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Abstract

The biological theory of adaptive dynamics proposes a description of the long-time
evolution of an asexual population, based on the assumptions of large population,
rare mutations and small mutation steps, that lead to a deterministic ODE, called
‘canonical equation of adaptive dynamics’. However, in order to include the effect of
genetic drift in this description, we have to apply a limit of weak selection to a finite
stochastically fluctuating discrete population subject to competition in the logistic
branching fashion. We start with the study of the particular case of two competing
subpopulations (resident and mutant) and seek explicit first-order formulae for the
probability of fixation of the mutant, also interpreted as the mutant’s fitness, in the
vicinity of neutrality. In particular, the first-order term is a linear combination of
products of functions of the initial mutant frequency times functions of the initial
total population size, called invasibility coefficients (fertility, defence, aggressiveness,
isolation, survival). Then we apply a limit of rare mutations to a population sub-
ject to mutation, birth and competition where the number of coexisting types may
fluctuate, while keeping the population size finite. This leads to a jump process, the
so-called ‘trait substitution sequence’, where evolution proceeds by successive inva-
sions and fixations of mutant types. Finally, we apply a limit of weak selection (small
mutation steps) to this jump process, that leads to a diffusion process of evolution,
called ‘canonical diffusion of adaptive dynamics’, in which genetic drift is combined
with directional selection driven by the fitness gradient.

1 Introduction

The three main forces in evolutionary biology are mutation, selection and drift. Mutations
allow the number of coexisting types in a structured population to increase; on the other
hand, Darwinian selection eliminates the deleterious types, thus ‘fixing’ the most beneficial
one; however, in finite populations (but they all are in the real world), deleterious types can
sometimes be fixed by chance, which is then called genetic drift. When selection is weak
(types differ only slightly), its action can be counteracted by genetic drift, whereas strong
selection triggers almost certain fixation of beneficial types, known as selective sweep.

The field where these three forces are studied with taking into account the complexity of
the genetic substrate is called population genetics [6, 21, 15, 12]. The (recent) field where
they are studied with taking into account the structure of ecological interactions is called
adaptive dynamics [17, 26, 27]. The link between both is still unclear, but see [22, 30].

One of the fundamental models of adaptive dynamics is the ‘trait substitution sequence’
(TSS) [28, 3], which is based on the following biological heuristics. Sufficient time is given
to selection to eliminate unlucky types between two mutations, so that, on the mutation
timescale, only one type survives at a time. In this model, evolution proceeds by successive
invasions of mutant types replacing the resident one (selective sweeps [9, 10]), and can be
described as a stochastic jump process over the space of types, also called traits (e.g. size,
age at maturity or rate of food intake).



The TSS has revealed a powerful tool for understanding various evolutionary phenomena,
such as evolutionary branching (evolution from a monomorphic population to a polymor-
phic one [28] that may lead to speciation |7]) and is the basis for other biological models,
such as the ‘canonical equation of adaptive dynamics’ [8, 4]. The TSS is based on a combi-
nation of a limit of rare mutations and a limit of large populations, leading to a timescale
separation between the mutation events and the birth and death events [3].

Most mathematical models for population dynamics used in the study of evolution assume
either constant population sizes (population genetics) or infinite populations (adaptive
dynamics). This has two shortcomings: in population genetics, fluctuations of population
sizes are neglected, which is rather unrealistic, especially as new types get fixed; in adaptive
dynamics, (even slightly) deleterious types are never fixed, impeding the modelling of
genetic drift. As a consequence, the direction of evolution is partly deterministic, and a
small jump renormalization of the T'SS model [8, 4| leads to a totally deterministic ODE,
the one known as the canonical equation of adaptive dynamics.

Here, we want to use the bottom-up approach of adaptive dynamics, that is, model (macro-
scopic) evolution from (microscopic) populations [5], but we also want to keep the two main
ingredients of genetic drift, that is, population finiteness and weak selection [20] and to al-
low the population size to fluctuate randomly through time. Thus, we consider the minimal
model of population dynamics featuring stochastic birth and death as well as regulatory
competition, that is, the (multitype) logistic branching process [23]. More precisely, we
consider a finite population with n types, where individuals of type j give birth at constant
rate b;, die a constant rate d;, and kill each individual of type i at constant rate ¢;;. This
quadratic density-dependence prevents the process from going to infinity. Then, the first
time 7" when the population is monotype is finite a.s., and the remaining type is then said
to have undergone fization. If in addition all natural death rates vanish (d; = 0 for any 1),
then the logistic branching process never dies out, and we are left with a positive-recurrent
process with a nice stationary probability (see next section).

We start with the particular case of two interacting types, one resident (wild type) and
one mutant, and study the behaviour of the fixation probability of a mutant type in
a resident population when its dynamical characteristics deviate slightly from those of
the wild type (weak selection, see also [24]). In Section 2, this model and some of its
properties are displayed, other quantities are defined and a rather precise outline of the
paper is given. Fixation probabilities are characterized in Section 3. In Section 4, we seek
for explicit first-order formulae for the fixation probability of the mutant in the vicinity
of neutrality. Specifically, a pure-resident population is characterized by the dynamical
parameters (b, c11,d;), and when the mutant type is present, we can write by = by + A,
dy=dy—0,c19=ci1+a—¢e,c31 =c11 —6 —¢ and co3 = ¢11 — 0 + «, where \, 6, a,¢,0
are the selection coefficients of the mutant respectively associated to fertility, defence,
aggressiveness, isolation and survival. Then, we prove that each partial derivative of the
fixation probability w.r.t. any selection coefficient factorizes as a function of the initial
mutant frequency p (either p(1 —p) or p(1—p)(1—2p)) times a function of the initial total
population size, called an invasibility coefficient of the resident.

In Section 5, we consider the multitype logistic branching process described above and add
mutations to the model. Each individual, upon giving birth, begets a mutant daughter with
a (small) probability, whose type is chosen according to some mutation kernel. First, our



goal is to apply to this process a limit of rare mutations and to describe the evolutionary
process on the mutation timescale, in order to obtain the equivalent of the TSS in this finite
population setting. In particular, this jump process over the trait space allows evolution
in any direction. Then, we apply to this process a limit of small mutation steps. Because
of the population finiteness, genetic drift carries over to the limit, which gives rise to
a diffusion process over the trait space that we call the ‘canonical diffusion of adaptive
dynamics’.

These results are proved in Section 6.

2 Model, outline and preliminary results

From now on, N* denotes the set of positive integers, and N denotes N* U {0}.

In this section, we consider a two-type discrete population undergoing binary birth-death-
competition events, in the logistic branching fashion [23], where the first type (1) is called
resident (or wild type) and the second type (2) mutant.

For 4,5 € {1,2}, b; (resp. d;) is the birth (resp. death) rate of type i, and ¢;; is the
competition rate felt by an individual of type ¢ from an individual of type j. More
precisely, individuals of type j give birth independently to a single individual of type j at
rate b;, die at rate d;, or kill any other fixed individual of type 7 at rate c¢;;.

More formally, we consider a bivariate integer-valued continuous-time Markov process
(X, Yyt > 0) with rate matrix Q = (qu; k € N2,1 € N2), where

bin if k=(n,m) and [=(n+1,m)

bam it k=(n,m) and [=(n,m+1)

B cun(n —1) 4+ cignm+din  if k= (n,m) and [=(n-1,m)

e coom(m — 1) + dom  if =(n,m) and [=(n,m—1)

—Tnm if k=(n,m) and [=(n,m)
L 0 otherwise,
and where the jumping rate 7y, is

Tnm = n(b1 + c11(n — 1) + ciam + dy) + m(bz + ca1n + caa(m — 1) + da). (1)

The law of this process conditioned on fixed initial state (n,m) will be denoted by Py, .
Let B denote the birth vector, C' the competition matrix, and D the death vector

B:<b1>’ C:<011 012)’ D:<d1>.

by Co1 22 da

This definition of the two-type logistic process with dynamical characteristics (B, C, D)
could readily be extended to n-type populations, by considering a n-dimensional birth
(resp. death) vector and a n x n-dimensional competition matrix. However, in this paper,
our ultimate goal is to model the sequential arrivals of mutants and their subsequent ex-

tinction or fixation, on different time scales, so that the simultaneous occurrence of three
or more distinct morphs will be shown to have negligible probability.



Notice that (X,Y) is dominated by (Z1, Z3), where Z;, i = 1,2, is a scalar logistic branch-
ing process with dynamical characteristics (b;, ¢j;,d;), and Zy, Zy are independent. Since
we will always assume that c11c92 # 0, the total population size X +Y cannot go to infinity
[23].

As a remark, we point out that we only consider binary splittings for the sake of simplicity
and the interest for explicit formulae. Apart from explicit formulae, the last statement and
all others in the present paper remain true even if assuming that, when giving birth, an
individual of any of the two types can give birth to a random number of offspring, where
their (common) distribution Z merely has to satisfy E(log(Z)) < co.

Now the union of the axes
;=N x {0} and Q9 := {0} x N

is accessible, except in the case when d; = dy = ¢12 = o1 = 0, and absorbing. Since we
will always assume below that d; + do + ¢12 + ¢co1 # 0, N* x N* is transient, and

P(T < o0) =1,

where
T:=Tq, NTq,,

and for any subset I' of N2, Tt denotes the first hitting time of T by (X,Y). Also notice
that the origin is not accessible from N* x N*, so that for any (n,m) # (0,0), Py, (T, =
Tq,) = 0.

