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Abstract

We show how no-arbitrage pricing can be extended to some non-semimar-
tingale models by restricting the class of admissible strategies. However, this
restricted class is big enough to cover hedges for relevant options. Moreover,
we show that the hedging prices depend essentially only on a path property
of the stock price process, viz. on the quadratic variation. As a consequence,
we can incorporate many stylized facts to a pricing model without changing
the option prices.

1 Introduction

The fundamental theorem of asset pricing states that a notion of absence of arbi-

trage, namely the property of ‘no free lunch with vanishing risk’, is equivalent to

the existence of an equivalent local martingale measure. See Delbaen and Schacher-

mayer (1994) for the general version of this theorem for markets with continuous

trajectories. Since semimartingales are stable under equivalent change of measure,

non-semimartingale models have been ruled out for use in mathematical finance by

means of this theorem. While the fundamental theorem connects an important eco-

nomic concept (the absence of arbitrage) with an important mathematical one (the

martingale property) in an impressive way, the validity of the fundamental theorem

crucially depends on the appropriate choice of ‘admissible’ strategies. Indeed, the

usual class of admissible strategies is – in some sense – as big as possible from a

mathematical point of view. Apart from being self-financing and a condition ex-

cluding doubling strategies, any predictable and integrable (w.r.t. the stock process

S) process is an admissible strategy.

In this paper we are concerned with a smaller class of strategies, but, at the same

time, go beyond semimartingale models. As strategies we consider functions that

depend on time, the spot of the stock, and a finite number of factors which include

the running maximum, the running minimum, and the running average of the stock

in a deterministic and (piecewise) smooth way. We hence allow path-depending

strategies, but restrict the kind of path dependence. We believe that, apart from

the idealization of continuous readjustment of the portfolio, this class of portfolios
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covers many economically relevant strategies. Concerning the models we group them

according to their local quadratic variation. Given a function σ(x) we consider con-

tinuous processes St as discounted models with pathwise quadratic variation given

by d〈S〉t = σ(St)dt and satisfying a certain small ball condition (in dependence of

σ). We shall show under rather weak conditions on σ that such models are free

of arbitrage with the ‘smooth’ strategies described above. In particular this no-

arbitrage result covers the mixed fractional Black-Scholes model, our prime example

throughout the paper (see Mishura and Valkeila (2002), Androshchuk and Mishura

(2005), and Zähle (2002) for related results). We hence contribute to the arbitrage

discussion related to fractional Brownian motion which has gained considerable in-

terest in recent years (see Guasoni (2006) for some discussion on arbitrage results

for pure fractional models).

Moreover, we discuss the robustness of hedges for models with the same local

quadratic variation as functionals of the discounted stock price. In this respect

we extend the results of Schoenmakers and Kloeden (1999) for European options

in constant volatility models in several ways: Our results cover stochastic volatility

models and the construction of robust hedges via PDEs is extended to exotic options

such as Asian options and lookback options. Indeed robustness of hedges for general

continuous payoff functionals is shown, even if no PDE is related to the hedge.

As a consequence of the no-arbitrage result and the robustness of hedges, no-

arbitrage pricing can be extended beyond semimartingales. In our framework prices

are model independent given the local quadratic variation function σ. We emphasize

that the quadratic variation can be viewed as a path property and, hence, prices

are basically independent of probabilistic properties. As an example we demonstrate

how stylized facts such as dependent increments and heavy tails can be incorporated

into a standard Black-Scholes model without changing the prices. For a survey on

stylized facts we refer the reader to Cont (2001).

The paper is organized as follows: In Section 2 we review some facts on forward

integration and pathwise quadratic variation. Model classes in dependence of the

local quadratic variation are introduced in Section 3. In Section 4 we present the

no-arbitrage result while robust replication is studied in Section 5. In Section 6 we

discuss the possibility of an approximative arbitrage in the context of the mixed

fractional Black-Scholes model. Section 7 concludes with a discussion on how to

incorporate stylized facts and on different interpretations of volatility.
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2 Simple review of forward integration

We consider processes that are not semimartingales. So, the classical stochastic

integration theory is not at our disposal. However, there is an economically mean-

ingful notion of integral, viz. the forward integral, that can be applied for non-

semimartingales. Actually, there are many slightly different versions of the forward

integral. In this paper we use a simplistic approach introduced by Föllmer (1981).

For different kinds of forward integrals we refer to Lin (1995), Russo and Vallois

(1993) and Zähle (2002).

Let T > 0 be fixed throughout the paper and let πn = {0 = tn,0 < · · · < tn,K(n) = T}
be such partitions of [0, T ] that

mesh(πn) := max
tn,k∈πn

|tn,k − tn,k−1| → 0

as n →∞. Suppose (Ω,F , (Ft),P) is a filtered probability space satisfying the usual

conditions of completeness and right continuity of the filtration (Ft)t∈[0,T ].

Later we cannot assume that our processes are properly integrable over the entire

interval [0, T ]. Thus we define the integrals over the subintervals [0, t], t < T . The

integral over the interval [0, T ] will be then interpreted as an improper forward

integral.

Definition 2.1 Let t < T and let X = (Xs)s∈[0,T ] be a continuous process. The

forward integral of a process Y = (Ys)s∈[0,T ] with respect to X along the sequence

(πn)∞n=1 is ∫ t

0

Ys dXs := lim
n→∞

∑
tn,k∈πn

tn,k≤t

Ytn,k−1

(
Xtn,k

−Xtn,k−1

)
,

where the limit is assumed to exist P-a.s. The forward integral over the whole

interval [0, T ] is the improper forward integral

∫ T

0

Ys dXs := lim
t↑T

∫ t

0

Ys dXs,

where the limit is again understood in the P-a.s. sense.

