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AbstratA new algorithm for priing Amerian put option in the Blak-Sholesmodel is presented. It is based on a time disretization of the orrespondingintegral equation. The proposed iterative proedure for solving the disretizedintegral equation onverges in a �nite number of steps and delivers in eahstep a lower or an upper bound for the prie of disretized option on the wholetime interval. The method developed an be easily implemented and arriedover to the ase of more general optimal stopping problems.1 IntrodutionPriing Amerian options is one of the interesting and important problems in themathematial theory of modern �nane. This problem was �rst studied by MKean[13℄ who derived a free-boundary problem for the prie and the optimal exeriseboundary of an early exerise Amerian option and obtained a ountable system ofnonlinear integral equations for the boundary. Kim [11℄, Jaka [9℄ and Carr, Jarrowand Myneni [3℄ (see also Myneni [14℄) have independently arrived at a nonlinearintegral equation for the exerise boundary of the Amerian put option whih followsfrom the more general early exerise premium (EEP) representation. The uniquenessof solution has been reently proven by Peskir [17℄.Sine the arbitrage-free prie and the optimal boundary of an early exerise Amer-ian put option annot be found in an expliit form, some di�erent numerial pro-edures for alulating the prie and the boundary have been proposed. Carr [2℄presented a method based on the randomization of the maturity time using the Er-lang distribution whih is equivalent to taking the Laplae transform of the initialprie of an Amerian put option. In that ase the solution of the related free-boundary problem an be derived in a losed form. Hou, Little and Pant [8℄ haveestablished a new representation for the Amerian put option and proposed an eÆ-ient numerial algorithm for solving the orresponding nonlinear integral equationfor the optimal exerise boundary. Pedersen and Peskir [16℄ (see also [5℄-[6℄) haveused the bakward indution method and simple time disretization of the nonlin-ear integral equation for obtaining the optimal stopping boundary. Kolodko andShoenmakers [12℄ presented a poliy iteration method for omputing the optimalBermudan stopping time. In reent years, Monte Carlo based methods have be-ome rather popular (see e.g. Rogers [18℄ and Glasserman [7℄ for an overview). In[1℄ an iterative Monte-Carlo proedure has been proposed whih makes use of theearlier exerise premium representation for Amerian and Bermudan options. The1



method of [1℄ an be onsidered as an analogue to the lassial Piard iterationmethod applied for the proof of existene of solutions of integral equations (f. e.g.Triomi [22℄) having the advantage that it allows to obtain an upper bound for theprie from a lower one and the lower bound from an upper one. In this paper wepropose a modi�ation of this method whih employees along with the Europeanoption prie the arbitrage-free prie of the perpetual Amerian put option derivedby MKean [13℄ (see also Shiryaev et al [19℄, Shiryaev [21℄, Novikov and Shiryaev[15℄). Moreover, the onvergene of the new algorithm is established and the ratesof onvergene are obtained.The paper is organized as follows. In Setion 2 we reall some known results relatedto the Amerian put option priing problem and disuss di�erent forms of EEPrepresentation. In Setion 3 we onstrut a simple time disretization of the orre-sponding integral equation and propose a numerial iteration proedure for solvingit whih produes in eah step low or upper bounds for the solution and arrives atit in a �nite number of steps. We stress that as opposite to the bakward indution,in eah step the proedure delivers an approximation on the whole time intervaland not only for the several last time intervals. The main results of the paper areformulated in Lemma 3 and Theorem 4.2 Formulation of the problemIn this setion we reall the results from [13℄, [11℄, [9℄, [3℄ and [17℄ and formulatethe problem of estimating the value funtion of the orresponding optimal stoppingproblem.2.1. For a preise formulation of the Amerian put option priing problem, letus onsider a probability spae (
;F ; Q) with a standard Brownian motion B =(Bt)0�t�T started at zero. Suppose that the stok prie proess S = (St)0�t�T isde�ned by: St = s exp��r � �2=2� t+ �Bt� (2.1)and hene solves the stohasti di�erential equation:dSt = rSt dt+ �St dBt (S0 = s) (2.2)where s > 0 is given and �xed. Here r > 0 is a ontinuously ompounded interestrate and � > 0 is a volatility oeÆient.It follows from the results of general arbitrage theory (see e.g. [21℄ or [10℄) that thearbitrage-free prie of an Amerian put option with the strike K > 0 is given byP (t; s) = sup0���T�tEt;s�e�r� (K � St+� )+� (2.3)where the supremum is taken over all stopping times � of the proess S (i.e. with re-spet to the natural �ltration (Ft+u)0�u�T�t generated by the proess (St+u)0�u�T�t ).2



