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EXACT CONTROLLABILITY ON A CURVE FOR A SEMILINEAR PARABOLIC EQUATION 1

ABSTRACT. Motivated by the growing number of industrially important laser mate-
rial treatments we investigate the controllability on a curve for a semilinear parabolic
equation. We prove the local exact controllability and a global stability result in the two-
dimensional setting. As an application we consider the control of laser surface hardening.
We show that our theory applies to this situation and present numerical simulations for
a PID control of laser hardening. Moreover, the result of an industrial case study is
presented confirming that the numerically derived temperature in the hot-spot of the
laser can indeed be used as set-point for the machine-based process control.

1. INTRODUCTION AND MAIN RESULT

In this paper we investigate the controllability on a curve for a semilinear parabolic
equation. Our research is motivated by an application related to thermal laser material
treatments like hardening or coating. The new generation of laser heat treatment equip-
ments usually includes a device for process control. Its mode of operation is shown in
Figure 1. While the laser moves along the workpiece surface, the temperature uy,(t) in
the hot-spot of the laser beam is measured by a pyrometer. A PID-controller is employed
to adjust the laser power p(t) to approximate a desired set-point temperature h(t).

)

p() Power Supply PID

uhs(t)

Laser

Pyrometer

Workpiece

FIGURE 1. Pyrometer process control of laser surface hardening.

In many applications it suffices to choose the set-point temperature as a constant below
the melting temperature of the respective workpiece material. However, recently we have
shown that in case of workpieces with varying thickness or with cavities below the surface
a constant set-point temperature is not sufficient to achieve a uniform penetration depth
of the laser beam. In [4] we have shown that it is much more favourable to keep the tem-
perature constant on a curve inside the workpiece in a fixed distance from the workpiece
surface penetrated by the laser beam.

To fix the mathematical setting we assume the workpiece Q2 C R? to be a bounded domain
with smooth boundary 0€2. The evolution of temperature u is described by the semilinear



2 DIETMAR HOMBERG AND MASAHIRO YAMAMOTO

heat equation

(1.1a) Owu(z,t) = Au(z,t) + F(u(z,t)) +p(t)G(z,t), inQx (0,7T),
(1.1b) u(z,0) = 0, in

(1.1c) %(:p,t) = 0, on 02 x (0,7).
v

Here, all physical constants have been normalized. As in [2] we assume the laser energy
to be absorbed volumetrically, modelled by the term p(¢)G(z,t). Here, p(t) is the laser
power, serving as our control parameter and G is the normalized intensity profile. In the
case of a gas-laser the profile would be of Gaussian shape decaying exponentially with
decreasing distance from the surface.

Typically, the heating induces further effects inside the workpiece, e.g. melting or solid-
solid phase transitions. These in turn usually lead to a release or consumption of heat.
This is modelled by the function F'(u), for which we assume

(H1) For any M > 0, there exists a constant C' = C; > 0 such that

d*F d*F
dy* (v) — dyF W) <Culy—v1, k=0,1, [yl,ly| <M.

By u, = uy(x,t) we denote the strong solution to (1.1a) — (1.1c) with prescribed real-
valued laser power p = p(t), provided that it exists for 0 < ¢ < ¢y. Then, the mathematical
formulation of laser process control reads as follows:

(P) Exact control on a curve.
Let v(t) € Q, 0 < t < T, be a smooth curve and let h = h(t) € H'(0,T) be a
given set-point function. Then determine an input p(¢) such that

up(y(1), 1) = h(t),  0<t<t,.

Inverse problems of determining ¢-functions in evolution equations by observation data in
t are discussed in |6, Chapter 6|, but our problem takes a different type of observations
and requires more analysis.

The paper is organized as follows: In Section 2 we formulate and prove the main result.
In Section 3 we show a global stability result. Section 4 is devoted to an application in
laser surface hardening followed by a short concluding section on future research.

