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Abstract

Any biological or physical system, which incorporates delayed feedback or delayed
coupling, can be modeled by a dynamical system with delayed argument. We describe
a standard oscillatory destabilization mechanism, which occurs in such systems.

Differential equations with delayed argument

v =F,y-), (1)

where y, = y(t — 7), turned out to be a very useful tool for studying many physical and
biological systems. Such models frequently appear in laser physics [1], different biological
feedback systems, such as dynamic diseases [2|, neural networks [3|, population ecology [4],
etc. Therefore, understanding common properties of all above mentioned physical systems,
is an important interdisciplinary problem. In this letter, we describe the basic oscillatory
destabilization mechanism, which leads to the appearence of nonstationary behavior in
delayed systems.

When the delay 7 is sufficiently small, the effective dynamics is still low-dimensional and
can be considered as a small correction to the dynamics with 7 = 0. Some rigorous
results in this direction are given in [5]. On the other hand, for larger 7, the additional
degrees of freedom introduced by the delay become relevant and the dynamics becomes
multidimensional. In many cases it may even display features of spatially extended systems
6, 7, 8, 9.

In this letter, we reveal generic features of the oscillatory instability in systems with large
delay. It appears to be twofold: after the bifurcation, the originally stable stationary
state becomes weakly unstable and the Eckhaus instability develops, which leads to the
appearance of multiple coexistent stable periodic attractors. With further changing of
the bifurcation parameter, the stationary state becomes strongly unstable and the sys-
tem exhibits single periodic attractor. The bifurcation parameter mediates the transition
between these two states, one of which is essentially multidimensional and the other is
low-dimensional.

The plan of our paper is as follows: first, we describe the conditions, which lead to the
appearance of such instability by analyzing the linearized equation. Then we show, that
close to the bifurcation, the Eckhaus phenomenon with multiple coexisting periodic at-
tractors occurs. We show that this phenomenon can be well described by the amplitude
equations approach [6]. In particular, we derive a complex Ginzburg-Landau (GL) equa-
tion, which, equipped with corresponding boundary conditions, describes the dynamics of
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a slowly varying amplitude. The existence of Eckhaus instability in the amplitude equa-
tions then implies a similar behavior in the delay system. With further increasing of the
bifurcation parameter, the stationary state becomes strongly unstable with only one dom-
inant mode. As a result, the above mentioned spatiotemporal representation fails, the
multistability vanishes and a unique periodic attractor remains as in the case of the usual
Hopf bifurcation.

We consider the following class of systems
7= (a+if)z+ 2z — 2|2 (2)

where z is the complex variable and «, (3 are real parameters. System (2) can be obtained
from the normal form of a supercritical Hopf bifurcation for finite-dimensional systems
(ordinary differential equations) by adding the delayed feedback term z,. It has the sta-
tionary state z = 0. Our goal is to explain in details the mechanism of destabilization of
this state as the parameter «, which governs the Hopf bifurcation in the non-delayed case,
varies. As we will see, it shows some interesting generic features.

Linear stability analysis: Let us start with the linear stability analysis of the steady
state. The growth rate A of small perturbations of type e* is determined by solutions of
the characteristic equation

A= (a+iB) —e ™ =0. (3)

Eq. (3) has infinitely many solutions, which can be expressed, for instance, via the Lambert
function [10]. Since we consider the case when the delay 7 is large, we are interested in
the asymptotics of these roots as 7 — oo. Therefore, it is convenient to introduce a small
parameter € = 1/7. As has been shown in [11, 12] for more general cases, the characteristic
equation (3) has two types of solutions, which have different asymptotical properties with
respect to e:

e Strongly unstable eigenvalues \g = o + i + O(¢) for a > 0, which originate from the
instantaneous terms;

e Pseudo-continuous spectrum of eigenvalues, which, up to the leading order in £, can be
approximated as Ap(w) = iw + ey(w). Here, the parameter w admits a countable set of
values w = wy, = wy + 2wke, k = 0,£1,42,... By substituting Ap into (3), we obtain

1) = 3 (0 + (@ - ). ()

Since ReA\p = ev(w), the function 7(w) determines the stability of the stationary state
for < 0. Recall, that for a > 0 the strongly unstable eigenvalue appears. The pseudo-
continuous spectrum is illustrated in Fig. 1(a). The corresponding eigenvalues are located
along the curves (Re A = ey(w), Im A = w) at discrete positions, corresponding to the values
w = wy, with small distances 2we between each other. As delay is increased, the curves
~(w) persist being filled more and more densely with eigenvalues.

