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On approximate approximations using Gaussian kernels 

VLADIMIR MAZ'YA 
Department of Mathematics, Linkoping University, 

S-581 83 Linkoping, Sweden 

AND 

GUNTHER SCHMIDT 
Weierstrass Institute for Applied Analysis and Stochastics, 

Mohrenstr. 39, D-10117 Berlin, Germany 

This paper discusses quasi-interpolation and interpolation with Gaus-
sians from a new point of view concerning accuracy in numerical com-
putations. Estimates are obtained showing a high order approximation 
up to some saturation error negligible in numerical applications. The 
construction of local high order quasi-interpolation formulas is given. 

1. Introduction 
In Maz'ya (1991), (1994) a new approximation method was proposed mainly directed to the 
numerical solution of operator equations. This method is characterised by a very accurate 
approximation in a certain range relevant for numerical computations, but in general the 
approximations do not converge. For that reason such processes were called approximate 
approximations (see also Maz'ya and Schmidt (1994)). 

The present paper is devoted to an application of this method to the approximation of 
multivariate functions using Gaussian kernels. We study some examples to approximate 
functions u in Rn by sums of the form 

( Ix - hml 2
) uh(x) := v-n/ 2 L: Um exp - 1Jh2 

mEZ"" 
(1.1) 

with two positive parameters, "small" hand fixed "large" V, and certain scalars Um depending 
on u. One of the main results can be described as follows. 

Let N = 2M + 2 be an even natural number. For any given e > 0 there exist 1J > 0 and 
n . 

a mask {ck' k = (ki, ... , kn) E zn' L lk1 I ~ M} such that the quasi-interpolation formula 
j=l 

(1.1) with Um = Eck u(h(m - k)) provides for any function u E CN(Rn) n W!(Rn) the 
estimate 

(1.2) 

with some constant cN not depending on u. Roughly spoken, linear combinations of the hzn_ 
shifts of the Gaussian kernel exp(-h-2IJ- 1 1xl 2 ) approximate with arbitrary order O(hN), but 
only for all h greater than some lOwer bound h0 • If h0 > h ~ 0 then 

uh(x) - u(x) = u(x) L: exp(-?r27Jlvl 2 ) e 
2~i (x, v) + O(h) , 

vEZ""\{O} 
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i.e. under the assumption that 1J is fixed the quasi-interpolation does not converge. 
The idea to consider such non-converging approximation processes comes from numerical 

applications providing always some inaccuracies. For example, if 1J is chosen such that c is 
smaller than the machine precision then ( 1.1) performs like a usual high order approximation 
process. But additionally and in contrast to other approximations, formulas of the from 
(1.1) are easy to implement and give the possibility to determine analytically the action of 
various important differential and integral operators, which is very significant especially in 
the multivariate case (see Maz'ya (1994)). 

The main purpose of our paper is to construct quasi-interpolation formulas providing a 
prescribed approximation order and to analyse the saturation error c. In Sect. 2 we obtain 
explicit error expansions of quasi-interpolation with rapidly decaying kernels for functions 
from the Sobolev space W~(Rn). 

Based on a result on multivariate polynomial interpolation in Sect. 3 we construct the indi-
cated quasi-interpolants with Gaussians, show that these formulas are optimal with respect 
to the number of mask elements and obtain estimates of the approximation error. 

In Sect. 4 we derive error estimates for the interpolation with formula ( 1.1) to classes of 
functions which are characterised by conditions on the Fourier transform. In particular, the 
interpolating sum (1.1) approximates a given function u.satisfying Fu(..X) exp(al..XI) E L1(Rn) 
with the order 0( exp( -a/2h)) up to the saturation error ~ 4n exp( -7r21J) . 

The approximation with Gaussian kernels exp (-lxl 2 ) is often mentioned in the literature 
and has been studied recently in connection with radial-basis functions and principal shift-
invariant spaces. It is well known that no linear combination of translates of this generating 
function reproduces polynomial. This in fact causes the saturation errors. The underlying 
idea of our research is, that these errors can be made arbitrarily small since the kernels 
exp (-'D- 1 lxl 2) reproduce polynomials very accurate. 

