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ABSTRACT. In the paper [17], the authors investigated the identification of an obstacle
or void of perfectly conducting material in a two-dimensional domain by measurements
of voltage and currents at the boundary. In particular, the reformulation of the given
nonlinear identification problem was considered as a shape optimization problem using
the Kohn and Vogelius criterion. The compactness of the complete shape Hessian at
the optimal inclusion was proven, verifying strictly the ill-posedness of the identification
problem. The aim of the paper is to present a similar analysis for the related least
square tracking formulations. It turns out that the two-norm-discrepancy is of the same
principal nature as for the Kohn and Vogelius objective. As a byproduct, the necessary
first order optimality condition are shown to be satisfied if and only if the data are
perfectly matching. Finally, we comment on possible consequences of the two-norm-
discrepancy for the regularization issue.

INTRODUCTION

Let D C R? denote a bounded domain with boundary 0D = ¥ and assume the existence
of a simply connected subdomain S C D, consisting of perfectly conducting material,
essentially different from the likewise constant conductivity of the material in the annular
subregion Q = D\ S. We consider the identification problem of this inclusion if the
Cauchy data of the electrical potential u are measured at the boundary ¥ | i.e., if a single
pair f = u|y and g = (Ou/0n)|y is known.

The problem under consideration is a special case of the general conductivity reconstruc-
tion problem and is severely ill-posed. It has been intensively investigated as an inverse
problem. We refer for example to Akduman and Kress |1], Chapko and Kress |5| and
Hettlich and Rundell [26] for numerical algorithms and to Friedmann and Isakov [21] as
well as Alessandrini, Isakov and Powell [2| for particular results concerning uniqueness.
Moreover, we refer to Brithl and Hanke [3, 4| for methods using the complete Dirichlet
to Neumann operator at the outer boundary. We emphasize that we focus in the present
paper on exact measurements and do not consider noisy data.

In [38], Roche and Sokolowski have been introduced a formulation as shape optimization
problem using the Kohn and Vogelius criterion. The analysis and numerical results pre-
sented there for first order shape optimization algorithms are extended to second order
methods in [17]. In particular,compactness of the shape Hessian is proven at the optimal
domain Q* = D\ S*, provided that the interface I' = 9 is sufficiently regular. Note that
the assumption on starshapeness of the inclusion with respect to a given pole xy € D was
only used to derive explicit expressions in terms of polar coordinates. This is not restric-
tive and can be bypassed by a generalization of the calculus, see for example Sokolowski
and Zolesio [39] and Delfour and Zolesio |9]. However, since the related tracking formu-
lations for either the Dirichlet- or Neumann-data at the outer boundary are quite often
considered in the literature, the present paper aims at investigating these formulations by
analogous methods.

Shape calculus techniques are also investigated and developed by e.g., Hettlich [25] and
Rundell [26, 27|, Hohage [30], Kirsch [31], Kress et. al. [23, 32, 33|, Potthast |36, 37| (a



rather incomplete list) for the study of various kinds of shape identification problems as
nonlinear operator equations. That is, mainly the shape derivatives of solution of the state
equation are considered and applied in Newton like iterative techniques. In view of these
investigations, an aim of the present paper is, how higher order shape derivatives of least
square objectives might provide a completion of the knowledge about the identification
problem.

The numerical solution of the optimization problems on hand is not considered in the
paper. Nevertheless, boundary integral equation methods could be exploited (see the ap-
pendix) by using efficient BEM implementations like wavelet based BEM or fast multipole
methods. We refer to the likewise first or second order optimization methods explained in
[17] (see also |13, 14| for more details about the principal setup). Of course, the extension
to the numerical solution of problems in 3D is straightforward, see e.g., [18] for a principal
outline. Nevertheless, it should be mentioned clearly that due to the ill-posedness of the
problems, more appropriate regularization concepts have to be incorporated like those are
already developed in the inverse problem community.

The present paper is organized as follows. In Section 1 we present the physical model and
reformulate the identification problem as shape optimization problem(s) for either tracking
the Dirichlet- or the Neumann data by a nonlinear least square. Some consequences of
the unique continuation theorem for the Laplacian are stated. Moreover, we introduce
the adjoint state equation for both formulations. Then, in Section 2, we compute first
the gradient and the Hessian of the shape functionals. As a first consequence, we prove
that a domain is stationary if and only if the data are perfectly matched with the (exact)
measurements. Next, we analyze the shape Hessian in Section 3. By the particular
structure of the second order form, the nature of the two-norm-discrepancy turns out to
be completely analogous to the case of the Kohn and Vogelius criterion. We further prove
degeneration of the shape Hessian at the optimal domain, hence the ill-posedness of the
underlying identification problem. Some technicalities about boundary integral equation
methods are postphoned to an appendix. Finally, we state some concluding remarks in
Section 4.