2. THE MAIN RESULT

We fix > 0 and define an operator A in L*(Q) by —Au(z) = Au(x), z € Q with
D(A) = {ue H*(Q);5“ =0 on 9Q}. Henceforth (-,-) and ||-|| denote the scalar product
and the norm in L*(2), respectively. Then —A generates an analytic semigroup in L*(£2)
and the fractional power (A + 0)%, a € R, can be defined (e.g., Pazy [5]). Moreover

(A +0) e ™| < Cot™™, a>0,
1
(2.1) lull = < Coll(A+6)ull, o>,

||€_tACL||Loo(Q) S CTHCLHLoo(Q), 0 S t S T.

The last estimate can be seen by the fundamental solution. For the function G we assume
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1 1
> - 7v>a+ -,

G € C([0,T); D((A+6))), 5 2

G(y(t),t) #0, 0<t<T.
Then we can state the first main result on the unique local existence of the control p(?).

Theorem 2.1. Assume (H1) and (H2). Then we can choose small ty > 0 satisfying: for
an arbitrary h € H'(0,ty) with h(0) = 0, there exists a unique p = p(t) € L*(0,to) such
that u, € C([0,to]; L>=(2)) N H*(0,to; L=(Q)) and

up(y(t),t) = h(t),  0<t<ty,
120l 220.00) < CUIR [ L20.0) + 17 (0)]] oo ())-
Proof.

First Step. Let 7" > 0 be arbitrarily fixed. For M > 0, we can choose t, € (0,7) such
that there exists a unique solution u, = u,(t) to (1.1a) — (1.1c) in ¢t € (0,%y) as long as
|l 220,r) < M. Moreover

t
[y ()] =) < C (|P(t)| +1 +/ (Ip(s)| + 1)d8> . 0<t<t,
0
uplleqoiz=@) < CUlpllL2o.0) + 1)

Here and henceforth C' > 0 denotes generic constants which are dependent on G, M, F,
a, v, but independent of choices of p.

The proof is done by a usual argument by the semigroup theory (Henry [1]|, Pazy [5]),
and for completeness we will give the details. We set

B(R) = {u € C([0, to}; L=(Q)); lull c(otofszoe @y < R}
Since u, formally satisfies
up(t) = /t e~ =)(5)G(s)ds + /t e~ IR (u,(s))ds, t >0,
we introduce an ope:ator K :B(R) — C’([O,Oto]; L>(Q2)) defined by
(Ku)(t) = /tp(s)e_(t_s)AG(s)ds + /t e~ VAR (u(s))ds, t>0.
0 0

Here and henceforth we set G(t) = G(-,t), which is considered as a map from R to L?(12).
Let u € B(R) for given R > 0. Then, by (H2), we have

t t
[Ku®llo = | [ o) 1G)ds + [ e pus)is
0 0

L (Q)
<c / 10(5)[ds]| Glleqompiasor / 1 E () | ey s
< CVtoeM + CtoCh.

For given R > 0, we choose ¢y, > 0 sufficiently small such that
(22) C\/%M + CtoCR < R.
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Hence

(2.3) KB(R) C B(R).

Next we will prove that K is a contraction for small ¢ty > 0. Let u,v € B(R). We have

| Ku(t) — Kv(t)||zee) < H/o e’(t’s)A(F(u(s)) — F(v(s)))ds

L (9)

t
SCg/Hwﬁ—U@WWWMSSCﬂﬂU—Mbmmwwmw
0

that is,

[ Ku — Kvlle o) < Crtollu — v oot @))-

Therefore, if ¢y > 0 is sufficiently small, then K : B(R) — B(R) is a contraction. By
the contraction mapping theorem, K has a unique fixed point:

(2.4)  w,(t) = /Ot e~ Ap(5)G (s)ds + /Ot e~ AR (u,(s))ds, 0<t<ty

and
(2:5) [uplleo to)izoe(a) < B
Next we will estimate [|u;,(t)||z~). By (2.4) and (2.5), we have
t
0 (6) =pOG®O ~ [ p(s)Ae IG(5)ds + U F(0)
0
t
+ / e (up(t — s))ul(t — s)ds, t > 0.
0
Therefore, by (H2), (2.5) and the Schwarz inequality, we have
t
(D)l o= (@) < Clp(6)] + C/ [p()II(A +0) 79U (A + )7 G(s)|ds
0
t
+ CF(0) |2~ +/0 1" Cup (8 = ) oo (el (t = 8) || e (@ ds

t t
< Clp(t)| + C/ [p(s)|(t = s)7*71ds + C' + CR/ [, (8 = )| L= () ds
0 0

2y—2a—1

tO 2 t
< Clp()| +CM (m) +C + CR/O ()| eqyds, 0 <t < to.