Let us mention some results concerning the approximation with Gaussians. In Buhmann 
(1990) the interpolation problem with sums of the form (1.1) is considered. Since the poly-
nomial reproduction is absent the author concludes that the interpolating functions cannot 
yield good convergence results. However, if one looks from the point of view of practical 
applications then the Gaussian kernels show remarkable approximation results. For instance, 
already the simple formula 

1 ~ ( lx-hml 2
) ~ L; u(hm) exp - 3h2 

mEZ 3 

(1.3) 

provides in R 3 the approximation order O(h2 ) modulo a saturation error which is bounded 
pointwise by 

8.303 · 10-13 • lu(x)I + 2.609 · 10- 12 • h · t I Bu(x) I · 
i=l 8xi 

Higher order approximations with negligible saturation errors and their application in nume-
rical methods were considered in Maz'ya (1991), (1994). In particular it was shown that the 
q uasi-interpolant 

(1J7r)-n/2 ~ u(h ·) L(n/2)(- Ix - hml
2

) (- Ix - hml
2

) 
L.J m M 1Jh2 exp 1Jh2 

mEZ"" 

approximates a smooth function u with the order O(h2M+2) plus some small saturation error, 
where L';:) denotes the generalized Laguerre polynomial. A detailed analysis concerning 
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the errors of approximate approximations with respect to different norms for the quasi-
interpolation with rapidly decreasing kernels and construction methods for such kernels can 
be found in Maz'ya and Schmidt (1994). 

The estimate (1.2) indicates that it is possible to obtain approximations with Gaussian 
kernels converging for all h ~ 0 if one choose the parameter V depending on h. This was 
studied in some papers recently. In Wu and Schaback (1993) interpolants of the form 

L Um exp (- Ix -;ml2) 
m 

are considered, where the points Xm are allowed to be irregularly distributed over a domain 
n, and de Boor and Ron (1992) deals with best approximants of the forms 

'°"' ( Ix - hml
2

) L.J Um exp - V h . 
mEZ"' 

It is shown that the corresponding expressions approximate smooth functions with arbitra-
rily high order. In the book of Stenger(1993), Section 5.8, a one-dimensional approximation 
formula similar to (1.3) is considered, where V = h2(f3-l) , 0 < (3 < 1. It is proved that this 
quasi-interpolant converges for continuous functions. In Beatson and Light (1992) quasi-
interpolants of the form (1.1) with variable V are analysed providing high order approxima-
tion. In particular a tensor product construction of a quasi-interpolation formula is given 
converging to u E CN(Rn) n W~(Rn) with the order O(hNllnhlN) if V(h) = N llnhl/71" 2 • 

In all of these approaches the use of finer grids enlarge the number of summands necessary 
to compute the approximate value at a fixed point x within a given tolerance. This is in 
contrast to the case of fixed 'D, which we prefer, because this is advantageous in numerical 
applications and reflects the local character of the quasi-interpolants constructed in Sect. 3. 

2. Preliminaries 
Here we prove some results for use in later analysis. First we consider for fixed V > 0 the 

. behaviour of the quasi-interpolation formula 

-n/2 '°"' ( ) (x - hm) uh(x) := V 6 u hm Tf .j15 , 
mEZ"' 'Dh 

(2.1) 

where u is a bounded function and the continuous generating function T/ satisfies the decay 
condition 

IT/(t)I ~A (l + ltl)-N-n-6 , t E Rn, (2.2) 

for some natural number N and positive constants A and 8. 
Additionally we suppose that T/ is subjected to the moment condition 

j Tf(t)dt = 1, j to:T/(t)dt = 0, Va, 1 ~la.I< N. (2.3) 
R.,. R.,. 