Here Et;s denotes the expetation with respet to the initial martingale measure Qt;swhen the proess (St+u)0�u�T�t starts at St = s. It is known (see [13℄ and [3℄) thatthe optimal stopping time in (2.3) is given by�b = inff0 � u � T � t j St+u � b(t+ u)g= inff0 � u � T � t j P (t+ u; St+u) � (K � St+u)+g (2.4)and that the value funtion (2.3) admits the following early exerise premium rep-resentationP (t; s) = e�r(T�t)Et;s�(K � ST )+�+ rK Z T�t0 e�ruQt;s�St+u � b(t+ u)�du= e�r(T�t)Et;s�(K � ST )+� (2.5)+ rK Z T�t0 e�ruQt;s�P (t+ u; St+u) � (K � St+u)+� du:It is also known (see [11℄ and [9℄) that the optimal exerise boundary b(t) of theearly exerise Amerian put option solves the nonlinear integral equationK � b(t) = e�r(T�t)Et;b(t)�(K � ST )+� (2.6)+ rK Z T�t0 e�ruQt;b(t)�St+u � b(t+ u)� dufor all 0 � t � T and s > 0. By using the hange-of-variable formula with loaltimes on urves, it was proven in [17℄ that the equation (2.6) admits a unique solu-tion. Note that the nonlinear integral equation (2.5) is preferable over the equationinvolving the boundary sine it allows a generalization to the multidimensional ase.Generally, the equations (2.5) and (2.6) annot be solved in an expliit form andnumerial methods have to be used.2.2. By means of standard arguments based on the strong Markov property it an beshown that the arbitrage-free prie (2.3) solves the following paraboli free-boundaryproblem (see [13℄)(Pt + rsPs + (�2=2)s2Pss)(t; s) = rP (t; s) for s > b(t) (2.7)P (t; s)��s=b(t) = K � b(t) (instantaneous stopping) (2.8)Ps(t; s)��s=b(t) = �1 (smooth �t) (2.9)P (t; s) > (K � s)+ for s > b(t) (2.10)P (t; s) = (K � s)+ for s < b(t) (2.11)where the ondition (2.8) holds for all 0 � t < T .Note that the superharmoni haraterization of the value funtion (see [4℄ and [20℄)implies that (2.3) is the smallest funtion satisfying (2.7)-(2.8) and (2.10)-(2.11).3



2.3. Letting T tend to in�nity in (2.5) and (2.6), we obtainP (t; s) = rK Z 10 e�ruQt;s�St+u � b(t+ u)� du= rK Z 10 e�ruQt;s�P (t+ u; St+u) � (K � St+u)+� du (2.12)and K � b(t) = rK Z 10 e�ruQt;b(t)�St+u � b(t+ u)� du (2.13)where funtions P (t; s) and b(t) are uniquely determined by the equations (2.12)and (2.13), respetively. By means of straightforward alulations it an be veri�edthat P (t; s) � P (s) and b(t) � b oinide with the arbitrage-free prie and theoptimal exerise boundary respetively of the perpetual Amerian put option. Fromthe formulas (2.5) and (2.12) it follows thatP (t; s) = eP (t; s) + rK Z T�t0 e�ruQt;s�b < St+u � b(t+ u)�du= eP (t; s) + rK Z T�t0 e�ru (2.14)�Qt;s�P (t+ u; St+u) � (K � St+u)+ < P (St+u)� duwhere we denoteeP (t; s) = P (s) + e�r(T�t)Et;s�(K � ST )+�� rK Z 1T�t e�ruQt;s�St+u � b� du (2.15)for all 0 � t � T and s > 0. The expressions (2.5) and (2.14) are in fat basis for ouralgorithm. Note that (2.14) has an advantage over (2.5) for it involves probabilitiesof St belonging to a bounded intervals whih are numerially (using Monte Carlo)easier to ompute than those for unbounded intervals.3 Main result and proofsIn this setion we approximate the initial model by disretizing the integral equa-tion (2.14) and propose an iteration proedure whih solves the disretized integralequation in a �nite number of steps. We prove uniform onvergene of this solutionto the initial value funtion as the disretization beomes �ner and determine therate of onvergene.3.1. In order to onstrut an approximation for the equation (2.14) let us �x somearbitrary 0 � t � T and n 2 N and introdue a partition of the time interval[0; T � t℄. Let u0 = 0 and ui = i�n with �n = (T � t)=n implying that ui�ui�1 =�n for every i = 1; : : : ; n. Taking into aount the struture of expression (2.14),4



