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Abstract

A new algorithm for pricing American put option in the Black-Scholes
model is presented. It is based on a time discretization of the corresponding
integral equation. The proposed iterative procedure for solving the discretized
integral equation converges in a finite number of steps and delivers in each
step a lower or an upper bound for the price of discretized option on the whole
time interval. The method developed can be easily implemented and carried
over to the case of more general optimal stopping problems.

1 Introduction

Pricing American options is one of the interesting and important problems in the
mathematical theory of modern finance. This problem was first studied by McKean
[13] who derived a free-boundary problem for the price and the optimal exercise
boundary of an early exercise American option and obtained a countable system of
nonlinear integral equations for the boundary. Kim [11], Jacka [9] and Carr, Jarrow
and Myneni [3] (see also Myneni [14]) have independently arrived at a nonlinear
integral equation for the exercise boundary of the American put option which follows
from the more general early exercise premium (EEP) representation. The uniqueness
of solution has been recently proven by Peskir [17].

Since the arbitrage-free price and the optimal boundary of an early exercise Amer-
ican put option cannot be found in an explicit form, some different numerical pro-
cedures for calculating the price and the boundary have been proposed. Carr [2]
presented a method based on the randomization of the maturity time using the Er-
lang distribution which is equivalent to taking the Laplace transform of the initial
price of an American put option. In that case the solution of the related free-
boundary problem can be derived in a closed form. Hou, Little and Pant [8] have
established a new representation for the American put option and proposed an effi-
cient numerical algorithm for solving the corresponding nonlinear integral equation
for the optimal exercise boundary. Pedersen and Peskir [16] (see also [5]-[6]) have
used the backward induction method and simple time discretization of the nonlin-
ear integral equation for obtaining the optimal stopping boundary. Kolodko and
Schoenmakers [12] presented a policy iteration method for computing the optimal
Bermudan stopping time. In recent years, Monte Carlo based methods have be-
come rather popular (see e.g. Rogers [18] and Glasserman [7] for an overview). In
[1] an iterative Monte-Carlo procedure has been proposed which makes use of the
earlier exercise premium representation for American and Bermudan options. The



method of [1] can be considered as an analogue to the classical Picard iteration
method applied for the proof of existence of solutions of integral equations (cf. e.g.
Tricomi [22]) having the advantage that it allows to obtain an upper bound for the
price from a lower one and the lower bound from an upper one. In this paper we
propose a modification of this method which employees along with the European
option price the arbitrage-free price of the perpetual American put option derived
by McKean [13] (see also Shiryaev et al [19], Shiryaev [21], Novikov and Shiryaev
[15]). Moreover, the convergence of the new algorithm is established and the rates
of convergence are obtained.

The paper is organized as follows. In Section 2 we recall some known results related
to the American put option pricing problem and discuss different forms of EEP
representation. In Section 3 we construct a simple time discretization of the corre-
sponding integral equation and propose a numerical iteration procedure for solving
it which produces in each step low or upper bounds for the solution and arrives at
it in a finite number of steps. We stress that as opposite to the backward induction,
in each step the procedure delivers an approximation on the whole time interval
and not only for the several last time intervals. The main results of the paper are
formulated in Lemma 3 and Theorem 4.

2 Formulation of the problem

In this section we recall the results from [13], [11], [9], [3] and [17] and formulate
the problem of estimating the value function of the corresponding optimal stopping
problem.

2.1. For a precise formulation of the American put option pricing problem, let
us consider a probability space (2, F,Q) with a standard Brownian motion B =
(Bt)o<t<r started at zero. Suppose that the stock price process S = (S;)o<icr is
defined by:

S; = s exp ((r—02/2)t—|—03t) (2.1)
and hence solves the stochastic differential equation:
dSt = ’f’St dt + O'St dBt (SO = S) (22)

where s > 0 is given and fixed. Here » > 0 is a continuously compounded interest
rate and o > 0 is a volatility coeflicient.

