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AbstratIn this paper we onsider the �rst order frational splitting method tosolve deomposed omplex equations with multi-physial proesses for appli-ations in porous media and phase-transitions. The �rst order frational split-ting method is also onsidered as basi solution for the overlapping Shwarz-Waveform-Relaxation method for an overlapped subdomains. The aurayand the eÆieny of the methods are investigated through the solution ofdi�erent model problems of salar, oupling and deoupling systems of on-vetion reation di�usion equation.1 IntrodutionWe motivate our studying on omplex models with oupled proesses, e.g. transportand reation-equations with nonlinear parameters. The ideas for these models amefrom the bakground of the simulation of heat transport in engineering apparatus,e.g. rystal-growth, f. [12℄, or the simulation of hemial reation and transport,e.g. in bio-remediation or waste disposals, f. [10℄. In the past many software-toolshave been developed for multi-dimensional and multi-physial problems, e.g. multi-dimensional transport-reation based on di�erent PDE and ODE solvers. In thefuture a oupling between various software-tools with di�erent solver methods willbe of interest and ould be done with the frational splitting method.We onsider the overlapped domain deomposition method, suh as overlappingShwarz wave form relaxation, f. [9℄ and [13℄, using frational splitting as the basisolver over the overlapped subdomains.The outline of the paper is as follows. For our mathematial model we desribe theonvetion-di�usion-reation equation in setion 2. The Frational-Splitting methodis introdued in setion 3. For the overlapping Shwarz-Waveform-Relaxationmethodwe derive the error-analysis for the salar and systems of equations (oupled or de-oupled systems) and presented the results in setion 4. In setion 5 we present thenumerial results from the solution to seletive model problems. We end the artilein setion 6 with onlusion and omments.2 Mathematial ModelThe motivation for the study presented below is oming from a omputational sim-ulation of heat-transfer [12℄ and onvetion-di�usion-reation-equations [10℄.1



The mathematial equations are given by�t R u+r � (vu�Dru) = f(x; t; u(x; t)) ; in 
� (0; T ) ; (2.1)u(x; 0) = u0(x) ; (Initial-Condition) ; (2.2)u(x; t) = u1(x; t) ; on �
� (0; T ) ; (Dirihlet-Boundary-Condition) ; (2.3)The unknown u = u(x; t) is onsidered in 
� (0; T ) � IRd� IR, the spae-dimensionis given by d . The parameter R 2 IR+ is a onstant and named as spei� heat orretardation fator. The parameters u0(x); u1(x; t) 2 IR+ are funtions and used asinitial- and boundary-parameter respetively. D is the thermal ondutivity tensoror Sheidegger di�usion-dispersion tensor and v is the veloity. Further f(x; t; u) isa possible nonlinear funtion, and one ould hoose it for the following appliations: f(x; t; u) = up ;with p > 0 ; hemial-reation ; (2.4)f(x; t; u) = u1� u ; bio-remediation ; (2.5)f(x; t; u) = ~f(x; t) ; heat-indution : (2.6)The aim of this paper is to present a new method based on a mixed disretiza-tion method with Frational-Splitting and Domain deomposition methods for ane�etive solving of strong oupled paraboli di�erential equations.In the next setion we disuss the frational splitting-methods for solving our equa-tions.3 Frational-Splitting Methods3.1 Splitting methods of �rst order for linear equationsFirst we desribe the simplest operator-splitting, whih is alled sequential operatorsplitting for the following system of ordinary linear di�erential equations:�tu(t) = A u(t) + B u(t) ; in 
� [tn; tn+1℄ ; (3.1)where the initial-onditions are un = u(tn). The operators A and B are spatiallydisretised operators, e.g. they orrespond to the disretised in spae onvetion anddi�usion operators (matries). Hene, they an be onsidered as bounded operators.The sequential operator-splitting method is introdued as a method whih solve thetwo sub-problems sequentially, where the di�erent sub-problems are onneted viathe initial onditions. This means that one replaes the original problem (3.1) withthe sub-problems �u�(t)�t = Au�(t) ; with u�(tn) = un ; (3.2)�u��(t)�t = Bu��(t) ; with u��(tn) = u�(tn+1) ;2



where the splitting time-step is de�ned as �n = tn+1 � tn. The approximated splitsolution is de�ned as un+1 = u��(tn+1).Clearly, the hange of the original problems with the sub-problems usually resultssome error, alled splitting error. Obviously, the splitting error of the sequentialoperator splitting method an be derived as follows (f. e.g. [10℄)�n = 1� (exp(�n(A+B))� exp(�nB) exp(�nA)) u(tn)= 12�n[A;B℄ u(tn) +O(� 2) : (3.3)where [A;B℄ := AB�BA is the ommutator of A and B. Consequently, the splittingerror is O(�n) when the operators A and B do not ommute, otherwise the methodis exat. Hene, by de�nition, the sequential operator splitting is alled �rst ordersplitting method .Now we introdue the domain-deomposition methods as next idea for splittingmethods to deompose omplex domains and solve them e�etively in an adaptivemethod.4 Overlapping Shwarz wave form relaxation forthe solution to onvetion-di�usion-reation equa-tionThe �rst known method for solving partial di�erential equation over overlappeddomains is the Shwarz method due to [23℄ in 1869. In the last years massiveparallel omputers are used for simulating omplex problems, therefore the methodhas regained its popularity, beause it an be implemented as a parallel method.Further tehniques have been developed for the general ases when the domains areoverlapped and non overlapped. For eah lass of methods there are some interestingfeatures and both share same onepts whih is how to de�ne the interfae boundaryonditions over the overlapped or along the non overlapped subdomains. The generalsolution methods over the whole subdomains together with the interfae boundaryonditions estimations are either iterative or non iterative methods.For the non overlapping subdomains the values at the interfaes are predited byusing an expliit sheme and the problem is solved over eah subdomain indepen-dently. This type of method is of non iterative type but it has a drawbak regardingthe stability ondition for the interfae predition by the expliit method and thesolution by the impliit sheme or any other unonditional stable �nite di�erenesheme [24℄.For the overlapping subdomains the determination of the interfae boundary on-dition is de�ned by using preditor orretor type of method. The preditor will3