One can see that the pseudo-continuous spectrum implies instability for |a] < 1. At
|a] = 1, the curve touches the imaginary axis at the critical frequency 8 (6 = 1 in the
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Figure 1: Linear stability analysis of system (2). (a) Curves of pseudo-continuous spectrum,
along which the eigenvalues are accumulated as delay increases, shown for three different
parameter values: solid line corresponds to a = 0.8, dashed to o = 1, and dotted to
a = 1.2. The destabilization occurs at |a] = 1. (b) The interval of unstable frequencies
w is shown in gray for different values of parameter o. These frequencies correspond to
the interval of ImA, for which the pseudo-continuous spectrum from Fig. (a) is unstable.
In addition, the stability properties of the stationary state for different values of a are
indicated. § =1 is fixed.

figure). Hence, in contrast to the Hopf bifurcation in the system without delay, stability
loss happens already for a« = —1. With increasing control parameter «, the stationary
state becomes unstable to perturbations of the form ¢, where w belongs to some interval
around (. These unstable frequencies can be obtained from (4) as those, which satisfy
v(w) > 0. We obtain a2 4+ (w — 3)* < 1. This set of unstable frequencies of the stationary
state is illustrated in Fig. 1(b). This figure also summarizes the stability properties of the
stationary state:

e for o < —1 it is stable;

o for —1 < a < 0 it is weakly unstable, i.e. the unstable eigenvalues belong to the pseudo-
continuous spectrum and their real parts are of order ¢;

e for a > 0 it is strongly unstable possessing the eigenvalue \g ~ o + i(3.

Numerical results: In our numerical simulations, we fix § = 1. First, we have chosen
the bifurcation parameter o = —0.8 such that the stationary state is already unstable.
The results of the integration for system (2) are shown in Fig. 2. For convenience, we
show the orbit of the delay system using “spatio-temporal” representation [6]. Roughly
speaking the horizontal axis corresponds to the spacelike coordinate ranging from 0 to 7
and the vertical axis to some rescaled slow time ¢/73. The precise meaning of the axes
will become clear further in the text, when the amplitude equations are introduced. Such
a representation is useful, since it shows the solution over a time interval of order 73.
We observe, that the system can approach different periodic states depending on initial
conditions '. The solutions in Figs. 2(a) and (b) are obtained for the initial functions

! The transient should be of order 73. This rule will be confirmed by the amplitude equations, since the
scale of the slow time for the amplitude variable is 3¢.
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Figure 2: “Space-time” representation of the asymptotic states of system (2) for « = —0.8
shows numerically the coexistence of stable solutions with different frequencies. The real
part of z is plotted. The horizontal axis represents the spacelike direction ranging from 0
to 7. Solutions in (a) and (b) have different number of maxima per delay interval. They
are obtained by choosing different initial conditions (see details in the text). 7 = 80, 5 = 1.
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Figure 3: Frequency of the periodic attractor w, as a function of the frequency of the
initial condition w;,, from which the attractor is approached. Initial conditions are chosen
as follows zy(s) = 0.01(1 + 7) cos(wjns). « = —0.2, = 1.

2p(s) = 0.01(1 4 7) cos (wins/7) (—7 < s < 0) with w;, = 0.6 and w;, = 1.6, respectively.
The figure shows, that the asymptotic solutions have different frequencies as well. This
demonstrates the coexistence of periodic attractors with different frequencies.

In order to find out which coexistent periodic attractors are admitted in our system, we
perform a numerical integration with different frequencies w;, of the initial conditions.
The results are shown in Fig. 3 for two different values of delay 7 = 80 and 7 = 500.
The frequencies w, of the asymptotic states are plotted versus w;,. We observe that about
ten different frequencies appear for 7 = 80, which can be realized depending on initial
conditions. For 7 = 500, this frequency discretization still persists, but no longer visible
due to the small distance between the neighboring frequencies.

Note, that Fig. 3 is obtained for a fixed value of the bifurcation parameter a = —0.2.
Changing «, the range of available frequencies w, is varying as well. This dependence of
wg on « is summarized in Fig. 4 where « varies from the bifurcation point « = —1 up to



Figure 4: Dependence of the frequencies of the asymptotic states w, on the bifurcation
parameter a. Close to the destabilization point at « = —1, the system exhibits typical
Eckhaus instability (E denotes the Eckhaus parabola, which delineates the moments of
stabilization of periodic states). At o > 0 the zero state is strongly unstable, which leads
to dominating of low-dimensional dynamics and appearance of the typical Hopf scenario
(no splitting of frequencies). More details are given in the text.

a = 1. We observe that the range of available frequencies of periodic attractors w, first
increases quadratically as « is increased from —1 and then shrinks to the single frequency
we =~ [ for a« > 0. Figure 4 shows how the dynamics of the system changes as it goes
through the bifurcation. We are going now to describe analytically important features of
this destabilization process.

