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Abstrat. In the paper [17℄, the authors investigated the identi�ation of an obstaleor void of perfetly onduting material in a two-dimensional domain by measurementsof voltage and urrents at the boundary. In partiular, the reformulation of the givennonlinear identi�ation problem was onsidered as a shape optimization problem usingthe Kohn and Vogelius riterion. The ompatness of the omplete shape Hessian atthe optimal inlusion was proven, verifying stritly the ill-posedness of the identi�ationproblem. The aim of the paper is to present a similar analysis for the related leastsquare traking formulations. It turns out that the two-norm-disrepany is of the sameprinipal nature as for the Kohn and Vogelius objetive. As a byprodut, the neessary�rst order optimality ondition are shown to be satis�ed if and only if the data areperfetly mathing. Finally, we omment on possible onsequenes of the two-norm-disrepany for the regularization issue.IntrodutionLet D ⊂ R
2 denote a bounded domain with boundary ∂D = Σ and assume the existeneof a simply onneted subdomain S ⊂ D, onsisting of perfetly onduting material,essentially di�erent from the likewise onstant ondutivity of the material in the annularsubregion Ω = D \ S. We onsider the identi�ation problem of this inlusion if theCauhy data of the eletrial potential u are measured at the boundary Σ , i.e., if a singlepair f = u|Σ and g = (∂u/∂n)|Σ is known.The problem under onsideration is a speial ase of the general ondutivity reonstru-tion problem and is severely ill-posed. It has been intensively investigated as an inverseproblem. We refer for example to Akduman and Kress [1℄, Chapko and Kress [5℄ andHettlih and Rundell [26℄ for numerial algorithms and to Friedmann and Isakov [21℄ aswell as Alessandrini, Isakov and Powell [2℄ for partiular results onerning uniqueness.Moreover, we refer to Brühl and Hanke [3, 4℄ for methods using the omplete Dirihlet�to�Neumann operator at the outer boundary. We emphasize that we fous in the presentpaper on exat measurements and do not onsider noisy data.In [38℄, Rohe and Sokolowski have been introdued a formulation as shape optimizationproblem using the Kohn and Vogelius riterion. The analysis and numerial results pre-sented there for �rst order shape optimization algorithms are extended to seond ordermethods in [17℄. In partiular,ompatness of the shape Hessian is proven at the optimaldomain Ω⋆ = D \S⋆, provided that the interfae Γ = ∂S is su�iently regular. Note thatthe assumption on starshapeness of the inlusion with respet to a given pole x0 ∈ D wasonly used to derive expliit expressions in terms of polar oordinates. This is not restri-tive and an be bypassed by a generalization of the alulus, see for example Sokolowskiand Zolesio [39℄ and Delfour and Zolesio [9℄. However, sine the related traking formu-lations for either the Dirihlet- or Neumann-data at the outer boundary are quite oftenonsidered in the literature, the present paper aims at investigating these formulations byanalogous methods.Shape alulus tehniques are also investigated and developed by e.g., Hettlih [25℄ andRundell [26, 27℄, Hohage [30℄, Kirsh [31℄, Kress et. al. [23, 32, 33℄, Potthast [36, 37℄ (a1



rather inomplete list) for the study of various kinds of shape identi�ation problems asnonlinear operator equations. That is, mainly the shape derivatives of solution of the stateequation are onsidered and applied in Newton like iterative tehniques. In view of theseinvestigations, an aim of the present paper is, how higher order shape derivatives of leastsquare objetives might provide a ompletion of the knowledge about the identi�ationproblem.The numerial solution of the optimization problems on hand is not onsidered in thepaper. Nevertheless, boundary integral equation methods ould be exploited (see the ap-pendix) by using e�ient BEM implementations like wavelet based BEM or fast multipolemethods. We refer to the likewise �rst or seond order optimization methods explained in[17℄ (see also [13, 14℄ for more details about the prinipal setup). Of ourse, the extensionto the numerial solution of problems in 3D is straightforward, see e.g., [18℄ for a prinipaloutline. Nevertheless, it should be mentioned learly that due to the ill-posedness of theproblems, more appropriate regularization onepts have to be inorporated like those arealready developed in the inverse problem ommunity.The present paper is organized as follows. In Setion 1 we present the physial model andreformulate the identi�ation problem as shape optimization problem(s) for either trakingthe Dirihlet- or the Neumann data by a nonlinear least square. Some onsequenes ofthe unique ontinuation theorem for the Laplaian are stated. Moreover, we introduethe adjoint state equation for both formulations. Then, in Setion 2, we ompute �rstthe gradient and the Hessian of the shape funtionals. As a �rst onsequene, we provethat a domain is stationary if and only if the data are perfetly mathed with the (exat)measurements. Next, we analyze the shape Hessian in Setion 3. By the partiularstruture of the seond order form, the nature of the two-norm-disrepany turns out tobe ompletely analogous to the ase of the Kohn and Vogelius riterion. We further provedegeneration of the shape Hessian at the optimal domain, hene the ill-posedness of theunderlying identi�ation problem. Some tehnialities about boundary integral equationmethods are postphoned to an appendix. Finally, we state some onluding remarks inSetion 4.
1. Shape problem formulation1.1. The physial model and two alternatives for a least square formulation.Let D ∈ R

2 be a simply onneted domain with boundary Σ = ∂D and assume thatan unknown simply onneted inlusion S with regular boundary Γ = ∂S is loatedinside the domain D satisfying dist(Σ, Γ) > 0, f. Figure 1.1. To determine the inlusion
S we measure for a given urrent distribution g ∈ H−1/2(Σ) the voltage distribution
f ∈ H1/2(Σ) at the boundary Σ. Hene, we are seeking a domain Ω := D \ S and an2



assoiated harmoni funtion u, satisfying the system of equations
∆u = 0 in Ω,

u = 0 on Γ,

u = f on Σ,

∂u

∂n
= g on Σ.This system denotes an overdetermined boundary value problem whih should admit asolution only for the true inlusion S.