It follows from the results of general arbitrage theory (see e.g. [21] or [10]) that the
arbitrage-free price of an American put option with the strike K > 0 is given by

P(t,s) = _sup B, [e ™ (K — Siyr)?] (2.3)

where the supremum is taken over all stopping times 7 of the process S (i.e. with re-
spect to the natural filtration (Fiyy)ocucr—+ generated by the process (St )o<ucrt)-
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Here E; , denotes the expectation with respect to the initial martingale measure Q) ,
when the process (Siiu)o<ucr ¢ starts at Sy = s. It is known (see [13] and [3]) that
the optimal stopping time in (2.3) is given by

7 =Inf{0 <u<T—t]|S . <blt+u)}

and that the value function (2.3) admits the following early exercise premium rep-
resentation

P(t,s) = e "TYE, (K~ Sr)']

Tt
+ ’T‘K/ e ™ Qt,s [St-l-u S b(t + ’U,)] du
0

= e "TNE,[(K— Sr)*] (2.5)

T—¢%
+rK/ e ™ Qs P(t+u,Seru) < (K — Spyu)t] du.
0

It is also known (see [11] and [9]) that the optimal exercise boundary b(%) of the
early exercise American put option solves the nonlinear integral equation

K—b(t) = e T Ey[(K — Sr)T] (2.6)

Tt
—I—TK/ e ™ Qup) [SH.U < b(t+ u)] du
0

forall 0 <t < T and s > 0. By using the change-of-variable formula with local
times on curves, it was proven in [17] that the equation (2.6) admits a unique solu-
tion. Note that the nonlinear integral equation (2.5) is preferable over the equation
involving the boundary since it allows a generalization to the multidimensional case.
Generally, the equations (2.5) and (2.6) cannot be solved in an explicit form and
numerical methods have to be used.

2.2. By means of standard arguments based on the strong Markov property it can be
shown that the arbitrage-free price (2.3) solves the following parabolic free-boundary
problem (see [13])

(Py+rsP, + (0’2/2)52P33)(t, s)=rP(t,s) for s> b(t) (2.7)
P(t,s)‘s:b(t) = K — b(t) (instantaneous stopping) (2.8)
Ps(t,s)‘s:b(t) = —1 (smooth fit) (2.9)
P(t,s) > (K —s)" for s> b(t) (2.10)
P(t,s) = (K —s)" for s < b(t) (2.11)

where the condition (2.8) holds for all 0 <¢ < T'.

Note that the superharmonic characterization of the value function (see [4] and [20])

implies that (2.3) is the smallest function satisfying (2.7)-(2.8) and (2.10)-(2.11).
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2.3. Letting T tend to infinity in (2.5) and (2.6), we obtain
F(t, S) = TK/ ef'ru Qt,s [St+u S E(t + 'U,)] d'U,
0
= ’I‘K/ e ™ Qt,s [F(t + Uu, St—l—u) S (K - St—l—u)_l—] d'U, (212)
0

and

K —b(t) = rK/ e "™ Qe[ Stau < b(t +u)] du (2.13)

where functions P(t,s) and b(t) are uniquely determined by the equations (2.12)
and (2.13), respectively. By means of straightforward calculations it can be verified
that P(t,s) = P(s) and b(t) = b coincide with the arbitrage-free price and the
optimal exercise boundary respectively of the perpetual American put option. From

the formulas (2.5) and (2.12) it follows that
Tt
P(t,s) = P(tS —I—’T’K/ 7Tths|:b<St+u§b(t+’U,)]d

T ¢
= t s) —I—’I‘K/ (2.14)
X Qt,s[ (t+u, Siru) < (K — St+u)+ < F(SH.U)] du

where we denote

(o]

P(t,s)=P(s)+e " " HE, (K Sr)t] —rK e ™ Qts[Stru < b| du (2.15)

Tt

forall 0 <t < T and s > 0. The expressions (2.5) and (2.14) are in fact basis for our
algorithm. Note that (2.14) has an advantage over (2.5) for it involves probabilities
of S; belonging to a bounded intervals which are numerically (using Monte Carlo)
easier to compute than those for unbounded intervals.

3 Main result and proofs

In this section we approximate the initial model by discretizing the integral equa-
tion (2.14) and propose an iteration procedure which solves the discretized integral
equation in a finite number of steps. We prove uniform convergence of this solution
to the initial value function as the discretization becomes finer and determine the
rate of convergence.