Here and henceforth we use the notations: 
Let x = (xi, ... , xn) E Rn and a. = (ai, .. ., an) E Z~0 a multiindex. We denote la.I 
al+···+ an, Xo: = xr1 

• • ·X~.,., a!= al!'· ·an!, 
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Fork= (ki, ... , kn) E zn we define the multiindex e(k) := (lk1I, ... , lknl) E Z~0 • The usual 
scalar product in Rn is denoted by (x, y) and lxl = (x, x)1l 2. With the abbreviation 

e.:\(x) := e211"i(x,.:\) 

the Fourier transform of an L1-function is defined by 

:Fcp(>..) = j cp(x) e.:\(-x) dx. 
R"" 

Lemma 2.1 Suppose that "I satisfies (2.2), (2.3) and for given 'D > 0 the Fourier transforms 
of t°''TJ(t) are such that 

(2.4) 

Then for any u E CN(Rn) n W~(Rn) it holds 

N-1 8°' ( ) 
uh(x) - u(x) = Rh(x) + L (-v'Vh)lal u,x L :F(t°''TJ(t))(v'Vv) e..,(~), 

jaj=O a. vEZ""\{O} 

where 

IRh(x)I ~ ( v'1Jh)N L Pa ll8°'ullLoo(R"") (2.5) 
lal=N 

and 

Proof. Denoting 

1 

Ua(x,y) := N j sN- 1 8°'u(sx+ (1- s)y)ds 
0 

from the Taylor expansion of u E CN(Rn) 

N-1 ( ) ( ) y x°' y x°' u(y) = L - 1 8°'u(x) + L - 1 Ua(x,y) 
I I a. a. a =O lal=N 

(2.6) 

we obtain the representation 

Since the series 
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converge absolutely in view of (2.4) the Poisson summation formula 

holds (cf. Stein and Weiss (1971)). Using the moment condition (2.3) and the estimate 

the assertion follows immediately. D 
Let us formulate an estimate showing the local character of the quasi-interpolation if 1J is 

fixed. By B(x, K) we denote the closed ball with radius K centered at the point x. In view of 
(2.2) for any 1J > 0 we can find K = K(1J) such that 

where we set 

C:a(71,1J) := L jF(t0 77(t))(v'vv)j. 
vez~\{O} 

Lemma 2.2 (Maz'ya and Schmidt (1994)) Let u E CN(O) in some domain n c Rn and,,, 
is as in Lemma 2.1. Then for any x inside n such that B(x, Kh) c n the estimate 

is valid, where the constant c N depends only on N and n. 

In Section 3 we employ that the matrix (/3 2 cx)~l,l/3l=O , a, /3 E Z~0 , is nonsingular. This 
follows from a general result of Hakopian which we now formulate. 
A set of multiindeces J C Z'; 0 is said to be normal if a E J and /3 ~ a imply /3 E J. The 
linear space of n-variate polynomials associated with J we denote by 

P1 =span {xcx : a E J}. 

Further, for 1 ~ j ~ n let be given sequences Ti = {tj,Z}bo of distinct real numbers. We 
introduce the lattice T,, determined by the sequences T; and J C Z~0 : 

Theorem 2.1 (Hakopian (1983)) Let J C Z>o be a normal set. .Then each polynomial 
p E P 1 is uniquely determined by its values on the lattice Ti. 
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3. Formulas for high order convergence 
Let us first consider the case that in (2.1) 

Then this generating function satisfies the moment condition for N = 2 and we get from 
Lemma 2.1 

lu(x) - (1rvi-n/2 :E u(hm) exp (- Ix ;z;n12

) I 
mEZ"" 

S:(Vvh)2 L Pall8aullc(R"") + lu(x)I L exp(-1J7r2lvl2) 
lal=2 vEZ"'\{O} 

+ 1Jh7r L l8au(x)I L Iva! exp(-1J7r2lvl2). 
lal=l vEZ"'\{O} 

Therefore, if h --> 0 then uh does not converge to u, i.e. uh does not approximate u in the 
usual sense. On the other hand, since exp( -7r 2 ) = 0.51723 ... · 10-4 the factors 

L exp(-1J7r2lvl2) and 1J7r L Iva! exp(-1J7r2lvl 2
), lo:I = 1 , 

vEZ"'\{O} vEZ"' 

are for 1J = 2 or 1J = 4 comparable with the machine accuracy in single and double pre-
cision floating point arithmetic, respectively. Hence, for our concrete example the quasi-
interpolation (2.1) behaves in numerical calculations like a usual second order approximation, 
if 1J is appropriate chosen. 