let us de�ne the approximation bPn(t + u; s) for the prie P (t + u; s) as a solutionof the equationbPn(t+ u; s) = eP (t+ u; s) + rK nXi=dun=(T�t)e e�rui�Qt;s�b < St+ui � bbn(t+ ui)��n= eP (t+ u; s) + rK nXi=dun=(T�t)e e�rui (3.1)�Qt;s� bPn(t+ ui; St+ui) � (K � St+ui)+ < P (St+ui)��n;where the estimate bbn(t+ u) for the boundary b(t+ u) is de�ned as the maximumof the intersetion urve of bPn(t + u; s) with (K � s)+ and the perpetual optionboundary b. Here dxe = bx + 1 and bx denotes the integer part of a positivenumber x 2 R. It is lear that the equation (3.1) has a unique solution whih an beobtained by means of bakward indution in a �nite number of steps. This impliesthat the (pieewise onstant) funtion bPn(t+ u; s) is uniquely determined by (3.1)for all 0 � u � T � t and s > 0. Let us now de�ne sequentially the funtionsbPmn (t+ u; s) bybPmn (t+ u; s) = eP (t+ u; s) + rK nXi=dun=(T�t)e e�rui (3.2)�Qt;s� bPm�1n (t+ ui; St+ui) � (K � St+ui)+ < P (St+ui)��n:Here we set bP 0n (t+ u; s) = (K � s)+ for all 0 � u � T � t and s > 0.Remark 1 It is easily seen from (3.1) that, by onstrutionbP 2k�1n (t+ u; s) � bPn(t+ u; s); 0 � u � T � t; s > 0; k 2 Nand bP 2kn (t+ u; s) � bPn(t+ u; s); 0 � u � T � t; s > 0; k 2 N:More generally, any low estimate bPm�1n , m 2 N, for bPn produes an upper one bPmnand vie versa.Remark 2 For eah m < n the funtion bPmn (t+u; s) is an estimate for bPn(t+u; s)on the whole interval [0; T � t℄. This fat shows the advantage of this method overthe standard bakward indution.3.2. Let us now show that the sequene of funtions ( bPmn (t + u; s))m2N from (3.2)onverges to the funtion bPn(t+ u; s) in n steps for all 0 � u � T � t and s > 0.5



Lemma 3 For eah 0 � t � T �xed we have bPmn (t+ u; s) = bPn(t+ u; s) for everym � n and all 0 � u � T � t; s > 0.Proof. Let us �x 0 � t � T and n 2 N. Then by onstrution of bPmn (t+ u; s) theequalitiesbP 2k+1n (t+ u; s)� bP 2kn (t+ u; s) = rK nXi=dun=(T�t)e e�rui� Qt;s� bP 2kn (t+ ui; St+ui) � (K � St+ui)+ < bP 2k�1n (t+ ui; St+ui)��n (3.3)andbP 2k+2n (t+ u; s)� bP 2k+1n (t+ u; s) = rK nXi=dun=(T�t)e e�rui� Qt;s� bP 2kn (t+ ui; St+ui) � (K � St+ui)+ < bP 2k+1n (t+ ui; St+ui)��n (3.4)hold for all 0 � u � T � t and s > 0 and every k 2 N.In order to prove the desired assertion we should use the mathematial indutionpriniple. First, note that bPmn (T; s) = (K � s)+ for all s > 0 and m 2 N. Forheking the indution basis it is enough to observe that if m = 2k with k = 0 then(3.4) implies equalitybP 2n (t+ u; s)� bP 1n (t+ u; s) = rK e�run� Qt;s� bP 0n (t+ un; St+un) � (K � St+un)+ < bP 1n (t+ un; St+un)��n = 0 (3.5)whih holds for all (n�1)(T � t)=n � u � T � t where by de�nition of the partitiont+ un = T .3.3. Now we prove that the solution of the disretized equation (3.1) onverges toP (t+ u; s) uniformly on [0; T � t℄ as n tends to in�nity.Theorem 4 Let bPn(t + u; s) be a solution of the disretized equation (3.1). Thenthere exists some t 2 [0; T ℄ lose enough to T suh that the sequene ( bPn(t+u; s))n2Nonverges to P (t+ u; s) uniformly for 0 � u � T � t and s > 0 with the rate 1=nwhen n tends to in�nity. 6