Therefore the Gronwall inequality yields

(2.6) ()| oo () < C(Ip(H)] +1) + C/O (Ip(s)| + D)ds, 0 <t <to.
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Second Step. Let ty > 0 be chosen in as in First Step. In this step we will estimate
ety (£) = 10g(8) | ey and. [l (8) = 10y (¢) llz@) for 1pll12(0.00: ll2(0.0) < M- Since

wlt) = ft) = [ Iple) = a(e) o)
4 /0 DA (Pl (s)) — Flugls))ds, 0 <t < to,
by (H1), (H2) and (2.1) we have
funt) D)oy < € [ 19(5) = o)l
+0 [ uns) = a9l s

Here we note that for ||p||12(0.4), |9]/22(0,,0) < M, we have bounds
lupllcorlz=@n,  luqlloqot=w) < C,
so that
1P (upl(5)) = Flug()) (@) < Cllun(s) = 3|y, 0 < s < to
by (H1). Hence the Gronwall inequality yields
(2.7) [up = ugllcqotor=@) < Cllp = dllz20.10)-

Next we have

W () — (1) = (p— @) (D)C(t) — / (p(s) — a(s)) e~ 091G s)ds

t

_|_

e A F (up(t — 5)) (u(t — 5) — ul(t — s))ds

_|_

/Ot
f

e (F'(up(t —5)) — F'(uy(t — s)))ug(t — 5))ds

(P—a)O)GH) + L + L+ Is.

First, by (H2) we have

il @) < C/O Ip(s) — q(s)|(t — )" (A +0)G(s)||ds
<C (/0 Ip(s) — Q(S)|2ds) 2 (/0 (t — 3)272a2d8> 2 (A +6)G(3)lcosmir2c)

< Cllp = qll 2(0,10)-

Second, by (H1) and (2.5), we have

t
1Bl < C / e (5) — 1 (5) | oy ds.

Third, by (H1) and (2.5), we have
[F' (up(,8)) = F'(ug(z, 5))| < Clup(z, 5) — ug(2, 5)|
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for almost all z € Q and t € [0, o). Hence

1Fup(5)) = (g (5) @) < Cllup(s) = ()l =(en
< O(A+0)uy(s) — (A +0)uy(s)]|

Consequently it follows from (2.6) and (2.7) that

/0 e~ (F (uy(s)) — F(ug(s))) et (5))ds

TA - \
L)

t
<c / 1F p(5)) — F*(tg(5)) ooyl (3) oy
t
<Clp— Q||L2(o,to)/ g (8) | oo (yds < Clp = qll22(0,t0)-
0

Therefore
[y, (1) — g (8) | Lo

t
< Clp(t)—Q(t)l+CIIP—QI|L2<o,to)+0/ () = ug(s)llLe@yds, 0 <t <to.
0

The Gronwall inequality yields
[, () — g ()| =) < Clp(t) — ()] + [P — allz20,10))

t
+C [ (s) = )]+ o = allza)ds.
0
that is,
) = (O =0y < CUlpte) = )]+ I = all200)

(2.8) + /Ot Ip(s) —q(s)|ds, 0 <t <t.

Third Step. By (Kou)(t) = u(y(t),t), 0 < t < ty, we define a linear operator K, from
C([0,t0); L°(£2)) to L?(0,ty). Then

(2.9) |(Kou)(t)] < Cllu(®)[|=@) < Cil[(A+0)*u(t)]
by o > 3. For a given h € H'(0,10), let p € L*(0,%,) satisfy

(2.10) h(t) = /0 p(s)Ko(e”4G(s))ds + /0 Ko(e A F(uy(t — s)))ds,

0<t<ty.

