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Abstra
t. In the paper [17℄, the authors investigated the identi�
ation of an obsta
leor void of perfe
tly 
ondu
ting material in a two-dimensional domain by measurementsof voltage and 
urrents at the boundary. In parti
ular, the reformulation of the givennonlinear identi�
ation problem was 
onsidered as a shape optimization problem usingthe Kohn and Vogelius 
riterion. The 
ompa
tness of the 
omplete shape Hessian atthe optimal in
lusion was proven, verifying stri
tly the ill-posedness of the identi�
ationproblem. The aim of the paper is to present a similar analysis for the related leastsquare tra
king formulations. It turns out that the two-norm-dis
repan
y is of the sameprin
ipal nature as for the Kohn and Vogelius obje
tive. As a byprodu
t, the ne
essary�rst order optimality 
ondition are shown to be satis�ed if and only if the data areperfe
tly mat
hing. Finally, we 
omment on possible 
onsequen
es of the two-norm-dis
repan
y for the regularization issue.Introdu
tionLet D ⊂ R
2 denote a bounded domain with boundary ∂D = Σ and assume the existen
eof a simply 
onne
ted subdomain S ⊂ D, 
onsisting of perfe
tly 
ondu
ting material,essentially di�erent from the likewise 
onstant 
ondu
tivity of the material in the annularsubregion Ω = D \ S. We 
onsider the identi�
ation problem of this in
lusion if theCau
hy data of the ele
tri
al potential u are measured at the boundary Σ , i.e., if a singlepair f = u|Σ and g = (∂u/∂n)|Σ is known.The problem under 
onsideration is a spe
ial 
ase of the general 
ondu
tivity re
onstru
-tion problem and is severely ill-posed. It has been intensively investigated as an inverseproblem. We refer for example to Akduman and Kress [1℄, Chapko and Kress [5℄ andHettli
h and Rundell [26℄ for numeri
al algorithms and to Friedmann and Isakov [21℄ aswell as Alessandrini, Isakov and Powell [2℄ for parti
ular results 
on
erning uniqueness.Moreover, we refer to Brühl and Hanke [3, 4℄ for methods using the 
omplete Diri
hlet�to�Neumann operator at the outer boundary. We emphasize that we fo
us in the presentpaper on exa
t measurements and do not 
onsider noisy data.In [38℄, Ro
he and Sokolowski have been introdu
ed a formulation as shape optimizationproblem using the Kohn and Vogelius 
riterion. The analysis and numeri
al results pre-sented there for �rst order shape optimization algorithms are extended to se
ond ordermethods in [17℄. In parti
ular,
ompa
tness of the shape Hessian is proven at the optimaldomain Ω⋆ = D \S⋆, provided that the interfa
e Γ = ∂S is su�
iently regular. Note thatthe assumption on starshapeness of the in
lusion with respe
t to a given pole x0 ∈ D wasonly used to derive expli
it expressions in terms of polar 
oordinates. This is not restri
-tive and 
an be bypassed by a generalization of the 
al
ulus, see for example Sokolowskiand Zolesio [39℄ and Delfour and Zolesio [9℄. However, sin
e the related tra
king formu-lations for either the Diri
hlet- or Neumann-data at the outer boundary are quite often
onsidered in the literature, the present paper aims at investigating these formulations byanalogous methods.Shape 
al
ulus te
hniques are also investigated and developed by e.g., Hettli
h [25℄ andRundell [26, 27℄, Hohage [30℄, Kirs
h [31℄, Kress et. al. [23, 32, 33℄, Potthast [36, 37℄ (a1



rather in
omplete list) for the study of various kinds of shape identi�
ation problems asnonlinear operator equations. That is, mainly the shape derivatives of solution of the stateequation are 
onsidered and applied in Newton like iterative te
hniques. In view of theseinvestigations, an aim of the present paper is, how higher order shape derivatives of leastsquare obje
tives might provide a 
ompletion of the knowledge about the identi�
ationproblem.The numeri
al solution of the optimization problems on hand is not 
onsidered in thepaper. Nevertheless, boundary integral equation methods 
ould be exploited (see the ap-pendix) by using e�
ient BEM implementations like wavelet based BEM or fast multipolemethods. We refer to the likewise �rst or se
ond order optimization methods explained in[17℄ (see also [13, 14℄ for more details about the prin
ipal setup). Of 
ourse, the extensionto the numeri
al solution of problems in 3D is straightforward, see e.g., [18℄ for a prin
ipaloutline. Nevertheless, it should be mentioned 
learly that due to the ill-posedness of theproblems, more appropriate regularization 
on
epts have to be in
orporated like those arealready developed in the inverse problem 
ommunity.The present paper is organized as follows. In Se
tion 1 we present the physi
al model andreformulate the identi�
ation problem as shape optimization problem(s) for either tra
kingthe Diri
hlet- or the Neumann data by a nonlinear least square. Some 
onsequen
es ofthe unique 
ontinuation theorem for the Lapla
ian are stated. Moreover, we introdu
ethe adjoint state equation for both formulations. Then, in Se
tion 2, we 
ompute �rstthe gradient and the Hessian of the shape fun
tionals. As a �rst 
onsequen
e, we provethat a domain is stationary if and only if the data are perfe
tly mat
hed with the (exa
t)measurements. Next, we analyze the shape Hessian in Se
tion 3. By the parti
ularstru
ture of the se
ond order form, the nature of the two-norm-dis
repan
y turns out tobe 
ompletely analogous to the 
ase of the Kohn and Vogelius 
riterion. We further provedegeneration of the shape Hessian at the optimal domain, hen
e the ill-posedness of theunderlying identi�
ation problem. Some te
hni
alities about boundary integral equationmethods are postphoned to an appendix. Finally, we state some 
on
luding remarks inSe
tion 4.
1. Shape problem formulation1.1. The physi
al model and two alternatives for a least square formulation.Let D ∈ R