Definition 2.2 A process X = (Xt)t∈[0,T ] is a quadratic variation process along the

sequence (πn)∞n=1 if for all t ≤ T the limit

〈X〉t :=
∑

tn,k∈πn

tn,k≤t

(
Xtn,k

−Xtn,k−1

)2

exists P-a.s., and is continuous in t.
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Example 2.3 (i) For standard Brownian motion W we have d〈W 〉t = dt if the

sequence (πn) is refining. This follows from the Borel-Cantelli lemma.

(ii) If Z is a continuous process with zero quadratic variation along (πn) and X is

a continuous quadratic variation process along (πn) then d〈X + Z〉t = d〈X〉t.
This follows from the Cauchy-Schwartz inequality.

(iii) If X is a quadratic variation process along (πn) and f ∈ C1(R) then Y = f ◦X

is also a quadratic variation process along (πn). Indeed,

d〈Y 〉t = f ′(Xt) d〈X〉t

(cf. Föllmer (1981) p. 148).

In what follows the sequence (πn) will be fixed and omitted in the text.

The following Itô formula for the forward integral is a simple generalization of the

theorem that can be found in Föllmer (1981) p. 144. The proof is based on a second

order multidimensional Taylor expansion. Actually, it is basically the same as in the

semimartingale case.

Lemma 2.4 (Itô formula) Let X be a continuous quadratic variation process,

Y 1, . . . , Y m continuous bounded variation processes and suppose f ∈ C1,2,1([0, T ) ×
R× Rm). Let 0 ≤ s ≤ t < T . Then

f(t,Xt, Y
1
t , . . . , Y m

t ) = f(s,Xs, Y
1
s , . . . , Y m

s )

+

∫ t

s

∂

∂t
f(u,Xu, Y

1
u , . . . , Y m

u ) du

+

∫ t

s

∂

∂x
f(u,Xu, Y

1
u , . . . , Y m

u ) dXu

+
1

2

∫ t

s

∂2

∂x2
f(u,Xu, Y

1
u , . . . , Y m

u ) d〈X〉u

+
m∑

n=1

∫ t

s

∂

∂yn

f(u,Xu, Y
1
u , . . . , Y m

u ) dY n
u .

In particular, this formula implies the forward integral on the right hand side exists

and has a continuous modification.

Remark 2.5 In the remainder of the paper we choose continuous modifications of

forward integrals, whenever possible.
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Remark 2.6 The forward integral with non-semimartingale integrator does not sat-

isfy a dominated convergence theorem. Therefore, we have to impose some continuity

assumptions on the integrands (cf. Definition 4.1 of hindsight factors in Section 4).

The lack of dominated convergence theorem may cause some sort of approximative

arbitrage, see Section 6.

3 Model classes

We now introduce model classes in dependence of the quadratic variation. A dis-

counted market model is a five-tuple (Ω,F , S, (Ft),P) such that (Ω,F , (Ft),P) is

a filtered probability space satisfying the usual conditions and S = (St)t∈[0,T ] is

an (Ft)-progressively measurable quadratic variation process with continuous paths

starting at s0 > 0.

Suppose a continuously differentiable function σ : R → R with linear growth is

given. The corresponding model classMσ will be defined via the quadratic variation

property

d〈S〉t = σ2(St) dt P− a.s. (1)

and a non-degeneracy property. In order to formulate the latter property let fσ

denote the unique solution of the ordinary differential equation

f ′(x) = σ(f(x)), f(0) = s0.

Since σ is continuously differentiable, fσ belongs to C2(R) and

f ′′σ (x) = f ′σ(x)σ′(fσ(x)). (2)

Define the space

Cσ,s0 := {fσ ◦ η ; η ∈ C([0, T ]), η(0) = 0} .

We assume that the following small ball condition is satisfied: Given η ∈ Cσ,s0 and

ε > 0

P
(
‖S − η‖∞ < ε

)
> 0, (3)

where ‖ · ‖∞ denotes the supremum norm on the interval [0, T ]. Summarizing the

foregoing, the model class Mσ is defined to contain those discounted market models

which satisfy (1) and (3).

We illustrate this definition by an example.
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Example 3.1 Suppose σ(x) = σx for some constant σ > 0. Obviously,

fσ(x) = s0e
σx.

Hence, condition (3) means that the support of the stochastic process S is the space of

nonnegative continuous functions starting in s0. In particular, the standard Black-

Scholes model belongs to this class Mσ. We will consider its risk-neutral version

(i.e. with zero drift) as reference model in Mσ, because of its martingale property. A

prominent non-semimartingale model in the class Mσ is the mixed fractional Black-

Scholes model, where the Brownian motion of the standard Black-Scholes model is

replaced by a sum of a Brownian motion and an independent fractional Brownian

motion with Hurst parameter H ∈ (1
2
, 3

4
]. Recall that a fractional Brownian motion

Z is a centred stationary increment Gaussian process with variance E(Z2
t ) = t2H for

some H ∈ (0, 1), and for H ∈ (1
2
, 1) it has zero quadratic variation. Another way of

characterizing the fractional Brownian motion is to say that it is the unique (up to a

multiplicative constant) centred H-self-similar Gaussian process with stationary in-

crements. It is known from Cheridito (2001) that the sum of independent Brownian

and fractional Brownian motion is a semimartingale if and only if H ∈ (3
4
, 1).

Next we construct a reference model which plays the role of the risk-neutral Black-

Scholes model for general Mσ. Suppose (Ω̃, F̃ , P̄) is the canonical Wiener space

on the time interval [0, T ], Wt(ω) = ω(t) the coordinate process Brownian motion

and F̃t the augmented filtration generated by W . We impose the following standing

assumption:

(H) The process

Mt = exp

{
−1

2

∫ t

0

σ′(fσ(Wr))dWr − 1

8

∫ t

0

(σ′(fσ(Wr)))
2
dr

}

is well defined (i.e. the integrals exist) and is a martingale under P̄.