Σ Ω Γ

Figure 1.1. The domain Ω and its boundaries Γ and Σ.If the Neumann data (the urrent g) is assumed to be presribed, the L2-least squaretraking of the Dirihlet data (the voltage distribution f) reads as follows(1.1) (P1) J(Ω) =
1

2

∫

Σ

(u − f)2 dσ → inf,subjet to
∆u = 0 in Ω,

u = 0 on Γ,(1.2)
∂u

∂n
= g on Σ.Likewise, the traking of the Neumann data g an be written as(1.3) (P2) J(Ω) =
1

2

∫

Σ

(

g − ∂u

∂n

)2

dσ → inf,where u satis�es
∆u = 0 in Ω,

u = 0 on Γ,(1.4)
u = f on Σ.3



Herein, the in�mum has to be taken over all domains inluding a void with su�ientlyregular boundary. We do not onsider the interesting question of existene of optimalsolutions in this paper. Instead, we will simply assume the existene of optimal domains,whih is satis�ed for example in ase of perfetly mathing data.Remark 1.1. Obviously, L2-traking is not ompletely ompatible in both ases with theminimal requirements on f and g to provide a weak solution u ∈ H1(Ω). However, it ismore appropriate for onsidering noisy data later on. Moreover, assuming more regularityfor f and g will simplify tehnialities for regularity of the adjoint(s), and for the alulus.Nevertheless, we will brie�y omment on possible relaxations with both respets in theonluding remarks (see Setion 4).The following Lemma is an immediate onsequene of the unique ontinuation theoremand will be of some importane for the investigations in the next setions.Lemma 1.2. In ase of nonvanishing data g 6= 0, the solution u of (1.2) has almosteverwhere nonvanishing Neumann data along the inner boundary Γ, i.e.,meas {x ∈ Γ | ∂u

∂n
(x) = 0} = 0.An analogous statement holds for the solution u of (1.4).Proof. By the unique ontinuation theorem (f. Hörmander [29℄), we onlude frommeas {x ∈ Γ | ∂u

∂n
(x) = 0} > 0,the onsequene u ≡ 0 in Ω. This ontradits g 6= 0 and proofs the assertion. �1.2. The adjoint equations. Aording to the de�nition of the traking type problems

(P1) and (P2), the adjoint state for (P1) have to satisfy the following equation
∆p = 0 in Ω,

p = 0 on Γ,(1.5)
∂p

∂n
= (u − f) on Σ.Similar, the adjoint equation for the seond problem reads as

∆p = 0 in Ω,

p = 0 on Γ,(1.6)
p =

(

∂u

∂n
− g

) on Σ.Remark 1.3. To keep notations simple, we do not introdue subsripts for states u andadjoints p of (P1) and (P2), respetively. Whereas the equations (1.5) and (1.6) are quitesimilar to (1.2)and (1.4), respetively, the soures in the boundary ondition imply di�er-ent onsequenes for the regularity of the adjoint p ompared to the regularity of u . Thereis inreasing regularity for the adjoint state in problem (P1), but dereasing regularity4



in problem (P2). Sine we will not investigate this in more detail, we assume su�ientregularity of the boundary Σ and the data to provide enough regularity for adjoints andtheir shape derivatives.Note the di�erene to the Kohn and Vogelius riterion: Sine that objetive is of thelassial Dirihlet energy type (f. [38℄), no adjoint state have to be introdued there.More preisely, a formal alulus demonstrates that the related adjoint(s) oinide inpriniple with the original state(s). Obviously, the adjoint states p are essentially di�erentfrom u in ase of the least square formulations.2. Shape alulus and the neessary first order optimality ondition2.1. First and seond order shape derivatives. For sake of learness in representa-tion, we repeat the shape alulus onerning the problem under onsideration by meansof boundary variations. Sine both objetives are de�ned on a �xed manifold far from thevarying shape Γ, there exist two equivalent formulations for the shape gradient as wellas for the shape Hessian either on Σ or on Γ. But we emphasize that we mainly derivethe boundary integral representation of the shape Gradient and the shape Hessian on Γ,whih allows us to investigate in partiular the natural two-norm disrepany and theompatness at the stationary domain. Moreover, both expressions are more onvenientfor obtaining more e�iently desent diretions for numerial algorithms, f. [13, 14, 17℄.For a survey on the shape alulus based on the material derivative onept, we referthe reader to Sokolowski and Zolesio [39℄ and Delfour and Zolesio [9℄ and the referenestherein. Conerning the Kohn and Vogelius riterion, the paper [38℄ ontains the adaptionof these general onepts to the partiular ase.Let the underlying variational �elds V be su�iently smooth suh that C2,α-regularityis preserved for all perturbed domains. Moreover, for sake of simpliity, we assume inaddition the outer boundary and the measurements are su�iently regular suh that thestate funtions u = u(Ω) and the adjoints p = p(Ω) satisfy(2.7) u, p ∈ C2,α(Ω̄).Then, the shape di�erentiability for both objetives (1.1) and (1.3) is provided up toseond order inluding ertain regularity for the shape Hessian representation. In par-tiular, it provides Hölder-regularity of seond spatial derivatives along Γ, arising fromthe shape di�erentiation of the state u and adjoint p (f. the expliit representationsbelow). Furthertmore, sine the objetive is de�ned on a �xed manifold far from thevarying boundary, a formal di�erentiation of (1.1) in terms of loal derivatives is possibleand yields immediately
dJ(Ω)[V] =