1. SHAPE PROBLEM FORMULATION

1.1. The physical model and two alternatives for a least square formulation.
Let D € R? be a simply connected domain with boundary ¥ = 9D and assume that
an unknown simply connected inclusion S with regular boundary I' = 0S5 is located
inside the domain D satisfying dist(3,I") > 0, cf. Figure 1.1. To determine the inclusion
S we measure for a given current distribution g € H~'/2(X) the voltage distribution
f € H'Y?(X) at the boundary ¥. Hence, we are seeking a domain 2 := D\ S and an



associated harmonic function u, satisfying the system of equations

Au =0 in ,
u=0 on I,
u=f on Y,

g—Z:g on .

This system denotes an overdetermined boundary value problem which should admit a
solution only for the true inclusion S.

FIGURE 1.1. The domain €2 and its boundaries I' and X..

If the Neumann data (the current g) is assumed to be prescribed, the Lo-least square
tracking of the Dirichlet data (the voltage distribution f) reads as follows

(1.1) (Pl J(Q) = %/ (= f)? do — int,
s
subject to
Au=0 in €,
(1.2) u=>0 on I,
g—z =g on X.

Likewise, the tracking of the Neumann data g can be written as

(1.3) (P2)  J(Q) = 1/2 (g - @)2610 — inf,

where u satisfies

Au=0 in 2,
(1.4) u=0 on I,
=f on .



Herein, the infimum has to be taken over all domains including a void with sufficiently
regular boundary. We do not consider the interesting question of existence of optimal
solutions in this paper. Instead, we will simply assume the existence of optimal domains,
which is satisfied for example in case of perfectly matching data.

Remark 1.1. Obwiously, Lo-tracking is not completely compatible in both cases with the
minimal requirements on f and g to provide a weak solution u € H'(Q). However, it is
more appropriate for considering noisy data later on. Moreover, assuming more reqularity
for f and g will simplify technicalities for reqularity of the adjoint(s), and for the calculus.
Nevertheless, we will briefly comment on possible relazations with both respects in the
concluding remarks (see Section 4).

The following Lemma is an immediate consequence of the unique continuation theorem
and will be of some importance for the investigations in the next sections.

Lemma 1.2. In case of nonvanishing data g # 0, the solution u of (1.2) has almost
everwhere nonvanishing Neumann data along the inner boundary I', i.e.,

ou
eas{r € I'| —(x) =0} = 0.
meas{x | 8n(x) }
An analogous statement holds for the solution u of (1.4).
Proof. By the unique continuation theorem (cf. Hérmander [29]), we conclude from
ou
el'|l —(x) =0} >0,
meas {z | n (x) =0}
the consequence u = 0 in . This contradicts g # 0 and proofs the assertion. [

1.2. The adjoint equations. According to the definition of the tracking type problems
(P1) and (P2), the adjoint state for (P1) have to satisfy the following equation

Ap =0 in €2,
(1.5) p=20 on I,
g—i =(u—f) on X.
Similar, the adjoint equation for the second problem reads as
Ap =20 in Q,
(1.6) p=0 on I,

ou
p—(a—n— ) on .

Remark 1.3. To keep notations simple, we do not introduce subscripts for states u and
adjoints p of (P1) and (P2), respectively. Whereas the equations (1.5) and (1.6) are quite
similar to (1.2)and (1.4), respectively, the sources in the boundary condition imply differ-
ent consequences for the reqularity of the adjoint p compared to the reqularity of u . There
is increasing regularity for the adjoint state in problem (P1), but decreasing regularity



in problem (P2). Since we will not investigate this in more detail, we assume sufficient
reqularity of the boundary ¥ and the data to provide enough reqularity for adjoints and
their shape derivatives.

Note the difference to the Kohn and Vogelius criterion: Since that objective is of the
classical Dirichlet energy type (cf. |38]), no adjoint state have to be introduced there.
More precisely, a formal calculus demonstrates that the related adjoint(s) coincide in
principle with the original state(s). Obviously, the adjoint states p are essentially different
from wu in case of the least square formulations.