2 be a simply 
onne
ted domain with boundary Σ = ∂D and assume thatan unknown simply 
onne
ted in
lusion S with regular boundary Γ = ∂S is lo
atedinside the domain D satisfying dist(Σ, Γ) > 0, 
f. Figure 1.1. To determine the in
lusion
S we measure for a given 
urrent distribution g ∈ H−1/2(Σ) the voltage distribution
f ∈ H1/2(Σ) at the boundary Σ. Hen
e, we are seeking a domain Ω := D \ S and an2



asso
iated harmoni
 fun
tion u, satisfying the system of equations
∆u = 0 in Ω,

u = 0 on Γ,

u = f on Σ,

∂u

∂n
= g on Σ.This system denotes an overdetermined boundary value problem whi
h should admit asolution only for the true in
lusion S.

Σ Ω Γ

Figure 1.1. The domain Ω and its boundaries Γ and Σ.If the Neumann data (the 
urrent g) is assumed to be pres
ribed, the L2-least squaretra
king of the Diri
hlet data (the voltage distribution f) reads as follows(1.1) (P1) J(Ω) =
1

2

∫

Σ

(u − f)2 dσ → inf,subje
t to
∆u = 0 in Ω,

u = 0 on Γ,(1.2)
∂u

∂n
= g on Σ.Likewise, the tra
king of the Neumann data g 
an be written as(1.3) (P2) J(Ω) =
1

2

∫

Σ

(

g − ∂u

∂n

)2

dσ → inf,where u satis�es
∆u = 0 in Ω,

u = 0 on Γ,(1.4)
u = f on Σ.3



Herein, the in�mum has to be taken over all domains in
luding a void with su�
ientlyregular boundary. We do not 
onsider the interesting question of existen
e of optimalsolutions in this paper. Instead, we will simply assume the existen
e of optimal domains,whi
h is satis�ed for example in 
ase of perfe
tly mat
hing data.Remark 1.1. Obviously, L2-tra
king is not 
ompletely 
ompatible in both 
ases with theminimal requirements on f and g to provide a weak solution u ∈ H1(Ω). However, it ismore appropriate for 
onsidering noisy data later on. Moreover, assuming more regularityfor f and g will simplify te
hni
alities for regularity of the adjoint(s), and for the 
al
ulus.Nevertheless, we will brie�y 
omment on possible relaxations with both respe
ts in the
on
luding remarks (see Se
tion 4).The following Lemma is an immediate 
onsequen
e of the unique 
ontinuation theoremand will be of some importan
e for the investigations in the next se
tions.Lemma 1.2. In 
ase of nonvanishing data g 6= 0, the solution u of (1.2) has almosteverwhere nonvanishing Neumann data along the inner boundary Γ, i.e.,meas {x ∈ Γ | ∂u

∂n
(x) = 0} = 0.An analogous statement holds for the solution u of (1.4).Proof. By the unique 
ontinuation theorem (
f. Hörmander [29℄), we 
on
lude frommeas {x ∈ Γ | ∂u

∂n
(x) = 0} > 0,the 
onsequen
e u ≡ 0 in Ω. This 
ontradi
ts g 6= 0 and proofs the assertion. �1.2. The adjoint equations. A

ording to the de�nition of the tra
king type problems

(P1) and (P2), the adjoint state for (P1) have to satisfy the following equation
∆p = 0 in Ω,

p = 0 on Γ,(1.5)
∂p

∂n
= (u − f) on Σ.Similar, the adjoint equation for the se
ond problem reads as

∆p = 0 in Ω,

p = 0 on Γ,(1.6)
p =

(

∂u

∂n
− g

) on Σ.Remark 1.3. To keep notations simple, we do not introdu
e subs
ripts for states u andadjoints p of (P1) and (P2), respe
tively. Whereas the equations (1.5) and (1.6) are quitesimilar to (1.2)and (1.4), respe
tively, the sour
es in the boundary 
ondition imply di�er-ent 
onsequen
es for the regularity of the adjoint p 
ompared to the regularity of u . Thereis in
reasing regularity for the adjoint state in problem (P1), but de
reasing regularity4