Then we call fixation (of the mutant) the event {Tq, < Tq,}, and extinction (of the
mutant) the event {To, < Tq,}.

The probability of fixation will be denoted by u, and the initial frequency of the mutant

by p
m

=P(Tq, <Tq,), = .
u (92 Q1) p mtn

If dy = 0, then (0,0) is not accessible from 23, and a straightforward application of
the strong Markov property at T, and Theorem 2.2 in [23] show that, on the event
{Ta, < Tq,}, Y is positive-recurrent and converges in distribution to &, where £ is a
Poisson variable of parameter 6 := by /c9s conditioned on being nonzero

. e 0
P({zz):mﬁ i>1.
Notice that E(§) = 6/(1—exp(—#0)), so that 6 can roughly be taken as the mean population
size (‘carrying capacity’) of the stationary logistic branching process.
Since a similar statement for X holds on the extinction of the mutant if d;i = 0, a nice
feature of the case when d; and dy both equal 0 is that (X,Y) converges in distribution
towards (0,£®)) with probability u and towards (£€1),0) with probability 1 — u, where £
is a Poisson variable of parameter b;/c;; conditioned on being nonzero.

We refer to selective neutrality as the case of exchangeability between individuals of
both types, that is,
B =01, C =cl, D =d1,



where 1 is a matrix with all components equal to 1 and dimensions ad hoc. Assuming that
the presence of a mutant form does not modify the dynamical characteristics (b1, c11,d1)
of the resident, we may focus on deviations from the neutral case so as to express the
two-type characteristics as

e (2) e (D9)e(32)-(15) oma(?)

In words, deviations from the neutral case are a linear combination of five fundamental
(additive) selection coefficients A, 0, a, ¢, o, that are chosen to be positive when they
confer an advantage to the mutant. In the sequel, we will see that it is indeed convenient
to assess deviations to the neutral case with the help of selection coefficients in terms of

1. fertility (), as the usual letter standing for growth rate in discrete-time deterministic
models) : positive A means increased mutant birth rate

2. defence capacity (9, as in defence) : positive § means reduced competition sensitivity
of mutant individuals w.r.t. the total population size

3. aggressiveness («, as in aggressive, or attack) : positive a means raised competition
pressure exerted from any mutant individual onto the rest of the population

4. isolation (g, as in exclusion) : positive £ means lighter cross-competition between
different morphs, that would lead, if harsher, to the exclusion of the less abundant
one

5. survival (o, as in survival) : positive 0 means reduced mutant death rate.

Under neutrality, an elementary martingale argument shows that the fixation probability
equals the initial mutant frequency, that is,

U = p.

The first goal of this paper is to unveil the dependence of w upon A, J, a, €, o, when they
deviate from 0.

In Section 3, we study the fixation probability « as a function of the parameters of the
model and the initial condition (n,m). We prove that u is differentiable with respect to
the components of B, C' and D, and that (n 4+ m)~'Vu,,,, is bounded (for each given
triple B, C, D). The Kolmogorov forward equations translate into a discrete harmonic
equation of the type Au(n,m) = 0 outside €1 Uy, with boundary condition 0 on €4, and
1 on €9, where A is a linear operator on doubly indexed sequences. Then, a uniqueness
result allows us to characterize the partial derivatives of u (in the dynamical parameters)
in the vicinity of neutrality, as the only sublinear solutions v of harmonic equations of the
type Av(n,m) = f(n,m) outside Q; U gy, where f is sublinear, and has zero boundary
condition on 7 U s.
These derivatives are interesting to study, as they provide insight as to how does the fixation
probability deviate from p as the selection coefficients of the mutant deviate from 0. The
vicinity of neutrality is called weak selection, as opposed to strong selection, in which case
fixation events are called selective sweeps (rapid fixation). In Section 4, entitled ‘Weak
selection’, we thus write

u=p+v.s+o(s), (2)



where s is the multidimensional selection coefficient (fertility, defence, aggressiveness, iso-
lation, survival) and v is the corresponding gradient of the fixation probability

A A
1) V0
s=| a |, v:i=| u®
€ V¢
o v?

In particular, v only depends on b, ¢, d, and n,m. It is then proved that for . = A\, , 6, o,
the gradient coefficient v* is of the form

nm
vt = it m)? Inim =P (L =D) Grims

and that v, is of the form

v =T G = (= D) (1= ) G,

where the ¢’s only depend on the resident’s characteristics b, ¢, d, and on the total initial
population size n+m. For that reason, and because they are multipliers of the mutant’s
selection coefficients, we call them the invasibility coefficients of the resident, as in [24].
The remainder of Section 4 is devoted to the study of the invasibility coefficients.

Finally, Section 5 implements these results in models of adaptive dynamics where mutants
appear on large timescales and are either fixed or eliminated on shorter timescales, until
the next mutant arises. This allows to follow the value of the resident trait (b,c,d) as
evolutionary time goes by in two fashions. First, we consider the process on the mutation
timescale in the limit of rare mutations (Subsection 5.2). On this new timescale, if d was
positive, extinction would occur with high probability before any mutation event, so we
will assume that populations have zero natural death rate (d = 0). The limiting process is
a Markov jump process over the trait space, the so-called trait substitution sequence (TSS).
Second, we apply a limit of small jumps to the TSS by rescaling the mutation kernel and
time accordingly (Subsection 5.3). This yields a diffusion process over the trait space,
where the deterministic term accounts for directional selection driven by the gradient of
the fixation probability, and the diffusion term accounts for genetic drift. In reference to
the so-called ‘canonical equation of adaptive dynamics’, we give it the name of canonical
diffusion of adaptive dynamics.

We end this section by stating and proving a technical proposition.

Proposition 2.1 The bivariate logistic branching process (X, Yy;t > 0) satisfies the fol-
lowing properties

(a) If, for some p > 1, B(X{ +Y7) < +00, then supyoE(X] + V) < +o0

(b) Let (X,,,Yn;n € N) denote the discrete-time Markov chain associated with (Xy, Yi;t >
0), and T denote the first hitting time of Q1 U Qy by (X,Y). There is some positive

a such that
Enm(T) < a(n+m) and By, (T?) < a(n+m)?. (3)

Moreover, for fized b,c,d >0, (3) holds for some a that can be chosen uniformly for
all parameters such that by V by < b, c11 A caa > ¢ and max(dy,ds, c12,c21) > d.



(c) For any p € [1,2] and n,m € N, E,, ,,(XF + V) < K, where the constant K can
be chosen uniformly for all parameters such that by V by < b, c11 A caa > ¢ and
max(dy,da, c12,c21) > d for fized b,c,d > 0.

Proof. (a) Since (X,Y) is dominated by (Z,Z’), where Z and Z' are independent
scalar logistic branching processes with common dynamical characteristics (b, c,0) where
b:= b1 Vbg and c:= c11 A cgz, it suffices to show that sup;>g E(Z?) < +oc.

Let us define pf = P(Z; = k). The backward Kolmogorov equation reads

@
—IE ZP) = Z Pt Z kP[b Ly c(k + 1)k‘p’ngl k(b4 c(k — 1))1’?]
E>1

I S

Now, for any k > ko, where ko := [2b/c] + 1, c(k — 1) > 2b. Therefore, for k > ko,
b((1+1/k) — 1) +c(k — 1)((1 — 1/k)P — 1) < —b[3 — 2(1 — 1/k)P — (1 + 1/k)?]

which is equivalent to —bp/k. Then, enlarging k¢ if necessary, we obtain

—IEZP<Zb 2 — kb — > %k‘ppf

k>ko+1
bp

where the constant K depends solely on kg. This differential inequality yields

2K 2K
Py « Py —bpt/2

which gives the required uniform bound.
(b) Let IT = (m;;); jen2 denote the transition matrix of (X,Y):
bin/Tom ifi=(n,m)and j=(n+1,m)

bam /rym if i = (n,m) and j = (n,m + 1)
n(cir(n —1) 4+ ciom + dy)

ifi=(n,m)and j=(n—1,m) (4)

7Tz'j = Tn
m(co1n + 622(77}'”& —1)+ds)

T'nm )
0 otherwise,

if i=(n,m)and j = (n,m—1)

where 7,,,,, has been defined in (1).

Since dy + dg + ¢12 + ¢21 # 0, it follows from the facts that n(n — 1) + m(m — 1) > (n +
m)?/2—(n+m) for any n,m > 0 and 7 (2,0) 1,0), 7(1,1),(0,1)> T(1,1),(1,0)> 7(0,2),(0,1) = d/(2b+d)
where d := max(dy, da, c12, c21) A ¢, that the process (Xn +Yn € N) is dominated by the
Markov chain (Z,;n € N) in N* with initial state k = X + Yp and transition probabilities

b/[b+ c(i/2 — 1)] ifi>3andj=i+1

c(if2—1)/[b+c(i/2—-1)] ifi>3and j=i—1
pij =< 2b/(2b+d) ifi=2and j=3

d/(2b+ d) ifi=2andj=1

0 otherwise.