∫

Σ

(u − f)du[V ]dσ,whereas the result for the objetive (1.3) reads as follows
dJ(Ω)[V] =

∫

Σ

(

∂u

∂n
− g

)

∂du[V ]

∂n
dσ.5



Here, the loal shape derivatives du = du[V] for problem (P1) and (P2) satisfy
∆du = 0 ∆du = 0 in Ω,

du = −〈V,n〉∂u

∂n
and du = −〈V,n〉∂u

∂n
on Γ,(2.8)

∂du

∂n
= 0 du = 0 on Σ,repetively. Note that the loal shape derivatives for the two problems di�er in bothboundary onditions, sine the state u for problem (P1) is di�erent from those for (P2)(see (1.2) and (1.4)).It remains to ompute the equivalent expressions for the shape gradients on the unknownboundary Γ, sine they (have to) exist due to the Hadamard theorem.Lemma 2.1. The shape gradient representation on Γ for both objetives reads as(2.9) dJ(Ω)[V] =

∫

Γ

〈V,n〉∂u

∂n

∂p

∂n
dσ.In ase of (P1), u and p solves (1.2) and (1.5), whereas the state u and the adjoint psatis�es (1.4) and (1.6) for (P2), respetively.Proof. Using ∂Ω = Γ∪Σ and the known boundary data from (1.5) and (2.8), the boundaryintegral representation of the shape gradient is obtained for the �rst objetive via repeatedintegration by parts from the identity

0 =

∫

Ω

du∆p − p∆dudx, ⇒

0 =

∫

Γ

du
∂p

∂n
dσ +

∫

Σ

du(u − f)dσ, hene,
dJ(Ω)[V] =

∫

Σ

du(u− f)dσ = −
∫

Γ

du
∂p

∂n
dσ,whih is the desired result. Similarily, the same formula is derived in priniple in theother ase, but with di�erent meaning for u and p. �If the hole S is assumed to be starshaped with respet to some pole x0 ∈ D, the boundary

Γ = ∂S an be parametrized by a funtion r = r(ϕ) of the polar angle ϕ and the per-turbation �eld V an be hosen as V = dr(ϕ)er(ϕ). Herein, er(ϕ) := x0 + (cos ϕ, sin ϕ)Tdenotes the radial diretion with respet to the pole x0. The regulatity requirementsimply r, dr ∈ C2,αper [0, 2π], where r is a positive funtion suh that dist(Σ, Γ) > 0 and
C2,αper [0, 2π] := {r ∈ C2,α[0, 2π] : r(i)(0) = r(i)(2π), i = 0, 1, 2}.Then, the shape gradient dJ [dr] beomes in both ases(2.10) dJ(Ω)[dr] = −

∫ 2π

0

dr(ϕ) r(ϕ)

(

∂u

∂n

∂p

∂n

)

(ϕ) dϕ,6



where the minus sign issues from the fat that 〈er,n〉 = −r/
√

r2 + r′2. Similarily, we willkeep the notation du = du[dr] and dp = dp[dr] for indiating the dependenies of relatedloal shape derivatives.Remark 2.2. The lass of bounded starshaped domains with regular Ck,α-boundary pos-sesses the open set property for k ≥ 1, α ∈ [0, 1]: Within the general lass of simply on-neted Ck,α-domains, any suh domain Ω has a neighbourhood Uη in the Ck,α-topology,ontaining only starshaped domains. Moreover, there is a one-to-one relation between(salar) funtions dr ∈ Uδ(0) ⊂ C2,αper [0, 2π] and domains Ωdr ∈ Uη(Ω). Consequently, thealulus via polar oordinates provides the �omplete information� like a general alulusfor the lass of domains under onsideration. In arbitrary dimensions, the unit spheremight serve as an appropriate parameter manifold.To derive the shape Hessian, we proeed similar to [10, 11℄ by di�erentiating diretly theshape gradient (2.10) while exploiting the relations
∇u|Γ =

∂u

∂n
· n, ∇p|Γ =

∂p

∂n
· n ⇒ ∂u

∂n

∂p

∂n
= 〈∇u,∇p〉|Γ.Lemma 2.3. The shape Hessian reads as

d2J(Ω)[dr1, dr2] = −
∫ 2π

0

dr1 dr2

{

〈∇u,∇p〉 + r
〈

∇ (〈∇u,∇p〉) , er

〉}(2.11)
+dr1 r

{

∂u

∂n

∂dp[dr2]