Then for this p, we can directly verify that u, () satisfies
(2.11) up(y(t),t) = h(t), 0<t<t.
Differentiating (2.10) with respect to ¢, we obtain

R(t) = p(t)(KoG)(t) + / p(s)0Q(t, s)ds + Ko(e ' F(0))
(2.12) 0

¢
+ / Kole *AF (u,(t — s))uy,(t — s))ds, 0 <t <to.
0
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Here and henceforth we set
Q(t,s) = Ko(e " 94G(s)), 0<s<t<t.
Then we have 0,Q(t,s) = —Ko(Ae ™ =4G(s)), 0 < s < t < ty. Therefore

2:Q(t, )| < Cl[(A+ ) Ae™ G (s)[| < ClI(A+0) e DA+ 0)G(s)|
< C(t - 8)’7_0‘_1”(14 + Q)WG(S)||C([07t0];L2(Q)), 0<s<t<ty,

so that
(2.13) 10,Q(t,s)| < Ot —s)7 71 0<s<t<tg
by (H2). Again by (H2), we can define an operator L defined in L*(0, ;) by

(Lp)(t) = m{/o p(s)(2:Q)(1, s)ds

(2.14) .
+/ Ko{e 4 (F'(uy(t — s))u,(t — s))}ds}, 0<t<to.
0
We set
Un, = {P € L*(0,to); IIpll 20,00
(2.15)

W — Ko(e A F(0))
KoG

|

Then, for sufficiently small ¢ty > 0, we will prove that

F1=2M, 41,
LQ(O,tO)

(2.16) LUy, C Uy,

Proof of (2.16). Let p € Uy;,. Then, by (2.5) and (2.6), we can choose constants ty > 0
and R; > 0 such that

(2.17) [upllcpo.sonze) < Ba

and
(218)  Nup(®)lle@ < C(Ip(H]+1) + C/Ot(|29(8)\ +1ds, 0<t<to.
By (2.1) and (2.13) we have
| Lp(t)| < C/Ot p(s)| - [0:Q(t, ) ds + C/Ot [E" (up(t = )| oo o |, (E = 5) || ooy dis

<0 [ — s as o [ (mas 101 o)l ods.

[n| <Ry
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The Schwarz inequality, (H2) and (2.18) yield

t ) 3 t%w—%é—l 3
L < -0
o< ([ wers) (55 —)

wo [+ ([ awer+ i) b

—a-l 1
<Cty 2401, 0<t<t,.

Hence

y—o—

1 1
1Pl 20.0) < Cltg — * +15),

so that if £y > 0 is sufficiently small such that
N—a—l 1
C(ty  2+1t3) <2M, +1,

then Lp € Uyy,. Thus the proof of (2.16) is complete.

Next we will prove that L : Uy, — Uy, is a contraction if ¢y > 0 is sufficiently small.
Let p,q € Uyy,. First by (2.13) and the Schwarz inequality, we obtain

| p00 05— [ awaQu.sas < [ ) - alole— st

tg'yf2a71 %
Sﬂm—ﬂmmm<§;:ﬁi7)'

Second

/0 {Ko(e " F'(u,(t — s))u(t — 5)) — Ko(e * F'(ug(t — s))uy(t — s)) } ds

/0 Ko(e " F (u,(t — s)) (u,(t = s) — u(t — 5)))ds

. /Ot Koo <F’(uq(t —8)) — F'(ug(t — s))ug(t — s))ds

t
< C/O " (up ()l oo (@ [ (5) — g (5) ]| ooy ds
t
+C/0 157 (ug(5)) — F'(uq(s)) || Lo (@ llug () | Loe )y ds.
By (2.17) and (H1) we have ||F'(up(s))| r~@ < C and