provide an estimation of the boundary ondition while the orretion is performedfrom the updated solution over the subdomains. These types of the algorithms areiterative types with the advantage of stabilising the iterative values at the interfaethrough the overlapping. The overlapping is used as a relaxation-method of thesolution in the interfae region.In this work we will onsider the overlapping type of domain deomposition methodfor solving the studied models of onstant oeÆients, deoupled and oupled sys-tems solved by using the �rst order operator splitting algorithm with a bakwardEuler di�erene sheme. The most reent method in this �eld is the overlappingShwarz waveform relaxation sheme, see [9℄ and [13℄.Overlapping Shwarz waveform relaxation is the name for a ombination of twostandard algorithms, the Shwarz alternating method and the wave form relaxationalgorithm to solve evolution problems in parallel. The method is de�ned by parti-tioning the spatial domain into overlapping sub-domains, as in the lassial Shwarzmethod. However on sub-domains, time dependent problems are solved in the iter-ation and thus the algorithm is also of waveform relaxation type. Further more, theproblem is solved using the operator splitting of �rst order over eah sub-domain.The overlapping Shwarz waveform relaxation are introdued in [13℄ and indepen-dently in [9℄ as a solver method of evolution problems in a parallel environmentwith slow ommuniation links. The idea is to solve over several time steps be-fore ommuniating information to the neighboring sub-domains and updating thealulated interfae boundary onditions for the overlapped domains.Two forms of onvergene behavior have been observed for the onvergene of theoverlapping Shwarz wave form relaxation method. The onvergene behavior stateslinear onvergene on bounded time domain and super linear onvergene over shorttime domain [9℄.This algorithm stands in ontrast to the lassial approah in domain deompositionfor evolution problems, where time is �rst disretized uniformly using an impliitdisretization and then at eah time step a problem in spae only is solved usingdomain deomposition, see for example [18℄ and [2, 3℄. Further more, in this workthe operator splitting method will be onsidered by using Crank-Niolson (CN)or an impliit Euler-method for the time-disretisation. The main advantage inonsidering the overlapping Shwarz wave form relaxation method is the exibilitythat one an solve over eah sub-domain with di�erent time steps and di�erentspatial steps in the whole time-interval. In this setion we will onsider the Shwarzwave form relaxation to solve salar, and systems of onvetion-reation-di�usionequations. For the systems of onvetion-reation-di�usion equations we study theweak oupled ase, i.e. two equations oupled by the reation-terms.In this work the studied model problems are de�ned over unbounded time interval,or long time interval. We will show how the onvergene of the iterated solutionsare of linear onvergene behavior. 4



4.1 Overlapping Shwarz wave form relaxation for the salaronvetion-di�usion-reation equationWe onsider the onvetion-di�usion-reation equation, given byRut = Duxx � �ux � �u ; (4.1)de�ned on the domain 
 = [0; L℄ for T = [t0; tend), where L; tend 2 IR+, andR;D; �; � 2 IR+ and bounded, with the following initial and boundary onditionsu(0; t) = f1(t); u(L; t) = f2(t); u(x; t0) = u0(x) :We have the following theorem, see [5℄ or [19℄, that shows the existeny, uniquenessand regularity of the solution to the onerned boundary value problem for (4.1).Theorem 4.1. For any L1; L2 2 [0; L℄ with L1 < L2 and any ontinuous funtionsf1, f2 : [t0; tend℄ ! IR and any u0 : [L1; L2℄ ! IR whih satisfy the ompatibilityonditions u0(L1) = f1(t0) and u0(L2) = f2(t0) the boundary value-problem (4.1)and u(L1; t) = f1(t), u(L2; t) = f2(t), u(x; t0) = u0(x) has a unique solution. Thesolution u lies in C2;1([L1; L2℄; [t0; tend℄), that means u(�; t) 2 C2 and u(x; �) 2 C1.To solve the model problem using overlapping Shwarz wave form relaxation method,we subdivide the domain 
 in two overlapping sub-domains 
1 = [0; L2℄ and 
2 =[L1; L℄, where L1 < L2 and 
1T
2 = [L1; L2℄ is the overlapping region for 
1 and
2:To start the wave form relaxation algorithm we �rstly onsider the solution to themodel problem (4.1) over 
1 and 
2 as followsRvt = Dvxx � �vx � �v over 
1 ; t 2 [t0; tend)v(0; t) = f1(t) ; t 2 [t0; tend)v(L2; t) = w(L2; t) ; t 2 [t0; tend)v(x; t0) = u0(x); x 2 
1; (4.2)Rwt = Dwxx � �wx � �w over 
2 ; t 2 [t0; tend)w(L1; t) = v(L1; t) ; t 2 [t0; tend)w(L; t) = f2(t) ; t 2 [t0; tend)w(x; t0) = u0(x); x 2 
2; (4.3)where v(x; t) = u(x; t)j
1 and w(x; t) = u(x; t)j
2. For the uniqueness and existenewe apply theorem 4.1. We ful�ll the riterias by the possitivity and boundedness ofthe parameters R, D, v and � and also of the intial- and boundary-onditions.Therefore we will obtain the overlapping Shwarz wave form relaxation from solving(4.2) and (4.3) over the whole time domain for eah iteration, and then updatingthe interior boundary onditions v(L2; t) and w(L1; t). The algorithm is given byRvk+1t = Dvk+1xx � �vk+1x � �vk+1 over 
1 ; t 2 [t0; tend)vk+1(0; t) = f1(t) ; t 2 [t0; tend)vk+1(L2; t) = � wk(L2; t) for k > 0u0(L2) for k = 0 ; t 2 [t0; tend)vk+1(x; t0) = u0(x); x 2 
1; (4.4)5