∂n
+

∂p

∂n

∂du[dr2]

∂n

}

dϕ,where all data have to be understood as traes on the unknown boundary Γ.To give the expression (2.11) a meaning, it remains to ompute the loal shape derivativesof the adjoints p for (P1) and (P2), i.e., the loal shape derivatives of the solutions to(1.5) and (1.6), respetively. They are haraterized for both problems as solutions ofeither
∆dp = 0 ∆dp = 0 in Ω,

dp = −〈V,n〉 ∂p

∂n
or dp = −〈V,n〉 ∂p

∂n
on Γ,(2.12)

∂dp

∂n
= du[V ] dp =

∂du[V ]

∂n
on Σ.Remark 2.4. The formal equivalene for the shape Hessian (2.11) in both ases arisesfrom formal similarity of formulae (2.9) or (2.10), respetively. The di�erenes an beseen more learly when di�erentiating diretly the expression for the shape Gradient on

Σ, i.e.
d2J(Ω)[V1, V2] =

∫

Σ

du[V1]du[V2] dσ, for objetive (1.1),
d2J(Ω)[V1, V2] =

∫

Σ

∂du[V1]

∂n

∂du[V2]

∂n
dσ, for objetive (1.3),7



respetively, where Vi = dri · er, i = 1, 2, for example.Remark 2.5. There is an important di�erene to �lassial ontrol problems� on �xed do-mains: The adjoints in shape optimization problems have nonvanishing derivatives on theprimal optimization variable (�on the ontrols�), i.e., nonvanishing shape derivatives. Thatillustrates the stronger nonlinearity of the duality relation(s), sine the �pde-onstraint�in shape optimization problems annot be diretly onsidered as a �standard� equality on-straint in a ertain Banah spae.2.2. The neessary �rst order optimality ondition. For both problems, a �rstonsequene an be derived from Lemma 1.2.Corollary 2.6. For any nontrivial variational �eld V , the loal shape derivative du[V ] ofproblem (P1) has almost everwhere nonvanishing Dirihlet data along the outer boundary
Σ, i.e., meas {x ∈ Σ | du[V ](x) = 0} = 0 ⇔ 〈V,n〉|Γ 6≡ 0.Analogously, the loal shape derivative du of problem (P2) has almost everwhere nonvan-ishing Neumann data along the outer boundary Σ, i.e.,meas {x ∈ Σ | ∂du[V ]

∂n
(x) = 0} = 0. ⇔ 〈V,n〉|Γ 6≡ 0.Proof. Sine we know ∂u

∂n
(x) 6= 0 a.e. on Γ from Lemma 1.2, the assumptionmeas {x ∈ Σ | du[V ](x) = 0} > 0would lead to meas {x ∈ Σ | 〈V,n〉(x) 6= 0} = 0 in the �rst ase. Contrary, from

〈V,n〉|Γ ≡ 0 one easily derives du[V ] ≡ 0 on Ω̄.A similar reasoning remains valid in the seond ase. �Sine the shape gradient representation(s) (2.9) (or (2.10)) provide an easy struture, animportant onlusion an be drawn from the �rst order neessary ondition.Theorem 2.7. For both problems the validity of the neessary optimality ondition on aertain domain Ω⋆ is equivalent to a perfet mathing of the data, i.e.(2.13) ∇J(Ω⋆)[V ] = 0 for all V ⇔ u⋆|Σ ≡ f,for problem (P1), or similar for problem (P2)(2.14) ∇J(Ω⋆)[V ] = 0 for all V ⇔ ∂u⋆

∂n
|Σ ≡ g.Proof. Let us denote the state and the adjoint, assoiated with Ω⋆ by u⋆ = uΩ⋆ and

p⋆ = pΩ⋆ . From (2.9) we immediately onlude for both problems
∇J(Ω⋆)[V ] = 0 for all V ⇔

(

∂u⋆

∂n

∂p⋆

∂n

)