Under hypothesis (H) we can define a probability measure P̃ on (Ω̃, F̃T ) by

P̃(A) =

∫

A

Mt dP̄, A ∈ F̃T .

Then (W̃t)t∈[0,T ] given by

W̃t = Wt +
1

2

∫ t

0

σ′(fσ(Wr)) dr

is a Brownian motion under P̃ by the Girsanov theorem.

Define a discounted stock price by S̃t = fσ(Wt). We obtain:
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Lemma 3.2 (Ω̃, F̃ , S̃, ˜(Ft), P̃) ∈Mσ and S̃ is a local martingale. We call (Ω̃, F̃ , S̃,
˜(Ft), P̃) the reference model.

Proof. The small ball property is trivially satisfied under P̄ and hence under P̃.

Moreover, Itô’s formula and (2) yield,

S̃t = s0 +

∫ t

0

f ′σ(Wr) dWr +
1

2

∫ t

0

f ′σ(Wr)σ
′(fσ(Wr)) dr

= s0 +

∫ t

0

f ′σ(Wr) dW̃r

= s0 +

∫ t

0

σ(S̃r) dW̃r.

Thus, (1) is satisfied and S̃ is a local martingale under P̃.

We now give an important example where condition (H) is satisfied.

Example 3.3 Suppose σ(x) = xσ̃(x) with σ̃ ∈ C1(R) bounded and xσ̃′(x) bounded.

Both boundedness conditions are met, when σ̃ is constant for |x| sufficiently large.

Then σ′(x) = σ̃(x)+xσ̃′(x) is bounded and consequently (H) follows from Novikov’s

condition. In this situation the reference model is a risk neutral generalized Black-

Scholes model with stochastic volatility depending on the spot,

S̃t = s0 +

∫ t

0

σ̃(S̃r)S̃r dW̃r.

These so-called local volatility models were suggested by Dupire (1994) in order to

capture the implied volatility smile.

We conclude this section with an example on how to construct further models in

Mσ.

Example 3.4 Suppose W is a Brownian motion on (Ω,F , (Ft),P) and Y is a con-

tinuous process with zero quadratic variation independent of W which satisfies the

small ball condition

P
(
‖Y ‖∞ < ε

)
> 0.

For instance, Y could be a fractional Brownian motion with Hurst parameter bigger

than a half. Define St = fσ(Wt+Yt). Then (Ω,F , S, (Ft),P) belongs to Mσ. Indeed,

the quadratic variation of S is easily calculated by Example 2.3 and from the small

ball property of Y around zero and the independence one obtains (3). Observe that

by Itô’s formula

St = s0 +

∫ t

0

σ(Sr) d(W + Y )r +
1

2

∫ t

0

f ′σ(Wr + Yr)σ
′(fσ(Wr + Yr)) dr.
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More general drifts can be introduced by performing a Girsanov change of measure on

the Brownian motion only. (Note, the law of Y remains unchanged by the Girsanov

transformation due to independence.)

Remark 3.5 The introduction of time dependent local quadratic variation functions

σ(t, x) does not cause any difficulties, but makes the presentation more cumbersome.

4 A no-arbitrage result

We shall now derive a no-arbitrage result for strategies that depend in a deterministic

and smooth way on time, the spot price St and some additional economically relevant

factors such as e.g. the running maximum, minimum, and average of the stock.

We first specify some assumptions on the additional economic factors on which the

strategy may depend.

Definition 4.1 A mapping g : [0, T ]× Cσ,s0 → R is a hindsight factor, if

(i) g(t, η) = g(t, η̃) whenever η(s) = η̃(s) for all 0 ≤ s ≤ t,

(ii) g(·; η) is of bounded variation and continuous for every η ∈ Cσ,s0,

(iii) there is a constant K such that for every continuous function f

∣∣∣∣
∫ t

0

f(s)dg(s, η)−
∫ t

0

f(s)dg(s, η̃)

∣∣∣∣ ≤ K max
0≤r≤t

|f(r)| · ‖η − η̃‖∞. (4)

Property (i) is the natural assumption that the factors must not contain information

about the future stock prices. Properties (ii)–(iii) are technical assumptions which

we need since the forward integral is not continuous in terms of the integrands.

The running maximum, minimum, and average are denoted, respectively,

η∗(t) := max
s∈[0,t]

η(s),

η∗(t) := min
s∈[0,t]

η(s),

η̄(t) :=

∫ t

0

η(s) ds.

(We do not include the factor 1/t in the running average. This is just a matter of

convenience since one can always include the factor 1/t in the ‘strategy function’ ϕ

in (7).)
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Proposition 4.2 The running maximum, minimum, and average are hindsight fac-

tors.

Proof. Properties (i) and (ii) of Definition 4.1 are obviously satisfied for the running

maximum, minimum, and average. Moreover, property (iii) is trivial for the running

average. We now prove a somewhat stronger assertion than (iii) for the running

maximum. Suppose f, g, g̃ are continuous functions on [0, t] and define

I(t; f, g) =

∫ t

0

f(s) dg∗(s),

where g∗(s) = maxu∈[0,s] g(u). We shall show that

|I(t; f, g)− I(t; f, g̃)| ≤ 4 max
r∈[0,t]

|f(r)| max
r∈[0,t]

|g(r)− g̃(r)|. (5)

We first consider the case of non-negative f . Since

d(g∗ + g̃∗) ≥ d(g + g̃)∗,

we obtain for non-negative f the sub-additivity of I(t; f, ·):
I(t; f, g + g̃) ≤ I(t; f, g) + I(t; f, g̃).