The aim of this section is to construct approximate approximations generated by Gaussian 
kernels providing a prescribed approximation order with controlled saturation errors. To this 
end we form the generating function T/ as a linear combination of translates of the Gaussian 
kernels so that the moment condition holds for large N. In the class of functions symmetric 
in each variable, i.e. 

ry(xi, ... ,x;, ... ,xn) = ry(x 11 ••• ,-x;,··· ,xn), j = 1, ... ,n, (3.1) 

we will give the function with "minimal support". From (3.1) it is clear that for N = 2M + 2 
the new generating function must be subjected to the conditions 

j ry(t) dt = 1, j t 2ary(t) dt = o, Vo., 1 5: lo.I 5: M. 
R"' R"' 

Lemma 3.3 For any M ~ 0 there exist uniquely determined coefficients ck, k E zn with 
n 

I~ ( k) I = L I k; I 5: M, such that the generating function 
j=l 

TJ( x) = L Ck exp ( - Ix - ~ n. 
le{k)I S.M V 1J 

satisfies (3.1) and the moment condition (2.3) with N = 2M + 2. 

Proof. From (3.2) we see that 

Fry(>..)= 7rn/2 exp(-7r2IAl2) L ck ek (- ~) · 
le(k)IS.M V 1J 
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Hence, if a trigonometric polynomial 

(3.3) 

satisfies 

(3.4) 

then obviously 

i.e. 71 is the required function. 
To find this polynomial we use that 

8"' exp( 71"21~12) l>.=o = { (2?r )201/31 Q I'(f3; +.1/2) ' a = 2/3 ' 
, otherwise , 

(3.5) 

with f3 = ({31 , •.• , f3n) E Z~0 • Therefore it is possible to seek PM(,\) in the form 

n 27r 
PM(,\)= L a13 IT cos r.:n f3;>..; , /3 E Z~0 , 

lf315M i=l V V 
(3.6) 

From (3.4) and (3.5) we obtain the system of linear equations 
n 

L a13/32°' = 7["-n(-V)lal IT r(a:; + 1/2) , 0::; lal ::; M. (3.7) 
lf315M j=l 

From Theorem 2.1 we know that the matrix (/32°')~l.lf3l=O, a,/3 E Z~0 , is nonsingular. Thus 
there exists a unique solution af3 , l/31 ::; M, of this system. Nate that 

where ""(/3) is the number of nonzero components of f3. Therefore the solution of (3. 7) provides 
the required generating function 

71(x) = :E rit(k) ae(k) exp (- Ix - ~i2) . 
le(k)l5M V15 

(3.8) 

It remains to show that PM(,\) is the unique trigonometric polynomial of the form (3.3) 
satisfying (3.4) and (3.1). Suppose that there exists 

PM(,\)= L ckek( ~), 
l€(k)l$M vV 

which is symmetric in each variable >..i and such that 

( 4?r2) !al 
82°' PM(O) = - 1) L ck k 2°' = 0' 0::; !al ::; M. 

1€(k)l5M 
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As before we get from Theorem 2.1 that 

L ck = o , r; f3 , o ~ 1!31 ~ M . 
e(k)=/3 

But the symmetry of PM(>i) implies that 

which proves that (3.8) is uniquely determined. 0 

Remark: It can be easily seen, that the solution a13 of (3.7) is independent of any permutation 
a({3) of the components of the multiindex {3. Therefore the generating function (3.8) can be 
written in the form 

Now we consider the saturation error provided by the formula (2.1) if the generating function 
(3.8) is used. 