|Γ⋆ ≡ 0 ⇔ ∂p⋆

∂n
|Γ⋆ ≡ 0,8



where we have taken lemma 1.2 into aount. Applying again the unique ontinuationtheorem, we onlude in both ases p⋆ ≡ 0 on Ω̄⋆. The theorem follows from the de�nitionof p⋆ aording to (1.5) or (1.6), respetively. �Remark 2.8. Consequently, no �spurios� stationary domains an appear for the EIT-problem in ase of perfetly onduting inlusions. This is remarkable, sine suh a on-lusion is hallenging in ase of arbitrary nonlinear least squares. Despite of orollary 2.6,the same onlusion annot be obtained from the shape gradient representation on Σ, sineit is a priori not lear, whether the traes du[V ]|Σ overs a omplete linear independentsystem for L2(Σ) or not (similar for problem (P2)).Remark 2.9. Obviously, global optimality of a stationary domain Ω⋆ is ensured by thepartiular struture of the objetive(s) and theorem 2.7. In the next setion we will disuss,whether Ω⋆ is a strit loal optimizer of seond order or not.Finally, we want to mention that the onsiderations in this subsetion are ompletelyindependent from the starshapeness of Ω⋆.3. The shape Hessian and suffiient optimality onditions3.1. The two-norm disrepany and related remainder estimates. Aording toremark 2.2, we will onsider only starshaped domains for studying su�ient seond or-der optimality onditions (SSOC) in shape optimization. This provides equivalene tosu�ient onditions in related funtion spaes on the parameter manifold and avoids thenonuniqueness of more general domain or boundary variational approahes. Hene, itavoids to onsider fatorization proedures, preventing from e.g. the noninvertibility ofrelated shape Hessians. Before investigating the shape Hessian at a stationary domainin more detail, we reall from [11℄ a general property of the shape Hessian at arbitrarydomains.Lemma 3.1. The shape Hessian∇2J(Ω) de�nes a ontinuous bilinear form on H1/2[0, 2π]×
H1/2[0, 2π], i.e.: It holds the estimate(3.15) |∇2J(Ω)[dr1; dr2]| ≤ c0 ‖dr1‖H1/2 · ‖dr2‖H1/2 , c0 = c0(Ω),but no similar estimate with respet to a weaker spae is possible in general.We omit the proof, sine (2.11) is a partiular ase of the shape Hessian struture, onsid-ered in [11℄. To shorten notation, we use the identi�ation Ω ⇔ r, hene Ωdr ⇔ r + drin the next remark.Remark 3.2. Using Taylor expansion around Ω ⇔ r, we have

J(r + dr) = J(r) + ∇J(r)[dr] +
1

2
∇2J(r)[dr, dr] + R2(r, dr).where the seond order remainder R2(r, dr) an be equivalently expressed as

R2(r, dr) =
1

2
∇2J(r + ρdr)[dr, dr] − 1

2
∇2J(r)[dr, dr], ρ ∈ (0, 1).9



In ase of ontinuous depene on the argument r of the seond order bilinear form, thissuggests together with (3.15) the validity of the remainder estimate(3.16) |R2(r, dr)| ≤ η(‖dr‖C2,α)‖dr‖2
H1/2, η : R+ → R+, lim

s→0
η(s) = 0,uniformly for all r in a neighbourhood of r⋆. Of ourse, strit veri�ation of (3.16) ishighly appreiated, sine it follows not immediately from the alulus. For a relativelylarge lass of ellipti shape problems, suh estimates are obtained by M. Dambrine [7℄, seealso [6, 8℄. Note the di�erene to the estimates, ensured by the �standard alulus�

|∇2J(r)[dr1; dr2]| ≤ c0 ‖dr1‖C2,α · ‖dr2‖C2,α , c0 = c0(r), and
|R2(r, dr)| ≤ η(‖dr‖C2,α)‖dr‖2

C2,α.Obviously, the estimate (3.16) provides a sharper haraterization of the general behaviourof the remainder.Remark 3.3. The estimate (3.16) has important onsequenes for a disussion of suf-�ient seond order optimality onditions (SSOC) in shape optimization. Due to thepartiular struture of the shape Hessian, the validity of a uniform oerivity estimateannot be expeted in the �onventional� norm. Conversely, a oerivity estimate of thetype(3.17) ∇2J(Ω⋆)[dr; dr]| ≥ c0 ‖dr‖2
H1/2 , c0 > 0,would already provide strit loal optimality of seond order for a stationary domain Ω⋆,if the estimates (3.15) and (3.16) are valid in a neighbourhood of Ω⋆. Suh a disrepanybetween the (stronger) norm for di�erentiation and the (weaker) norm for the oerivity,already su�ient for optimality, is alled a two-norm-disrepany. Obviously, suh adisrepany an only our in ase of nonquadrati objetives, i.e., if a nontrivial seondorder remainder appears.Remark 3.4. For shape funtionals like the volume or the perimeter of a domain, dif-ferent spaes arise for the two-norm-disrepany. The shape Hessian for the volume isa ontinuous bilinear form in L2 × L2, but the shape Hessian of perimeter de�nes natu-rally a bilinear form in H1 ×H1. For more details, inluding the disussion of additionalfuntional onstraints, see [12℄.3.2. Compatness of the shape Hessian at the optimal domain. Next, we willinvestigate the shape Hessian at the optimal domain Ω⋆, that is, if the given inlusion isdeteted and the �rst order neessary ondition (2.13) (or (2.14)) holds. Consequently, allquantities arising in the onsiderations are related to the optimal domain Ω⋆ throughoutthis subsetion. By theorem 2.7, the �rst two terms in (2.11) vanish and the shape Hessiansimpli�es aording to(3.18) d2J(Ω)[dr1, dr2] =

∫ 2π

0

dr1 r
∂u

∂n

∂dp[dr2]

∂n
dϕ.The next lemma is an immediate onsequene of orollary 2.6 in ombination with theshape Hessian representation on Σ (f. remark 2.4)10



Lemma 3.5. The seond diretional derivatives are stritly positive at a stationary do-main Ω for both problems, i.e.,
d2J(Ω)[dr, dr] =