in problem (P2). Sin
e we will not investigate this in more detail, we assume su�
ientregularity of the boundary Σ and the data to provide enough regularity for adjoints andtheir shape derivatives.Note the di�eren
e to the Kohn and Vogelius 
riterion: Sin
e that obje
tive is of the
lassi
al Diri
hlet energy type (
f. [38℄), no adjoint state have to be introdu
ed there.More pre
isely, a formal 
al
ulus demonstrates that the related adjoint(s) 
oin
ide inprin
iple with the original state(s). Obviously, the adjoint states p are essentially di�erentfrom u in 
ase of the least square formulations.2. Shape 
al
ulus and the ne
essary first order optimality 
ondition2.1. First and se
ond order shape derivatives. For sake of 
learness in representa-tion, we repeat the shape 
al
ulus 
on
erning the problem under 
onsideration by meansof boundary variations. Sin
e both obje
tives are de�ned on a �xed manifold far from thevarying shape Γ, there exist two equivalent formulations for the shape gradient as wellas for the shape Hessian either on Σ or on Γ. But we emphasize that we mainly derivethe boundary integral representation of the shape Gradient and the shape Hessian on Γ,whi
h allows us to investigate in parti
ular the natural two-norm dis
repan
y and the
ompa
tness at the stationary domain. Moreover, both expressions are more 
onvenientfor obtaining more e�
iently des
ent dire
tions for numeri
al algorithms, 
f. [13, 14, 17℄.For a survey on the shape 
al
ulus based on the material derivative 
on
ept, we referthe reader to Sokolowski and Zolesio [39℄ and Delfour and Zolesio [9℄ and the referen
estherein. Con
erning the Kohn and Vogelius 
riterion, the paper [38℄ 
ontains the adaptionof these general 
on
epts to the parti
ular 
ase.Let the underlying variational �elds V be su�
iently smooth su
h that C2,α-regularityis preserved for all perturbed domains. Moreover, for sake of simpli
ity, we assume inaddition the outer boundary and the measurements are su�
iently regular su
h that thestate fun
tions u = u(Ω) and the adjoints p = p(Ω) satisfy(2.7) u, p ∈ C2,α(Ω̄).Then, the shape di�erentiability for both obje
tives (1.1) and (1.3) is provided up tose
ond order in
luding 
ertain regularity for the shape Hessian representation. In par-ti
ular, it provides Hölder-regularity of se
ond spatial derivatives along Γ, arising fromthe shape di�erentiation of the state u and adjoint p (
f. the expli
it representationsbelow). Furthertmore, sin
e the obje
tive is de�ned on a �xed manifold far from thevarying boundary, a formal di�erentiation of (1.1) in terms of lo
al derivatives is possibleand yields immediately
dJ(Ω)[V] =

∫

Σ

(u − f)du[V ]dσ,whereas the result for the obje
tive (1.3) reads as follows
dJ(Ω)[V] =

∫

Σ

(

∂u

∂n
− g

)

∂du[V ]

∂n
dσ.5



Here, the lo
al shape derivatives du = du[V] for problem (P1) and (P2) satisfy
∆du = 0 ∆du = 0 in Ω,

du = −〈V,n〉∂u

∂n
and du = −〈V,n〉∂u

∂n
on Γ,(2.8)

∂du

∂n
= 0 du = 0 on Σ,repe
tively. Note that the lo
al shape derivatives for the two problems di�er in bothboundary 
onditions, sin
e the state u for problem (P1) is di�erent from those for (P2)(see (1.2) and (1.4)).It remains to 
ompute the equivalent expressions for the shape gradients on the unknownboundary Γ, sin
e they (have to) exist due to the Hadamard theorem.Lemma 2.1. The shape gradient representation on Γ for both obje
tives reads as(2.9) dJ(Ω)[V] =

∫

Γ

〈V,n〉∂u

∂n

∂p

∂n
dσ.In 
ase of (P1), u and p solves (1.2) and (1.5), whereas the state u and the adjoint psatis�es (1.4) and (1.6) for (P2), respe
tively.Proof. Using ∂Ω = Γ∪Σ and the known boundary data from (1.5) and (2.8), the boundaryintegral representation of the shape gradient is obtained for the �rst obje
tive via repeatedintegration by parts from the identity

0 =

∫

Ω

du∆p − p∆dudx, ⇒

0 =

∫

Γ

du
∂p

∂n
dσ +

∫

Σ

du(u − f)dσ, hen
e,
dJ(Ω)[V] =

∫

Σ

du(u− f)dσ = −
∫

Γ

du
∂p

∂n
dσ,whi
h is the desired result. Similarily, the same formula is derived in prin
iple in theother 
ase, but with di�erent meaning for u and p. �If the hole S is assumed to be starshaped with respe
t to some pole x0 ∈ D, the boundary

Γ = ∂S 
an be parametrized by a fun
tion r = r(ϕ) of the polar angle ϕ and the per-turbation �eld V 
an be 
hosen as V = dr(ϕ)er(ϕ). Herein, er(ϕ) := x0 + (cos ϕ, sin ϕ)Tdenotes the radial dire
tion with respe
t to the pole x0. The regulatity requirementsimply r, dr ∈ C2,αper [0, 2π], where r is a positive fun
tion su
h that dist(Σ, Γ) > 0 and
C2,αper [0, 2π] := {r ∈ C2,α[0, 2π] : r(i)(0) = r(i)(2π), i = 0, 1, 2}.Then, the shape gradient dJ [dr] be
omes in both 
ases(2.10) dJ(Ω)[dr] = −

∫ 2π

0

dr(ϕ) r(ϕ)

(

∂u

∂n

∂p

∂n

)

(ϕ) dϕ,6



where the minus sign issues from the fa
t that 〈er,n〉 = −r/
√

r2 + r′2. Similarily, we willkeep the notation du = du[dr] and dp = dp[dr] for indi
ating the dependen
ies of relatedlo
al shape derivatives.Remark 2.2. The 
lass of bounded starshaped domains with regular Ck,α-boundary pos-sesses the open set property for k ≥ 1, α ∈ [0, 1]: Within the general 
lass of simply 
on-ne
ted Ck,α-domains, any su
h domain Ω has a neighbourhood Uη in the Ck,α-topology,
ontaining only starshaped domains. Moreover, there is a one-to-one relation between(s
alar) fun
tions dr ∈ Uδ(0) ⊂ C2,αper [0, 2π] and domains Ωdr ∈ Uη(Ω). Consequently, the
al
ulus via polar 
oordinates provides the �
omplete information� like a general 
al
ulusfor the 
lass of domains under 
onsideration. In arbitrary dimensions, the unit spheremight serve as an appropriate parameter manifold.To derive the shape Hessian, we pro
eed similar to [10, 11℄ by di�erentiating dire
tly theshape gradient (2.10) while exploiting the relations
∇u|Γ =