Proof. First, the representations (2.5) and (3.1) imply�� bPn(t; s)� P (t; s)�� � �����rK nXi=1 e�rui Qt;s�St+ui � b(t+ ui)��n (3.6)� rK Z T�t0 e�ruQt;s�St+u � b(t+ u)�du����+ rK nXi=1 e�rui ���Qt;s�St+ui � bbn(t+ ui)��Qt;s�St+ui � b(t+ ui)����nfor all 0 � t � T and s > 0. In order to deal with the �rst term on the right-handside of (3.6) we an use the estimate for Riemann sum approximation and obtain����Z T�t0 e�ruQt;s�St+u � b(t+ u)� du� nXi=1 e�rui Qt;s�St+ui � b(t+ ui)��n����� � C1rKn (3.7)for n � N1 and C1 > 0 �xed. As to the seond term in (3.6), we an make use ofthe mean value theorem and get���Qt;s�St+ui � bbn(t+ ui)��Qt;s�St+ui � b(t+ ui)����= ������ log[bbn(t+ ui)=s℄�pui � �r � �22 �ui! � �� log[b(t+ ui)=s℄�pui � �r � �22 �ui������= �0(�i)�pui �����log bbn(t+ ui)b(t+ ui) ����� = �0(�i)�pui �����log K � bPn(t+ ui;bbn(t+ ui))K � P (t+ ui; b(t+ ui)) ����� (3.8)for some �i 2 R, i = 1; : : : ; n and �(x) = (1=p2�) R x�1 e�y2=2dy . The last equalityin (3.8) follows diretly from (2.8) and (2.11). Using the obvious fat that b(t) �b > 0 for all 0 � t � T and s > 0, from (3.6) we obtain�����log K � bPn(t+ ui;bbn(t+ ui))K � P (t+ ui; b(t+ ui)) �����= log 1 + ����� bPn(t+ ui;bbn(t+ ui))� P (t+ ui; b(t+ ui))K � P (t+ ui; b(t+ ui)) �����!� j bPn(t+ ui;bbn(t+ ui))� P (t+ ui; b(t+ ui))jK � P (t+ ui; b(t+ ui))� j bPn(t+ ui;bbn(t+ ui))� P (t+ ui; b(t+ ui))jb� j bPn(t+ ui; si)� P (t+ ui; si)jb (3.9)7



for some si 2 (bbn(t) ^ b(t);bbn(t) _ b(t)), and henej bPn(t+ ui; si)� P (t+ ui; si)j � supui2[0;T�t℄ supsi>0 j bPn(t+ ui; si)� P (t+ ui; si)j (3.10)for all 0 � t � T and every i = 1; : : : ; n. By virtue of the fat that the funtione�ru=pu is dereasing, straightforward alulations show that the inequalitiesnXi=1 e�rui�pui �0(�i)�n � 1p2� Z T�t0 e�ru�pu du � C2brK pT � t (3.11)hold for all 0 � t � T and some C2 > 0 �xed. Therefore, ombining (3.7)-(3.11),from (3.6) we obtain�� bPn(t; s)� P (t; s)�� � C1n + C2pT � t� supui2[0;T�t℄ supsi>0 �� bPn(t+ ui; si)� P (t+ ui; si)�� (3.12)for all 0 � t � T and s > 0. Henesupu2[0;T�t℄ sups>0 �� bPn(t+ u; s)� P (t+ u; s)�� (3.13)� C1n + C2pT � t supu2[0;T�t℄ sups>0 �� bPn(t+ u; s)� P (t+ u; s)��for all 0 � t � T and s > 0.Let us now hoose some t 2 [0; T ℄ suh that C2pT � t � 1=2. Then it follows from(3.13) that: supu2[0;T�t℄ sups>0 �� bPn(t+ u; s)� P (t+ u; s)�� � 2C1n (3.14)for all n 2 N suh that n � N1 . This ompletes the proof of the theorem. �3.4. In priniple, one ould onstrut diretly the estimate for the prie funtion(2.3) without use of disretization by the iterative shemePm(t; s) = eP (t; s) + rK Z T�t0 e�ru (3.15)�Qt;s�Pm�1(t+ u; St+u) � (K � St+u)+ � P (St+u)� duwhere we set P 0(t; s) = (K � s)+ for all 0 � t � T and s > 0.Remark 5 Again, by the onstrutionP 2k�1(t; s) � P (t; s); 0 � t � T; s > 0; k 2 Nand P 2k(t; s) � P (t; s); 0 � t � T; s > 0; k 2 N:This means that an upper estimate (3.15) for (2.5) an be obtained from a lowerone and a lower estimate (3.15) an be obtained from an upper one.8