Let us denote by P, its law. Therefore, 1" is dominated by S := inf{n >0, Zn = 1} and it
suffices to prove that Ej(S) < ak and Ej(S?) < ak? for some a > 0.

Let (Up;n > 0) be the discrete-time random walk on Z with right transition probability
1/3 and left transition probability 2/3. The law of U conditional on Uy = k is denoted by
Py,. Let 7 be the first hitting time of 0 by U. For any k > 0, one can compute explicitly
(see e.g. Norris [29]) that

Ey(1) = 3k and Ei(7%) = 3k(3k + 8).

Now, let ko be large enough to have ¢(ko/2 — 1) > 2b. Then observe that any excursion of
Z above kg + 1 is stochastically dominated by an excursion of the random walk U above
ko + 1. On the one hand, it is a simple exercise to check that this domination entails
B, (5%) < 400 (and E,(S) < 400). On the other hand, this domination also implies
that for any k > ko,

Ei(S) < By (S) + Bk (1) = By (S) + 3(k — ko).
and X X . R
Er(S?%) < 2F3,(5?) 4+ 2B, 1, (7%) = 2E1, (5?) + 3(k — ko) (3(k — ko) + 8),
which ends the proof of (3).

(c) With the same notation as above, since T is the number of jumps of the process
(X,Y) that occurred on the time interval [0,7], X7 < Xo+ 7T and Yy < Yy + 7. Hence
Eypm(XE +Y]) < 2E, ,,((n 4+ m + T)P) which is finite by (3). O

3 Fixation probability

3.1 A discrete harmonic equation

Recall that the fixation probability is the probability that the bivariate logistic branching
process hits axis {21 before axis {)9. Here, we characterize it thanks to a discrete harmonic
equation (corresponding to Kolmogorov forward equations).

Proposition 3.1 The fization probability wy, ,, is the unique bounded solution to

(Aw)pm =0 for (n,m) & Q1 UQy
Un,m = 0 fOT (nvm) € Q1 (5)
Upm = 1 for (n,m) € Qo,

where A is the harmonic (its coefficients sum to zero) operator defined for any doubly
dexed sequence w as

(Aw)pm = [bin 4 bym + n(c11(n — 1) + ciam + d1) + m(cain + caa(m — 1) + da) |wpm,
— binWyi1,m — bamwn my1 — ncin(n — 1) + crom + di ) wp—1,m
— m(621n + C22(m — 1) + dg)’u}mm_l. (6)



Note that in the previously displayed equation, whenever a term is not defined, the mul-
tiplying coefficient is zero.

The fact that w,, ., satisfies (5) follows from the Markov property at the first jump time of
(X,Y), and the uniqueness relies on Lemma 3.2 below.

Lemma 3.2 Fiz p > 1 and consider a subset I' of N? such that Tr < 400 Py m-a.s. for
any n,m > 0. Then, for any function f : T' — R such that, |f(n,m)|/(n +m + 1) is
bounded on I, the equation

{ (Ah)pm =0 for (n,m) ¢ T (7)
h(n,m) = f(n,m) for (n,m) €Tl

admits at most one solution h such that |h(n,m)|/(n +m + 1) is bounded.

Proof. It suffices to prove that (7) with f = 0 admit A = 0 as unique sublinear solution.
Let h be such a function and fix n,m > 0. Then (h(Xiar.,Yiary )it > 0) is a Py -
semi-martingale for ¢ < 7. Since, by Proposition 2.1 (a), sup;>qEpm (Xt + Y2)) < 400,
(h(X¢, Yy))t>0 is actually a uniformly integrable martingale. Applying the stopping theorem
at time 11, we get

0=E, m(h( X1, Y1 )11 <400) = Enm(R(Xo,Y0)) = h(n,m),

which completes the proof. O

3.2 Differentiability of the fixation probability

Here, we prove the existence of the partial derivatives of the fixation probability with
respect to the components of B, C' and D, and show that these derivatives are always
sublinear in the initial condition. We also give some bounds for the higher-order derivatives
of the fixation probability, which will be useful in Section 5.3.

Theorem 3.3 (a) The fization probability wym, as a function of b;, cij,d; (i,5 =1,2), is
differentiable on the set {ci1c22 # 0, c12 + ca1 +di +da # 0}, and its differential vy, p,
satisfies

sup e mll < +4o00. (8)
(nym)EN* xN* TV +m
Moreover, for any b,c,d >0, (8) holds uniformly on the set of dynamical parameters
{b1 Vb2 <b, c11 Acaz > ¢, max(dy,dz,cia,c1) > d}.

(b) In addition, wy, m, is C? on {c11c22 # 0,¢12 + 21 + dq + do # 0}, and its second-order
derivatives are bounded by some constant times (n + m)? uniformly on any set of
parameters of the form given above.

Proof. Since v, ,, = 0 on 2 Uy, we will always assume n,m > 1.



Recall the expression (4) for the transition probabilities of the discrete-time Markov chain
(X,Y) associated with (X,Y"). It is then elementary to get

n(l —mij)/Tpm ifi=(n,m)and j = (n+1,m)
—NTi5/Trm ifi=(n,m)and j=(n,m+1), (n—1,m) or (n,m —1)
0 otherwise,

871'@']' .
oby

(9)
as well as similar results for bs, dy, do. Now for cqq
o n(n—1)(1 —mj)/rpm if i = (n,m) and j = (n —1,m)

den 0 otherwise,

(10)
and a similar result for cos. Finally for c19
nm(l — ;) /rom  ifi=(n,m)and j = (n—1,m)
= —nmmij/Thm if i = (n,m)and j = (n,m+1), (n+1,m) or (n,m —1)
0 otherwise,
(11)

along with a similar result for co;. As a consequence, for any 4,7 and any parameter
B € {bn,cn,dp : h,l =1,2},

omij
8612

omij| _ max(n? m?)

op

Next notice that r11 > ci12 + c21 + di + do and 7, > ciin(n — 1) + coom(m — 1), so

that rp, > ciin(n — 1) and ryy,, > coom(m — 1). Combine these observations to the last

displayed equation, and get the existence of some K such that for any i,j and any [ in
the set of parameters such that c¢11 A cog > ¢ and max(dy, da, c12,c21) > d,

om;j

Tnm

<K <2cnd)™

We will use the notation 7, _;, for the product i, Tiyiy - .. i, _y4, and S, )y for the
set of paths linking (n,m) to a subset I' of N? without hitting €3 UQy before T, i.e. the set
of all k-tuples (i1, 9, ... ,4) for all k > 1 such that iy = (n,m), i, ...,ix_1 € N2\ (Q2;UQs)

and i € I'. Now,
Unp.m = Z Th1eeyip s
k>2,(i1,ik) €S (n,m) -0,

so if we prove that for any parameter 3,

. 877@'1,---7%
Fonm = 2 03
k>2,(i1, i) €S (n,m) -,

is finite, we get the differentiability of w, ,,, and the inequality [0ty m /08| < Ry m. Observe

that
k—1
Rn,m <K Z Zﬂilv---vilwil+lv---vik’
k22=(21777/k)es(n,m)—>ﬂl =1
where m; ; = 1 by convention. Next, with || - || denoting the L'-norm in Z2,
Bum <K, 2 Tirit D 2 Tt

>1 (n/,m’)e(N*)2 (il7"'7il)€S(n,m)—>(n’,m’) lle||=1 k’ZO,(jl,...,jk/)ES(n/’m/)J’_E_,Ql

10
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with the convention that &' = 0 if (n/,m’) + & € Qq, so that
Rn7m S KZ Z Z 71—7;1,...,7;1 Z P(n’,m’)-ﬁ-E(Tﬂl < TQQ)
121 (0 ;m/)€(N*)? (i1,..,01) €Sy ) (n ;) llell=1

AK Y Py (T > 1)

>1

IN

~

= 4KE, (T - 1),

The proof of (8) is completed thanks to Proposition 2.1 (b). The uniformity with respect
to the dynamical parameters follows trivially from the uniformity in Proposition 2.1 (b),
and the uniform choice of K.

(b) Following exactly the same method as above, we obtain for any parameters 3 and =,

060
(ily---vik)es(n,m)ﬂﬁl /8 fy
< 4K2 Z Z Z T, Z E(n’,m’)—l—E(T - 1)
121 (n/,;m/)E(N*)2 (i1 ,--i1) €S (1 ym)—s (n ! llell=1

<16ak*y° Y > Ty, (0 +m)

I>1 (n/,m’)e(N*)2 (il7"'7il)€S(n,m)—>(n/,m/)

<16aK>> (n+m+ DPpm(T > 1)
>1

< 16aK2E, ((T —)(n+m+ T/z)) :

and the result again follows from Proposition 2.1 (b). O

4 Weak selection

4.1 Definition of the invasibility coefficients

From Section 2 recall the definition of selective neutrality, and that under neutrality, the
fixation probability u of the mutant is equal to its initial frequency p in the population.
Now w is a function of the resident’s characteristics b, ¢, d (resp. birth, competition and
death rates), the additive selection coefficients of the mutant (deviations from neutrality)
A, 0, €, 0 (resp. fertility, defence, aggressiveness, isolation, survival), and the initial com-
position of the population n,m (resp. numbers of residents and mutants). As stated in the
previous section (Theorem 3.3), u is differentiable in all non-integer parameters, so that
in particular, u is differentiable in s := (\,d,,¢,0)" on a neighbourhood of the origin,
that is, in the vicinity of neutrality. Vicinity of neutrality is usually referred to as weak
selection.