∫

Σ

(du[dr])2 dσ > 0 ⇔ dr 6= 0,in ase of (P1), similar for problem (P2).Proof. Sine 〈er,n〉|Γ > 0 for starshaped domains, the ondition dr 6= 0 is equivalent to
〈V,n〉|Γ 6≡ 0. �Remark 3.6. The above lemma ensures the validity of the neessary seond order ondi-tions. Nevertheless, even strit positivity of any (nontrivial) seond diretional derivativeis in general not su�ient for optimality in in�nite dimensionsional optimization prob-lems, f. Maurer and Zowe [34℄.Whereas the subsequent analysis of the shape Hessian is quite similar to the investigationsin [17℄, we repeat the main steps for onveniene. We introdue �rst the multipliationoperators(3.19) Mudr := dr · r ∂u

∂n

∣

∣

∣

Γ
and Mpdr := dr · r ∂p

∂n

∣

∣

∣

ΓLemma 3.7. Let (2.7) hold, then the multipliation operators Mu, Mp : H1/2(Γ) →
H1/2(Γ) de�ned by (3.19) are ontinuous.Proof. Due to omplete analogy, we onsider only Mu. Abbreviating v := r(∂u/∂n)|Γwe may write Mudr = dr · v. Due to results of Triebel [40℄ or Mazja and Shaposhnikova[35℄, the multipliation operator Mu is ontinuous from H1/2(Γ) to H1/2(Γ), provided that
v ∈ C0,α(Γ) for some α > 1/2. From (2.7) we onlude v ∈ C1,α(Γ) whih implies theassertion. �Again, the remaining steps will be outlined in detail only for (P1). In general, we observefrom (2.12) the dependene of the loal shape derivative dp = dp[dr] from the boundaryvariation dr through both boundary onditions, where the dependene is expliit on Γ,but impliit on Σ, i.e.,

dp
∣

∣

Γ
= Mpdr,

∂dp

∂n

∣

∣

∣

Σ
= du[dr]

∣

∣

Σ
.However, ∂p

∂n

∣

∣

∣

Γ
vanishes at a stationary domain, see the proof of theorem 2.7. Moreover,the Dirihlet data du[dr]

∣

∣

Σ
itself an be seen via (2.8) as the image of the shape variation

dr by a boundary integral operator A.Lemma 3.8. The linear operator A : dr 7→ du[dr]
∣

∣

Σ
, de�ned via (2.8), is ompat as amapping from H1/2(Γ) to H1/2(Σ). 11



The proof is given in the appendix.Finally, the Neumann data ∂dp[dr]
∂n

∣

∣

∣

Γ
depend on the diretion of shape variation dr by anadditional Dirihlet-to-Neumann map(3.20) Λ(Adr) :=

∂dp[dr]

∂n

∣

∣

∣

Γ
.With these operators at hand, we an rewrite (3.18) by(3.21) d2J(Ω⋆)[dr1, dr2] = 〈Mudr1, Λ(Adr2)〉,where 〈·, ·〉 denotes the anonial L2(Γ)-inner produt. The proof of the next lemma isagain postphoned to the appendix.Lemma 3.9. The operator Λ : H1/2(Σ) → H−1/2(Γ) de�ned by (3.20) is ompat.Consequently, the omposite mapping

Λ ◦ A : dr 7→ ∂dp[dr]

∂n

∣

∣

∣

Γ
(as a map H1/2(Γ) → H−1/2(Γ))is ompat at a stationary domain. Whereas the adjoint state p vanishes identially at astationary domain, it has nontrivial loal shape derivatives in any diretion dr 6= 0.Aording to the Lemmas 3.7 and 3.9, the bilinear form d2J(Ω⋆) de�ned in (3.21) isontinuous on H1/2(Γ) × H1/2(Γ). Hene, it represents a ontinuous linear operator

H = M⋆
u

(

Λ ◦ A
)

: H1/2(Γ) → H−1/2(Γ)As an immediate onsequene of our onsiderations we onlude the following proposition.Proposition 3.10. The shape Hessian H : H1/2(Γ) → H−1/2(Γ) is ompat at the optimaldomain Ω⋆.Remark 3.11. The situation hanges essentially on nonstationary domains: In ase ofnonvanishing Neumann data ∂p
∂n

∣

∣

∣

Γ
of the adjoint state, the map dr 7→ ∂dp[dr]

∂n

∣

∣

∣

Γ
de�nesa �onventional� pseudodi�erential operator of order 1, i.e., a ontinuous operator from

H1/2(Γ) to H−1/2(Γ), see remark 4.6 in the appendix. Whereas other parts are presentin the shape Hessian representation on arbitrary domains, the main property of H as apseudodiferential operator of order 1 is governed by the expressions
dr1 r

{

∂u

∂n

∂dp[dr2]

∂n
+

∂p

∂n

∂du[dr2]

∂n

}

,from the variational formulation (2.11) of the operator H. Moreover, exatly these rela-tions imply estimate (3.15).Remark 3.12. Despite of the global optimality of Ω⋆ (f. remark 2.9), a regular stritminimizer of seond order have to satisfy H1/2(Γ)-oerivity of the shape Hessian
d2J(Ω⋆)[dr, dr] ≥ c‖dr‖2