Hence

I(t; f, g)− I(t; f, g̃) ≤ I(t; f, g − g̃). (6)

Using the Love-Young inequality (with sup-norm and total variation norm) and the

fact that the total variation of the running maximum is dominated by two times the

running maximum, we have for general f

|I(t; f, g)| ≤ max
r∈[0,t]

|f(r)|TV[0,t](g
∗)

≤ 2 max
r∈[0,t]

|f(r)| max
r∈[0,t]

|g(r)|.

Combining this with (6) the inequality (5) follows for non-negative f with constant

2 instead of 4. From (6) and noting I(t; f, g) = −I(t;−f, g) we get for non-positive

f

I(t; f, g)− I(t; f, g̃) ≤ I(t;−f, g̃ − g),

which yields (5) for non-positive f with constant 2 instead of 4. The general case

with constant 4 follows now from the linearity of I(t; ·, g) and the triangle inequality.

The analogous inequality of (5) for the running minimum can be straightforwardly

reduced to the case of the running maximum, since
∫ t

0

f(s) dg∗(s) = −
∫ t

0

f(s) d(−g)∗(s).
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Suppose hindsight factors g1, . . . , gm and a function ϕ : [0, T ]×R×Rm → R is given.

We consider strategies of the form

Φt = ϕ
(
t, St, g1(t, S), . . . , gm(t, S)

)
. (7)

Here Φt denotes the number of stocks held at time t by an investor. Hence, the

wealth process corresponding to the strategy Φ is

Vt(Φ, v0; S) = v0 +

∫ t

0

Φu dSu, (8)

where v0 ∈ R denotes the investor’s initial capital. (Recall, the stochastic integral

is defined as a limit of forward sums. Thus, this definition reflects the classical and

economically meaningful condition for a self-financing portfolio.)

We now prove a result on absence of arbitrage under the smoothness condition

ϕ ∈ C1([0, T ] × R × Rm)1. Recall that a strategy Φ is an arbitrage in the market

model (Ω,F , S, (Ft),P), if

VT (Φ, 0; S) ≥ 0 P− a.s. and P(VT (Φ, 0; S) > 0) > 0.

Theorem 4.3 Suppose the standing assumption (H) holds. Let (Ω,F , S, (Ft),P) ∈
Mσ and suppose Φ is of form (7) with ϕ ∈ C1([0, T ]×R×Rm). Moreover, assume

that Φ is nds-admissible2 in the classical sense, i.e. there is a constant a > 0 such

that for all t ∈ [0, T ] ∫ t

0

Φu dSu ≥ −a P− a.s.

Then Φ cannot be an arbitrage in the model (Ω,F , S, (Ft),P).

To prepare the proof we define an auxiliary wealth functional for τ ∈ [0, T ] by

v : [0, τ ]× Cσ,s0 × C1([0, τ ]× R× Rm) → R

as the Itô formula suggests:

v(t, η; ϕ) := u(t, η(t), g1(t; η), . . . , gm(t; η))

−
m∑

n=1

∫ t

0

∂

∂yn

u(r, η(r), g1(r; η), . . . , gm(r; η)) dgn(r; η)

−
∫ t

0

∂

∂t
u(r, η(r), g1(r; η), . . . , gm(r; η)) dr

−1

2

∫ t

0

∂

∂x
ϕ(r, η(r), g1(r; η), . . . , gm(r; η))σ2(η(r)) dr, (9)

1Of course, smoothness conditions can be relaxed to, say, [0, T ]× R+ × Rm
+ when one knows a

priori, that the stock and the hindsight factors are positive.
2nds stands for no-doubling-strategies
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where

u(t, x, y1, . . . , ym) =

∫ x

s0

ϕ(t, ξ, y1, . . . , ym) dξ. (10)

The next crucial lemma shows that v is a continuous wealth functional.

Lemma 4.4 Let 0 ≤ t ≤ τ ≤ T and ϕ ∈ C1([0, τ ]×R+×Rm). Suppose on 0 ≤ t ≤ τ

a strategy for (Ω,F , S, (Ft),P) ∈Mσ is given by Φt = ϕ(t, St, g1(t, S), . . . , gm(t, S)).

Then we have, for 0 ≤ t ≤ τ ,

Vt(Φ, v0; S) = v0 + v(t, S; ϕ) P− a.s.

Moreover, for all 0 ≤ t ≤ τ the functional v(t, ·; ϕ) is continuous in the supremum

norm.

Proof. Applying Itô’s formula to u given by (10) we obtain for 0 ≤ t ≤ τ that

∫ t

0

ΦudSu = v(t, S; ϕ) P− a.s.

Hence,

Vt(Φ, v0; S) = v0 + v(t, S; ϕ) P− a.s.

To prove continuity of v(t, ·; ϕ) let (ηn) ⊂ Cσ,s0 be a sequence which converges to

η ∈ Cσ,s0 in the sup-norm. Then ηn and η take values in a compact set A0 ⊂ R.

Hence, due to (4) applied to f = 1, there is a compact set A ⊂ R such that for all

0 ≤ j ≤ m, n ∈ N and 0 ≤ t ≤ T gj(t, ηn) and gj(t, η) take values in A. Moreover,

applying (4) again to f = 1 we see that

|gj(t, ηn)− gj(t, η)| ≤ K‖ηn − η‖∞. (11)

Thus, by the continuity of ϕ, (∂/∂x)ϕ, and (∂/∂t)u, the dominated convergence

theorem yields

u(Σ(t, ηn))−
∫ t

0

∂

∂t
u(Σ(r, ηn)) dr − 1

2

∫ t

0

∂

∂x
ϕ(Σ(r, ηn))σ2(ηn(r)) dr

→ u(Σ(t, η))−
∫ t

0

∂

∂t
u(Σ(r, η)) dr − 1

2

∫ t

0

∂

∂x
ϕ(Σ(r, η))σ2(η(r)) dr

where, for notational convenience,

Σ(t, η) = t, η(t), g1(t; η), . . . , gm(t; η).
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To prove convergence of the integrals with respect to the hindsight factors we de-

compose

∣∣∣∣
∫ t

0

∂

∂yj

u(Σ(r, ηn)) dgj(r; ηn)−
∫ t

0

∂

∂yj

u(Σ(r, η)) dgj(r; η)

∣∣∣∣

≤
∣∣∣∣
∫ t

0

∂

∂yj

u(Σ(r, η)) d(gj(r; η)− gj(r; ηn))

∣∣∣∣

+

∣∣∣∣
∫ t

0

{
∂

∂yj

u(Σ(r, ηn))− ∂

∂yj

u(Σ(r, η))

}
dgj(r; ηn)

∣∣∣∣ = (I) + (II).