3.1. In order to construct an approximation for the equation (2.14) let us fix some
arbitrary 0 < ¢ < T and n € N and introduce a partition of the time interval
[0, T —t]. Let ug = 0 and u; = 1A, with A, = (T —t)/n implying that u; —u, 1 =
A, for every 1 = 1,...,n. Taking into account the structure of expression (2.14),
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let us define the approximation ]/D\H(t + u, s) for the price P(t+ u,s) as a solution
of the equation

]/D\H(t—l—u,s) = ]S(t—l—u,s) +rK Z e T
i=[un/(T—t)]
X Qt,s [E < St—l—ui S ?;n(t + uz)] ATL

— ﬁ(t +u,s)+rK Z e T (3.1)
=L (T )]
X Qts [ Pa(t + i, Stru;) < (K = Spyu;)™ < P(Stius)] A,

where the estimate /l;n(t + u) for the boundary b(¢ + ) is defined as the maximum

of the intersection curve of ]/D\H(t + u,s) with (K — s)* and the perpetual option
boundary b. Here [z] = |z| + 1 and |z| denotes the integer part of a positive
number z € R. It is clear that the equation (3.1) has a unique solution which can be
obtained by means of backward induction in a finite number of steps. This implies
that the (piecewise constant) function P\n(t + u, s) is uniquely determined by (3.1)
forall 0 < uw < T —t and s > 0. Let us now define sequentially the functions
ﬁﬁ(t +u,s) by

ﬁ:(t +u,s) = IS(t +u,s)+rK Z e " (3.2)
=L (T )]
X Qs [Pt + i, Stgus) < (K — Sppa)t < P(Sigus)] A

Here we set ]/D\TEB(t—I—u,s):(K—s)+ forall 0 < <T —t and s > 0.

Remark 1 It is easily seen from (8.1) that, by construction
ﬁjkil(t—l—u,s) > ]/D\H(t—l—u,s), 0<u<T-—t s>0, keN

and

P\jk(t—l—u,s)gﬁn(t—l—u,s), 0<u<T—t, >0, keN.

More generally, any low estimate ]/5;"71 , m €N, for P, produces an upper one ]/5;“
and vice versa.

Remark 2 For each m < n the function P\,T(t—l—u, s) is an estimate for P\n(t—l—u, s)
on the whole interval [0, T — t]. This fact shows the advantage of this method over
the standard backward induction.

3.2. Let us now show that the sequence of functions (P\,T(t + 4, 8))men from (3.2)
converges to the function P,(¢ +u,s) in n steps forall 0 <u <T — ¢ and s > 0.



Lemma 3 For each 0 <t < T fized we have P;T(t +u,s) = P\n(t + u,s) for every
m>n and all 0 <u<T—1t,5>0.

Proof. Let us fix 0 <¢ < T and n € N. Then by construction of ]/D\ﬁ(t + u,s) the
equalities

P\jk+1(t +u,s) — ﬁjk(t +u,s)=rK Z e T
i=Tun/(T—t)]
X Qt,s [ﬁjk(t + Uy, St-l-ui) S (K o St+ui)+ < P\jkil(t + Uy, St+ui)] Aﬂ (3'3)

and

B2t 4uys) B (t4us) —rK Y e
i=[un/(T—1)]
S Qt,s [ﬁjk(t + uy, St-l-ui) < (K - St+ui)+ < §3k+1(t + Uy, St+ui)] A" (3'4)

hold for all 0 <4 < T —+¢ and s > 0 and every k € N.

In order to prove the desired assertion we should use the mathematical induction
principle. First, note that P\TT(T,S) = (K — s)" forall s >0 and m € N. For
checking the induction basis it is enough to observe that if m = 2k with £ = 0 then
(3.4) implies equality

ﬁj(t +u,s) — ﬁi(t +u,s)=rKe ™"
X Qua[P2(t + tn, Seyun) < (K — Sequn)t < PLE+ tn, Sepa)] An =0 (3.5)

which holds for all (n—1)(T —t)/n <u < T —t where by definition of the partition
t4+u,=T. m

3.3. Now we prove that the solution of the discretized equation (3.1) converges to
P(t +u,s) uniformly on [0,T — t] as n tends to infinity.

Theorem 4 Let P\n(t + u,s) be a solution of the discretized equation (8.1). Then

there ezists some t € [0,T] close enough to T such that the sequence (P\n(t—l—u, $))nen
converges to P(t+ u,s) uniformly for 0 <u < T —t and s > 0 with the rate 1/n

when n tends to infinity.