2. SHAPE CALCULUS AND THE NECESSARY FIRST ORDER OPTIMALITY CONDITION

2.1. First and second order shape derivatives. For sake of clearness in representa-
tion, we repeat the shape calculus concerning the problem under consideration by means
of boundary variations. Since both objectives are defined on a fixed manifold far from the
varying shape I', there exist two equivalent formulations for the shape gradient as well
as for the shape Hessian either on X or on I'. But we emphasize that we mainly derive
the boundary integral representation of the shape Gradient and the shape Hessian on I,
which allows us to investigate in particular the natural two-norm discrepancy and the
compactness at the stationary domain. Moreover, both expressions are more convenient
for obtaining more efficiently descent directions for numerical algorithms, cf. |13, 14, 17].
For a survey on the shape calculus based on the material derivative concept, we refer
the reader to Sokolowski and Zolesio [39] and Delfour and Zolesio [9] and the references
therein. Concerning the Kohn and Vogelius criterion, the paper 38| contains the adaption
of these general concepts to the particular case.

Let the underlying variational fields V be sufficiently smooth such that C*“-regularity
is preserved for all perturbed domains. Moreover, for sake of simplicity, we assume in
addition the outer boundary and the measurements are sufficiently regular such that the
state functions u = u(€2) and the adjoints p = p(2) satisfy

(2.7) u,p € C**(Q).

Then, the shape differentiability for both objectives (1.1) and (1.3) is provided up to
second order including certain regularity for the shape Hessian representation. In par-
ticular, it provides Holder-regularity of second spatial derivatives along I', arising from
the shape differentiation of the state u and adjoint p (cf. the explicit representations
below). Furthertmore, since the objective is defined on a fixed manifold far from the
varying boundary, a formal differentiation of (1.1) in terms of local derivatives is possible
and yields immediately

2I(Q)[V] = / (u— f)dulV}do,

whereas the result for the objective (1.3) reads as follows

dJ(Q)[V] = /E (% - g) ad;‘r[lv] do.




Here, the local shape derivatives du = du[V] for problem (P1) and (P2) satisfy

Adu = 0 Adu =0 in Q.
(2.8) du=—(V n>8_u and du=—(V n>% on I'
' v " On v " on ’
% =0 du =0 on X,

on

repectively. Note that the local shape derivatives for the two problems differ in both
boundary conditions, since the state u for problem (P1) is different from those for (P2)
(see (1.2) and (1.4)).

It remains to compute the equivalent expressions for the shape gradients on the unknown

boundary T', since they (have to) exist due to the Hadamard theorem.

Lemma 2.1. The shape gradient representation on I' for both objectives reads as

(2.9) dJ(Q)[V] = / (V, n>g—z§—ida

In case of (P1), u and p solves (1.2) and (1.5), whereas the state w and the adjoint p
satisfies (1.4) and (1.6) for (P2), respectively.

Proof. Using 02 = 'UY and the known boundary data from (1.5) and (2.8), the boundary
integral representation of the shape gradient is obtained for the first objective via repeated
integration by parts from the identity

0 = /duAp—pAdudx, =
Q

n

dJ(Q)[V] = /Edu(u— /u—da

0 = /dug—pda—i—/du(u—f)da hence,
r

which is the desired result. Similarily, the same formula is derived in principle in the
other case, but with different meaning for u and p. U

If the hole S is assumed to be starshaped with respect to some pole xo € D, the boundary
' = 9S can be parametrized by a function r = r(p) of the polar angle ¢ and the per-
turbation field V can be chosen as V = dr(p)e,(¢). Herein, e,(p) := X + (cos @, sin )T
denotes the radial direction with respect to the pole xy3. The regulatity requirements

imply 7, dr € C22[0,27], where 7 is a positive function such that dist(3,I") > 0 and

C2210,27] == {r € C*°[0,2x] : 9 (0) = rD(27), i = 0,1, 2}.

per

Then, the shape gradient dJ[dr] becomes in both cases
2m Ou Op
2.10 ar@ia] = - [ arterrte) (Gegt o de,
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where the minus sign issues from the fact that (e,,n) = —r/vr2 + /2. Similarily, we will
keep the notation du = du[dr| and dp = dp|dr] for indicating the dependencies of related
local shape derivatives.