Rwk+1t = Dwk+1xx � �wk+1x � �wk+1 over 
2 ; t 2 [t0; tend)wk+1(L1; t) = � vk(L1; t) for k > 0u0(L1) for k = 0 ; t 2 [t0; tend)wk+1(L; t) = f2(t) ; t 2 [t0; tend)wk+1(x; t0) = u0(x); x 2 
2: (4.5)For the uniqueness and existene of the partial equations (4.4) and (4.5) we applytheorem 4.1.We are interested in estimating the deay of the error of the solution over theoverlapping subdomains by the overlapping Shwarz wave form relaxation method.Let us assume e(x; t) = u(x; t)� v(x; t) and d(x; t) = u(x; t)�w(x; t) is the error of(4.4) over 
1 and (4.5) over 
2 respetively. The orresponding di�erential equationssatis�ed by e(x; t) and d(x; t) are given byRek+1t = Dek+1xx � �ek+1x � �ek+1 over 
1 ; t 2 [t0; tend)ek+1(0; t) = 0 ; t 2 [t0; tend)ek+1(L2; t) = dk(L2; t) ; t 2 [t0; tend)ek+1(x; t0) = 0 x 2 
1; (4.6)Rdk+1t = Ddk+1xx � �dk+1x � �dk+1 over 
2 ; t 2 [t0; tend)dk+1(L1; t) = ek(L1; t) ; t 2 [t0; tend)dk+1(L; t) = 0 ; t 2 [t0; tend)dk+1(x; t0) = 0 ; x 2 
2: (4.7)For ~
 � 
 and ~L 2 ~
 we de�ne for bounded funtions h : ~
 � [t0; tend) ! R thefollowing supremums normjjh(~L; �)jj1 := supt2[t0;tend) jh(~L; t)j:For the onvergene and error bound of ek+1 and dk+1 are presented by the followingtheoremTheorem 4.2. Let fek+1g and fdk+1g be the sequenes of errors from the solutionto the subproblems (4.2) and (4.3) by Shwarz wave form relaxation over 
1 and
2, respetively, then jek+2(x; t)j � jjek(L1; :)jj1 ; 8x 2 
1 ;and jdk+2(x; t)j � jjdk(L2; :)jj1 ; 8x 2 
2 ;for all t 2 [t0; tend), where = sinh(�L1)sinh(�L2) sinh(�(L� L2)sinh(�(L� L1)) ; with � = p�2 + 4D�2D :6



It holds for all (x; t) 2 (
1 � [t0; tend))je2n+1(x; t)j � nmax;1jje1(L1; :)jj1 ;where max;1 = maxx2[0;L2℄�exp(x� L1) sinh(�x)sinh(�L2) sinh(�(L� L2))sinh(�(L� L1))� :It holds for all (x; t) 2 (
2 � [t0; tend))jd2n+1(x; t)j � nmax;2jjd1(L2; :)jj1 ;where max;2 = maxx2[L1;L℄�exp(x� L2)sinh(�L1)sinh(�x) sinh(�(L2 � L))sinh(�(L1 � L))� :The errors e0 and d0 are bounded as :jje0(L1; :)jj1 � maxt2[t0;tend℄fmaxfjf1(t)j; jf2(t)j; ju0(L1)jgg ;and jjd0(L2; :)jj1 � maxt2[t0;tend℄fmaxfjf1(t)j; jf2(t)j; ju0(L2)jgg ;Proof. To estimate the error ek+1 and dk+1; onsider the following di�erential equa-tions de�ning êk+1 and d̂k+1êk+1t = Dêk+1xx � �êk+1x � �êk+1 over 
1 ; t 2 [t0; tend) ;êk+1(0; t) = 0 ; t 2 [t0; tend) ;êk+1(L2; t) = jjdk(L2; :)jj1 ; t 2 [t0; tend) ;êk+1(x; t0) = e(x�L2)� sinh(�x)sinh(�L2)jjdk(L2; t)jj1 ; x 2 
1 ; (4.8)and d̂k+1t = Dd̂k+1xx � �d̂k+1x � �d̂k+1 over 
2 ; t 2 [t0; tend) ;d̂k+1(L1; t) = jjek(L1; t)jj1 ; t 2 [t0; tend) ;d̂k+1(L; t) = 0 ; t 2 [t0; tend) ;d̂k+1(x; t0) = e(x�L1)� sinh�(L�x)sinh�(L�L1) jjek(L1; t)jj1 ; x 2 
2 ; (4.9)where � = �2D :The solution to (4.8) and (4.9) is the steady state solution given byêk+1(x; t) = e(x�L2)� sinh(�x)sinh(�L2) jjdk(L2; :)jj1 ;7