Theorem 4.1 As a function of the multidimensional selection coefficient s = (X, 0, a, e, 0),
the probability w is differentiable, and in a neighbourhood of s = 0 (selective neutrality),

u=p+v.s+o(s), (12)

11



!/

where the (weak) selection gradient v = (v)‘,v‘s,va,vg,v") can be expressed as

Un7m = p (1 - p) g7L’L+m L ;é =

Vpm = p(L—p)(1—2p)g5im

And the g’s depend solely on the resident’s characteristics b, c,d, and on the total initial
population size n+m. They are called invasibility coefficients.

We prove this theorem herafter. As seen in Proposition 3.1, the Kolmogorov forward equa-
tions translate into a discrete harmonic equation satisfied by u with boundary condition 1
on 2y, and 0 on g, written as (Auw)y,, = 0, where A is defined in (6). Combining (12)
and (6), and identifying second-order terms, we get

el it L=\
(n+m)(n+m+1) B
nm if =6
n—+m
(AO'U )n,m - nm (13)

(n+m)(n+m-—1)

nm (n —m)
(n+m)(n+m-—1)

if 1=c¢,

where A( corresponds to the neutral case of A: for any doubly indexed w,

(Aow)p,m = (n+m) [b +cen+m—1)+ d] Wrm — N W1 m — UM Wy 1
-n {c(n +m—1)+ d} Wp—1,m — m[c(n +m—1)+ d] Wnm—1 n,m > 0. (14)
We know from Theorem 3.3 that the vector v = (v*,v%,v®,v%,v7)" is sublinear in (n,m),
that is, (||vn,mll/(n + m))nm is bounded. Since the r.h.s. in (13) are all sublinear,
Lemma 3.2 ensures that v is the unique sublinear vector in (n,m) solving (13) (if two such
sequences existed, apply Lemma 3.2 to their difference).

Thanks to this uniqueness result, it is sufficient to show that there are solutions of (13) of
the following form

nm :
— Uy it t=MNda0
n+m
L
Upm = (15)
nm (n = m) Uy if 1=¢
n+m "t ’

where for ¢ # ¢, u' is a bounded real sequence indexed by N—{0, 1} (u} has no effect on the
values of v{ ; and v ), and u® is a real sequence indexed by N —{0,1,2} (uj and u5 have
no effect on the corresponding values of vy, ,,,) such that (nuj,), is bounded. The proof will
then end up by writing

nu, if t=\d,a,0, n>2

gn = (16)
n?ut if 1=e¢, n > 3.

12



In this setting, (13) holds iff

= ——— an 'U,(S = — N
(Lu)\)n — Py d (Lu®), > 2,
(07 J— (e — 1
(Lu®), = (Lu?), = 771(71 Y n > 2, (17)
/!, _ 1
(Lu)n_in(n—l) n > 3,

where L (resp. L') is the endomorphism of the vector space Ly (resp. L3) of real sequences
indexed by N — {0,1} (resp. by N —{0,1,2}) defined as

n+ 2
pr— —_ _— —_— - - >
(Lw)y, bn+1w”+1+ [b—i—c(n 1)+d]wn (n—2) (c+ n_1>wn_1 n > 2
/ _ 7”L+3 |: _ ] _ _ >
(L'w), = bn+1wn+1+ b+c(n—1)+djw, — (n—23) C+n—1 Wp—1 1> 3.

(18)
The following lemma ends the proof.

Lemma 4.2 (existence) There are solutions u™, u®, u®, us,u’ of (17) such that u*, u’, u®, u®
and (nus,)y, are bounded.

This lemma will be proved in the following subsection, by actually displaying explicit
expressions for these solutions.

4.2 Properties of invasibility coefficients
4.2.1 Preliminary results

For k > —2, let e®) be the sequence defined for n > 2 (3 if k = —2) by

W _ 1

“n n+k’

and for k = 2,3, let 6*) denote the Dirac mass at k

m 1 0 otherwise.

Then it is elementary to check (but has to be done carefully) that for k > 1,

b d k—1 d
Le®) = —Ee(l) + Ee(_l) - bTe<k+1> +(b—(k+1De+d)e®™ + (k+1)(c— E)e(k_l), (19)

and that
L™ = —2be® 4 be™ + bel=Y + (¢ + d)6?, (20)

13



Likewise, for any k > 1 and for k = —1,

L'e®) = —%beﬂu%de(—l)—b%e“ﬂ“)+(b—(k+1)c+d)e<k>+(k+2)(c—%)e<k—1>, (21)
and also
LetD = —9(b + d)etD £ be® 1 (b+ ¢+ d)e? + (¢ + g>5<3>. (22)

Next observe that (17) can be written in the form
Lu* = e® — e and Lud = O,
Lu® = Lu® = =D — ) (23)
L'y = (1) — ¢(0)

so it is likely that the u’s can be expressed as linear combinations of the e()’s. Actually,
we will show they can be expressed as such linear combinations, with a potential extra
additive term whose image by L (resp. L') is proportional to 6@ (resp. §®)). So we end
these preliminaries with displaying two sequences: one in £5 whose image by L is 6, and
one in L3 whose image by L' is 6(3).

Assume that, at time 0, instead of being assigned one of two different types (resident
or mutant), all individuals are assigned distinct types. We denote by P,, the law of the
(binary) logistic branching process (b, ¢, d) starting from n individuals distinctly labelled
at time 0, where the type of an individual is transmitted to its offspring. In other words,
under P, we keep track of the whole descendance of each ancestral individual.

Then for k=2,3, let T}, denote the first time when the total population size (i.e., the unla-
belled process) is k. Finally, we define

q(k) := P, ( at time T}, the k living individuals have k distinct types ).

n

In the tree terminology, ¢*) is the probability that all individuals in the first surviving

k-tuple have different ancestors at time 0. In particular, ql(f) =1

Lemma 4.3 Let D® € £y and D®) € L3 be the sequences defined as
(2)

DR — I > 9
" k(n—1) n=4
¢

(3) —
D K'(n—1)(n—2)

(2) (3)
B 2q3 /_9 _ U g
K—b(l 5 >+c+d, K= 5 +c+2.

Then LD® = §2) gnd L'D®) = §6).

where

14



Proof. It is quite elementary to check the result by standard applications of the Markov
property under P, but we prefer to give a more conceptual proof. We start with D@,
Under P, we only keep track of two types at time ¢, i.e. the number X; of residents, and the
number Y; of mutants, whereas under P,,, there are n types at time 0, say 1,2, ..., n. Recall
individuals of all types are exchangeable (because in this setting, the discrete operators Ag
and L are associated to selective neutrality). Set

Wn,m = IP)n,m(‘XVTz =Yp = 1)'

Now by exchangeability,

n n+m
Wnm = Z Z P,1m( at Ty, type ¢ and type j have one representative each )
i=1 j=n+1
= nmP,in( at Ty, type 1 and type 2 have one representative each ),

and once again by exchangeability,

q7(12) = Z P, ( at Ty, type 7 and type j have one representative each )
1<i<j<n

= ( ;l ) P, ( at Ty, type 1 and type 2 have one representative each ).

As a consequence,
2nm (2)

(m+n)(m+n-—1) mtn:

Wp,m =

Observe that by definition w is harmonic (in the sense that Agw = 0) on the complemen-

tary of Q3 UQyU{(1,1)}. Then as in the previous subsection, with v, = q,(f)/(n —1), we
get that (Lv), = 0 for any n > 3. The proof is completed by checking that (Lv)s = k # 0.

As to D@ set
Wn,m = E",m(XTSYTS (XTS _YTs)) = QPn,m((XTs’ YT3) = (2’ 1))_2Pn,m((XT3’YT3) = (1’ 2))

Now by exchangeability

Pmm((XTBa YTB) - (L 2))

n n+m
= Z Z P,+m( at T3, type @ has one representative and type j has two )
i=1 j=n+1
+ Z Z P, tm( at T3, types 4, j and k have one representative each )

1<i<n n+1<j<k<nt+m
= nmP, 1, ( at T3, type 1 has one representative and type 2 has two )
m(m — 1)

+ nTPn+m( at T3, types 1, 2 and 3 have one representative each )

Since Py, (X1, Y1) = (1,2)) = Py o (X1, Y1) = (2, 1)), the corresponding first terms
in the difference cancel out, and we are left with

Wy = nm(n — m)P, ., ( at T3, types 1, 2 and 3 have one representative each ).

)
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But again we get an expression involving the last displayed probability as
q7(13) = < g > P, ( at T3, types 1, 2 and 3 have one representative each ),

so that

6nm(n —m) 3)
(m+n)(m+n—1)(m+n-—2) mtn:
This time w is harmonic on the complementary of Q; U Qo U {(1,1),(1,2),(2,1)}. Then
with v, = qq(zg)/(n— 1)(n—2), we get that (L'v),, = 0 for any n > 4. The proof is completed
by checking that (L'v)s = &' # 0. O

Wn,m =

Lemma 4.4 For any k > 2, (qﬁﬁ))n has a nonzero limit qc(,lé) as n — oo.