Remark 2.2. The class of bounded starshaped domains with reqular C**-boundary pos-
sesses the open set property for k > 1, a € [0,1]: Within the general class of simply con-
nected C**-domains, any such domain Q has a neighbourhood U, in the C*topology,
containing only starshaped domains. Moreover, there is a one-to-one relation between
(scalar) functions dr € Us(0) C C2[0,27] and domains Qq, € Uy(Q2). Consequently, the
calculus via polar coordinates provides the “complete information” like a general calculus
for the class of domains under consideration. In arbitrary dimensions, the unit sphere

might serve as an appropriate parameter manifold.

To derive the shape Hessian, we proceed similar to [10, 11| by differentiating directly the
shape gradient (2.10) while exploiting the relations

e _op Ou dp
V’LL‘F = 8_11 - 11, Vp|p = 8_11 ‘n = 8_118_11 = <VU, Vpﬂp

Lemma 2.3. The shape Hessian reads as

27
(2.11) d2J(Q)[dr1, drs) = —/ dry dr2{<Vu, Vp) +r<V(<Vu,vp>) e>}

0
Ou Odp(drs] — Op Oduldrs)
T {810 On i On  On d¢.

where all data have to be understood as traces on the unknown boundary I'.

To give the expression (2.11) a meaning, it remains to compute the local shape derivatives
of the adjoints p for (P1) and (P2), i.e., the local shape derivatives of the solutions to
(1.5) and (1.6), respectively. They are characterized for both problems as solutions of
either

Adp =0 Adp =0 in €,

(2.12) dp = —(V >@ dp = —(V >@ r

: D= )5 or D= )5 on I,
odp _ O0dulV]

Remark 2.4. The formal equivalence for the shape Hessian (2.11) in both cases arises
from formal similarity of formulae (2.9) or (2.10), respectively. The differences can be
seen more clearly when differentiating directly the expression for the shape Gradient on

Y, e
I, Va] = /du[Vl]du[Vg] do, for objective (1.1),
b

IV, Vo] = /8dgr[lvl] 8dgr[lvz] do, for objective (1.3),
b




respectively, where V; = dr; - e,, 1 = 1,2, for example.

Remark 2.5. There is an important difference to “classical control problems” on fixzed do-
mains: The adjoints in shape optimization problems have nonvanishing derivatives on the
primal optimization variable (“on the controls”), i.e., nonvanishing shape derivatives. That
illustrates the stronger nonlinearity of the duality relation(s), since the “pde-constraint”
in shape optimization problems cannot be directly considered as a “standard” equality con-
straint in a certain Banach space.

2.2. The necessary first order optimality condition. For both problems, a first
consequence can be derived from Lemma 1.2.

Corollary 2.6. For any nontrivial variational field V', the local shape derivative du[V'] of
problem (P1) has almost everwhere nonvanishing Dirichlet data along the outer boundary
X, i.e.,

meas{r € X |du[V](z) =0} =0 < (V,n)|r Z0.
Analogously, the local shape derivative du of problem (P2) has almost everwhere nonvan-
ishing Neumann data along the outer boundary X, i.e.,

odulV
meas {z € 3| %(;ﬁ) =0} =0. & (V,n)|p 0.
. du :
Proof. Since we know a—(x) # 0 a.e. on I' from Lemma 1.2, the assumption
n

meas {x € ¥ |du[V](z) =0} >0

would lead to meas{x € X|(V,n)(z) # 0} = 0 in the first case. Contrary, from
(V,n)|r = 0 one easily derives du[V] = 0 on (.

A similar reasoning remains valid in the second case. U

Since the shape gradient representation(s) (2.9) (or (2.10)) provide an easy structure, an
important conclusion can be drawn from the first order necessary condition.

Theorem 2.7. For both problems the validity of the necessary optimality condition on a
certain domain * is equivalent to a perfect matching of the data, i.e.

(2.13) VIQ)V]=0 foradlV < u'ly = f,
for problem (P1), or similar for problem (P2)
(2.14) VJIQ)V]=0 foralV & 01;1 s =g.

Proof. Let us denote the state and the adjoint, associated with Q* by u* = wug- and
p* = po+. From (2.9) we immediately conclude for both problems

. B ou* Op* - op*,
VJQ)[V]=0 forall V < (8n 0n) =0 & . I« =0,



where we have taken lemma 1.2 into account. Applying again the unique continuation
theorem, we conclude in both cases p* = 0 on Q*. The theorem follows from the definition
of p* according to (1.5) or (1.6), respectively. O

Remark 2.8. Consequently, no “spurios” stationary domains can appear for the EIT-
problem in case of perfectly conducting inclusions. This is remarkable, since such a con-
clusion 1s challenging in case of arbitrary nonlinear least squares. Despite of corollary 2.6,
the same conclusion cannot be obtained from the shape gradient representation on X3, since
it is a priori not clear, whether the traces du[V]|s covers a complete linear independent
system for Ly(X) or not (similar for problem (P2)).