By (4),

(I) ≤ K max
0≤r≤t

∣∣∣∣
∂

∂yj

u(Σ(r, η))

∣∣∣∣ ‖ηn − η‖∞ → 0.

Analogously,

(II) ≤ K max
0≤r≤t

∣∣∣∣
∂

∂yj

u(Σ(r, η))− ∂

∂yj

u(Σ(r, ηn))

∣∣∣∣ ‖ηn‖∞.

By (11), given δ > 0, there is an n0 such that for all n ≥ n0, 0 ≤ j ≤ m and

0 ≤ r ≤ T

|gj(r, ηn)− gj(r, η)| < δ.

Exploiting the uniform continuity of (∂/∂yj)u on the compact set [0, t] × A0 × Am

we deduce

max
0≤r≤t

∣∣∣∣
∂

∂yj

u(Σ(r, η))− ∂

∂yj

u(Σ(r, ηn))

∣∣∣∣ → 0.

Since ‖ηn‖∞ is bounded, (II) → 0.

We now proceed with the proof of Theorem 4.3.

Proof of Theorem 4.3. Let (Ω̃, F̃ , S̃, ˜(Ft), P̃) ∈Mσ be the reference model and

(Ω,F , S, (Ft),P) ∈Mσ be some model. Consider Φt = ϕ(t, St, g1(t, S), . . . , gm(t, S)),

with continuously differentiable ϕ as a strategy for the model (Ω,F , S, (Ft),P). Fur-

ther suppose the investor has initial capital zero and

VT (Φ, 0; S) ≥ 0 P− a.s. (12)

By Lemma 4.4

v(T, S; ϕ) = VT (Φ, 0; S) P− a.s.

By the small ball condition (3) and the continuity of v(T, ·, ϕ) we see that the

inequality (12) holds in the functional sense:

v(T, η; ϕ) ≥ 0

12



for all η ∈ Cσ,s0 . Indeed, otherwise v(T, ·; ϕ) would be negative in some ball in Cσ,s0

by continuity. Since all balls have positive P-measure by the small ball condition

(3), the assumption (12) would be violated.

We hence obtain

v(T, S̃; ϕ) ≥ 0 P̃− a.s.

Analogously, the nds-admissibilty of Φ implies for all t ≥ 0

v(t, S̃; ϕ) ≥ −a P̃− a.s.

Since P̃ itself is an equivalent local martingale measure for S̃, we may conclude from

the classical no-arbitrage theory that

v(T, S̃; ϕ) = 0 P̃− a.s.

Interchanging the roles of S̃ and S and applying the same argument as above yields

VT (Φ, 0; S) = 0 P− a.s.

Hence, Φ is not an arbitrage.

Remark 4.5 The most important ingredient for the proof of Theorem 4.3 is the ex-

istence of a continuous wealth functional v(t, ·; ϕ). This property remains unchanged

when ϕ is only piecewise smooth. Precisely suppose 0 = s0 < s1 < · · · < sJ = T and

ϕj : [sj−1, sj] × R × Rm × R → R are continuously differentiable in the first m + 2

variables and continuous in the last one. Then the no-arbitrage results holds true

for strategies of the form

Φt =
J∑

j=1

1(sj−1,sj ](t)ϕj

(
t, St, g1(t, S), . . . , gm(t, S), ξj(S)

)
,

where ξj : Cσ,s0 → R is continuous and ξj(η) depends on the segment {η(r); 0 ≤
r ≤ sj−1} only. Note the introduction of the functionals ξj allows dependence of the

strategy on the discretely sampled maximum, minimum, or average.

We also note that the nds-admissibilty can be relaxed to

∫ t

0

Φu dSu ≥ −a(t, St) P− a.s.

where a : [0, T ]× R→ R≥0 is continuous and
∫

Ω̃
supt∈[0,T ] |a(t, S̃t)|dP̃ < ∞.

13



5 Robust replication

In this section we discuss the robustness of hedges within a model class Mσ. Our

aim is to show that hedges for a large class of claims do not depend of the specific

model in Mσ as a functional of the stock. In particular we obtain that the initial

capital for such a hedge does not depend on the chosen model. In combination

with the no-arbitrage result (Theorem 4.3) this means that the fair price of those

contingent claims coincides for all models from Mσ.

We first motivate a slight enhancement of the class of allowed strategies. In the

standard Black-Scholes model the Black-Scholes PDE yields the hedge for a call

option with strike K and maturity T as a function ϕ(t, x) of time and spot. This

function fails to be continuous at t = T, x = K. More generally, hedges which are

obtained via PDEs often do not satisfy the smoothness condition at t = T . To

overcome this difficulty we suggest to enlarge the class of allowed strategies in the

following way: We relax the smoothness condition of ϕ to ϕ ∈ C1([0, T )×R×Rm,R).

The next lemma explains what happens at the terminal date t = T .