and d̂k+1(x; t) = e(x�L1)� sinh �(L� x)sinh�(L� L1) jjek(L1; :)jj1 ;respetively.For the error between the steady state and time-dependent solution that is de�nedby E(x; t) = êk+1 � ek+1, it holds thatREt �DExx + �Ex + �E � 0 ; over 
1 ; t 2 [t0; tend) ;E(0; t) � 0 ; t 2 [t0; tend) ;E(L2; t) � 0 ; t 2 [t0; tend) ;E(x; t0) � 0 ; x 2 
1 : (4.10)Hene E(x; t) satis�es the positivity lemma by Pao (or the maximum prinipletheorem), see [19℄, therefore E(x; t) � 0 ; (4.11)i.e. jek+1(x; t)j � êk+1(x) = e(x�L2)� sinh(�x)sinh(�L2) jjdk(L2; :)jj1 ; (4.12)for all (x; t) 2 (
1 � [t0; tend)) and similarly one onludes thatjdk+1(x; t)j � d̂k+1(x) = e(x�L1)� sinh�(x� L1)sinh �(L1 � L) jjek(L1; :)jj1 ;for all (x; t) 2 (
2 � [t0; tend)):Therefore one gets the estimation with the supremums-norm :We an onlude jek+1(x; t)j � jjek+1(x; :)jj1 ;for all (x; t) 2 (
1 � [t0; tend)), and similar estimates for dk+1 an also be derived.Then we onludejjek+1(x; :)jj1 � e(x�L2)� sinh(�x)sinh(�L2) jjdk(L2; :)jj1 ; (4.13)and jjdk+1(x; :)jj1 � e(x�L1)� sinh�(x� L1)sinh �(L1 � L) jjek(L1; :)jj1 : (4.14)Considering (4.14), evaluating dk(x; t) for x = L2, i.e.jjdk(L2; :)jj1 � e(L2�L1)� sinh�(L2 � L)sinh�(L1 � L) jjek�1(L1; :)jj1 ; (4.15)and substituting in (4.13), we onlude that8



jek+1(x; t)j � e(x�L2)� sinh(�x)sinh(�L2)e(L2�L1)� sinh �(L2 � L)sinh �(L1 � L) jjek�1(L1; :)jj1 ;and e(x�L2)� sinh(�x) � e(L1�L2)� sinh(�L1) ;onsist for all (x; t) 2 (
1; [t0; tend)).One obtainsjek+1(L1; t)j � e(L1�L2)� sinh(�L1)sinh(�L2)e(L2�L1)� sinh�(L2 � L)sinh�(L1 � L) jjek�1(L1; :)jj1 ;for all (x; t) 2 (
1; [t0; tend)).And one gets the resultjjek+2(L1; :)jj1 � sinh(�L1)sinh(�L2) sinh�(L2 � L)sinh�(L1 � L) jjek(L1; :)jj1 :Similarly for dk+1(x; t) one onludes thatjjdk+2(L1; :)jj1 � sinh(�L1)sinh(�L2) sinh�(L2 � L)sinh�(L1 � L) jjdk(L1; :)jj1 :Theorem 4.2 shows that the onvergene of the overlapping Shwarz method dependson  = sinh(�L1)sinh(�L2) sinh�(L�L2)sinh�(L�L1) : Due to a large overlapping of the domains, we will have arelaxation and the error will vanish for L2 � L. The main hallange will be a smalloverlapp with adequate errors based on the amount of iterations.4.2 Overlapping Shwarz wave form relaxation for a weaklyoupled system of onvetion-di�usion-reation equa-tionIn the following part we are going to present the onvergene and the error bound ofthe overlapping Shwarz wave form relaxation for the solution to the oupled systemof onvetion-di�usion-reation de�ned by two funtions u1 and u2. The ouplingriteria in this ase of study is imposed within the soure term of the seond solutionomponent. The onsidered system with the solution u1 and u2 is given byR1u1;t = D1u1;xx � �1u1;x � �1u1 over 
 = f0 < x < Lg ; t 2 [t0; tend) ;u1(0; t) = f1;1(t); t 2 [t0; tend) ;u1(L2; t) = f1;2(t); t 2 [t0; tend) ;u1(x; t0) = u0(x) ; (4.16)9



for u1, and for u2 is given byR2u2;t = D2u2;xx � �2u2;x � �2u2 + �1u1 over 
; t 2 [t0; tend) ;u2(L1; t) = f2;1(t); t 2 [t0; tend) ;u2(L; t) = f2;2(t); t 2 [t0; tend) ;u2(x; t0) = u0(x) : (4.17)For the uniqueness and existene of the equations (4.16) and (4.17) we apply theorem4.1.In (4.17) the oupling appears in the soure term and is de�ned by the parameter�1 with the �rst omponent u1. The strength or the bound of the oupling and theontribution is related to the value of the salar de�ned by �1: The oupled ase(4.17) is redued to the ase of two deoupled equations by assuming �1 = 0 in(4.17).The overlapping Shwarz wave form relaxation for (4.16) over 
1 and 
2 is given byR1vk+11;t = D1vk+11;xx � �1vk+11;x � �1vk+11 over 
1; t 2 [t0; tend) ;vk+11 (0; t) = f1;1(t); t 2 [t0; tend) ;vk+11 (L2; t) = � wk1(L2; t) for k > 1u1(L2; 0) for k = 1 ; t 2 [t0; tend) ;vk+11 (x; t0) = u0(x); x 2 
1 ; (4.18)R1wk+11;t = D1wk+11;xx � �1wk+11;x � �1wk+11 over 
2; t 2 [t0; tend) ;wk+11 (L1; t) = � vk1(L1; t) for k > 1u1(L1; 0) for k = 1 ; t 2 [t0; tend) ;wk+11 (L; t) = f1;2(t); t 2 [t0; tend) ;wk+11 (x; t0) = u0(x); x 2 
2 : (4.19)For the system de�ned by (4.17) one denote the Shwarz wave form relaxation asR2vk+12;t = D2vk+12;xx � �2vk+12;x � �2vk+12 + �1vk+11 over 
1; t 2 [t0; tend) ;vk+12 (0; t) = f2;1(t); t 2 [t0; tend) ;vk+12 (L2; t) = � wk2(L2; t) for k > 1u2(L2; 0) for k = 1 ; t 2 [t0; tend) ;vk+12 (x; t0) = u0(x); x 2 
1 ; (4.20)R2wk+12;t = D2wk+12;xx � �2wk+12;x � �2wk+12 + �1wk+11 over 
2; t 2 [t0; tend) ;wk+12 (L1; t) = � vk2(L1; t) for k > 1u2(L1; 0) for k = 1 ; t 2 [t0; tend) ;wk+11 (L; t) = f2;2(t); t 2 [t0; tend) ;wk+11 (x; t0) = u0(x); x 2 
2 : (4.21)10