Eckhaus instability and amplitude equations: The phenomena, which are discovered
numerically in Figs. 2, 3 and 4 can be partially understood using the correspondence
between delayed systems and spatially extended systems, see, e.g. [6]. In fact, for a close
to —1, we observe the Eckhaus instability scenario for a delay system. In order to show
this, let us first derive the amplitude equation for (2), which describes the dynamics of the
amplitude of destabilized oscillations close to the bifurcation. We assume o = —1 + pe?,
where ;1 is a new parameter, which controls deviation from this bifurcation. Hence, we
have

2= (=1+pe®+if) z + 2z — z|z|? (5)

Let us introduce different time scales T; = 7¢. Denote T = (T1, Ty, T3). Now we apply the
standard multiscale slow-amplitude ansatz:

z2(t) = e’ (u(T) +ev (T) +*w (T)) . (6)

After substituting (6) into (5) we obtain a set of equations for different orders of €. It is
known |7, 13] that the solvability conditions up to the % order give the necessary amplitude
equation.

In the first order in €, we obtain
u (T17 TQ, Tg) = ewu (Tl — 1, TQ, Tg) s
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where ¢ = —[7 mod 27 is the phase change within the delay interval.

At the order £2,the solvability condition reads
v = GZ@U(Tl - ]_, TQ, Tg) - 8T1u - 8T2u. (7)

Eq. (7) can be considered as a mapping with respect to the argument Tj. For physically
relevant situations, this mapping must have bounded solutions. Therefore, the resonant
terms in Eq. (7) have to vanish 07, u+0p,u = 0. This implies that u is a function of 77 — Ts,
ie. u=¢&(Th —Ty,T3) := &(x, T). Another consequence of Eq. (7) is that v must satisfy
the boundary condition v = e“v (T} — 1, Ty, T3).

The solvability condition for €* order implies
w = %w(Ty —1,Ty,T3) — Opv — Opv (8)

1
—Or,u + 58%2T2u — Opu + pu — ulul?

Vanishing of resonant terms now leads to the final result. In particular, it implies that u
satisfies the GL equation dpu = 197, . u — Op,u + pu — ulul?®. In terms of function &(z, T
it reads

1
Oré = SO%.6 + 0,6 + € — €& )

with the corresponding boundary condition
E(x,T) = e%&(x—1,T). (10)

As follows from our derivation, the relation between a solution &(x,T') of (9-10) and z(t)
of the delay system (5) is given by

2(t) = eePie(et — €%, %), (11)

which is expected to be accurate for a time interval of order e 3. Note, that the convective
term in (9) can be eliminated by a suitable change of variables. Thus, we obtain

OrE = SR, 6+t — EIEP (12)

The obtained GL system (12) has been shown (cf. [14]) to explain the Eckhaus instability
at the bifurcation point g = 0. This phenomenon was first reported in [15]. Like in the case
of the delay system under consideration, in spatially extended systems it is characterized
by the loss of stability of the trivial solution to a periodic pattern of the form e*’** with
the wavenumber .. For systems on unbounded domain, the trivial state becomes unstable
to all periodic patterns €'?*, whose wavenumber satisfies (¢ — 3.)> < 2u. However, these
periodic solutions are themselves unstable, unless ¢ belongs to the smaller interval (¢ —



B.)? < %,u 2. The Eckhaus region is the parabolic region in the (¢, ) plane containing
stable plane waves. This region is bounded by the Eckhaus parabola

3

= (a- A (13)

1e(q)
Note that in the theory of amplitude equations for spatially extended systems, Eq. (12)
describes the dynamics of the complex amplitude of the pattern via, e.g.

w(z, T) = &(w, T)e " + € (2, T)e™ e,

while for the delay system we have the relationship (11).

It has been shown in [14], that a similar scenario of the Eckhaus instability occurs for
systems in a large but finite domain. The main qualitative differences are as follows:

e The set of allowed frequencies is discretized due to the restrictions imposed by boundary
conditions;

e The Eckhaus parabola is shifted downwards

3

1
HE = i(q - ﬁc)

2—1. (14)

We refer to the more detailed analysis of the Eckhaus phenomenon for Eq. (12) in a finite
domain to [14].