Lemma 3.4 For any multiindex a, lal < N = 2M + 2, and v E zn it holds 

(3.9) 

Proof. Since 

the periodicity of PM and the equalities (3.4) imply 

aa:Fry(v'vv) = 7rn/2 L a! a/3PM(v15v)aa-,(3exp(-1r2IAl 2)1 
,l35_a. {3! (a - {3)! >.=./Vv 

= 7rn/2 L a! a.a PA(O) aa.-,(3 exp(-7r2IAl 2)1 
,B5_a {3! (a - {3)! >.=./Vv 

= L I a! ,a.a exp(7r21Al2)1 aa.-,(3 exp(-7r21>il2)1 . 
/35.a {3. ( Q - {3). >.=O >.=./Vv 

In view of (3.5) we obtain 

a2,(3 exp(7r21>il2)1>.=0 7r21/31 
(2{3)! = 73! ' 

which leads to the equality 

Now we use the identity 

1 [m/2] 1 ( d )m-2j 1 
2m I: ·I ( - 2 ')I -d exp(-y2) = --, ym exp(-y2) 

i=O J. m J . y m. 
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to deduce 

~ a! 1 aa.-2{3 ( 21.x12) 
2'fta. ,8! (a - 2,8)! 7rla.l-21/31 exp -7r 

n a·' 1 1 ( d )ai-2!3i - ( )la.I IT ---1.:... ~ - ( 2 2 - 2r. . 2ai LI f3·! (a:· - 2f.?·)! 7rai-2f3i dA.· exp -7r \) 
J=l 2f3;'5;a; J J fJJ J 

n 

= (27r)la.I Il(-lt'(7r"\t' exp(-7r2.AJ) = (27r)la.I (-7r.X)a.exp(-7r2l.Xl2). 
j=l 

Since 

( 
· ) la.I 

F(t 0 77(t))(vVv) = 2~ 8°F71(vVv) 

the assertion is proved. D 

Using the notations introduced in the proof of Lemma 3.3 we can formulate 

Theorem 3.2 Let M ~ 0 be a natural number, N = 2M + 2 and set for fixed 1) 

u~ := :E rit(k) ae(k) u(h(m - k)), 
le(k)l5M 

(3.10) 

where ae(k) is the solution of the system (3.7). There exist positive constants p0 , lal = N, 
such that for any u E CN(Rn) n W!(Rn) and all h > 0 the estimate 

is valid. 

Proof. From Lemmas 2.1, 3.3 and 3A we derive that the quasi-interpolant 

· (x - hm) uh(x) :=v-n/2 :E u(hm) 77 
mez~ ./15h 

( Ix - hml 2
) =1J-nl 2 L exp - 2 L rit(k) ae(k) u( h( m - k)) 

mez~ 1Jh le(k)l5M 

satisfies 

where Rh is bounded by (2.5) and 

II 

v-n/2 
1 

(. - m)a. ( I· -m - kl 2
) 111 

Pa. = ~ L '15 L rit(k)ae(k) exp - 1) L (R~). 
. mez~ V V le(k)l5M 00 

D 
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Remark: It is obvious that any trigonometric polynomial P(A) of period Vf5 satisfying the 
equations ( 3 .4) can be used to construct a generating function by 

such that the assertion of the previous theorem holds. But from Lemma 3.3 follows that 
formula (3.10) gives the quasi-interpolant depending on the minimal number 

L 2it(/3) = t ( M ·) (~) 2n-j 
l/315M j=max(n-M,O) n - J J 

of function values u(h(m - k)), l~(k)I ~ M. The quasi-interpolant constructed in Beatson 
and Light {1992) as tensor product of one-dimensional formulas depends on the values of u 
at (2M + 1r grid points. 

Another advantage of the quasi-interpolant given by (3.10) comes from the fixed parameter 
1J. Since the coefficients ae(k) solve the system (3.7) they depend on 1J but not on h. Hence, 
using the previously determined numbers ae(k) we can obtain high order approximations for 
different h, which is impossible in the case of 1J varying together with h. 