For the uniqueness and existene of the equations (4.18), (4.19), (4.20) and (4.21)we apply theorem 4.1.The onvergene and the error bound for the solution to (4.18-4.19) and (4.20- 4.21)is given by the following theorem.Theorem 4.3. Let ek+1i and dk+1i (i = 1; 2) be the error from the solution to thesubproblems (4.18-4.19) and (4.20- 4.21) by Shwarz wave form relaxation over 
1and 
2, respetively. Then the error bounds of (4.18)-(4.19) de�ned by e1 and d1over 
1 and 
2 are given byjjek+21 (L1; :)jj1 � 1jjek1(L1; :)jj1; (4.22)and jjdk+21 (L1; :)jj1 � 1jjdk1(L1; :)jj1; (4.23)respetively, and the error bound of (4.20- 4.21) de�ned by e2 and d2 over 
1 and
2 are given byjjek+22 (L1; :)jj1 � jjek2(L1; :)jj12 + 2 �1�2	 �1 + e�2(L1�L)e�2(L�L1)�+�1�2	 he�2(L1�L2) sinh�2L1sinh�2L2 � e�2(L1�L)e�2(L�L2) sinh�2L1sinh�2L2i+�1�2	 he�2L1 sinh�2(L1�L2)sinh�2L2 � e�2(L1�L2) sinh�2L1sinh�2L2 + 1i ; (4.24)and jjdk+22 (L2; :)jj1 � jjdk2(L2; :)jj12 + 2 �1�2	 �1 + e�2(L1�L)e�2(L�L1)�+�1�2	 he�2(L1�L2) sinh�2L1sinh�2L2 � e�2(L1�L)e�2(L�L2) sinh�2L1sinh�2L2i+�1�2	 he�L1 sinh�2(L1�L2)sinh�2L2 � e�2(L1�L2) sinh�2L1sinh�2L2 + 1i ; (4.25)respetively, wherei = sinh�iL1sinh�iL2 sinh �i(L2 � L)sinh �i(L1 � L) ; with �i = �i2Di ; �i = p�2i + 4Di�i2Di ;for i = 1; 2, and 	 = max
 fe1; e2g :Proof. Sine the system (4.16) does not depend on u2, we an estimate the equations(4.22) and (4.23) by using the Theorem 4.2.Let ek+12 (x; t) := u2(x; t) � vk+12 (x; t) and dk+12 (x; t) := u2(x; t) � wk+12 (x; t) be theerror of (4.20) and (4.21) over 
1 and 
2 respetively. Then the orresponding11



di�erential equations are satis�ed by e2(x; t) and d2(x; t) :R2ek+12;t = D2ek+12;xx � �2ek+12;x � �2ek+12 + �1ek+11 over 
1; t 2 [t0; tend) ;ek+12 (0; t) = 0; t 2 [t0; tend) ;ek+12 (L2; t) = dk2(L2; t); t 2 [t0; tend) ;ek+12 (x; t0) = 0; x 2 
2 ; (4.26)R2dk+12;t = D2dk+12;xx � �2dk+12;x � �2dk+12 + �1dk+11 over 
2; t 2 [t0; tend) ;dk+12 (L1; t) = ek2(L1; t); t 2 [t0; tend) ;dk+11 (L; t) = 0; t 2 [t0; tend) ;dk+11 (x; t0) = 0; x 2 
2: (4.27)Furthermore we onsider the following di�erential equations de�ned by êk+1 andd̂k+1 given byR2êk+12;t = D2êk+12;xx � �2êk+12;x � �2êk+12 + �1	 over 
1; t 2 [t0; tend) ;êk+12 (0; t) = 0; t 2 [t0; tend) ;êk+12 (L2; t) = jjdk2(L2; t)jj
2;1; t 2 [t0; tend) ;êk+12 (x; t0) = A(x); x 2 
1 ; (4.28)where A(x) is given byA(x) = jjdk2(L2; :)jj1e�2(x�L2) sinh(�2x)sinh(�2L)+�1�2	 he�2x sinh(�2(x�L2))sinh(�2L2) � e�2(x�L2) sinh�2xsinh�2L2 + 1i ;andR2d̂k+12;t = D2d̂k+12;xx � �2d̂k+12;x � �2d̂k+12 + �1	 over 
2; t 2 [t0; tend) ;d̂k+12 (L1; t) = jjek2(L1; t)jj
1;1; t 2 [t0; tend) ;d̂k+12 (L; t) = 0; t 2 [t0; tend) ;d̂k+12 (x; t0) = B(x); x 2 
2 ; (4.29)where B(x) = jjek(L1; :)jj1e�2(x�L1) sinh(�2(x�L))sinh(�2(L1�L))+�1�2	 sinh(�2(L�x))sinh(�2(L1�L)) �e�2(x�L1) � e�2(x�L)e�2(L�L1)���1�2	 �1 � e�2(x�L)e�2(L�x)� : (4.30)Then the solution to (4.28) and (4.29) is the steady state solution given byêk+12 (x; t) = A(x); 8x 2 
1; t 2 [t0; tend) ;12