Remark 2.9. Obviously, global optimality of a stationary domain * is ensured by the
particular structure of the objective(s) and theorem 2.7. In the next section we will discuss,
whether Q0 is a strict local optimizer of second order or not.

Finally, we want to mention that the considerations in this subsection are completely
independent from the starshapeness of Q*.

3. THE SHAPE HESSIAN AND SUFFICIENT OPTIMALITY CONDITIONS

3.1. The two-norm discrepancy and related remainder estimates. According to
remark 2.2, we will consider only starshaped domains for studying sufficient second or-
der optimality conditions (SSOC) in shape optimization. This provides equivalence to
sufficient conditions in related function spaces on the parameter manifold and avoids the
nonuniqueness of more general domain or boundary variational approaches. Hence, it
avoids to consider factorization procedures, preventing from e.g. the noninvertibility of
related shape Hessians. Before investigating the shape Hessian at a stationary domain
in more detail, we recall from [11] a general property of the shape Hessian at arbitrary
domains.

Lemma 3.1. The shape Hessian V2.J(Q) defines a continuous bilinear form on HY?(0, 21]x
HY2(0,2x), i.e.: It holds the estimate

(315) |V2J(Q)[dr1;dr2]| S Co ||d’f’1||H1/2 . ||d’f’2||H1/2 , Co = Co(Q),

but no similar estimate with respect to a weaker space is possible in general.

We omit the proof, since (2.11) is a particular case of the shape Hessian structure, consid-
ered in |11]. To shorten notation, we use the identification Q < r, hence Q4. < r+dr
in the next remark.

Remark 3.2. Using Taylor expansion around 2 < r, we have
1
J(r+dr) = J(r)+ VJ(r)dr] + §V2J(r)[dr, dr] + Ry(r, dr).
where the second order remainder Ro(r,dr) can be equivalently expressed as

Ry(r,dr) = %VzJ(r + pdr)[dr, dr] — %sz(r)[dr, dr], p € (0,1).

9



In case of continuous depence on the arqgument r of the second order bilinear form, this
suggests together with (3.15) the validity of the remainder estimate

(3.16) |[Ro(r,dr)| < n(l|drlcee)lldr|lze, 1 Ry — Ry, lima(s) =0,

uniformly for all v in a neighbourhood of r*. Of course, strict verification of (3.16) is
highly appreciated, since it follows not immediately from the calculus. For a relatively
large class of elliptic shape problems, such estimates are obtained by M. Dambrine |7|, see
also |6, 8]. Note the difference to the estimates, ensured by the “standard calculus”

|V2J(T>[d7’1;d7’g]| < Co ||d7’1||02,a . Hd?”g“cz,a , Co = Co(’f’), and

|[Ra(r.dr)| < n(lldr]|cze)l|dr[ge.o.

Obviously, the estimate (3.16) provides a sharper characterization of the general behaviour
of the remainder.

Remark 3.3. The estimate (3.16) has important consequences for a discussion of suf-
ficient second order optimality conditions (SSOC) in shape optimization. Due to the
particular structure of the shape Hessian, the validity of a uniform coercivity estimate
cannot be expected in the “conventional” norm. Conversely, a coercivity estimate of the

type
(3.17) V2J(QN)[dr; dr]| > co ||dr||3., o >0,

would already provide strict local optimality of second order for a stationary domain 0¥,
if the estimates (3.15) and (3.16) are valid in a neighbourhood of Q*. Such a discrepancy
between the (stronger) norm for differentiation and the (weaker) norm for the coercivity,
already sufficient for optimality, is called a two-norm-discrepancy. Obuviously, such a
discrepancy can only occur in case of nonquadratic objectives, i.e., if a nontrivial second
order remainder appears.

Remark 3.4. For shape functionals like the volume or the perimeter of a domain, dif-
ferent spaces arise for the two-norm-discrepancy. The shape Hessian for the volume is
a continuous bilinear form in Lo X Lo, but the shape Hessian of perimeter defines natu-
rally a bilinear form in H' x H'. For more details, including the discussion of additional
functional constraints, see [12].