4. Interpolation with Gaussian kernels 
Here we consider briefly some error estimates for the interpolation with formula ( 1.1) at the 
lattice {hm, m E zn}. We restrict ourselves to the case that u E L1 (Rn) and its Fourier 
transform satisfies certain integrability conditions. Let us introduce the positive smooth 
function 

-1 

9h(>.) := ( L exp(-7r2'DlhA + 1112)) 
vEZ"' 

Theorem 4.3 Let u be a continuous function such that Fu E L1 (Rn). Then 

Qhu(x) = j ex(.A) exp(-7!" 21Jh2 l.Al 2
) gh(.A) L Fu(.A + *) d.A 

R"' vEZ"' 

is the sum ( 1.1) interpolating u( x) at the points hm , m E zn. 
Proof. The series L Fu(.A + *) converges absolutely for almost all .A to an h- 1-periodic 

vEZ"' 
L1 -function, thus 

exp(-11"21Jh2
l · 1

2
) 9h L Fu(·+*) E L1(Rn) 

vEZ"' 

and Qhu is well defined. Since gh(.A) is h- 1-periodic we obtain 

Qhu(x) = j ex(.A) Fu(.A)gh(.A) L ex(*) exp(-7!" 21Jlh.A + vl 2
) d.A. ( 4.1) 

R"' vEZ"' 

Applying the Poisson summation formula we derive the equality 
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which holds since for fixed x both series converge absolutely. Therefore 

Further, from ( 4.1) we get 

u(x) - Qh~(x) = j ex(..\) Fu(..\)gh(..\) 2: (1 - ex(*)) exp(-7r2'Dlh..\ + vl 2) d,\, 
R~ vez~ 

such that 

ehm ( *) = e2'1!'i{m,v) = 1 , m, v E zn , 

proves the assertion. D 

To estimate the approximation error we write 

where 
n 

'!9(z) := I: exp(-?r2'Dlvl 2
) e2i{z,v) =IT '!9a(z1li7r'D) (4.2) 

j=l 

with the Theta-function '!93 (see e.g. Whittaker and Watson (1962)). This is an integral 
function and quasi doubly-periodic 

which implies 

( 4.3) 

Further, the function '!93 (zli7r'D) has simple zeros at the points 

(k + ! ) 7r + (m + ! ) i7r2'D , k, m E Z. 2 2 
( 4.4) 

Using ( 4.3) we derive 

where Ch denotes the cube [- 2
1
h, 2

1
h t. Since obviously 

I 
'I?( i7r21J h,\ + T) I < 

'!9(i7r21Jh,\) - 1 

11 



we obtain the estimate 

!u(x) - Qhu(x)I ~ 2 :E j !:Fu(,\+* )Id,\ 
vEZ"'\{O} eh. 

J 19( i'Jr27J h,\ + 7rhX) 
+ I ex(A):Fu(,\) ( 1 - 19(i7r27Jh,\) ) d,\ I ( 4.5) 

eh. 

J J 19( i'Jr27Jh,\ + 7rhX) 
~ 2 j:Fu( ,\)I d,\ + I ex(,\ ):Fu(,\) ( 1 - 19( i7r27Jh,\) ) d,\I 

R"'\eh. eh. 

After this preparations one can formulate several estimates for the interpolation error. We 
give two examples. 

Theorem 4.4 Suppose that the function u is such that 

!lull~ := j l:Fu(,\)j (1 + IAl)N d,\ < oo 

for some natural N. Then the estimate 

is valid, where 

19(z + g) I 
aa(X) = i)~(l - {}(z)h ) z=O 

and the constant cN does not depend on u. 

Proof. We take the Taylor series of 

'!?( Z + 1rhX) 00 zO: 
1 - '!?( ) = 2::: aa(x) - 1 , 

z io:l=O a. 

( 4.6) 

which due to ( 4.2) and ( 4.4) converges absolutely and uniformly for all x E Rn and all 
z = (z1 , ••• , zn) with lz;I ~ ~\.h + 7r21J2 - 8, 8 > 0. Note that the functions aa(x) given by 
formula ( 4.6) are smooth and h-periodic. 

Since for ,\ E eh it holds j?r27Jh.X; I ~ 7r 27J /2 we derive 

J 19( i7r21J h,\ + 7r-:) 
ex(,\):Fu(,\)(l - 19(i7r27Jh,\) ) d,\ 

eh. 