H1/2(Γ),see subsetion 3.1. The above proposition implies that this su�ient seond order op-timality ondition annot be valid, whih haraterizes the ill-posedness of the related12



identi�ation problem. In partiular, any nonregularized optimization algorithm annotprovide stability for a numerial solution of �nite dimensional auxiliary problems as wellas for the onvergene of the solutions of these subproblems to the original domain.It is an easy task to illustrate the ompatness of the maps Λ and A as well as theompatness of the shape Hessian at a stationary domain by analyzing the situationof a ringshaped domain given by two onentri irles. While using analytial datafor g and f , this would in fat result in exponential deay of mapping oe�ients inrelated Fourier series expansion, [17, 26℄, as well as exponential deay of the eigenvalues of
∇2J(Ω⋆), [17℄. Moreover, for arbitrary situations, one might exemplify this by omputingthe eigenvalues of the shape Hessian numerially like in [17℄. For sake of breviety, we skipsuh illustrations. 4. Conluding remarksWe onlude the paper with a ouple of remarks.Remark 4.1. The ompatness proof in subsetion 3.2 frequently uses smoothing proper-ties of harmoni funtions as solutions of the Laplae equation, either for the state andadjoint equation as well as for the governing equations of their loal shape derivatives.Furthermore, we deal with objetive(s) beeing de�ned on a ompat manifold far from thevarying shape. This gives rise for possibly providing enough regularity for u and p (andfor du and dp) around the unknown boundary Γ. Consequently, a similar shape aluluswill be valid for lower regularity of the data f, g. Nevertheless, it might be hallenging topoint out the details, sine this would ensure the same onlusions for the identi�ationproblem by essentially weaker assumptions.Remark 4.2. As already disussed in remark 1.1, there is a degree of freedom in hoosingthe norm for the data traking on Σ. At least, a H−1/2(Σ)-traking of the Neumann data gwould be ompatible with onsidering noisy data thereafter. Traking a Neumann onditionin H−1/2, but on the moving boundary Γ was already investigated by Haslinger et. al. fora Bernoulli type free boundary problem, [24℄. It would be interesting to study a shapealulus for suh objetives.Remark 4.3. To provide a (loal) one-to-one orrespondene to a salar parametriza-tion �eld in ase of nonstarshaped domains, we an introdue a su�iently regular n-dimensional referene manifold Γ0 and onsider a �xed boundary perturbation vetor �eld.For example, the outer normal �eld n0 an be used. We suppose that the free boundary ofeah domain Ω ∈ Υ an be parameterized via a su�iently smooth funtion r in terms of

γ : Γ0 → Γ, γ(x) = x + r(x)n0(x).That is, we an identify a domain with the salar funtion r. De�ning the standardvariation
γε : Γ0 → Γε, γε(x) := γ(x) + εdr(x)n0(x),13



where dr is again a su�iently smooth salar funtion, we obtain the perturbed domain
Ωε. If an extension of the �vetor support-�eld� to a neighbourhood of Γ0 is required, onemight use the oriented distane approah, see [9℄.Remark 4.4. If an optimizer Ω⋆ satis�es the strit oerivity assumption in the naturalnorm of the ontinuous extension of the seond order form, the onvergene Ω⋆

N → Ω⋆is shown in [20℄ for optimizers Ω⋆
N of �nite dimensional auxiliary problems, if the ansatzspaes are properly hosen. Moreover, the numerial omptutation of optimizers in theauxiliary problems remain stable. Consequently, regularization of ill-posed problems an bealready ensured in the ontinuity norm of the shape Hessian. Investigating regularizationonepts in the H1/2-norm for ellipti shape problems seems to be a hallenging task. Nev-ertheless, noisy measurments or data might ause further in�uene on the regularizationrequirements. Furthermore, regularization in stronger norms an be onsidered as well.Remark 4.5. The di�ulties for the overall optimization proess, resulting from ill-posedness does not diretly onern the numerial alulation of the entries of the shapeHessian. As already on�rmed in [17℄, these omputations turn out to be (relatively) sta-ble by our approah up to the range of the onsidered entries near Ω⋆ and is of the sameauray even at the ritial domain.Appendix: Boundary integral equationsIn the appendix we outline the remaining omputations from subsetion 3.2, where wefous mainly on (P1). We introdue the single layer and the double layer operator withrespet to the boundaries Φ, Ψ ∈ {Γ, Σ} by

(VΦΨu)(x) := − 1

2π

∫

Φ

log ‖x − y‖u(y)dσy, x ∈ Ψ,

(KΦΨu)(x) :=
1

2π

∫

Φ

〈x − y,ny〉
‖x − y‖2

u(y)dσy, x ∈ Ψ.Note that VΦΨ denotes an operator of order −1 if Φ = Ψ, i.e. VΦΦ : H−1/2(Φ) → H1/2(Φ),while it is an arbitrarily smoothing ompat operator if Φ 6= Ψ sine dist(Γ, Σ) > 0.Likewise, if Σ, Γ ∈ C2, the double layer operator KΦΦ : H1/2(Φ) → H1/2(Φ) is ompatwhile it smoothes arbitrarily if Φ 6= Ψ. We refer the reader to [22, 32℄ for more detailsonerning boundary integral equations.For sake of simpliity we suppose that diam Ω < 1 to ensure that VΦΦ is invertible, f. [28℄.Then, the normal derivative of du = du[dr] is given by the Dirihlet-to-Neumann map(4.22) [