∂u

∂n
· n, ∇p|Γ =

∂p

∂n
· n ⇒ ∂u

∂n

∂p

∂n
= 〈∇u,∇p〉|Γ.Lemma 2.3. The shape Hessian reads as

d2J(Ω)[dr1, dr2] = −
∫ 2π

0

dr1 dr2

{

〈∇u,∇p〉 + r
〈

∇ (〈∇u,∇p〉) , er

〉}(2.11)
+dr1 r

{

∂u

∂n

∂dp[dr2]

∂n
+

∂p

∂n

∂du[dr2]

∂n

}

dϕ,where all data have to be understood as tra
es on the unknown boundary Γ.To give the expression (2.11) a meaning, it remains to 
ompute the lo
al shape derivativesof the adjoints p for (P1) and (P2), i.e., the lo
al shape derivatives of the solutions to(1.5) and (1.6), respe
tively. They are 
hara
terized for both problems as solutions ofeither
∆dp = 0 ∆dp = 0 in Ω,

dp = −〈V,n〉 ∂p

∂n
or dp = −〈V,n〉 ∂p

∂n
on Γ,(2.12)

∂dp

∂n
= du[V ] dp =

∂du[V ]

∂n
on Σ.Remark 2.4. The formal equivalen
e for the shape Hessian (2.11) in both 
ases arisesfrom formal similarity of formulae (2.9) or (2.10), respe
tively. The di�eren
es 
an beseen more 
learly when di�erentiating dire
tly the expression for the shape Gradient on

Σ, i.e.
d2J(Ω)[V1, V2] =

∫

Σ

du[V1]du[V2] dσ, for obje
tive (1.1),
d2J(Ω)[V1, V2] =

∫

Σ

∂du[V1]

∂n

∂du[V2]

∂n
dσ, for obje
tive (1.3),7



respe
tively, where Vi = dri · er, i = 1, 2, for example.Remark 2.5. There is an important di�eren
e to �
lassi
al 
ontrol problems� on �xed do-mains: The adjoints in shape optimization problems have nonvanishing derivatives on theprimal optimization variable (�on the 
ontrols�), i.e., nonvanishing shape derivatives. Thatillustrates the stronger nonlinearity of the duality relation(s), sin
e the �pde-
onstraint�in shape optimization problems 
annot be dire
tly 
onsidered as a �standard� equality 
on-straint in a 
ertain Bana
h spa
e.2.2. The ne
essary �rst order optimality 
ondition. For both problems, a �rst
onsequen
e 
an be derived from Lemma 1.2.Corollary 2.6. For any nontrivial variational �eld V , the lo
al shape derivative du[V ] ofproblem (P1) has almost everwhere nonvanishing Diri
hlet data along the outer boundary
Σ, i.e., meas {x ∈ Σ | du[V ](x) = 0} = 0 ⇔ 〈V,n〉|Γ 6≡ 0.Analogously, the lo
al shape derivative du of problem (P2) has almost everwhere nonvan-ishing Neumann data along the outer boundary Σ, i.e.,meas {x ∈ Σ | ∂du[V ]

∂n
(x) = 0} = 0. ⇔ 〈V,n〉|Γ 6≡ 0.Proof. Sin
e we know ∂u

∂n
(x) 6= 0 a.e. on Γ from Lemma 1.2, the assumptionmeas {x ∈ Σ | du[V ](x) = 0} > 0would lead to meas {x ∈ Σ | 〈V,n〉(x) 6= 0} = 0 in the �rst 
ase. Contrary, from

〈V,n〉|Γ ≡ 0 one easily derives du[V ] ≡ 0 on Ω̄.A similar reasoning remains valid in the se
ond 
ase. �Sin
e the shape gradient representation(s) (2.9) (or (2.10)) provide an easy stru
ture, animportant 
on
lusion 
an be drawn from the �rst order ne
essary 
ondition.Theorem 2.7. For both problems the validity of the ne
essary optimality 
ondition on a
ertain domain Ω⋆ is equivalent to a perfe
t mat
hing of the data, i.e.(2.13) ∇J(Ω⋆)[V ] = 0 for all V ⇔ u⋆|Σ ≡ f,for problem (P1), or similar for problem (P2)(2.14) ∇J(Ω⋆)[V ] = 0 for all V ⇔ ∂u⋆

∂n
|Σ ≡ g.Proof. Let us denote the state and the adjoint, asso
iated with Ω⋆ by u⋆ = uΩ⋆ and

p⋆ = pΩ⋆ . From (2.9) we immediately 
on
lude for both problems
∇J(Ω⋆)[V ] = 0 for all V ⇔

(

∂u⋆

∂n

∂p⋆

∂n

)

|Γ⋆ ≡ 0 ⇔ ∂p⋆

∂n
|Γ⋆ ≡ 0,8



where we have taken lemma 1.2 into a

ount. Applying again the unique 
ontinuationtheorem, we 
on
lude in both 
ases p⋆ ≡ 0 on Ω̄⋆. The theorem follows from the de�nitionof p⋆ a

ording to (1.5) or (1.6), respe
tively. �Remark 2.8. Consequently, no �spurios� stationary domains 
an appear for the EIT-problem in 
ase of perfe
tly 
ondu
ting in
lusions. This is remarkable, sin
e su
h a 
on-
lusion is 
hallenging in 
ase of arbitrary nonlinear least squares. Despite of 
orollary 2.6,the same 
on
lusion 
annot be obtained from the shape gradient representation on Σ, sin
eit is a priori not 
lear, whether the tra
es du[V ]|Σ 
overs a 
omplete linear independentsystem for L2(Σ) or not (similar for problem (P2)).Remark 2.9. Obviously, global optimality of a stationary domain Ω⋆ is ensured by theparti
ular stru
ture of the obje
tive(s) and theorem 2.7. In the next se
tion we will dis
uss,whether Ω⋆ is a stri
t lo
al optimizer of se
ond order or not.Finally, we want to mention that the 
onsiderations in this subse
tion are 
ompletelyindependent from the starshapeness of Ω⋆.3. The shape Hessian and suffi
ient optimality 
onditions3.1. The two-norm dis
repan
y and related remainder estimates. A

