j) per element. Thus, denoting the result of the 
omposite quadrature formula by

Q(Ω̃), we 
on
lude(2.19) |I(Ω̃) − Q(Ω̃)| = O(h2
j).We shall next estimate the error indu
ed by the domain approximation. Sin
e Γ̃ is apie
ewise linear approximation of step width ∼ hj to the boundary 
urve Γ, the area

V (Qj,k ∩ Ω) of ea
h square Qj,k for whi
h Qj,k ∩ Γ̃ 6= ∅ is approximated of order
|V (Qj,k ∩ Ω̃) − V (Qj,k ∩ Ω)| = O(h3

j ).Taking into a

ount that there are at most O(h−1
j ) squares that interse
t the boundary
urve, we 
on
lude(2.20) |I(Ω) − I(Ω̃)| = O(h2

j ).Combining both estimates yields the assertion due to
|I(Ω) − Q(Ω)| ≤ |I(Ω) − I(Ω̃)| + |I(Ω̃) − Q(Ω̃)|.

�Remark 2.3. In three dimensions one introdu
es a triangulation of the free surfa
e andhen
eforth a tretrahedral mesh of the domain. As one readily veri�es the same errorestimate holds while the 
omplexity of the algorithm is O(h−3
j ) instead O(h−2

j ).3. Numeri
al Experiments3.1. Domain quadrature. We shall �rst demonstrate the domain quadrature algorithm,introdu
ed in Subse
tion 2.4. The error estimate derived in Theorem 2.2 is sharp as thefollowing example shows.For di�erent dis
retization levels j we approximate the volume of the domain that under-lies the Figure 2.1. By virtue of the Gauss theorem, we 
an 
ompare these values withthe result of the following boundary integral
V (Ω) =

1

2

∫

Ω

÷x dx =
1

2

∫

Γ

〈x,n〉dσ,
omputed with high a

ura
y. Noti
e that, even though f ≡ 1 in (2.18), this examplevalidates the essential part of the error sin
e it is related to the approximation error of10
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Figure 3.2. Errors of quadrature.the domain of integration (2.20). Whereas, the quadrature error on the perturbed domaindepends only on the 
hosen quadrature rules and the smoothness of the integrand.We plotted the errors of quadrature in semi-logarithmi
al s
ale in Figure 3.2. One observesin fa
t the predi
ted quadrati
 order of 
onvergen
e in hj , as indi
ated by dahed lines.3.2. Solving the state equation. We next investigate the asymptoti
 behaviour ofour �
titious domain solver. We use lowest order ansatz fun
tions, that are quadrati
smoothest splines (m = 3), and dis
ontinuous pie
ewise bilinear test fun
tions (n = 2).To measure the rates of 
onvergen
e of the smoothness preserving �
titious domainmethod we will fo
us on a boundary value problem where the solution is known ana-lyti
ally. To that end, we 
onsider the following boundary value problem
−÷ (A∇u) = cos(x)

(
4 + sin2(y)

)
− 6y

(
2 + sin(x)

) in Ω,

u = cos(x) + y3 on Γ,where
A(x, y) =

[
4 − sin2(y) −1

−1 2 + sin(x)

]
.We 
hoose the same domain Ω as underlying in Figure 2.1. One readily veri�es that thesolution is given by the fun
tion u = cos(x) + y3.We 
ompute the numeri
al solution uj for di�erent dis
retization levels j by the smooth-ness preserving �
titious domain method proposed in the previous se
tion. Sin
e m = 3we expe
t in H1(Ω) an at most quadrati
 rate of 
onvergen
e. In Table 3.1 we tabulate11



j ‖u − uj‖L2(Ω) ‖∇(u − uj)‖L2(Ω) 
pu-time4 3.1e-5 1.5e-3 0.3 se
.5 4.6e-6 (6.7) 3.9e-4 (3.9) 1 se
.6 8.5e-7 (5.4) 9.8e-5 (4.0) 6 se
.7 1.1e-7 (7.8) 2.4e-5 (4.0) 30 se
.8 1.6e-8 (6.6) 6.1e-6 (4.0) 128 se
.9 3.8e-9 (4.4) 1.5e-6 (4.0) 10 min.10 8.5e-10 (4.5) 3.8e-7 (4.0) 44 minTable 3.1. Errors of approximation and over-all 
omputing times.
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Figure 3.3. Rates of 
onvergen
e.the absolute errors with respe
t to the L2-norm and H1-seminorm on Ω, respe
tively. Thebra
keted values indi
ate the ratio of the previous error and the present error. It is about4 whi
h implies quadrati
 orders of 
onvergen
e. We illustrated the di�erent error 
urvesalso in Figure 3.3. As indi
ated by the dashed lines one observes in fa
t quadrati
 ratesof 
onvergen
e for both norms. A

ording to Theorem 2.1 we 
an therefore dedu
e thatboth, the shape fun
tional and the shape gradient, will be approximated with quadrati
orders of 
onvergen
e.The last 
olumn of Table 3.1 refers to the over-all 
omputing times to produ
e the ap-proximate solution uj. The present implementation is still on experimental level, beinga mixture of MATLAB and C-Codes. Nevertheless, the method is feasible and highlya

urate. 12
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Figure 3.4. The maximizing domain.3.3. Appli
ation to shape optimization problems. We shall �nally solve a shapeoptimization problem. We 
hoose the di�usion matrix
A(x, y) =

[
4 + 2.75 sin(10x) −1

−1 2 + sin(3x)

]and the inhomogenity
f(x, y) = 2(1 − 3x2)(1 − 3y2)as the data of the state equation (1.2) Moreover, we 
onsider the volume 
onstraint

V (Ω)
!
= V0 := 0.2.The numeri
al setting is as follows. To approximate the boundary 
urve we 
hoose N = 16whi
h yields 66 shape design parameters (
f. Subse
tion 1.4). Moreover, we perform 5inner and 20 outer iterations of the augmented Lagrangian algorithm (
f. Subse
tion 1.3),where α := 100 does a good job (see (1.6)). The regularization parameter is 
hosen as

β(n) = 2−n/100 where n denotes the number of the outer iteration. The dis
retizationlevel of the �
titious domain method is set to j := 7.The domain 
omputed by our algorithm is shown in Figure 3.3. The algorithm 
onsumesabout 1 hour 
pu-time to derive this solution. To be on safe ground we validated theresult by 
omparing it with the solution of a shape optimization algorithm based onstarlike domains and �nite elements (on starlike domains one 
an de�ne the triangulationvia parametrization). The maximizing domains produ
ed by the di�erent algorithms
oin
ide. 13
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