Coming back to our delay system (5) we recall the correspondence between the bifurcation
parameters €2y = a + 1 and the frequencies w, — 3 = (¢ — 3.). Using these scalings, we
obtain the Eckhaus parabola for the delay system as

3 3
aE+1:i(wa—ﬁ)2——%§(wa—ﬁ)2. (15)
We would like to emphasize the following interesting feature: due to the scaling restrains,
our final formula for the Eckhaus region for the delay system (15) is, in fact, approximated
by the corresponding formula for the unbounded domain (13) in spite of the fact, that the
amplitude dynamics is governed by the system on a finite domain.

The Eckhaus curve ap(w,) is plotted in Fig. 4 (the line with label E). One can note,
that there is perfect matching of the theoretically predicted results from the amplitude GL
model (12) and the numerically obtained results for the delay equation (2) in the region,
which is close to the bifurcation point o ~ —1.

When spatio-temporal representation fails: With further increasing control parame-
ter a, the multiple periodic attractors of the delay system no longer exist, except for that
one with the frequency closest to the destabilization frequency (3. This can be explained
by the fact, that for & > 0 the local dynamics in the vicinity of the zero state is dominated

2Given formulas for the Eckhaus region differ from the formulas in [14] by the factor 2, since we do not
rescale the coefficient 1/2 at &,



by the single strongly unstable mode with the eigenvalue Ag ~ o+ ¢3. This appears to be
true even in the presence of the unstable pseudo-continuous spectrum for 0 < o < 1.

Summary: We have shown that the characteristic development of the oscillatory insta-
bility for delay systems follows two stages:

— On the first stage the Eckhaus phenomenon occurs and multiple coexisting periodic at-
tractors appear. This stage can be nicely approximated by the complex GL equation with
boundary conditions of the form (10). We conclude also, that this phenomenon is generic,
since amplitude equations of such type will appear generically for any delay system with
large delay, where the instantaneous terms give rise to a Hopf bifurcation.

— On the second stage, the domain with multiple periodic attractors shrinks and one at-
tractor with frequency close to [ survives, see Fig. 4. This stage can no longer be explained
by the amplitude equations. Instead, a low-dimensional approximation should be used.

Note, that the only conditions for the described phenomenon to occur are the presence
of the delay and the control parameter, which mediates the transition from stationary to
a nonstationary regime. Therefore, it is common for models describing the dynamics of
different physical systems, see, for example [1, 2, 3, 4].

Finally, we would like to remark, that systems with large delay exhibit many interesting
phenomena, which are usually accompanied by a high degree of multistability [16, 17].
As a rule, the number of coexisting attractors growths as delay is increased. We show in
this letter, that such a multistability is an inherent feature of large-delay systems, since it
generically occurs already at the basic oscillatory destabilization bifurcation.

References

[1] T. Heil, I. Fischer, W. Elséfler, J. Mulet, and C. R. Mirasso, Phys. Rev. Lett. 86, 795
(2001).

[2] M. C. Mackey and L. Glass, Science 197, 287 (1977).

[3] C. E. Carr, Annu. Rev. Neurosci. 16, 223 (1993).

[4] R. M. May, ed., Theoretical ecology (Blackwell Scientific Publishers, oxford, 1976).
[5] C. Chicone, J. Differential Equations 190, 364 (2003).

[6] G. Giacomelli and A. Politi, Phys. Rev. Lett. 76, 2686 (1996).

[7] G. Giacomelli and A. Politi, Physica D 117, 26 (1998).

[8] M. Bestehorn, E. V. Grigorieva, H. Haken, and S. A. Kaschenko, Physica D 145, 110
(2000).

[9] J. D. Farmer, Physica D 4, 366 (1982).



[10] P. Hovel and E. Scholl, Phys. Rev. E 72, 046203 (2005).

[11] S. Yanchuk and M. Wolfrum, in ENOC-2005, Eindhoven, Netherlands, 7-12 August
2005 (2005).

[12] S. Lepri, G. Giacomelli, A. Politi, and F. T. Arecchi, Physica D 70, 235 (1993).
[13] M. Nizette, Physica D 183, 220 (2003).
[14] L. S. Tuckerman and D. Barkley, Physica D 46, 57 (1990).

[15] W. Eckhaus, Studies in Non-linear stability theory (Springer Tracts in Natural Phi-
losophy, 1965).

[16] S. Yanchuk, Phys. Rev. E 72, 036205 (2005).

[17] H.-J. Wiinsche, S. Bauer, J. Kreissl, O. Ushakov, N. Korneyev, F. Henneberger,
E. Wille, H. Erzgraber, M. Peil, W. Elsdfler, et al., Phys. Rev. Lett. 94, 163901
(2005).