Proof. From [23], we know that oo is an entrance boundary for the probabilities P,,,

n > 1, so that P4, and qc@ are properly defined for any k£ > 1. At time ¢, we denote by Z;
the number of living individuals and by N; the number of types represented. Obviously,
under Py, Z; — o0 as t — 0+. As to IV, since it is a nonincreasing function of time, it
has a right-limit Nop < oo at t = 0. Next we want to show that

Jho>2, ¥ =0 = Po(Noy <k)=1. (24)

This will end the proof of the Lemma. Indeed, Ny; < ky means that, under P, there are
at most kg individuals whose total descendance at any time ¢ is Z;. Then, conditional on
these individuals, Z would be dominated by a binary logistic branching process starting
at kg, which contradicts the fact that Zp;. = +00. Conclude by summing over all possible
ko-tuples.

Now, we prove (24). Assume there is kg > 2 such that qé’é‘” = 0. Since for k > ko,

qﬁlko) > qflk)q,gko), we get that qé’é) = 0 for all £ > kp. Recall that 77 is the first hitting time

of j by Z. Forn > j >k > kg,

¢’ > P.(Ng, =k ,Ng, = k)
> Pn(Ng, = k)C(j, k),

where C(j, k) is the probability that conditional on T; = k, after picking k representative
individuals at 7T} (one for each type), the first j — k events after 7} are the deaths of all
non-representative individuals. Because this probability only depends on j and k, we get
that Poo(N7; = k) = 0 for all j > k > ko. As a consequence,

P (Ny, < ko) = 1.
But under P, limj_o T; = 0 a.s., so that P (Noy < ko) = 1. O

The proof of Lemma 4.2 is split up into the following (sub)subsections, each of which
being dedicated to one (or two) invasibility coefficient(s). In Propositions 4.5, 4.6, 4.8 and
4.10, we display the solutions of (17) such that u* (v # €) and (nug), are bounded (there-
fore proving Lemma 4.2). We also specify the behaviour of each invasibility coefficient as
the population size grows to infinity.
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4.2.2 Results for the A-invasibility

Here, we must find a bounded sequence u in £y such that Lu? = e(©) — (1)
Recall from Lemma 4.3 that D) € £, is a sequence such that LD® = §®) and
(2)
D@ — _ n>2,
k(n —1)
where qﬁlz) is the probability that the first surviving pair in the (labelled) logistic branching
process (b, ¢,d) have two distinct ancestors in the initial n-tuple.
Since, by (20),
L™ = —26e® + pe) 4+ bV (¢ + d)5?,

and by (19)

Le®W = det™Y + (=2¢ + d)e) + 2(c — d)e?,

we can readily state the following

Proposition 4.5 (fertility) The sequence u* defined as

S dictd) he) | %6(1)’ (25)
&

_ % =D
2bc6 + 2bc

is a bounded sequence of Lo such that Lu = e — el
g* associated to fertility (g) = nu)) is given by

1) Then the invasibility coefficient

(2)
dn d(c+d) ngn n B (26)

A
In = 2bc(n — 1) 2bck n—1  2c(n+1) -

In particular,
v b—d+dc+d)d? /k

90 = 2be

4.2.3 Results for the o and o-invasibilities

Here, we must find bounded sequences u® and v in £y such that Lu® = Lu® = (=1 —¢(®),
Exactly in the same way as for the A-invasibility coefficient, we can readily make the needed
statement.

Proposition 4.6 (aggressiveness, survival) The sequences u® and u® defined as
o c_ 2c—de(71) ~ (2e=d)(c+d)

U =u

1
DR 1 — M 2
2bc 2bc + 2 (27)
are bounded sequences of Lo such that Lu® = Lu® = e(=1) — e Then the invasibility
coefficients associated to aggressiveness (g5 = nug) and survival, (95 = nuf) are given
by
(2c—dn  (2c—d)(c+d) nqg) n

" 2be(n —1) 2bck n—1 + 2¢(n+1) "= (28)

(67 (on

In = 9

In particular,

b+2c—d—(2c— d)(c+d)qg,)//<;
2be

. a1 o _
lim g, = lim g, =
n—oo n—oo

17



4.2.4 Results for the §-invasibility

For 0 and e-invasibility coefficients, the task is mathematically more challenging. A side-
effect is that we only obtain fine results in the case when the resident species has no natural
death rate. This shortcoming is not very disturbing, however, because we are especially
interested in precisely those populations with stationary behaviour (which are those needed
for applications to adaptive dynamics). From now on, we assume that d = 0.
Recall that we must find a bounded sequence u’ in £y such that Lu® = e(©),

Set 6 :=b/c.

Lemma 4.7 Let ® be the sequence of Lo defined recursively as ®2 =1 and

n—2

cn+2)Ppy1+b—cn+1)]®, —b N ¢, =0. (29)

Then the sequence (n®,), converges to a nonzero finite limit ®o, and the (thus well-

defined) sum
S = Zn_l@n

n>2

has 3¢ — bS = P .

Proposition 4.8 (defence capacity) Define the sequence ¢ of Lo as
On = Py /P n > 2.
Then, with ¢1 := 1/2¢, the sequence ud of Ly defined as
W= 3 gy
k>1

0)

is a bounded sequence such that Lu® = el The invasibility coefficient ¢° associated to

defence capacity (g0 = nul ) is given by

5 noy
= n > 2. 30
In particular,
1
95 ~ =In(n) as n — oo.
c

The proof of Lemma 4.7 stems immediately from the two following claims. Claim 1 will
also be helpful in the proof of Proposition 4.8.

Claim 1. Assume that (n®,), converges to a finite limit ®,, where (®,), is defined
in (29). Then the real number S := 3" _,n~'®, and the sequence W := 3", ., ®re) of
Lo are well-defined, and - B

(i) ¢Poo = 3c—bS

(i) LW = c®ooe).

Claim 2. The sequence (n®,,), converges to a nonzero finite limit.

18



Proof of Claim 1. To prove (i), let

Bn:=Mm+1)®, and ,:=(Mn-1)9, n=>2,

so that
lim G, = hm Yn = Poo,
n—oo
and, thanks to (29),
Bst — fin = ———( ) n>o
n+1 ] Tn — Yn—1 n =z

with 1 = 0. As a consequence, by Abel’s transform, we get
1 Tn — In—1
S =
Sl o) XY

= —0_1 Z(ﬁn-',-l - 671) - - ( oo 62)

n>2

= (3 - (I)oo)/e

As for (ii), thanks to (19) and (20), and by continuity of linear operators,

[
LW = 1 ®; Lek)
Jfim ), Bxle

k

= hm Z Dy <—ée(1 b%e(kﬂ) +[b— (k+1)ce® + (k + 1)ce(k1)>

l+1 .
= llirgo{—b (;k_l@k> D, 16

l -1

+ > b= (k+ 1)J@re® + (i + 2)@;41eD)
k=2 j=1

-1
= —bSe + lim {Z (—bk — T@H +[b— (k+ 1)c]®) + c(k + 2)Ppy1

= (3c—bS)eW,

which ends the proof.

Proof of Claim 2. We split this proof into the four following steps (recall (31))

(i) if (n®,,),, converges to a finite limit ®o,, then ®, # 0

(i) (Bn)n has constant sign for large n

19
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(iii) (Bn)n is bounded

(iv) (Bn)n converges.

Since we are only interested in the asymptotic properties of the sequences (®p,)n, (Gn)n
and (v, )n, we will implicitly assume throughout this proof that 8/(n+1) < 1, that is, n > 6.

i) If &, exists, then thanks to Claim 1, we can define W = ®re) and the doubly
E>2
indexed sequence w as

nm
Wy = n+mWn+m (n,m) € Nx N\ (0,0).

Because W is bounded, w is sublinear. Assume ®., = 0. Then by Claim 1, LW = 0, and

the same calculations as those yielding (17) and (18) show that Agw = 0. The contra-

diction comes with Lemma 3.2, which implies that the null sequence is the only sublinear

doubly indexed sequence which vanishes on €4 U 29 and is in the kernel of Ay.

(ii) First observe that (29) reads

n—2

0
=|1—-— 00—, — 33
Br+1 < n+1>5n+ n(n—l)ﬁ” 1, (33)
so if there is ng > 0 such that 3,,8,,—1 > 0, then a straightforward induction shows that
(Bn)n>n, never changes sign. Now, we prove that if no such ng exists, then (/3,),, converges
to 0, which contradicts (i). Indeed, assume that for all n > 6, 5,,6,-1 < 0. Then for any
n>60+1,if 8,1 <0, then £, >0 and 3,41 < 0, so that

0 n—2
1 - T n _97 n—1»
< n+1>ﬂ < n(n—l)ﬁ !

which can be written as

0 n—2
<1 - n—+1> |Bn| < em\ﬁn—ﬂ,

and we would get the same inequality if 3,—; > 0. This would imply that |3,|/|5n-1]
would vanish as n grows, and so would 3,.