Proof. First, the representations (2.5) and (3.1) imply

rK Y e ™ Qua[Sipus <b(E+w)| A (3.6)

=1

Tt
— 'rK/ e ™ Qs [SH.U <b(t+ u)] du
0

+rK z": e T

=1

7 Qt,s [St+ui S b(t + uz)] ‘ ATL

for all 0 < ¢ < T and s > 0. In order to deal with the first term on the right-hand
side of (3.6) we can use the estimate for Riemann sum approximation and obtain

|Pa(t,s) — P(t,s)| <

Qt,s |:St+ui S /I;n(t + uz)]

T—t
/ ef'ru Qt,s [St+u S b(t —I— 'U,)] d'U,
0

Cy

- Z 67”” Qt,s [St+ui S b(t + uz)] ATL

=1

< (3.7)

rKn

for n > N; and C; > 0 fixed. As to the second term in (3.6), we can make use of
the mean value theorem and get

‘Qt,s [St—l—ui < ?)\n(t + uz)] — Qts [St—l—ui <b(t+ uz)] ‘

QC%@ﬁ;?VﬂG%3W>¢C%%;2@M(T§y0‘

_ (&) ?)\n(t—l—ui) B (&) K — ﬁn(t—l-ui,?)\n(t—l—ui))
 o\Ju; o b(t + u;) N log K — P(t+u;, b(t + u;)) ‘ (3.8)

for some ¢ €R,i=1,...,n and ®(z) = (1//2n) [*_ e V' /2dy. The last equality
in (3.8) follows directly from (2.8) and (2.11). Using the obvious fact that b(t) >
b>0forall 0<t<T and s> 0, from (3.6) we obtain

o K Pt s, bt + )

R t+mﬁ@+w»
1 Pt + 1w, bu(t +w)) — P(t +us, b(t +u;))
8 K P(t + us, b(t +w))

< | ba(t + ) — P(t+ i, b(t + )|

o 1Pt + i, Bt £ ) — Pt 4 i, bt + )

- b

b



for some s; € (?)\ (t) A b(2), b, n(t) V b(t)), and hence
si) — P(t4+u;, ;)| < sup sup |]/5n(t + ui, 8;) — P(t+u;,8) (3.10)

u; €[0,T—¢] 5:>0

|P (t+ ui, s

forall 0 < ¢t < T and every 2 = 1,...,n. By virtue of the fact that the function
e ™ /y/u is decreasing, straightforward calculations show that the inequalities

ierzcb(g A, <F/Tt0\;du<—\/ 4 (3.11)

hold for all 0 < ¢ < T and some Cy > 0 fixed. Therefore, combining (3.7)-(3.11),
from (3.6) we obtain

q

|P.(t,s) — P(t,s)| < G L oT
n

X sup sup ‘ﬁn(t +ui, 8:) — P(t 4+ us,8:)| (3.12)
u;€[0,T—¢] 5:>0
for all 0 <+ < T and s > 0. Hence
sup sup‘ﬁn(t—l—u,s) — P(t—l—u,s)‘ (3.13)

u€[0,T—¢] s>0

C ~
< —1—|—ng/ — 1t sup sup‘Pn(t—l—u,s)—P(t—l—u,s)‘
u€[0,T—¢] s>0
forall 0 <¢t<T and s > 0.

Let us now choose some ¢ € [0, T] such that Cy/T —t < 1/2. Then it follows from

(3.13) that:

~ 20
sup sup ‘Pn(t +u,s) — P(t+ u,s)‘ <= (3.14)

u€[0,T—¢] s>0 n
for all n € N such that n > N;. This completes the proof of the theorem. []

3.4. In principle, one could construct directly the estimate for the price function
(2.3) without use of discretization by the iterative scheme

Tt
P™(t,s) = ts —I—’I‘K/ (3.15)

X Qts[Pm ! t+ U St—l—u) ~ (K — St+u)+ S F(St—l—u)] d'U,
where we set P°(t,s) = (K —s)" forall 0 <#<T and s > 0.

Remark 5 Again, by the construction
P71t ) > P(t,s), 0<t<T, s>0, k€N

and

P?*(t s) < P(t,s), 0<t<T, s>0, keN.

This means that an upper estimate (8.15) for (2.5) can be obtained from a lower
one and a lower estimate (8.15) can be obtained from an upper one.
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