ording toremark 2.2, we will 
onsider only starshaped domains for studying su�
ient se
ond or-der optimality 
onditions (SSOC) in shape optimization. This provides equivalen
e tosu�
ient 
onditions in related fun
tion spa
es on the parameter manifold and avoids thenonuniqueness of more general domain or boundary variational approa
hes. Hen
e, itavoids to 
onsider fa
torization pro
edures, preventing from e.g. the noninvertibility ofrelated shape Hessians. Before investigating the shape Hessian at a stationary domainin more detail, we re
all from [11℄ a general property of the shape Hessian at arbitrarydomains.Lemma 3.1. The shape Hessian∇2J(Ω) de�nes a 
ontinuous bilinear form on H1/2[0, 2π]×
H1/2[0, 2π], i.e.: It holds the estimate(3.15) |∇2J(Ω)[dr1; dr2]| ≤ c0 ‖dr1‖H1/2 · ‖dr2‖H1/2 , c0 = c0(Ω),but no similar estimate with respe
t to a weaker spa
e is possible in general.We omit the proof, sin
e (2.11) is a parti
ular 
ase of the shape Hessian stru
ture, 
onsid-ered in [11℄. To shorten notation, we use the identi�
ation Ω ⇔ r, hen
e Ωdr ⇔ r + drin the next remark.Remark 3.2. Using Taylor expansion around Ω ⇔ r, we have

J(r + dr) = J(r) + ∇J(r)[dr] +
1

2
∇2J(r)[dr, dr] + R2(r, dr).where the se
ond order remainder R2(r, dr) 
an be equivalently expressed as

R2(r, dr) =
1

2
∇2J(r + ρdr)[dr, dr] − 1

2
∇2J(r)[dr, dr], ρ ∈ (0, 1).9



In 
ase of 
ontinuous depen
e on the argument r of the se
ond order bilinear form, thissuggests together with (3.15) the validity of the remainder estimate(3.16) |R2(r, dr)| ≤ η(‖dr‖C2,α)‖dr‖2
H1/2, η : R+ → R+, lim

s→0
η(s) = 0,uniformly for all r in a neighbourhood of r⋆. Of 
ourse, stri
t veri�
ation of (3.16) ishighly appre
iated, sin
e it follows not immediately from the 
al
ulus. For a relativelylarge 
lass of ellipti
 shape problems, su
h estimates are obtained by M. Dambrine [7℄, seealso [6, 8℄. Note the di�eren
e to the estimates, ensured by the �standard 
al
ulus�

|∇2J(r)[dr1; dr2]| ≤ c0 ‖dr1‖C2,α · ‖dr2‖C2,α , c0 = c0(r), and
|R2(r, dr)| ≤ η(‖dr‖C2,α)‖dr‖2

C2,α.Obviously, the estimate (3.16) provides a sharper 
hara
terization of the general behaviourof the remainder.Remark 3.3. The estimate (3.16) has important 
onsequen
es for a dis
ussion of suf-�
ient se
ond order optimality 
onditions (SSOC) in shape optimization. Due to theparti
ular stru
ture of the shape Hessian, the validity of a uniform 
oer
ivity estimate
annot be expe
ted in the �
onventional� norm. Conversely, a 
oer
ivity estimate of thetype(3.17) ∇2J(Ω⋆)[dr; dr]| ≥ c0 ‖dr‖2
H1/2 , c0 > 0,would already provide stri
t lo
al optimality of se
ond order for a stationary domain Ω⋆,if the estimates (3.15) and (3.16) are valid in a neighbourhood of Ω⋆. Su
h a dis
repan
ybetween the (stronger) norm for di�erentiation and the (weaker) norm for the 
oer
ivity,already su�
ient for optimality, is 
alled a two-norm-dis
repan
y. Obviously, su
h adis
repan
y 
an only o

ur in 
ase of nonquadrati
 obje
tives, i.e., if a nontrivial se
ondorder remainder appears.Remark 3.4. For shape fun
tionals like the volume or the perimeter of a domain, dif-ferent spa
es arise for the two-norm-dis
repan
y. The shape Hessian for the volume isa 
ontinuous bilinear form in L2 × L2, but the shape Hessian of perimeter de�nes natu-rally a bilinear form in H1 ×H1. For more details, in
luding the dis
ussion of additionalfun
tional 
onstraints, see [12℄.3.2. Compa
tness of the shape Hessian at the optimal domain. Next, we willinvestigate the shape Hessian at the optimal domain Ω⋆, that is, if the given in
lusion isdete
ted and the �rst order ne
essary 
ondition (2.13) (or (2.14)) holds. Consequently, allquantities arising in the 
onsiderations are related to the optimal domain Ω⋆ throughoutthis subse
tion. By theorem 2.7, the �rst two terms in (2.11) vanish and the shape Hessiansimpli�es a

ording to(3.18) d2J(Ω)[dr1, dr2] =

∫ 2π

0

dr1 r
∂u

∂n

∂dp[dr2]

∂n
dϕ.The next lemma is an immediate 
onsequen
e of 
orollary 2.6 in 
ombination with theshape Hessian representation on Σ (
f. remark 2.4)10



Lemma 3.5. The se
ond dire
tional derivatives are stri
tly positive at a stationary do-main Ω for both problems, i.e.,
d2J(Ω)[dr, dr] =