(iii) Without loss of generality, we can assume thanks to (ii) that there is ng such that
Brn > 0 for all n > ng (otherwise change 3 for —3). Next, we prove that for all n > ny,
Brn+1 < max(Bn, Bn-1). It is then elementary to see that (3,), is bounded. First check

that
0 ﬁnfl

Brt1 — Pn = —m(ﬁn — Bn1) = 2‘9”(” —1)(n+1)’

so for any n > ng,

0
Bt = B < == (B = B

In particular, if §,+1 > By, then 3, < 3,-1, and
0
‘671-1—1 - 671’ < m’ﬁn - ﬁn—l‘ < ’ﬁn - 671—1‘7
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which reads B,4+1 — O, < —0n + On—1, that is, 8,41 < Bn-1. As a conclusion, §,+1 < G,
or fBnt1 < Pn-1-

(iv) By (32) and Abel’s transform, we get

Prns1— P2 = 92% % -

_ Tn . Tk
= egk(k—l)’

and the r.h.s. converges, because (7). is bounded, thanks to (iii). O

Proof of Proposition 4.8. Thanks to Claim 1 above, since u’ = ¢1e(t) 4 (c®q) ™' W,

Lu’ = ¢1LeM) + (e®y) ' LW

= (2¢) 7 (=2ceV) 4+ 2¢e@) + (cdo) ey e
(0)
e,

The boundedness of u’ is straightforward. To get the equivalent of g2 as n — oo, it is
sufficient to prove that nW,, ~ ® In(n). First, starting over from the proof of Claim 2

(iv) above, get that
—0
—P=-0) e 1

k>2
so that

Tn Vk
n _q>oo:_‘9 0 1. 1\’
Frt1 n—1" ];k(k:—l)

whch implies that 3, — ®o. = 0 (n~1). Next, writing pj, := k®y, we get

nWn = an+k Zp’“( n+k:>

k>2 k>2
n+1 P Pt l+n P
. k n+ k
= 1 —_— _ [
lggo{z Py tmasm 3
k=I+1
n+1 P n+1 Pt
k — n
D e +Z—*§:nw
k>2
= <I>OO In(n) + O (1),
where the last equation comes from the fact that py = @ + O (k71) as k — oco. O

4.2.5 Results for the c-invasibility

Recall from Lemma 4.3 that D®) is a sequence in £3 such that LD®) = §®) and

(3)

DB = an >
=] o ) B
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where qq(lg) is the probability that the first surviving triple in the (labelled) logistic branching

process (b, c,d) have three distinct ancestors in the initial n-tuple. Now as in the previous
problem (d-invasibility), we assume that the resident species has no natural death rate,
that is, d = 0.
Here, we must find a sequence u® in £3 such that (nus),, is bounded, and L'u® = e(~1) —¢(0),
Recall 0 = b/c.

Lemma 4.9 Let ¥ be the sequence of L3 defined recursively as Vs =1 and

-3
c(n+3) Wiy + [b—c(n+1)] T, — bZ — 01 =0, (34)

Then the sequence (nQ\Iln)n converges to a nonzero finite limit Vo, and the (thus well-

defined) sums
S = Zn_l\lln and ¥ = Z v,

n>3 n>3

have

Y4208 =V + (0 —-3)2 =5.

Proposition 4.10 (isolation) Define the sequence ¥ of L3 as

Uy = =V, /cVUs n > 3.

Then, with
1
V-2 = e
041
T 0+ 3)
20
1= 3¢(0 + 3)
5 20 + 3
o =

Woo 3¢(0+3)

the sequence u® of L3 defined as

1
us = Z ¢k€(k) + 7D(3)
k>—2,k#0 9(9 + 3)

is such that (nug), is bounded and L'u® = e(=1) — e Then the invasibility coefficient g°
associated to isolation (g5, = n’us,) is given by

n*yy 1 gy
£ >
“n ;n+k+m’9(9+3) (n—1)(n—2) nzs (35)

In particular,

1
gy, ~ —In(n) as n — oo.
c
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Since proofs of these statements are quite similar to those done for the d-invasibility, we
will often sketch them. First, we prove the following two claims.

Claim 1. Assume that (n?¥,), converges to a finite limit W.,, where (¥,,), is defined
n (34). Then the real numbers S := 3 -3 n~ 1P, and ¥ = > >3 VUn, as well as the

sequence Z 1=y k>3 Urek) of L3 are well-defined, and
(i) X+20S =T+ (0 —3)X =5.
(i) L'(Z — 2e?)) = ¥ (e — ).

Claim 2. The sequence (n?V,,),, converges to a nonzero finite limit.

Proof of Claim 1. To prove (i), let
Bn:=Mm+2)n+1)¥, and v,:=(n—-2)(n—-1)7¥, n >3, (36)

so that
lim 3, = lim ~, = ¥,
n—oo n—oo

and, thanks to (34),

Bnt1 — Pn = — bln +2) )(’Yn — Yn—-1) n >3, (37)

(n—1)(n—2

with 79 = 0. As a consequence, by two applications of Abel’s transform, we get

1 1
X = Z\P Z5”<n+1 n+2>

n>3 n>3
6n+1 671 — Tn—1

= = qf —

DY T =t 0y s

n>3 n>3

27

= —0

Z (n—1)(n—2)
= 5— 295.

On the other hand, the same type of arguments as above show that

_ Tn — Yn—1
D e TV 2T

n>3

_ _p-1 —
N 0 nzg;n+2(

4 o n-+1 n

- 671)

= -0 (=5+ Ty —3%),

which ends the proof of (i). With the help of (21) and (22), (ii) can be proved easily
mimicking what was done for the §-invasibility. O
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Proof of Claim 2. We proceed just as for the defence capacity. First, we prove that if
W, exists, it cannot be 0. Indeed, consider ¥ and Z € L3 defined in Claim 1, and further

define ( ) 5
nmmn —m
Znm = W <Zn+m - m) (n,m) € N* x N*.

Because (nZy,), is bounded, z is sublinear. If ¥, = 0, then thanks to Claim 1, we would

get Agz = 0, but this would contradict Lemma 3.2.
Next recall the sequences  and ~ defined in (36). Thanks to (34),

B 0 (n+2)(n—3)
Pry1 = (1 - n——i—1> B + Hn(n DT 1)571—1,

which proves that (3, has constant sign for large n, otherwise it would converge to 0 (and
then ¥, = 0, which would contradict (i)). Therefore we can assume that 3, > 0 for large
n without loss of generality. Since

0 ﬂnfl
1P = B) = 00 Ty

then for any sufficiently large n, 0 < 3,11 < max (8, Bn—1), so that (3,), is bounded, and
50 18 (Vn)n. Use (37) to show that

Brt1 — Bn = —

n+2 i, k+6
Brt1 — B3 = —Hm% - 9;23 k(k — 1)(k — 2)’)%7

and conclude that (3,), is convergent. O

Proof of Proposition 4.10. Recall Z defined in Claim 1 and set @9 := —(20+43)/3c(6+
3),aswell as V € L3

Vo= h_0elT? + 910 + e 4 @),

so that
f= (W) HZ — 2e®@ DB
U (cWoo)( e )+V+9(9+3) (38)
By an elementary computation relying on (21) and (22), get
1
L'V = ——— 5@ 4 (=1 _ 0 _ (1) 4 (2
Vv 000+ 3) +e e e\ + e\,

and conclude, thanks to Claim 1, that L'u® = (=1 — ¢(0),
To get the equivalent of g as n — oo, first recall (38) and observe that

Yoo+ 1+ +¢2 =0,

so that (n?V},), converges. Next consider n.Z,

TL\I/k 1 1
Z, = =Sy (- —
" 2T kz k(k n+k>

k>3 >3
- -3
ssnT k
_ oy \Ijooln(n) ‘o (ln(n)> ’
n



by a similar method as in the proof of Proposition 4.8. As a consequence,

a5 = % +o <lniln)> :

2,
Uy, O

_ n
nufl = —(C\I/OO) 1 (nZn — Em) + nVn +

which ends the proof, since g;, =n

5 Adaptive dynamics in finite populations

In this section, we consider a stochastic model of evolution in a finite population gen-
eralizing the previous one, where the number of coexisting types and the corresponding
population sizes may fluctuate. First, our goal is to apply to this process a limit of rare
mutations while keeping the population size finite, in order to describe the evolutionary
process on the mutation timescale as a ‘trait substitution sequence’ (TSS, [28, 3]) where
evolution proceeds by successive fixations of mutant types. Second, we want to apply
to this TSS a limit of small mutation steps (weak selection) in the way leading to the
‘canonical equation of adaptive dynamics’ [8, 4]. Because of the combination of population
finiteness and weak selection, the genetic drift carries over to the limiting process. This
is a diffusion process of evolution over the trait space that we call ‘canonical diffusion
of adaptive dynamics’, and is grounded on a realistic individual-based description of the
evolutionary dynamics, in which the population size may fluctuate because of interactions
of the logistic branching type.

However, in finite stochastic populations, making mutations rare eventually leads to the
extinction of the population before any mutation occurs. Therefore, in order to apply our
first limit, we have to consider a model where the extinction is impossible, in a similar way
as in the case where d; = dy = 0 in the two-type logistic branching model of the previous
sections.