and d̂k+12 (x; t) = B(x); 8x 2 
2; t 2 [t0; tend) ;respetively.By de�ning the funtion E(x; t) = êk+1 � ek+1, as in the proof of theorem 4.2, andby the maximum priniple theorem we onlude thatjek+12 (x; t)j � êk+12 (x; t)for all (x; t) and similarly jdk+12 (x; t)j � d̂k+12 (x; t):Then jjek+12 (x; :)jj1 � jjdk2(L2; :)jj1e�2(x�L2) sinh(�2x)sinh(�2L)+�1�2	 he�2x sinh(�2(x�L2))sinh(�2L2) � e�2(x�L2) sinh�2xsinh�2L2 + 1i ; (4.31)and jjdk+12 (x; t)jj1 � jjek(L1; :)jj1e�2(x�L1) sinh(�2(x�L))sinh(�2(L1�L))+�1�2	 sinh(�2(L�x))sinh(�2(L1�L)) �e�2(x�L1) � e�2(x�L)e�2(L�L1)���1�2	 �1� e�2(x�L)e�2(L�x)� : (4.32)By evaluating (4.32) for dk2(x; t) at x = L2, substituting the results in (4.31) andafterwards evaluating the resulting relation at x = L1 we observe that (4.24) holdsin general.Similarly (4.25) follows from evaluating ek+12 (x; t) at x = L1, substituting in (4.32)and evaluating afterwards the resulting relation at x = L2:For the oupled system we observed the Theorem 4.3 and assume that the errordepends on two main fators, the onvergene parameter i and the oupling pa-rameter �1 de�ning the system oupling (4.16), (4.17). Its obvious that for theoupling parameter �1 = 0 one retain the deoupled system and faster onvergenerate is ahieved if we have a small ratio �1�2 :5 Numerial ResultsIn this setion we will present the numerial results from the solution to severalmodel problems using the presented methods. The problems are disretized using13



seond order approximation with respet to the spatial variable using regular meshspaing h(= L=N) and bakward approximation with respet to the time using �ttime stepping. The �rst order operator splitting method (FOP) is onsidered tobe the basi solution algorithm for the overlapping Shwarz waveform relaxationmethod (FOPSWR).5.1 First example : Convetion-di�usion-reation equationWe onsider the one-dimensional onvetion-di�usion-reation equation given byR�tu+ v�xu� �xD�xu = ��u ; on 
 � [t0; tend) (5.1)u(x; t0) = uexat(x; t0) ; (5.2)u(0; t) = uexat(0; t) ; u(L; t) = uexat(L; t); (5.3)de�ned over 
 � [t0; tend) with 
 = [0; L℄, and t0 = 100, tend = 105 and L = 150.Further we have � = 10�5, v = 0:001, D = 0:0001 and R = 1:0.The analytial solution of the equation (5.1) onsidered on IR� (0; tend), with van-ishing Dirihlet-boundary onditions and also using a Æ-funtion as initial value, anbe derived by Laplae-Transformation, see [15℄, and is given byuexat(x; t) = ~u02pD�t exp(�(x� vt)24Dt ) exp(��t) ; (5.4)with ~u0 = 1, the restition of uexat to 
� (0; tend) is a solution to (5.1)-(5.3).We onsidered the bakward Euler disretization for both of the splitted operators,i.e. the onvetion and the di�usion reation operator, to simulate the solution overthe time interval [100; 105℄.The model problem (5.1) is solved using �rst order operator splitting (FOP), andalso the operator splitting with overlapping Shwarz wave form relaxation method(FOPSWR).We ompare the auray of the solution over the entire spatial domain with di�erenth values, and di�erent time steps �t, using FOP-method, and FOPSWR-methodover two subdomains with di�erent size of overlapping. The error of solution aregiven in Table 1, and Table 2, respetively. The FOPSWR-method is onsidered overtwo overlapping subdomains of di�erent overlapping size L2�L1, to onlude on theauray of the algorithm with the operator splitting. The onsidered subdomainswere 
1 = [0; 60℄; and 
2 = [30; 150℄ and 
1 = [0; 100℄; and 
2 = [30; 150℄The results derived for the FOP-method are presented the in Figure 1.In the numerial omputations the time-steps and spae-steps are systematiallyre�ned in order to visualize the auray and error redution through the simulationover the time interval for re�ned time and spae steps. From Table 1 one observesthat by the FOP-method the error redued as seond order with respet to spae14