3.2. Compactness of the shape Hessian at the optimal domain. Next, we will
investigate the shape Hessian at the optimal domain €2, that is, if the given inclusion is
detected and the first order necessary condition (2.13) (or (2.14)) holds. Consequently, all
quantities arising in the considerations are related to the optimal domain Q* throughout
this subsection. By theorem 2.7, the first two terms in (2.11) vanish and the shape Hessian
simplifies according to

Ou Odpldrs)] g
on On

The next lemma is an immediate consequence of corollary 2.6 in combination with the

2
(3.18) d?J(Q)[dry, drs) :/ dryr
0

shape Hessian representation on ¥ (cf. remark 2.4)

10



Lemma 3.5. The second directional derivatives are strictly positive at a stationary do-
main €2 for both problems, i.e.,

d*J(Q)[dr, dr] = /(du[dr])zda >0 < dr #0,

by

in case of (P1), similar for problem (P2).

Proof. Since (e,.,n)|r > 0 for starshaped domains, the condition dr # 0 is equivalent to
(V,n)|r # 0. O

Remark 3.6. The above lemma ensures the validity of the necessary second order condi-
tions. Nevertheless, even strict positivity of any (nontrivial) second directional derivative
s 1n general not sufficient for optimality in infinite dimensionsional optimization prob-
lems, cf. Maurer and Zowe |34].

Whereas the subsequent analysis of the shape Hessian is quite similar to the investigations
in [17], we repeat the main steps for convenience. We introduce first the multiplication
operators

ou dp
3.19 M,dr :=dr-r—| and M,dr :=dr -r—
( ) onir " P "ol
Lemma 3.7. Let (2.7) hold, then the multiplication operators M,, M, : HY*(I) —
H'Y2(T) defined by (3.19) are continuous.

Proof. Due to complete analogy, we consider only M,. Abbreviating v := r(Ju/dn)|r
we may write M,dr = dr - v. Due to results of Triebel [40] or Mazja and Shaposhnikova
[35], the multiplication operator M, is continuous from H'/?(T") to H'/?(I"), provided that
v € C%(T) for some a > 1/2. From (2.7) we conclude v € C*(T") which implies the
assertion. U

Again, the remaining steps will be outlined in detail only for (P1). In general, we observe
from (2.12) the dependence of the local shape derivative dp = dp|[dr] from the boundary
variation dr through both boundary conditions, where the dependence is explicit on I’
but implicit on X, i.e.,

Odp

dp|, = M,dr, = duldr]|

only x

However, g_p
n

the Dirichlet data du[dr] }Z itself can be seen via (2.8) as the image of the shape variation

vanishes at a stationary domain, see the proof of theorem 2.7. Moreover,

dr by a boundary integral operator A.

Lemma 3.8. The linear operator A : dr — duldr]
mapping from HY?(T') to H'/*(X).

s defined via (2.8), is compact as a

11



The proof is given in the appendix.

Finally, the Neumann data %&iﬂ depend on the direction of shape variation dr by an
r

additional Dirichlet-to-Neumann map

ddpldr]
3.20 A(Adr) = .
(3.20) (Adr) = )
With these operators at hand, we can rewrite (3.18) by
(321) d2J(Q*)[d’F1,d’F2] = <Mud’f’1,A(Ad’F2)>,

where (-,-) denotes the canonical L?(T')-inner product. The proof of the next lemma is
again postphoned to the appendix.

Lemma 3.9. The operator A : HY/2(X) — H=Y2(T') defined by (3.20) is compact.

Consequently, the composite mapping

Odpldr]
on Ir

is compact at a stationary domain. Whereas the adjoint state p vanishes identically at a

Ao A :drw— (as a map HY?(I') — H~Y2(I"))

stationary domain, it has nontrivial local shape derivatives in any direction dr # 0.

According to the Lemmas 3.7 and 3.9, the bilinear form d?J(Q*) defined in (3.21) is
continuous on H'/?(I') x H'/?(T'). Hence, it represents a continuous linear operator

H=M;(AoA): H/*T) — HV*(I)
As an immediate consequence of our considerations we conclude the following proposition.

Proposition 3.10. The shape Hessian H : H'/?(I') — H~Y2(I) is compact at the optimal
domain €.