Lemma 5.1 Suppose Φ is of the form (7) with ϕ ∈ C1([0, T ) × R+ × Rm). Then

the following assertions are equivalent:

(i) For all (Ω,F , S, (Ft),P) ∈Mσ and all 0 ≤ t ≤ T the (improper) integral

∫ t

0

Φu dSu

exists.

(ii) There is a dense subset D ⊂ Cσ,s0 and a limiting wealth functional F : D → R
such that for all (Ω,F , S, (Ft),P) ∈ Mσ we have P(S ∈ D) = 1 and for all

η ∈ D we have

lim
t↑T

v(t, η; ϕ) = F (η).

Proof. Let ϕ ∈ C1([0, T ) × R+ × Rm). By Lemma 4.4 we have for every model

(Ω,F , S, (Ft),P) ∈Mσ and all 0 ≤ t < T that

∫ t

0

ϕ(r, Sr, g1(r, S), . . . , gm(r, S)) dSr = v(t, S; ϕ). (13)

As we always choose continuous modifications of the forward integrals the above

identity holds up to P-indistinguishability. Hence, for every model (Ω,F , S, (Ft),P) ∈
Mσ we may choose a set Ω1 such that (13) holds on Ω1 and P(Ω1) = 1. Note also,

14



that by (13) assertion (i) is equivalent to the existence of the corresponding improper

forward integrals at t = T .

Suppose now existence of a limiting functional, i.e. (ii). For a model (Ω,F , S, (Ft),P) ∈
Mσ set Ω2 = Ω1 ∩ S−1(D). Then Ω2 has full P-measure and for each ω ∈ Ω2 we

have

lim
t↑T

(∫ t

0

ϕ(r, Sr, g1(r, S), . . . , gm(r, S)) dSr

)
(ω) = lim

t↑T
v(t, S(ω); ϕ) = F (ω).

This means that the integral
∫ T

0
ϕ(r, Sr, g1(r, S), . . . , gm(r, S)) dSr exists in the im-

proper forward sense in the model (Ω,F , S, (Ft),P) ∈Mσ, The claim (i) follows.

We now suppose existence of the forward integrals, i.e. (i), and construct a limiting

functional. In view of (13), given a model (Ω,F , S, (Ft),P) ∈ Mσ we find a set Ω3

of full P-measure such that on Ω3

∫ T

0

ϕ(r, Sr, g1(r, S), . . . , gm(r, S)) dSr

exists and (13) holds. Define

D =
⋃

(Ω,F ,S,(Ft),P)∈Mσ

S(Ω3).

For η ∈ D choose a model (Ω,F , S, (Ft),P) ∈Mσ such that η = S(ω) with ω ∈ Ω3

and define

F (η) =

(∫ T

0

ϕ(r, Sr, g1(r, S), . . . , gm(r, S)) dSr

)
(ω).

Note, F is well-defined due to (13) and D is a dense set due to the small ball

condition (3).

The previous lemma characterizes the minimal assumption of existence of
∫ ·

0
Φu dSu

in terms of existence of a limiting functional of v(t, ·; ϕ) as t ↑ T . To define allowed

strategies we will strengthen this minimal requirement by imposing a continuity

assumption on the limiting functional.

Definition 5.2 A strategy Φ is allowed for the model class Mσ if

(A1) there is a finite number of hindsight variables g1, . . . , gm and a function ϕ ∈
C1([0, T )× R× Rm) such that

Φt = ϕ(t, St, g1(t, S), . . . , gm(t, S)).

15



(A2) There is a dense subset D ⊂ Cσ,s0 and a functional F : D → R such that for

all models (Ω,F , S, (Ft),P) ∈ Mσ we have P(S ∈ D) = 1 and for all η ∈ D

we have

lim
t↑T

v(t, η; ϕ) = F (η).

Moreover, we assume that F is continuous in D.

(A3) There is a constant a > 0 such that for all 0 ≤ t ≤ T

∫ t

0

Φu dSu ≥ −a P− a.s.

Recall that (A3) is the classical concept of nds-admissibility which is typically im-

posed to exclude doubling strategies. Also, if (A3) holds for one model then it holds

for all models (given (A1) and (A2)), as was shown in the proof of Theorem 4.3.

Also note that in (A2) we do not assume that F can be continuously extended to

the whole space Cσ,s0 .

Obviously (A2) holds, if ϕ ∈ C1([0, T ] × R × Rm). Moreover, Theorem 4.3 carries

over to allowed strategies without any additional difficulties:

Theorem 5.3 Suppose condition (H). Then every model in Mσ is free of arbitrage

with allowed strategies.

The next theorem states that hedges are robust as functionals of the stock within

the class Mσ.

Theorem 5.4 Suppose condition (H) holds and G is a continuous functional on

Cσ,s0 such that G(S̃) is replicable P̃-a.s. in the reference model (Ω̃, F̃ , S̃, ˜(Ft), P̃) ∈
Mσ with an allowed strategy

Φ̃∗
t = ϕ∗(t, S̃t, g1(t, S̃), . . . , gm(t, S̃))

and initial capital v0. Then G(S) is replicable P-a.s. in every model (Ω,F , S, (Ft),P) ∈
Mσ with the same initial capital v0 and the replicating allowed strategy is given by

Φ∗
t = ϕ∗(t, St, g1(t, S), . . . , gm(t, S)),

i.e. replicating allowed strategies are, as functionals of the stock prices, independent

of the model.

The converse also holds, i.e. any ‘functional’ hedge ϕ∗ in some model (Ω,F , S, (Ft),P) ∈
Mσ is also a ‘functional’ hedge for the reference model.
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Proof. Given ϕ∗ let F be the limiting wealth functional on a dense set D as in

assumption (A2). Note that by Lemma 4.4

v0 + F (S̃) = VT (Φ̃∗, v0; S̃) = G(S̃), P-a.s.