time erru1 erru1 erru1�t0 = 20 0.001195 2.86514e-4 1.2868e-4�t0=2 = 10 0.00113 2.3942e-4 8.6641e-5�t0=4 = 5 0.001108 2.15813e-4 6.55262e-5h0 = 1 h = h0=2 h = h0=4Table 1: The L
;1-error in time and spae for the onvetion-di�usion-reation-equation using FOP-method.
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Figure 1: The results for the FOP-method.time erru1 erru1 erru1 erru1 erru1 erru1�t0 = 20 1.196e-3 1.195e-3 2.871e-4 2.865e-4 1.290e-4 1.286e-4� t02 = 10 1.138e-3 1.137e-3 2.397e-4 2.394e-4 8.681e-5 8.681e-5� t04 = 5 1.108e-3 1.08e-3 2.159e-4 2.158e-4 6.782e-5 6.552e-5overlap. 30 70 30 70 30 70size h0 = 1 h = h0=2 h = h0=4Table 2: The L
;1-error in time and spae for the salar onvetion-di�usion-reation-equation using FOPSWR- method with the Shwarz waveform relaxationalgorithm for two di�erent size of overlapping 30 and 70.and redued also with respet to time. For further re�nement one should obtain�rst order onvergene results with respet to time.For the solution by the FOPSWR-method, using the FOP-method as basi solver,the auray of the solution is improved over the large size of overlapping subdo-mains.The results for the modi�ed method are presented in the Figure 2.15
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Figure 2: The results for the Shwarz-method with 2 domains (overlapping 30).
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5.2 Seond example System of Convetion-di�usion-reationequationWe onsider a further example of a one-dimensional onvetion-di�usion-reationequation, given as (5.1) - (5.4) with the following parameters � = 4:0 � 10�5, v =0:001, D = 0:0001, R = 1:0 and t0 = 100.For the initial ondition we use the analytial solution given in (5.4), with ~u0 = 1:0and t0 = 100. As boundary ondition we use the Dirihlet-Boundary-ondition withthe analytial solutions given in (5.4). The time-interval is [100; 105℄.The results for the lassial method (operator-splitting) are given in Table 3.time erru1 erru1 erru1�t = 20 2.075e-4 1.963e-4 1.799e-4� t2 = 10 2.055e-4 1.948e-4 1.794e-4� t4 = 5 2.045e-4 1.940e-4 1.792e-4size h0 = 1 h = h0=2 h = h0=4Table 3: L
;1-error in time and spae for the onvetion-di�usion-reation equationsolved by operator splitting.In the next experiments we onsider the modi�ed method. For the overlappingwe obtain the overlap size-length of 30 and 70, i.e. 
1 = f0 < x < 60g and 
2 =f30 < x < 150g while for the other ase we have 
1 = f0 < x < 100g and 
2 =f30 < x < 150g.The results are given in Table 4.time erru1 erru1 erru1 erru1 erru1 erru1�t0 = 20 2.076e-4 2.075e-3 1.964e-4 1.963e-4 1.800e-4 1.800e-4� t02 = 10 2.056e-4 2.055e-4 1.948e-4 1.948e-4 1.795e-4 1.794e-4� t04 = 5 2.046e-4 2.046e-3 1.941e-4 1.941e-4 1.792e-4 1.792e-5overlap. 30 70 30 70 30 70size h0 = 1 h = h0=2 h = h0=4Table 4: The L
;1-error in time and spae for the salar onvetion-di�usion-reation-equation using DD for two di�erent size of overlapping 30 and 70 andoperator splitting.We ompare the results of our omputations given in Table (3) and (4). We anobserve a redution of the error for eah time and spae re�nement for the modi�edmethod. Further re�nement in time would obtain a �rst order onvergene result.Beause of the deoupling, eah equation ould be omputed separately. For the�rst omponent one derive improved results beause of the smaller reation in theequation. 17



5.3 Third example System of Convetion-di�usion-reationequation (oupled), solved with Operator-SplittingWe deal with the more ompliate example of a one-dimensional onvetion-di�usion-reation equation. R1�tu1 + v�xu1 � �xD�xu1 = �R1�1u1 ; (5.5)R2�tu2 + v�xu2 � �xD�xu2 = R1�1u1 �R2�2u2 ; (5.6)u1(x; t0) = u1;exat(x; t0) ; u2(x; t0) = u2;exat(x; t0) (5.7)u1(0; t) = u1;exat(0; t) ; u2(0; t) = u2;exat(0; t); (5.8)u1(L; t) = u1;exat(L; t) ; u2(L; t) = u2;exat(L; t); (5.9)de�ned over 
 � [t0; tend) with 
 = [0; L℄, and t0 = 100, tend = 105 and L = 150.Further we have �1 = 1:0 10�5, �2 = 4:0 10�5, v = 0:001, D = 0:0001,R1 = 2:0, andR2 = 1:0.The analytial solution of the equation (5.5)-(5.6) onsidered on IR� (0; tend), withvanishing Dirihlet-boundary onditions and also using a Æ-funtion as initial value,an be derived by Laplae-Transformation, see [15℄, and is given byu1;exat(x; t) = u102R1pD � t=R1 e� (x�v t=R1)24 D t=R1 e(��1 t);u2;exat(x; t) = u202 R2 pD � t=R2 e� (x�v t=R2)24 D t=R2 e(��2 t)+ R1 �1 u102pD � (R1 �R2) exp( xv2D ) e�(R1 �1�R2 �2) t(R1�R2) (W (�2)�W (�1));�1 = qR1 �1 � (R1 �1�R2 �2)R1�R2 R1 + v2=(4D) ,�2 = qR2 �2 � (R1 �1�R2 �2)R1�R2 R2 + v2=(4D) ,W (�)= 0:5(exp(�x v �2 D )erf(x�v � tp4 Dt ) + exp(x v �2 D )erf(x+v � tp4 Dt )) ,de�ned for the initial ondition with u10 = 1:0 and u20 = 0:0, the restition of uexatto 
� (0; tend).We have erf(�) as the known error-funtion and we denote the following onditions: R1 > R2 and �2 > �1.In the next tables we ompare the lassial with the modi�ed method and test thedepend on the reation-parameters. 18