Remark 3.11. The situation changes essentially on nonstationary domains: In case of

nonvanishing Neumann data g—ﬁ‘ of the adjoint state, the map dr — adg—fﬂ defines
r r

a “conventional” pseudodifferential operator of order 1, i.e., a continuous operator from
HY2(T') to H™Y2(T'), see remark 4.6 in the appendiz. Whereas other parts are present
in the shape Hessian representation on arbitrary domains, the main property of H as a
pseudodiferential operator of order 1 is governed by the expressions

drir {@Odp[drg] N Op Oduldr] } ’

on 0On on On

from the variational formulation (2.11) of the operator H. Moreover, exactly these rela-
tions imply estimate (3.15).

Remark 3.12. Despite of the global optimality of Q* (cf. remark 2.9), a regular strict
minimizer of second order have to satisfy HY/*(T')-coercivity of the shape Hessian

2 2
d=J(QY)[dr, dr] > c||al7‘||hﬂ/2(m7
see subsection 3.1. The above proposition implies that this sufficient second order op-

timality condition cannot be walid, which characterizes the ill-posedness of the related
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identification problem. In particular, any nonreqularized optimization algorithm cannot
provide stability for a numerical solution of finite dimensional auxiliary problems as well
as for the convergence of the solutions of these subproblems to the original domain.

It is an easy task to illustrate the compactness of the maps A and A as well as the
compactness of the shape Hessian at a stationary domain by analyzing the situation
of a ringshaped domain given by two concentric circles. While using analytical data
for g and f, this would in fact result in exponential decay of mapping coefficients in
related Fourier series expansion, |17, 26|, as well as exponential decay of the eigenvalues of
V2J(2%), [17]. Moreover, for arbitrary situations, one might exemplify this by computing
the eigenvalues of the shape Hessian numerically like in [17|. For sake of breviety, we skip
such illustrations.

4. CONCLUDING REMARKS

We conclude the paper with a couple of remarks.

Remark 4.1. The compactness proof in subsection 3.2 frequently uses smoothing proper-
ties of harmonic functions as solutions of the Laplace equation, either for the state and
adjoint equation as well as for the governing equations of their local shape derivatives.
Furthermore, we deal with objective(s) beeing defined on a compact manifold far from the
varying shape. This gives rise for possibly providing enough regularity for u and p (and
for du and dp) around the unknown boundary I'. Consequently, a similar shape calculus
will be valid for lower reqularity of the data f,g. Nevertheless, it might be challenging to
point out the details, since this would ensure the same conclusions for the identification
problem by essentially weaker assumptions.

Remark 4.2. As already discussed in remark 1.1, there is a degree of freedom in choosing
the norm for the data tracking on X. At least, a H='/?(X)-tracking of the Neumann data g
would be compatible with considering noisy data thereafter. Tracking a Neumann condition
in H=Y2, but on the moving boundary T was already investigated by Haslinger et. al. for
a Bernoulli type free boundary problem, |24|. It would be interesting to study a shape
calculus for such objectives.

Remark 4.3. To provide a (local) one-to-one correspondence to a scalar parametriza-
tion field in case of nonstarshaped domains, we can introduce a sufficiently reqular n-
dimensional reference manifold I'y and consider a fized boundary perturbation vector field.
For example, the outer normal field ng can be used. We suppose that the free boundary of
each domain Q € T can be parameterized via a sufficiently smooth function r in terms of

v:Tog =T, ~(x)=x+7rx)ny(x).

That is, we can identify a domain with the scalar function r. Defining the standard
variation

Y. :To—= T, ~v.(x) :=v(x) + edr(x)ny(x),

13



where dr is again a sufficiently smooth scalar function, we obtain the perturbed domain
Q.. If an extension of the “vector support-field” to a neighbourhood of I'y is required, one
might use the oriented distance approach, see |9].

Remark 4.4. If an optimizer Q* satisfies the strict coercivity assumption in the natural
norm of the continuous extension of the second order form, the convergence (15 — 0*
is shown in |20| for optimizers Uy of finite dimensional auziliary problems, if the ansatz
spaces are properly chosen. Moreover, the numerical comptutation of optimizers in the
auzxiliary problems remain stable. Consequently, reqularization of ill-posed problems can be
already ensured in the continuity norm of the shape Hessian. Investigating reqularization
concepts in the HY?-norm for elliptic shape problems seems to be a challenging task. Nev-
ertheless, noisy measurments or data might cause further influence on the reqularization
requirements. Furthermore, reqularization in stronger norms can be considered as well.

Remark 4.5. The difficulties for the overall optimization process, resulting from ll-
posedness does not directly concern the numerical calculation of the entries of the shape
Hessian. As already confirmed in 17|, these computations turn out to be (relatively) sta-
ble by our approach up to the range of the considered entries near 0* and is of the same
accuracy even at the critical domain.