Hence,

v0 + F (S̃(ω̃)) = G(S̃(ω̃))

for all ω̃ from a set Ω̃1 of full P̃-measure such that S̃(Ω̃1) ⊂ D. Hence, F = G− v0

on D by the continuity of G and (A2). Again by Lemma 4.4, VT (Φ∗, v0; S) =

v0 + F (S) = G(S) P-a.s.

For the converse one simply interchanges the roles of S̃ and S.

Remark 5.5 From the previous theorem and the classical no-arbitrage theory we

may derive the following result: With the notation from the previous theorem the

initial capital v0 satisfies the inequality

v0 ≥ EP̃[G(S̃)].

Moreover identity holds, if and only if v(t, S̃; ϕ∗) is a martingale under P̃. In the

latter case EP̃[G(S̃)] is the fair price (by no-arbitrage arguments) relative to the class

of allowed strategies of the contingent claim G(S) for all models (Ω,F , S, (Ft),P) ∈
Mσ.

We now give some sufficient conditions for hedgeability of some relevant options via

PDEs. This PDE approach to robust replication was first considered in Schoenmak-

ers and Kloeden (1999) for European options.

Example 5.6 Suppose G ∈ C(R4). We define an option by plugging the time-T -

values of the spot, the running average, maximum, and minimum into the arguments

of G. To construct robust hedges for this type of option let Γ1(t, y2, y3)∪Γ2(t, y2, y3) =

{(x, y1); x ≤ y2, y1 ≤ ty2} ∪ {(x, y1); x ≥ y3, y1 ≥ ty3}. Suppose for 0 ≤ t < T ,

0 ≤ y3 ≤ s0 ≤ y2, and (x, y1) ∈ Γ1(t, y2, y3) ∪ Γ2(t, y2, y3) the PDE

∂

∂t
U(t, x, y1, y2, y3) = −σ(x)

2

∂2

∂x2
U(t, x, y1, y2, y3)

−x
∂

∂y1

U(t, x, y1, y2, y3)

U(T, x, y1, y2, y3) = G(x, y1, y2, y3)

∂

∂y2

U(t, ·, ·, y2, y3)|∂Γ1(t,y1,y2) = 0

∂

∂y3

U(t, ·, ·, y2, y3)|∂Γ2(t,y1,y2) = 0

17



has a solution U ∈ C1,2,1([0, T )× R4) ∩ C([0, T ]× R4) which is bounded from below,

i.e. U ≥ −a for some a ≥ 0. Let (Ω,F , S, (Ft),P) ∈ Mσ. By Itô’s formula, for

0 ≤ t0 ≤ t ≤ T , P-almost surely,

U(t, St, S̄t, S
∗
t , S∗,t) = U(t, St0 , S̄t0 , S

∗
t0
, S∗,t0)

+

∫ t

t0

∂

∂x
U(r, Sr, S̄r, S

∗
r , S∗,r)dSr. (14)

(Here, we used that ∫ t

t0

∂

∂y2

U(r, Sr, S̄r, S
∗
r , S∗,r)dS∗r = 0

by the boundary condition and similarly for the integral with respect to the mini-

mum.) Define Φt = ∂
∂x

U(t, St, S̄t, S
∗
t , S∗,t). In particular we obtain by the usual

continuity argument for η ∈ Cσ,s0

U(t, η(t), η̄(t), η∗(t), η∗(t))− U(0, s0, 0, s0, s0) = v(t, η;
∂

∂x
U).

This shows, Φt is an allowed strategy. Moreover formula (14) with t = T shows that

Φt is a hedge for G(St, S̄t, S
∗
t , S∗,t).

We note, the above PDE has two difficulties: (i) it is degenerate parabolic, since

the second derivative in y1-direction does not appear; (ii) the boundary conditions

in terms of the derivatives in direction of the parameters y2 and y3 are a rather

unusual. Nonetheless there are some well known existence results for practically

important exotic options such as lookback options (which depend on the maximum

or minimum only) and Asian options (which depend on the average only). Of course

European options with continuous payoff functions are also covered by this PDE

approach. For details we refer to Willmott (1998).

Remark 5.7 Theorem 5.4 requires that the option is continuous as a function of

the paths. The most prominent option which fails to satisfy this assumption is the

digital option G(η) = 1[K,∞)(η(T )) with strike K. A straightforward modification of

the argument in Theorem 5.4 shows that hedges for the digital option are robust in

any subclass of Mσ which contains only models that satisfy P(ST = K) = 0.

6 Approximative arbitrage exemplified

The basic idea of the no-arbitrage result in Theorem 4.3 was to extend absence of

arbitrage in the reference model by means of the continuous wealth functional. We

will now show that there can exist an approximative arbitrage in some models in
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Mσ, which fail to be an approximative arbitrage in the reference model. Our notion

of approximative arbitrage is different from the notion of a free lunch with vanishing

risk. However it admits to construct a very intuitive example in the context of mixed

fractional Black-Scholes model.

Example 6.1 Suppose that σ(x) = σx. Hence, the reference model (Ω̃, F̃ , S̃, ˜(Ft), P̃)

is the risk neutral Black-Scholes model. Now, the mixed fractional Black-Scholes

model

dSt = σSt dXt

where Xt = Wt + Zt is a sum of an independent Brownian motion and a frac-

tional Brownian motion belongs to same class Mσ if the Hurst parameter H of the

fractional Brownian motion satisfies H ∈ (1/2, 3/4).

We define a sequence of strategies via the functionals

ϕn(t, η) = n2H−1

n∑

k=1

1(T k−1
n

,T k
n ](t)

η̃(T k−1
n

)− η̃(T k−2
n

)

η(t)
,

with η̃(t) = log(η(t))/σ − 1/2σ2t which fits into the context of Remark 4.5.