∫

Σ

(du[dr])2 dσ > 0 ⇔ dr 6= 0,in 
ase of (P1), similar for problem (P2).Proof. Sin
e 〈er,n〉|Γ > 0 for starshaped domains, the 
ondition dr 6= 0 is equivalent to
〈V,n〉|Γ 6≡ 0. �Remark 3.6. The above lemma ensures the validity of the ne
essary se
ond order 
ondi-tions. Nevertheless, even stri
t positivity of any (nontrivial) se
ond dire
tional derivativeis in general not su�
ient for optimality in in�nite dimensionsional optimization prob-lems, 
f. Maurer and Zowe [34℄.Whereas the subsequent analysis of the shape Hessian is quite similar to the investigationsin [17℄, we repeat the main steps for 
onvenien
e. We introdu
e �rst the multipli
ationoperators(3.19) Mudr := dr · r ∂u

∂n

∣

∣

∣

Γ
and Mpdr := dr · r ∂p

∂n

∣

∣

∣

ΓLemma 3.7. Let (2.7) hold, then the multipli
ation operators Mu, Mp : H1/2(Γ) →
H1/2(Γ) de�ned by (3.19) are 
ontinuous.Proof. Due to 
omplete analogy, we 
onsider only Mu. Abbreviating v := r(∂u/∂n)|Γwe may write Mudr = dr · v. Due to results of Triebel [40℄ or Mazja and Shaposhnikova[35℄, the multipli
ation operator Mu is 
ontinuous from H1/2(Γ) to H1/2(Γ), provided that
v ∈ C0,α(Γ) for some α > 1/2. From (2.7) we 
on
lude v ∈ C1,α(Γ) whi
h implies theassertion. �Again, the remaining steps will be outlined in detail only for (P1). In general, we observefrom (2.12) the dependen
e of the lo
al shape derivative dp = dp[dr] from the boundaryvariation dr through both boundary 
onditions, where the dependen
e is expli
it on Γ,but impli
it on Σ, i.e.,

dp
∣

∣

Γ
= Mpdr,

∂dp

∂n

∣

∣

∣

Σ
= du[dr]

∣

∣

Σ
.However, ∂p

∂n

∣

∣

∣

Γ
vanishes at a stationary domain, see the proof of theorem 2.7. Moreover,the Diri
hlet data du[dr]

∣

∣

Σ
itself 
an be seen via (2.8) as the image of the shape variation

dr by a boundary integral operator A.Lemma 3.8. The linear operator A : dr 7→ du[dr]
∣

∣

Σ
, de�ned via (2.8), is 
ompa
t as amapping from H1/2(Γ) to H1/2(Σ). 11



The proof is given in the appendix.Finally, the Neumann data ∂dp[dr]
∂n

∣

∣

∣

Γ
depend on the dire
tion of shape variation dr by anadditional Diri
hlet-to-Neumann map(3.20) Λ(Adr) :=

∂dp[dr]

∂n

∣

∣

∣

Γ
.With these operators at hand, we 
an rewrite (3.18) by(3.21) d2J(Ω⋆)[dr1, dr2] = 〈Mudr1, Λ(Adr2)〉,where 〈·, ·〉 denotes the 
anoni
al L2(Γ)-inner produ
t. The proof of the next lemma isagain postphoned to the appendix.Lemma 3.9. The operator Λ : H1/2(Σ) → H−1/2(Γ) de�ned by (3.20) is 
ompa
t.Consequently, the 
omposite mapping

Λ ◦ A : dr 7→ ∂dp[dr]

∂n

∣

∣

∣

Γ
(as a map H1/2(Γ) → H−1/2(Γ))is 
ompa
t at a stationary domain. Whereas the adjoint state p vanishes identi
ally at astationary domain, it has nontrivial lo
al shape derivatives in any dire
tion dr 6= 0.A

ording to the Lemmas 3.7 and 3.9, the bilinear form d2J(Ω⋆) de�ned in (3.21) is
ontinuous on H1/2(Γ) × H1/2(Γ). Hen
e, it represents a 
ontinuous linear operator

H = M⋆
u

(

Λ ◦ A
)

: H1/2(Γ) → H−1/2(Γ)As an immediate 
onsequen
e of our 
onsiderations we 
on
lude the following proposition.Proposition 3.10. The shape Hessian H : H1/2(Γ) → H−1/2(Γ) is 
ompa
t at the optimaldomain Ω⋆.Remark 3.11. The situation 
hanges essentially on nonstationary domains: In 
ase ofnonvanishing Neumann data ∂p
∂n

∣

∣

∣

Γ
of the adjoint state, the map dr 7→ ∂dp[dr]

∂n

∣

∣

∣

Γ
de�nesa �
onventional� pseudodi�erential operator of order 1, i.e., a 
ontinuous operator from

H1/2(Γ) to H−1/2(Γ), see remark 4.6 in the appendix. Whereas other parts are presentin the shape Hessian representation on arbitrary domains, the main property of H as apseudodiferential operator of order 1 is governed by the expressions
dr1 r

{

∂u

∂n

∂dp[dr2]

∂n
+

∂p

∂n

∂du[dr2]

∂n

}

,from the variational formulation (2.11) of the operator H. Moreover, exa
tly these rela-tions imply estimate (3.15).Remark 3.12. Despite of the global optimality of Ω⋆ (
f. remark 2.9), a regular stri
tminimizer of se
ond order have to satisfy H1/2(Γ)-
oer
ivity of the shape Hessian
d2J(Ω⋆)[dr, dr] ≥ c‖dr‖2