Aknowledgments. This paper was written during the time when the seond au-thor was visiting Weierstra� Institute for Applied Analysis and Stohastis (WIAS)Berlin and he is thankful for the �nanial support and hospitality.Referenes[1℄ Belomestny, D. andMilstein, G. N. (2005).Adaptive simulation algo-rithms for priing Amerian and Bermudan options by loal analysis of the�nanial market. WIAS Preprint 1022. To appear in J. Comput. Finane.[2℄ Carr, P. (1998). Randomization and the Amerian put. Review of Finan-ial Studies 11 (597{626).[3℄ Carr, P., Jarrow, R. and Myneni, R. (1992). Alternative harateri-zation of Amerian put options. Math. Finane 2 (78{106).[4℄ Dynkin, E. B. (1963). The optimum hoie of the instant for stopping aMarkov proess. Soviet Math. Dokl. 4 (627{629).[5℄ Gapeev, P. V. and Peskir, G. (2003). The Wiener disorder problemwith �nite horizon. Researh Report No. 435, Dept. Theoret. Statist. Aarhus(22 pp).[6℄ Gapeev, P. V. and Peskir, G. (2004). The Wiener sequential testingproblem with �nite horizon. Stohastis and Stohasti Reports 76 (59{75).[7℄ Glasserman, P. (2004).Monte Carlo Methods in Finanial Engineering.Springer, New York.[8℄ Hou, C., Little, T. and Pant, V. (2000). A new integral representationof the early exerise bounday for Amerian put options. J. Comput. Finane3 (73{96).[9℄ Jaka, S. D. (1991). Optimal stopping and the Amerian put. Math.Finane 1 (1{14).[10℄ Karatzas, I. and Shreve, S. E. (1998). Methods of Mathematial Fi-nane. Springer, New York.[11℄ Kim, I. J. (1990). The analyti valuation of Amerian options. Rev. Fi-nanial Stud. 3 (547{572).[12℄ Kolodko, A. and Shoenmakers, J. (2005). Iterative onstrution ofthe optimal Bermudan stopping time. Finane Stohast. 10(1) (27{49).[13℄ MKean, H. P. Jr. (1965). Appendix: A free boundary problem forthe heat equation arising form a problem of mathematial eonomis. Ind.Management Rev. 6 (32{39). 9



[14℄ Myneni, R. (1992). The priing of the Amerian option. Ann. Appl.Probab. 2(1) (1{23).[15℄ Novikov, A. A. and Shiryaev, A. N. (2004). On an e�etive solution ofthe optimal stopping problem for random walks. Theor. Probab. Appl. 49(2)(373{382).[16℄ Pedersen, J. L. and Peskir, G. (2002). On nonlinear integral equa-tions arising in problems of optimal stopping. Pro. Funtional Anal. VII(Dubrovnik 2001), Various Publ. Ser. 46 (159{175).[17℄ Peskir, G. (2005).On the Amerian option problem.Math. Finane. 15(1)(169-181).[18℄ Rogers, L. C. G. (2002). Monte Carlo valuation of Amerian options.Math. Finane 12 (271{286).[19℄ Shiryaev, A. N., Kabanov, Y. M., Kramkov, D. O. and Mel-nikov, A. V. (1994).On the priing of options of European and Ameriantypes, II. Continuous time. Theory Probab. Appl. 39 (61{102).[20℄ Shiryaev, A. N. (1978). Optimal Stopping Rules. Springer, Berlin.[21℄ Shiryaev, A. N. (1999).Essentials of Stohasti Finane.World Sienti�,Singapore.[22℄ Triomi, F. G. (1957). Integral Equations. Intersiene Publishers, Lon-don and New York.

10