Write

Stϕ
n(t, S) = n2H−1

n∑

k=1

1(T k−1
n

,T k
n ](t)

(
WT k

n
−WT k−1

n

)

+n2H−1

n∑

k=1

1(T k−1
n

,T k
n ](t)

(
ZT k

n
− ZT k−1

n

)

=: Kn
t + Ln

t .

Since H ∈ (1
2
, 3

4
), Stϕ

n(t, S) converges uniformly to zero in probability with respect to

P. (Indeed, this convergence holds for Kn
t and Ln

t ). Hence the risk of the strategies

Φn
t = ϕn(t, S) becomes smaller and smaller in the sense that the number of risky

assets held by the investor tends to zero.

We now decompose

∫ T

0

Φn
t dSt =

∫ T

0

Kn
t dWt +

∫ T

0

Ln
t dWt +

∫ T

0

Kn
t dZt +

∫ T

0

Ln
t dZt.

The first and the second term go to zero in probability by Theorem II.11 in Protter

(2004). The third terms converges to zero in probability, since, by the independence

of W and Z,

Law

(∫ T

0

Kn
t dZt

∣∣∣P
)

= Law

(∫ T

0

Ln
t dWt

∣∣∣P
)

.

19



However, for the fourth term, we obtain,

∫ T

0

Ln
s dZs = n2H−1

n−1∑

k=2

(
ZT k+1

n
− ZT k

n

)(
ZT k

n
− ZT k−1

n

)

→ T 2H(22H−1 − 1)

in L1(P). Hence, the limiting wealth of the strategies Φn
t is strictly positive, namely,

lim
n→∞

∫ T

0

Φn
t dSt = T 2H(22H−1 − 1)

in probability. We consider such sequence an approximative arbitrage.

Of course, the corresponding sequence of strategies does not constitute an approxi-

mative arbitrage in the reference model. As above, we obtain that

S̃tϕ
n(t, S̃) = n2H−1

n∑

k=1

1(T k−1
n

,T k
n ](t)

(
W̃T k

n
− W̃T k−1

n

)

converges to zero uniformly in probability with respect to P̃. Hence, with Φ̃n
t =

ϕn(t, S̃),

lim
n→∞

∫ t

0

Φ̃n
t dS̃t = lim

n→∞

∫ t

0

S̃tϕ
n(t, S̃) dW̃t = 0

as the Itô integral is continuous in terms of the integrand.

Remark 6.2 The construction of the approximative arbitrage in the mixed frac-

tional Black-Scholes model above follows an easy intuition. Due to the memory of

the fractional Brownian motion the stock tends to increase, if it already increased

in the previous time period. How to exploit this intuition is made precise above.

The example also shows that integrals with respect to the mixed fractional Brownian

motion with H ∈ (1/2, 3/4) are not continuous in terms of the integrands. Hence,

it may be considered a simple proof that mixed fractional Brownian motion is not

a semimartingale for this range of the Hurst parameter. The reader is invited to

compare our argument with the proof by Cheridito (2001).

7 Concluding discussion

We have seen that the no arbitrage replication prices of options depend essentially

only on the quadratic variation. Now, the quadratic variation is a path property

that does not tell much about the probabilistic structure. Because of this we can

incorporate many stylized facts to the model without changing the prices of the

options.
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Next we illustrate how to incorporate some stylized facts to the classical Black-

Scholes model by using mixed models

dSt = St dXt, t ∈ [0, T ].

Consider first a generalized mixed fractional Black-Scholes model: Xt = σWt + δZt,

where σ, δ > 0 and Z is a fractional Brownian motion with Hurst index H ∈ (1/2, 1).

If we assume that (W,Z) is jointly Gaussian then the small ball property (3) is

satisfied. Moreover, since Z has zero quadratic variation this model belongs to the

same class Mσ as the classical Black-Scholes model. If we now take W and Z to be

independent then

E [X1(Xn+1 −Xn)] ∼ H(2H − 1)δ2 · n2H−2.

So, the log-returns are long-range dependent. We can go even further: We can

choose any correlation structure for the jointly Gaussian pair (W,Z) and we are still

in the same model class Mσ as the classical Black-Scholes model. So, it seems that

the second order structure of the stock price process is quite irrelevant in option

pricing. (It was the great result of Black and Scholes that the first order structure

is irrelevant in option pricing.) Next we show how to incorporate heavy tails. Let

Ct =
∞∑

k=1

Uk1{τk≤t}

be a compound Poisson process with unit density and positive jumps that are heavy

tailed:

P(Uk ≥ x) ∼ x−α

for some α > 0. Let Y then be the integrated compound Poisson process:

Yt =

∫ t

0

Cs ds

and consider the model Xt = σWt − Yt, where Y is independent of W . Since Y is

continuous with zero quadratic variation and P(YT = 0) > 0 this model belongs to

the same class Mσ as the classical Black-Scholes model. But this is a model with

heavy tailed log-returns. Indeed, since Y is independent of W it is enough to show

that Y has heavy tailed increments:

P(Yt+∆t − Yt ≥ x) = P(Y∆t ≥ x)

≥ P(Y∆t ≥ x, τ1 < ∆t/2, τ2 > ∆t)

≥ P(U1 · t/2 ≥ x, τ1 < ∆t/2, τ2 > ∆t)

= c(∆t)P(U1 ≥ x · 2/∆t)

∼ c(∆t)(∆t/2)α · x−α.
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So, the increments of the left tail follow the power law. Finally, one can combine the

long-range dependence and heavy tails of the log-returns by putting Xt = σWt +

δZt − Yt with independent W , Z and Y .

We end this discussion by noting that the pathwise quadratic variation of the log-

returns need not be their standard deviation. Indeed, this is obvious from the mixed

fractional Black-Scholes model. So, one should not be surprised if the historical and

implied volatility do not agree: The former is an estimate of the variance and the

latter is an estimate of the quadratic variation.
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