= f: a:~) (i?r2'Dh)lal j ex( A) _xa Fu( A) dA 
lai=O eh. 

But 

(7r21Jh)lal J j,\aj j:Fu(,\)j d).. ~ (7r27Jh)lo:l llull' max !Aaj 
N .XER"'\e,. (1 + j)..j)N 

R"'\eh. 

:'.'::: (?r2'Dh)lal !lull~ (2h)N-lal = (2h)N (?r:tllull~ , 
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such that in view of ( 4.5) it remains to estimate 

The last series is uniformly bounded and therefore the constant cN can be estimated by 

Remark: Using the function fi the saturation error for the quasi-interpolant of Theorem 3.2 
can be written in the form 

Finally we show that the interpolation with (1.1) converges exponentially up to the satu-
ration error. 

Theorem 4.5 If for some a > 0 

j IFu(,\)I exp(al,\I) d,\ =: llull~ < oo 
R" 

then for all x E Rn the error of the interpolation with ( 1.1) can be estimated by 

where 

and 

Proof. Again we use the estimate ( 4.5). Obviously 

j IFu(,\)I d,\ ~exp(-
2
ah) j IFu(,\)I exp(a!AI) d,\. 

R"\~ R" 
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Using the definition of the function {} we obtain 

Hence 

. 
2 

?rx 2: exp(-71" 2'Dlvl 2
) exp(-27r2'Dh(v, ,\)) (1 - ex(~)) 

I 
fi( 27r 'Dh,\ + h) vEZ" 

1 - 1J( i71" 2'D h,\) = ___ L_e_x_p (---7r-2'D-l v-l 2-)-ex_p_(_--271"_2_'D_h_( v-,-,\-) )--

~ 2 L exp(-7r 2'Dlvl 2
) exp(-27r 2'Dh(v, ,\)) . 

vEZ"\{O} 

Let us introduce the subsets 

Then 

L exp(- 7r 2 'D(lvl 2 + 2h(v, ,\) )) = L exp(- 7r 2'D(lvl 2 + 2h(v, ,\) )) 
vEZ.,..\{O} vEZ"'\V 

n 

+ L L exp (- 7r 2 'D(jvj 2 + 2h(v, ,\) )) . 
k=l vEV1o 

Since ih>-.; I ~ ~ we have 

[v[ 2 + 2h(v, A) ?: t ( ([v;[ - ~) 2 
- ~) = t (([v;[ - 1)2 + [v; I - 1) , 

j=l j=l 

such that for ,\ E Ch 

L exp(- 7r 2'D(lvl 2 + 2h(v, ,\) )) < L exp(-71" 2'Dlvl 2
) • 

vEZ.,..\ V vEZ""\{O} 

Now we estimate 
n 

L L exp(- 7r 2'D(lvl 2 + 2h(v, ,\) )) 

n n 

= 2: exp( -71" 2'Dk) 2k L II cosh (27r 2'Dh/3; >-.;) . 
k=l 

Note that 
n 

exp(-al,\I) L II cosh(27r2'Dh/3;>-.;) 

14 



1 
and for z < -- 2 

exp ( - h~z) cosh (2?r21Jz) 

~ ( ~( e:p(7r2V- 2h~) +exp(- h~)) 

This implies that for 2?r 21J ~ hfo and ..\ E Ch 

n 

exp(-al..XI) L L exp(- ?r21J(lvl 2 + 2h(v, ..\) )) 
k=l vev,. 

n 

2 a 
' 2?r 1J ~ hVk ' 

2 a 
' 2?r 1J < /7: • 

· - hvk 

exp(-al..XI) L L exp(- ?r 21J(lvl 2 + 2h(v, ..\) )) 
k=l vEV1e 

Collecting all estimates we get the assertion. D 

We remark that the best Lrapproximant Phu of the form (1.1) to u E L2 (Rn) has the 
Fourier transform 

(see de Boor et al (1994)). Hence the same technique provides similar estimates for the error 
of the orthogonal projection. 
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