APPENDIX: BOUNDARY INTEGRAL EQUATIONS

In the appendix we outline the remaining computations from subsection 3.2, where we
focus mainly on (P1). We introduce the single layer and the double layer operator with
respect to the boundaries @,V € {I', X} hy

1
(Vawt)(x) = — e / log |x — yllu(y)doy, x € ¥,
271- d

1 (x —y,ny)
(Kogu)(x) == o /q) Wu(y)day, x € V.
Note that Vpy denotes an operator of order —1 if ® = WU, i.e. Vo : HV/2(®) — HY2(P),
while it is an arbitrarily smoothing compact operator if ® # W since dist(I',3) > 0.
Likewise, if ¥,I" € C?, the double layer operator Kgg : HY/?(®) — HY?(®) is compact
while it smoothes arbitrarily if ® # W. We refer the reader to [22, 32| for more details
concerning boundary integral equations.

For sake of simplicity we suppose that diam 2 < 1 to ensure that Ve is invertible, cf. |28].
Then, the normal derivative of du = du[dr] is given by the Dirichlet-to-Neumann map

Ve Var] [%}r_ [1/2 4+ Krr Ksr ] [du}r]

Vs Vas) %L:Z_ | Kry 1/2 4 Kyy | du‘z

(4.22)

Likewise, the unknown boundary data of dp are determined by

Vir Var] {%‘F_ ~ [1/2+ K Ksr |idp}1":|

Vrs Ves] %2- | Krs 1/2+ Ky |

(4.23)
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Note that here and in the sequel the operators (1/2 + Kgg), ® € {I', X}, have to be
understood as continuous and bijective operators in terms of (1/2+ Kgg) : HY/?(®)/R —
HY2(®)/R.

Proof of Lemma 3.8:

Proof. We conclude from (4.24), (3.19) and 6d“}2 0 (see (2.8))
Odu
VFFa—n - = [1/2 ‘l— KFF] (Mud’r’)
ad
vma—; = [/2+ Kos] dul, + Krs(M,dr).

odu

Eliminating the unknown F*| and resolving for du‘2 yields
r

duly, = [1/2 + Ksx — Vs Vil Ksr] ™ - {VisVir (1/2 + Krr) — Krs } (Mdr).
Compactness of the operator A, defined by
— [1/2+ Kss — Ves Vi Ksr] ™ {Vis Vit (1/2 + Krp) — Krs} - My,

follows from compactness of Vpy and of Ky as well as from the continuity of all other
remaining operators. 0

Proof of Lemma 3.9:
Proof. We observe first from (2.12) and from theorem 2.7

dp}zzalu}E and —’ =0 = Mydr =0.

Hence, we conclude from (4.23) while eliminating dp‘z

od
dp‘2 1/2—|—K22) {Vpga—f}r+‘/ggdu‘2},:>

od od
Vrr p}r = Kyr(1/2+ Ksx)~ {Vrz p‘r + Vggdu}z} =

od _

p}r [VFF—KEF(1/2+K22) IVFE] 1{sz(1/2+Kzg)_1Vgg —Vgp}du}z.
The Compactness of the map A now follows from compactness of the “transfer operators”
KZF and VZF- L]
Remark 4.6. In case of Mydr # 0 (on nonstationary domains), the latter representation
modifies to

8dp -1 -1 -1
}F = [VFF —KEF(1/2+K22) VFE} {Kgp(l/z—l-KgE) Vs —Vgp}du}z

— [Ver — Kar(1/2 + Kys) " Wis] ™ Kar(1/2 + Kyy) ™ Krs (M, dr)
+ [Vir — Ker(1/2 + Kux) " WVis] ™ (1/2 + Krr) (Mydr),
where the operator D in the last part
D = [Vir — Ksr(1/2 4 Kys) Vi) (1/2+ Krr) M,,
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1s obviously not compact, but a “reqular”, i.e., nondegenerate pseudodifferential operator
of order 1 in general.

Remark 4.7. The related considerations for (P2) will be completely similar. Moreover,
since the following BIE formulation is equivalent to (1.2),

o e PR sl
' Vs Ves| | g Kry 1/2+ Kys| |duly|’

’F numerically by e.q., fast wavelet BEM. Analogously, we

can compute g—ﬁ}r as the other main ingredient for the shape gradient.

it can be used for computing 3—1“1
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