1E" (up(5)) = F" (ug())l| L0y < Cllup(s) —ug(s)|[ (@) < ClI(A+0)up(s) = (A+0) uq(s)]-
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Hence by (2.7) and (2.8)

/o Koe M (F'(up(t — s))uy(t — s) — F'(ug(t — s))ul(t — s))ds

< C/O lup(s) = g ()l L=y ds + C/O I(A +6)%up(5) = (A + 0)uq(s)]|ds

(2.19)
<0 [ (1069 = a0 + o= allzzong + [ 10©) —atE)l) s
+ Ctollp — 4l r20.40) < CVollp — all22(0,10)-

Consequently

a1l 1
[Lp(t) — Lq(t)] < Cty “ 2 +t&)llp — allz20m), 0=t < to,

that is, L is a contraction from Uy, to Uy, for small tg > 0. Thus for h € H'(0, ), there
exists a unique p € L?(0,ty) such that (2.12) holds. Since h(0) = 0, by integrating (2.12)
over (0, 1), we see that this p satisfies (2.10). Thus the proof of Theorem 2.1 is complete.

3. A GLOBAL STABILITY RESULT

We discuss the global stability provided that w,, u, exist in ¢ € (0,7") and satisfty a priori
bounds:

luplleqomr=w), luglloqorsr=w) < M,
(3.1)

121l 22(0,t0)+ lall z20,00) < M-
Theorem 3.1. We assume that (3.1) holds and (p,u,), (¢, u,) satisfy

up(1(0,6) = h(b), w10, = j(t),  0<t<T.
Then there exists a constant C' > 0 such that

Ip = qllz20r) < ClA = 5[l 20.1)-
Proof. By (H1), (2.4) and (3.1), similarly to (2.6), we can prove

(3.2) lup (Ol 20,2, upOllr20miz=() < Cu

Since (p,u,) and (g, u,) satisfy (2.12), we have
(p(t) = q() (K Go)(t) = I'(t) — 5'(t) — /0 (p(s) — q(5))AQ(t, s)ds

— /0 Koe S (F'(up(t — s))ul(t — s) — F'(ug(t — s))ul(t — s))ds.

Similarly to (2.7), (2.8) and (2.19), we can obtain

/0 Koe M F'(uy(t — s))ul(t — s) — F'(ug(t — s))ul,(t — s))ds

(33) t ;
<o [ we-aopas) ", vsist
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By (H2), (2.3) and (3.3) we can estimate to obtain

() = a(0)] < Y0 =701+ C [ 1pte) = als)l(e = s~ds

o ([ o) - airas)

t 3
<o -1ol+c ([ o -aekas)  osisT
0
Therefore squaring the both hand sides and applying the Gronwall inequality, we obtain
) = 4O < WO~ FOF +C [ W) -5 Pds, 0<t<T.

Thus the proof of Theorem 3.1 is complete.

4. AN APPLICATION: LASER SURFACE HARDENING

In laser surface hardening the heating induces phase transitions inside the workpiece
that subsequently lead to a hardening of the penetrated surface layers. A simple way of
describing this phenomenon is to keep track of the growth of the high-temperature phase
austenite assuming that it will be transformed completely to the hard phase martensite
upon cooling.

The corresponding mathematical model is

(4.1a) Ou = Au— 0w+ p(t)G(x,t) inQ x (0,7
1 .

(4.1b) oa = f(u,a) = m[aeq(u) — a]+ in Qx(0,7)
(4.1c) a(x,0) = 0, in Q2
(4.1d) u(z,0) = 0, in
(4.1e) g’“ (z,) = 0,  indQx(0,7).

v
Here, F'(u) = —0;a describes the consumption of latent heat during the growth of austen-

ite, 7 is a time constant and [z], = max{x, 0} the positive part function. The equilibrium
volume fraction a., is monotone and satisfies a.,(z) = 0 for x < A; and a.,(z) = 1 for
x > Ay, where A; and Ay are the threshold temperatures for the beginning and the end
of the transformation. Hence the austenite volume fraction increases during heating until
it reaches some value a < 1. During cooling we have a; = 0, and the value a is kept.