5.1 Description of the process

At any time ¢, the population is composed of a finite number N(¢) of individuals charac-
terized by their (phenotypic) traits x1(),...,zn) () belonging to a given trait space X,
assumed to be a closed subset of R¥ for some k > 1. The population state at time ¢ will
be represented by the counting measure on X

N(t)

Vy = Z (5%(25)
=1

Let us denote by M the set of finite counting measures on X, endowed with the o-field
induced by the Borel o-field on X C R? as follows: let ¢ denote the application mapping
any element Zle 6z, of M to the k-tuple (7r(1),...,%rx)) where the permutation
of {1,...,k} is chosen such that this vector is ranked in, say, the lexicographical order.
Then, this function ¢ is a bijection from M to the set of lexicographically ordered vectors
of Ui X k. The Lebesgue o-field on this set therefore provides a o-field on M.

For any v € M and any measurable function f : X — R, we will use the notation (v, f) for
| f(z)v(dz). Observe that N(t) = (14,1) and that (14, 1) is the number of individuals at
time ¢ with trait value in I' C &
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The Markovian dynamics of the population are governed by the following parameters:

e b(x) is the birth rate of an individual with trait z.

e c(z,y) is the rate of competition felt by an individual with trait « from an individual
with trait y. Specifically, in a population with state v = ZZ]L 0z,, the death rate of
an individual with trait = (where x is one of the z;) is given by

(z 2:) — ol ) = / () (v (dy) — Ba(dy)). (39)

- X

i=1

e ~vyu(x) is the probability that a birth from an individual with trait = produces a
mutant individual, where pu(x) € [0,1] and where 7 € (0,1) is a parameter scaling
the frequence of mutations. We are interested in the limit v — 0.

e M(x,dh) is the law of the trait step h = y — x between a mutant individual with
trait y born from an individual with trait x. Since the mutant trait y = x 4+ h must
belong to X, this measure has its support in X —z := {y —z : y € X} C R,

In other words, the infinitesimal generator of the M-valued Markov jump process (v )i>0
is given by

Lyp(v) = /X[@(z/ +0,) — ()] (1 — yp(z)) b(z)v(dz)
+ /X /Rk [o(V + 6pqn) — (V)] yp(x)b(2) M (2, dh)v(dx)

+ [t =00~ o] [ ctespwtay) - o)) vt a0

In this equation, each integral with respect to v € M corresponds to a sum over all
individuals in the population. The first term describes the birth events without mutation,
the second term the birth events with mutation, and the third term describes the death
events (by competition). We will denote by P the law of this process (or P, when the
initial condition has to be specified). When necessary, we will denote the dependence of

v; on the parameter v with the notation v.

We make the following assumptions:

e There are positive constants b, ¢ and & such that b(-) < b and ¢ < ¢(,-) <&

o M(x,dh) has a density on R* which is uniformly bounded in € X by some integrable
function M (h).
For any v € (0,1), the population size (v, 1) is dominated by a scalar logistic branching
process with dynamical parameters (b,0,c), so that one can prove exactly as for Proposi-
tion 2.1(a) the following result.

Proposition 5.1 Fiz p > 1 and pick a positive C. There is a constant C' such that, for
any v € (0,1),

E(g, 1)) <C = sup E((,1)") < C".
t>0
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Observe that, if there is no mutation (1 = 0) and vy = X¢d,+Ypd, (dimorphic population),
then, for any ¢t > 0, v, = X3, + Y;d,, where (X;,Y}) is the two-type logistic branching
process of Section 2 with

b(x) > ( c(xz,z) c(z,y) > ( 0 )
B = , C = ’ ’ and D= .
( b(y) c(y,x) c(y,y) 0
Accordingly, we will denote by wy ,,(x,y) the probability of fixation of the mutant type y.

More generally, if at time ¢ the population is composed of n different traits, the process
follows a n-type logistic branching process until the next mutation.

Let us also point out that, when there is only one individual in the population (v = d,
for some x € X), the death rate (39) equals 0, so that extinction is impossible. Then, as
observed in the beginning of Section 2, if © = 0 and if the initial population is monomorphic
(vp = nd, for some n € N* and = € X)), the number of individuals (14, 1) is a positive
recurrent Markov chain converging in distribution to g, where {y(,) is a Poisson random
variable of parameter 6(x) := b(x)/c(x,z) conditioned on being nonzero

efe(x) Q(x)l

P(éé’(m) = Z) = 1—e 0@ 4

, i1 (41)

Recall that E(&g) = /(1 — exp(—0)).

5.2 Limit of rare mutations and the trait substitution sequence in finite
population

Here, we study the behaviour of the process v” in the limit of rare mutations (v — 0) on
the mutation timescale ¢ /7.

Let us introduce the following strong form of convergence in law. We will say that a
sequence of random variables (X,,) converges strongly in law to a random variable Y if
and only if E(f(X,,)) — E(f(Y)) when n — oo for any bounded measurable real function
f.

Fix z € X. For v € (0,1), let v = N d, where the N*-valued random variables N satisfy
supP,e(0,1) E((Ng )P) < oo for some p > 1.

Theorem 5.2 For any positive 0 < t; < ... < t,, the n-tuple (v

2
Y
AUNTEE tn/’Y) converges

strongly in law to (Cty, ..., Cr,) where ¢, = Ny, 0z, such that

(1) (Zi;t>0) is a Markov jump process on X with initial value Zy = x and with infinites-
imal generator

e—G(x)‘g(x)n—l

WM(m,dh)

+oo
Apta) = [ (ol )=o) le)b0) gy 3 a4
n=1

1 —e"
(42)

(2) Conditional on (Zy,,...,Zs,) = (21,...,2n), the Ny, are independent and respectively
distributed as & .,)-
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Observe that the TSS generator (45) may be written as

Ap(a) = /X (p(@ + h) — () B@)x (@, = + h)M(x, dh)

where

0(z)
1 — e 0

B(x) == p(x)b(z)

is the production rate (on the timescale ¢/v) of mutants in a stationary z-type population
and

(43)

o(a) = f(x)" "

P —Uu(x

x(z,y) =e nzlun,l(x,y) (n— 1)!M(aj,dh) (44)
will be interpreted as the fixation probability of a mutant individual with trait y in a
stationary z-type population.

This result shows that, in the limit of rare mutations, on the mutation timescale, the
population is always monomorphic and that the trait of the population evolves as a jump
process, where a jump corresponds to the appearance and fixation of a mutant subpopu-
lation. The process Z is the TSS in our model (case of finite populations).

Let us denote by 7, the n-th mutation time (79 = 0), by p, the first time after time
Tn, when the population gets monomorphic, and by V,, the single trait value surviving at
time p, (pp = 0 if the initial population is monomorphic). With this notation, we can
state the following result, adressing the main biological issue of Theorem 5.2, namely the

convergence of the support of the measure 1/_% to the process Z.

Theorem 5.3 The process (S];t > 0) defined as

SZ = Z an{pnét/v<pn+1}
n=0

converges in law for the Skorohod topology on D(R,, X') when v — 0 to the process (Zy;t >
0) with initial state Zy = = and with infinitesimal generator (42).

Observe that such a convergence for the measure 1/37 cannot hold because the population

size N; in Theorem 5.2 is not a cA dlA g process.

The proofs of the two preceding theorems are put to Subsection 6.1.

5.3 Limit of small mutation steps and the ‘canonical diffusion of adaptive
dynamics’ in finite populations

Here, we want to apply a limit of small jumps to the T'SS process with generator (42) of the
previous subsection, in order to obtain the equivalent of the canonical equation of adaptive
dynamics in finite populations. Let C{f be the set of k times differentiable functions with
bounded i-th derivatives, 1 < i < k. We will need in this section the following additional
assumptions:

e X = R” for simplicity
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e band c are in C}
e the mutation kernels M(x,-) satisfy

— for any x € R¥, M(x,-) has 0 expectation, i.e. [p, hM(z,dh) =0
— the covariance matrix of M(x,-) has Lipschitz entries and is uniformly elliptic

in x, i.e. there is a positive constant C such that [p.(s'h)*M (z,dh) > C|s|?
for any s € R¥.

— the third order moments of M (z,-) are uniformly bounded in x.

Recall that there is a symmetric matrix o(x) such that o(z)o(z) = o(x)? is the covariance
matrix of M(z,-) which is called its square root. Then its uniform ellipticity ensures that
o(x) has also Lipschitz entries in z.

The limit of small jumps is obtained by introducing a parameter ¢ > 0 and replacing the
mutation law M (x,dh) by its image by the application h — eh, M(x,dh/e). Of course,
this scaling of the size of the jumps has to be combined with a scaling of time in order to
observe a non-trivial limit. This leads (after a change of variable) to the following generator
of the rescaled TSS (Zf;t > 0):

1
Acpla) = 5 [ (plo -+ eh) = pla))Ba)x(a,a + )M (z.dh) (15)
where the mutant production rate in a stationary z-type population, [(x), is defined
n (43), and where the fixation probability of a mutant of trait y appearing in a stationary
z-type population, x(x,v), is defined in (44). The factor 1/€? in (45) corresponds to the
correct timescaling, as will appear below.