H1/2(Γ),see subse
tion 3.1. The above proposition implies that this su�
ient se
ond order op-timality 
ondition 
annot be valid, whi
h 
hara
terizes the ill-posedness of the related12



identi�
ation problem. In parti
ular, any nonregularized optimization algorithm 
annotprovide stability for a numeri
al solution of �nite dimensional auxiliary problems as wellas for the 
onvergen
e of the solutions of these subproblems to the original domain.It is an easy task to illustrate the 
ompa
tness of the maps Λ and A as well as the
ompa
tness of the shape Hessian at a stationary domain by analyzing the situationof a ringshaped domain given by two 
on
entri
 
ir
les. While using analyti
al datafor g and f , this would in fa
t result in exponential de
ay of mapping 
oe�
ients inrelated Fourier series expansion, [17, 26℄, as well as exponential de
ay of the eigenvalues of
∇2J(Ω⋆), [17℄. Moreover, for arbitrary situations, one might exemplify this by 
omputingthe eigenvalues of the shape Hessian numeri
ally like in [17℄. For sake of breviety, we skipsu
h illustrations. 4. Con
luding remarksWe 
on
lude the paper with a 
ouple of remarks.Remark 4.1. The 
ompa
tness proof in subse
tion 3.2 frequently uses smoothing proper-ties of harmoni
 fun
tions as solutions of the Lapla
e equation, either for the state andadjoint equation as well as for the governing equations of their lo
al shape derivatives.Furthermore, we deal with obje
tive(s) beeing de�ned on a 
ompa
t manifold far from thevarying shape. This gives rise for possibly providing enough regularity for u and p (andfor du and dp) around the unknown boundary Γ. Consequently, a similar shape 
al
uluswill be valid for lower regularity of the data f, g. Nevertheless, it might be 
hallenging topoint out the details, sin
e this would ensure the same 
on
lusions for the identi�
ationproblem by essentially weaker assumptions.Remark 4.2. As already dis
ussed in remark 1.1, there is a degree of freedom in 
hoosingthe norm for the data tra
king on Σ. At least, a H−1/2(Σ)-tra
king of the Neumann data gwould be 
ompatible with 
onsidering noisy data thereafter. Tra
king a Neumann 
onditionin H−1/2, but on the moving boundary Γ was already investigated by Haslinger et. al. fora Bernoulli type free boundary problem, [24℄. It would be interesting to study a shape
al
ulus for su
h obje
tives.Remark 4.3. To provide a (lo
al) one-to-one 
orresponden
e to a s
alar parametriza-tion �eld in 
ase of nonstarshaped domains, we 
an introdu
e a su�
iently regular n-dimensional referen
e manifold Γ0 and 
onsider a �xed boundary perturbation ve
tor �eld.For example, the outer normal �eld n0 
an be used. We suppose that the free boundary ofea
h domain Ω ∈ Υ 
an be parameterized via a su�
iently smooth fun
tion r in terms of

γ : Γ0 → Γ, γ(x) = x + r(x)n0(x).That is, we 
an identify a domain with the s
alar fun
tion r. De�ning the standardvariation
γε : Γ0 → Γε, γε(x) := γ(x) + εdr(x)n0(x),13



where dr is again a su�
iently smooth s
alar fun
tion, we obtain the perturbed domain
Ωε. If an extension of the �ve
tor support-�eld� to a neighbourhood of Γ0 is required, onemight use the oriented distan
e approa
h, see [9℄.Remark 4.4. If an optimizer Ω⋆ satis�es the stri
t 
oer
ivity assumption in the naturalnorm of the 
ontinuous extension of the se
ond order form, the 
onvergen
e Ω⋆

N → Ω⋆is shown in [20℄ for optimizers Ω⋆
N of �nite dimensional auxiliary problems, if the ansatzspa
es are properly 
hosen. Moreover, the numeri
al 
omptutation of optimizers in theauxiliary problems remain stable. Consequently, regularization of ill-posed problems 
an bealready ensured in the 
ontinuity norm of the shape Hessian. Investigating regularization
on
epts in the H1/2-norm for ellipti
 shape problems seems to be a 
hallenging task. Nev-ertheless, noisy measurments or data might 
ause further in�uen
e on the regularizationrequirements. Furthermore, regularization in stronger norms 
an be 
onsidered as well.Remark 4.5. The di�
ulties for the overall optimization pro
ess, resulting from ill-posedness does not dire
tly 
on
ern the numeri
al 
al
ulation of the entries of the shapeHessian. As already 
on�rmed in [17℄, these 
omputations turn out to be (relatively) sta-ble by our approa
h up to the range of the 
onsidered entries near Ω⋆ and is of the samea

ura
y even at the 
riti
al domain.Appendix: Boundary integral equationsIn the appendix we outline the remaining 
omputations from subse
tion 3.2, where wefo
us mainly on (P1). We introdu
e the single layer and the double layer operator withrespe
t to the boundaries Φ, Ψ ∈ {Γ, Σ} by

(VΦΨu)(x) := − 1

2π

∫

Φ

log ‖x − y‖u(y)dσy, x ∈ Ψ,

(KΦΨu)(x) :=
1

2π

∫

Φ

〈x − y,ny〉
‖x − y‖2

u(y)dσy, x ∈ Ψ.Note that VΦΨ denotes an operator of order −1 if Φ = Ψ, i.e. VΦΦ : H−1/2(Φ) → H1/2(Φ),while it is an arbitrarily smoothing 
ompa
t operator if Φ 6= Ψ sin
e dist(Γ, Σ) > 0.Likewise, if Σ, Γ ∈ C2, the double layer operator KΦΦ : H1/2(Φ) → H1/2(Φ) is 
ompa
twhile it smoothes arbitrarily if Φ 6= Ψ. We refer the reader to [22, 32℄ for more details
on
erning boundary integral equations.For sake of simpli
ity we suppose that diam Ω < 1 to ensure that VΦΦ is invertible, 
f. [28℄.Then, the normal derivative of du = du[dr] is given by the Diri
hlet-to-Neumann map(4.22) [