VΓΓ VΣΓ

VΓΣ VΣΣ

] [

∂du
∂n

∣

∣

Γ
∂du
∂n

∣

∣

Σ

]

=

[

1/2 + KΓΓ KΣΓ

KΓΣ 1/2 + KΣΣ

] [

du
∣

∣

Γ

du
∣

∣

Σ

]

.Likewise, the unknown boundary data of dp are determined by(4.23) [

VΓΓ VΣΓ

VΓΣ VΣΣ

] [ ∂dp
∂n

∣

∣

Γ
∂dp
∂n

∣

∣

Σ

]

=

[

1/2 + KΓΓ KΣΓ

KΓΣ 1/2 + KΣΣ

] [

dp
∣

∣

Γ

dp
∣

∣

Σ

]

.14



Note that here and in the sequel the operators (1/2 + KΦΦ), Φ ∈ {Γ, Σ}, have to beunderstood as ontinuous and bijetive operators in terms of (1/2+KΦΦ) : H1/2(Φ)/R →
H1/2(Φ)/R.Proof of Lemma 3.8:Proof. We onlude from (4.24), (3.19) and ∂du

∂n

∣

∣

Σ
= 0 (see (2.8))

VΓΓ
∂du

∂n

∣

∣

∣

Γ
= [1/2 + KΓΓ] (Mudr) + KΣΓdu

∣

∣

Σ
,

VΓΣ
∂du

∂n

∣

∣

∣

Γ
= [1/2 + KΣΣ] du

∣

∣

Σ
+ KΓΣ(Mudr).Eliminating the unknown ∂du

∂n

∣

∣

∣

Γ
and resolving for du

∣

∣

Σ
yields

du
∣

∣

Σ
=

[

1/2 + KΣΣ − VΓΣV −1
ΓΓ KΣΓ

]

−1 ·
{

VΓΣV −1
ΓΓ

(

1/2 + KΓΓ

)

− KΓΣ

}

(Mudr).Compatness of the operator A, de�ned by
A =

[

1/2 + KΣΣ − VΓΣV −1
ΓΓ KΣΓ

]

−1 ·
{

VΓΣV −1
ΓΓ

(

1/2 + KΓΓ

)

− KΓΣ

}

· Mu,follows from ompatness of VΓΣ and of KΓΣ as well as from the ontinuity of all otherremaining operators. �Proof of Lemma 3.9:Proof. We observe �rst from (2.12) and from theorem 2.7
dp

∣

∣

Σ
= du

∣

∣

Σ
and ∂p

∂n

∣

∣

∣

Γ
= 0 ⇒ Mpdr = 0.Hene, we onlude from (4.23) while eliminating dp

∣

∣

Σ

dp
∣

∣

Σ
= (1/2 + KΣΣ)−1

{

VΓΣ
∂dp

∂n

∣

∣

Γ
+ VΣΣdu

∣

∣

Σ

}

,⇒

VΓΓ
∂dp

∂n

∣

∣

Γ
= KΣΓ(1/2 + KΣΣ)−1

{

VΓΣ
∂dp

∂n

∣

∣

Γ
+ VΣΣdu

∣

∣

Σ

}

,⇒

∂dp

∂n

∣

∣

Γ
=

[

VΓΓ − KΣΓ(1/2 + KΣΣ)−1VΓΣ

]

−1 {

KΣΓ(1/2 + KΣΣ)−1VΣΣ − VΣΓ

}

du
∣

∣

Σ
.The ompatness of the map Λ now follows from ompatness of the �transfer operators�

KΣΓ and VΣΓ. �Remark 4.6. In ase of Mpdr 6= 0 (on nonstationary domains), the latter representationmodi�es to
∂dp

∂n

∣

∣

Γ
=

[

VΓΓ − KΣΓ(1/2 + KΣΣ)−1VΓΣ

]

−1 {

KΣΓ(1/2 + KΣΣ)−1VΣΣ − VΣΓ

}

du
∣

∣

Σ

−
[

VΓΓ − KΣΓ(1/2 + KΣΣ)−1VΓΣ

]

−1
KΣΓ(1/2 + KΣΣ)−1KΓΣ(Mpdr)

+
[

VΓΓ − KΣΓ(1/2 + KΣΣ)−1VΓΣ

]

−1 (

1/2 + KΓΓ

)

(Mpdr),where the operator D in the last part
D :=

[

VΓΓ − KΣΓ(1/2 + KΣΣ)−1VΓΣ

]

−1 (

1/2 + KΓΓ

)

Mp,15



is obviously not ompat, but a �regular�, i.e., nondegenerate pseudodi�erential operatorof order 1 in general.Remark 4.7. The related onsiderations for (P2) will be ompletely similar. Moreover,sine the following BIE formulation is equivalent to (1.2),(4.24) [

VΓΓ VΣΓ

VΓΣ VΣΣ

] [

∂u
∂n

∣

∣

Γ

g

]

=

[

1/2 + KΓΓ KΣΓ

KΓΣ 1/2 + KΣΣ

] [

0

du
∣

∣

Σ

]

,it an be used for omputing ∂u
∂n

∣

∣

Γ
numerially by e.g., fast wavelet BEM. Analogously, wean ompute ∂p

∂n

∣

∣

Γ
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