time erru1 erru2 erru1 erru2 erru1 erru2�t0 = 20 4.594e-4 2.8e-3 3.611e-4 2.452e-3 1.036e-4 2.702e-3� t02 = 10 4.506e-4 2.403e-3 3.515e-4 2.447e-3 9.528e-5 2.697e-3� t04 = 5 4.461e-4 2.39e-3 3.466-4 2.438e-3 9.110e-5 2.689e-3size h0 = 1 h = h0=2 h = h0=4Table 5: L
;1-error in time and spae for the system of onvetion-di�usion-reation-equation using �rst order splitting, with �1 = 2e� 5; �2 = 4e� 5.The results for the lassial method (Operator-Splitting method) are given in Table5.The results for the modi�ed method (Operator-Splitting method and Domain de-omposition method) is given in Table 6.time erru1 erru2 erru1 erru2 erru1 erru2�t0 = 20 4.594e-4 2.403e-3 3.611e-4 2.452e-3 1.036e-4 2.702e-3� t02 = 10 4.506e-4 2.398e-3 3.515e-4 2.447e-3 9.528e-5 2.697e-3� t04 = 5 4.461e-4 2.388e-3 3.466e-4 2.438e-3 9.110e-5 2.689e-3size h0 = 1 h = h0=2 h = h0=4overlap. 70Table 6: L
;1-error in time and spae for the system of onvetion-di�usion-reation-equation using �rst order splitting and Shwarz wave form relaxation method, with�1 = 2e� 5; �2 = 4e� 5.In the Figure 4 one sees the result for the system, where the solutions for di�erenttime-steps are presented.We modify for a seond experiment the reation-parameters to obtain the inuenebetween the �rst and the seond omponent. In the �rst omputation we use thelassial method and get the following results given in Table 7.time erru1 erru2 erru1 erru2 erru1 erru2�t = 20 3.396e-3 6.058e-7 2.673e-3 6.192e-7 7.746e-4 6.820e-7� t2 = 10 3.30e-3 6.044e-7 2.599e-3 6.179e-7 7.083e-4 6.808e-7� t4 = 5 3.297e-3 6.018e-7 2.562e-3 6.152e-7 6.753e-4 6.784e-7size h0 = 2 h = h0=2 h = h0=4Table 7: L
;1-error in time and spae for the system of onvetion-di�usion-reation-equation using �rst order splitting, with �1 = 1e� 9; �2 = 4e� 5.In the seond omputation we use the modi�ed method and get the following results19
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Figure 4: The �rst-order results for the di�erent time-steps and disretisations forthe �rst omponent and di�erent time-steps.given in Table 8.time erru1 erru2 erru1 erru2 erru1 erru2�t = 20 3.380e-3 6.058e-7 2.673e-3 6.192e-7 7.746e-4 6.820e-7� t2 = 10 3.314e-3 6.044e-7 2.599e-3 6.179e-7 7.083e-4 6.808e-7� t4 = 5 3.297e-3 6.018e-7 2.545e-3 6.152e-7 6.753e-4 6.784e-7size h0 = 2 h = h0=2 h = h0=4overlap. 70Table 8: L
;1-error in time and spae for the system of onvetion-di�usion-reation-equation using �rst order splitting and Shwarz wave form relaxation method with�1 = 1e� 9; �2 = 4e� 5.We see in Table 7 and 8 a higher order results in spae for the �rst omponent.For the seond omponent the inuene of the �rst omponent is important anddereasing the error of the �rst omponent, also dereases the error of the seondomponent. The results for the modi�ed method are shown in the Figure 5.In the next setion we present our onlusions.6 Conlusions and DisussionsWe present the mathematial bakground for the oupling of simple physial andone-dimensional software-odes. The onvergene-results for simple and systems ofone-dimensional paraboli equations are derived for the Shwarz-Domain-Deomposition-method. Numerial results for the salar and system of paraboli equations are doneand we an see the e�etivity with Domain-Deomposition and Operator-Splitting-20
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Figure 5: The seond-order results for the di�erent time-steps and disretisationsfor the �rst omponent and di�erent time-steps.
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Figure 6: The results for the Shwarz-method with 2 domains.21



methods. In future we will fous on more applied problems, for example in rystal-growth, see [1℄ and biologial models, see [6℄.Referenes[1℄ N. Bubner, O. Klein, P. Philip, J. Sprekels, and K. Wilmanski. A transientmodel for the sublimation growth of silion arbide single rystals. Journal ofCrystal Growth, 205: 294-304, 1999.[2℄ X.C. Cai. Additive Shwarz algorithms for paraboli onvetion-di�usion equa-tions. Numer. Math., 60(1):41{61, 1991.[3℄ X.C. Cai. Multipliative Shwarz methods for paraboli problems. SIAM J.Si Comput., 15(3):587{603, 1994.[4℄ D.S. Daoud, M.J. Gander Overlapping Shwarz Waveform Relaxation for Con-vetion Reation Di�usion Problems Proedding of DD13 onferene, Frane,published by CIMNE, Barelona, Spain, April 2002 (�rst edition).[5℄ L.C. Evans. Partial Di�erential Equations. Graduate Studies in Mathematis,Volume 19, Amerian Mathematial Soiety, 1998.[6℄ R.E. Ewing. Up-saling of biologial proesses and multiphase ow in porousmedia. IIMA Volumes in Mathematis and its Appliations, Springer-Verlag,295 (2002), 195-215.[7℄ I. Farago, and A. Havasi. On the onvergene and loal splitting error of di�erentsplitting shemes. E�otv�os Lorand University, Budapest, 2004.[8℄ I. Farag�o and J. Geiser. Operator-Splitting Methods for Multidimensional andMulti-physial Problems in Porous Media. Comput. Math. Appl., (to be sub-mitted)[9℄ M.J. Gander and H. Zhao. Overlapping Shwarz waveform relaxation forparaboli problems in higher dimension. In A. Handlovi�ov�a, Magda Ko-morn��kova, and Karol Mikula, editors, Proeedings of Algoritmy 14, pages 42{51. Slovak Tehnial University, September 1997.[10℄ J. Geiser. Disretisation Methods with embedded analytial solutions for on-vetion dominated transport in porous media Proeeding of Numerial Analy-sis and Appliations, Third international onferene, Rousse, Bulgaria, 2004,Let.Notes in Mathematis (Springer), vol.3401, 2005.[11℄ J. Geiser, R.E. Ewing, and J. Liu. Operator Splitting Methods for TransportEquations with Nonlinear Reations. Proeedings of the Third MIT Confereneon Computational Fluid and Solid Mehani, Cambridge, MA, June 14-17,2005. 22
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