VΓΓ VΣΓ

VΓΣ VΣΣ

] [

∂du
∂n

∣

∣

Γ
∂du
∂n

∣

∣

Σ

]

=

[

1/2 + KΓΓ KΣΓ

KΓΣ 1/2 + KΣΣ

] [

du
∣

∣

Γ

du
∣

∣

Σ

]

.Likewise, the unknown boundary data of dp are determined by(4.23) [

VΓΓ VΣΓ

VΓΣ VΣΣ

] [ ∂dp
∂n

∣

∣

Γ
∂dp
∂n

∣

∣

Σ

]

=

[

1/2 + KΓΓ KΣΓ

KΓΣ 1/2 + KΣΣ

] [

dp
∣

∣

Γ

dp
∣

∣

Σ

]

.14



Note that here and in the sequel the operators (1/2 + KΦΦ), Φ ∈ {Γ, Σ}, have to beunderstood as 
ontinuous and bije
tive operators in terms of (1/2+KΦΦ) : H1/2(Φ)/R →
H1/2(Φ)/R.Proof of Lemma 3.8:Proof. We 
on
lude from (4.24), (3.19) and ∂du

∂n

∣

∣

Σ
= 0 (see (2.8))

VΓΓ
∂du

∂n

∣

∣

∣

Γ
= [1/2 + KΓΓ] (Mudr) + KΣΓdu

∣

∣

Σ
,

VΓΣ
∂du

∂n

∣

∣

∣

Γ
= [1/2 + KΣΣ] du

∣

∣

Σ
+ KΓΣ(Mudr).Eliminating the unknown ∂du

∂n

∣

∣

∣

Γ
and resolving for du

∣

∣

Σ
yields

du
∣

∣

Σ
=

[

1/2 + KΣΣ − VΓΣV −1
ΓΓ KΣΓ

]

−1 ·
{

VΓΣV −1
ΓΓ

(

1/2 + KΓΓ

)

− KΓΣ

}

(Mudr).Compa
tness of the operator A, de�ned by
A =

[

1/2 + KΣΣ − VΓΣV −1
ΓΓ KΣΓ

]

−1 ·
{

VΓΣV −1
ΓΓ

(

1/2 + KΓΓ

)

− KΓΣ

}

· Mu,follows from 
ompa
tness of VΓΣ and of KΓΣ as well as from the 
ontinuity of all otherremaining operators. �Proof of Lemma 3.9:Proof. We observe �rst from (2.12) and from theorem 2.7
dp

∣

∣

Σ
= du

∣

∣

Σ
and ∂p

∂n

∣

∣

∣

Γ
= 0 ⇒ Mpdr = 0.Hen
e, we 
on
lude from (4.23) while eliminating dp

∣

∣

Σ

dp
∣

∣

Σ
= (1/2 + KΣΣ)−1

{

VΓΣ
∂dp

∂n

∣

∣

Γ
+ VΣΣdu

∣

∣

Σ

}

,⇒

VΓΓ
∂dp

∂n

∣

∣

Γ
= KΣΓ(1/2 + KΣΣ)−1

{

VΓΣ
∂dp

∂n

∣

∣

Γ
+ VΣΣdu

∣

∣

Σ

}

,⇒

∂dp

∂n

∣

∣

Γ
=

[

VΓΓ − KΣΓ(1/2 + KΣΣ)−1VΓΣ

]

−1 {

KΣΓ(1/2 + KΣΣ)−1VΣΣ − VΣΓ

}

du
∣

∣

Σ
.The 
ompa
tness of the map Λ now follows from 
ompa
tness of the �transfer operators�

KΣΓ and VΣΓ. �Remark 4.6. In 
ase of Mpdr 6= 0 (on nonstationary domains), the latter representationmodi�es to
∂dp

∂n

∣

∣

Γ
=

[

VΓΓ − KΣΓ(1/2 + KΣΣ)−1VΓΣ

]

−1 {

KΣΓ(1/2 + KΣΣ)−1VΣΣ − VΣΓ

}

du
∣

∣

Σ

−
[

VΓΓ − KΣΓ(1/2 + KΣΣ)−1VΓΣ

]

−1
KΣΓ(1/2 + KΣΣ)−1KΓΣ(Mpdr)

+
[

VΓΓ − KΣΓ(1/2 + KΣΣ)−1VΓΣ

]

−1 (

1/2 + KΓΓ

)

(Mpdr),where the operator D in the last part
D :=

[

VΓΓ − KΣΓ(1/2 + KΣΣ)−1VΓΣ

]

−1 (

1/2 + KΓΓ

)

Mp,15



is obviously not 
ompa
t, but a �regular�, i.e., nondegenerate pseudodi�erential operatorof order 1 in general.Remark 4.7. The related 
onsiderations for (P2) will be 
ompletely similar. Moreover,sin
e the following BIE formulation is equivalent to (1.2),(4.24) [

VΓΓ VΣΓ

VΓΣ VΣΣ

] [

∂u
∂n

∣

∣

Γ

g

]

=

[

1/2 + KΓΓ KΣΓ

KΓΣ 1/2 + KΣΣ

] [

0

du
∣

∣

Σ

]

,it 
an be used for 
omputing ∂u
∂n

∣

∣

Γ
numeri
ally by e.g., fast wavelet BEM. Analogously, we
an 
ompute ∂p

∂n

∣

∣

Γ
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