In |3, Lemma 2.2] we have shown that for any temperature evolution u € L?(Q) (4.1b) —
(4.1¢) admits a unique solution a. After regularizing the positive part function we may
assume that f as defined in (4.1b) is differentiable with bounded partial derivatives 8£ : gé
Then it is a standard application of Gronwall’s lemma to infer

s, = ) < er(Jur(et) = e ) + [ fun(.) = wale )1 )

|0way (z,t)| — Oag(x,t) < cg<\8tu1(x,t) — Opug(x, )| + |ur (x, ) — ua(z, t)|

[ o) — s, )
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Here ay, ay are the solutions to (4.1b) — (4.1c) corresponding to uy, us, respectively. Using
these estimates instead of (H1) it is possible to recover Theorems 2.1 and 3.1.

As a numerical example we consider the surface hardening of a workpiece with rectangular
cavity (cf. [4]). Figure 2 depicts the result of a numerical simulation of (4.1a) — (4.1e)
with constant laser power p(t) = po and constant velocity. On top, the temperature in the

2000

1500

1000

500

FIGURE 2. Uncontrolled case: Temperature in hot-spot of the laser beam
(top) and resulting fraction of austenite (bottom).

hot-spot of the laser on the surface is described. Below, one can see the resulting austenite
fraction a(7T") which we assume to coincide with the hardened zone. The situation shown
in Figure 2 is unfavourable for two reasons. The high temperature above the cavity and
at the end of the workpiece will lead to an undesired surface melting. Moreover, the
through-hardening above the cavity will foster fatigue effects and eventually lead to crack
formation.

In [4], we have shown that a way to obtain a uniform hardening depth is to control the
temperature to be constant about one millimeter from the quenched end close to the lower
boundary of the desired hardening strip. Theorems 2.1 and 3.1 show that it is indeed
possible to control the temperature in such a way and thus provide a theoretical basis for
this approach.

We define a corresponding curve v(¢) and compute a solution to (4.1a) — (4.1e) where the
laser power at timestep ¢;,1 is derived using a standard PID algorithm, i.e.,

(4.2a) e(t;) = ht;) —uly(l:), ;)
t;
(42b) p(ti-i-l) = k:le(ti) + k?g / e(t) dt + k?ge(tl)
to
Here, h is the given constant set-point temperature, and the resulting laser power at

time ;.1 is the sum of a term proportional to the error between actual and set-point
temperature, its integral and its derivative, which explains the name PID algorithm.
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1500

1000

500

FIiGURE 3. Controlled case: Temperature T}, in hot-spot of laser beam
and T,ub close to lower end of desired hardening depth (top). Resulting
austenite fraction (bottom).

On top of Figure 3 the temperature T}, in the hot-spot of the laser beam and the controlled
temperature Ty, are depicted. Obviously, the PID algorithm works very well. The
figure below shows that the desired constant hardening depth has been achieved. From
practical point of view the non-constant temperature 7}, should be suitable as the set-
point temperature for the machine-based control illustrated in Figure 1.

FIGURE 4. Result of a hardening experiment utilizing the computed tem-
perature T}, as set-point for the machine-based control (Courtesy of Photon
Laser Engineering, Berlin, Germany).

Figure 4 shows the result of a corresponding experiment. The resulting hardening strip
is nearly constant. Especially the dangerous situation of a through-hardening above the
cavity does not occur.



EXACT CONTROLLABILITY ON A CURVE FOR A SEMILINEAR PARABOLIC EQUATION 13

5. CONCLUDING REMARKS

In the present paper we have investigated the controllability on a curve for a semilinear
parabolic equation. This problem is of particular importance for laser material treatments.
Unfortunately, our analysis so far is limited to the twodimensional case. An extension to
the 3D case requires further regularity analysis of the state equation.

From numerical point of view the PID algorithm in combination with a finite element
solver for the state equations works very well. However, another challenging direction of
further research is convergence analysis for this numerical strategy.
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