We will use the notation v*(x) and ¢*(z) (¢ = A, 4, a, ¢, 0) for, respectively, the first-order
derivatives of the fixation probability in the vicinity of neutrality (all individuals have trait

x), and the corresponding invasibility coefficients. Similarly, we will denote by q7(12) (x), k(x)
and ¢, (z) the quantities appearing in Sections 4.5 and 4.6 for A\, o and o-invasibilities,
and in Section 4.8 for the J-invasibility.

It follows from Theorem 3.3 that the function y is Cg. Observe also that

d c(x,z) c(z,y) \ _ 00 0 1

dy|,. < ) clyy) )= VI 11 )V g
where, for bivariate f, V;f is the gradient of f w.r.t. the i-th variable (i = 1,2). Then, by
Theorem 4.1,

i 0(.’1])”71 e 0 _ 1 —+ 0(.%')
X(z,2) = e )Z m+D)n—1) 0(x)?

n>1

and
Vaox(z,z) = e %@ (ay(2)Vb(x) — a5(x)Vic(z, ) + an(z)Vac(z, 2))

where, for . = \, 4,
)n—l

o0
ng,
Zv’g’l Z nn—itll n—l)

n=1 n=1
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Remark 5.4 Observe that e-invasibilities do not appear in this computation, because of
the symmetry between resident and mutant types in the competition kernel. One could
include e-invasibilities in the formula of Vox(x,z) by assuming a competition matriz of

the form
( a(r,x) al(z,y) )
2y, ) c2(y,y)

for some functions c¢1 and ca coinciding on the diagonal. Such an asymmetry between
resident and mutant would not be unrealistic biologically and can be explained by the resident
constructing its own niche. This ecological adaptation of the resident to its medium would
then result in o difference in the competition felt by x from y according whether x is the
resident or not.

Now, fix a function ¢ in Cg. For any =, h € R¥ and € > 0, there exists 0 < ¢ < € such that

2
o(z +eh) — p(z) = e/ Vo(z) + %h’H(p(x +€'h)h
where Hp(y) denotes the Hessian matrix of ¢ at y, and there exists 0 < ¢’ < e such that
x(z,x + eh) = x(z,z) + eh'Vaox(z,z + €"h).

Therefore, using the fact that Hy and Vg are bounded Lipschitz functions, it takes only
elementary computations to prove that

((x + eh) — p(@))x (2, + eh) = e(h'Vp(x))x(x, x) + (W' V() (W Vax(z, 7))
+ S (W Hp(@)h)x(w,x) + O( A

where the O(e?||h|?) is uniform in # € R¥. Now, since the mutation kernel has zero
expectation,

/R (V) ) M, dh) = 0.

Combining these results, thanks to boundedness of the third-order moments of the muta-
tion kernel, we easily obtain for any ¢ € Cg , that A.p converges uniformly to the function
App defined as

App(x) = /Rk (WV () B(x)e @ N (a)(2)Vb(z) — as(x)Vie(z, z) + aq(x)Vac(z, 2)) M (2, dh)

e @) 14 6(z)

1 /
+ 5 /Rk(h Hp(z)h)B(x) 0(x)? M(a, dh). (46)

In view of this, the following theorem is natural. Recall that o(x) is the symmetric square
root matrix of the covariance matrix of M (x,-), which is Lipschitz in x, and that x(z,z) =

(exp(—0(2)) — 1+ 0(2))/0(2)*.

Theorem 5.5 If the family (Z§)eso0 has bounded first-order moments and converges in
law when € — 0 to a random wvariable Zy, then the process Z¢ converges in law for the
Skorohod topology on D(R,,RF) to the diffusion process (Zy;t > 0) with initial state Z
unique solution to the stochastic differential equation

dZy = r(Zy)dt +\/ B(Zi)x(Zv, Zi)o (Zy)d By (47)
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where B is a standard k-dimensional Brownian motion and

r(z) = B(z)e ") | Mz d)(H [ax(2)Vb(z) - a5(2)Vie(z,2) + aa () Vac(, 2)] ) B

Remark 5.6 In the case where X # RF, this result is still valid, apart from the following
technical difficulties. First, for the process Z€ to be well-defined, one needs to assume that
scaling the mutation law M (x,dh) cannot drive Z¢ out of X. This is true for example, when
e <1, if X is convez, or if Supp(M (x,dh)) is convex for any x € X. Second, uniqueness
in law has to hold for the diffusion with generator Agy. For example, one can ensure the
ezistence of a Lipschitz factorization o(x)o(x) of the covariance matriz of M(x,-) by
assuming that the function from X to the set of nonnegative symmetric matrices mapping
x to the covariance matriz of M(z,-) can be extended to R in a C? fashion [14].

Remark 5.7 In the case where the mutation step law M (x,-) has non-zero expectation, the
calculation above shows that the first-order term in A. does not vanish, so that the correct
timescaling is 1/e (instead of 1/€?), and the TSS process Z¢ can be shown to converge to
the solution of the deterministic ODE

d

= BEN(=2) [ MGz
dt Rk

In this case, the main force driving evolution is the mutation bias. The mutation rate f(x)

and the fization probability x(z,x) only affect the speed of evolution.

Theorem 5.5 gives the equivalent of the canonical equation of adaptive dynamics [8, 4]
when the population is finite. It is no longer a deterministic ODE, but a diffusion process,
in which the genetic drift remains present, as a consequence of the population finiteness
and of the asymptotic of weak selection (¢ — 0). Diffusion processes have long been
used to describe evolution in biology (see, among many others, [13, 12, 19, 25, 16]). Our
process provides such a model, which is grounded on a microscopic precise desription of the
population dynamics, in a realistic way. In particular, because of the quadratic density-
dependence, the population size is not fixed and may fluctuate.

The diffusion part in (47) gives the strength of the genetic drift, which square is propor-
tional to the mutation rate S(x) and to the covariance matrix of the mutation step law
M (z,dh). The drift part gives the expression of the deterministic strength driving evolu-
tion, which is often related in macroscopic evolutionary models to a fitness gradient. In
our case, the fitness is given by the function x. Indeed, x(z,y) is the fitness of a mutant
trait y in a stationary resident population with trait x (in the sense proposed by Metz et
al. [27]), and it appears in the deterministic part of (47) as the gradient of x with respect
to the second variable, in a similar way as in the standard canonical equation of adaptive
dynamics [8, 4]. Therefore, the ‘hill-climbing’ process of evolution occurs here, as in the
classical models of adaptive dynamics, in a fitness landscape y — x(z,y) that depends
on the current state x of the population. Observe also that the deterministic drift term
in (47), as in the canonical equation of adaptive dynamics, is proportional to the mutation
rate (G(x), the covariance matrix of the mutation step law M (z,dh) and the gradient of
the fixation probability.

The coefficients appearing in the deterministic part of (47) can be expressed as follows.
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Proposition 5.8 The coefficients a, for . = X\, 0, can be expressed in terms of the mi-

croscopic parameters b(:c),@(:c),qg) (), k(z) and ¢p(z) as

@ (9(x)? - 30(z) +4) — 0(x) — 4

ax(@) = 2b(x)0(x)? (48)
_ S 0 £ b =2 L napeh (@)0()"!
aq(z) = b(z)0(z)2 k(z)0(x) ngl (n+1)! (49)
0(x)
o )(k+2 / P et (u? —u+1) — 1)du (50)

k>1

= e(jc) /oa(m)(eu“ﬂ S <$> . oy

w

where for k > 1,
0 k_l Hk i—1
/ uF e (P —ut1)—1)du = € | 05T — (b +2)0% + (k +1)%(k — 1) 'Z
0 —i—1)!

— DM R DR -l o (52)

and for any v € [0,1), my(v) := 35y dr(x)v*~L. Moreover, 7, is solution on [0,1) to

(1 — w)ml (u) + u(0(2)u(l — u) + 2 — 3u)7l(u) — 27, (u) + % = 0. (53)

The proofs of Theorem 5.5 and Proposition 5.8 can be found in Subsection 6.2.

Example. Let us consider a one-dimensional trait € R in a population undergoing sym-
metric competition ¢(x,y) = ¢(|Jzr—y|). This type of competition kernel has been considered
in numerous earlier works, see e.g. [7]. As a consequence, dc/0z(x,z) = dc/0y(z,x) = 0.
We may and will assume that ¢(0) = 1. We still denote by o(x) the standard deviation
of the mutation kernel M(z,-). Then, thanks to Theorem 5.5 and Proposition 5.8, the
canonical diffusion of adaptive dynamics is given by

Wz 1/2
dZy = r(Ze)dt + o (Z)u(Z;) '/ (#tb)(Zt) - 1> dBy

where

ol (4 b -4,
r(x) = 5 (1 + bo) + T e—b(m)) b'(x).

In forthcoming work, this diffusion and other examples will be investigated.
6 Proofs

6.1 Proofs of Theorems 5.2 and 5.3

These proofs rely on the following three lemmas. The first one states that there is no
accumulation of mutations on the timescale ¢/v. The second one gives the limiting laws of
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~v71 and of the population size at time 71. The last one gives the behaviour of py and Vj
when the initial population is monomorphic.

Lemma 6.1 Fiz C,n > 0. There is ¢ > 0 such that for any v € (0,1),

t t
E((vg,1)) <C = Vt>0, IP’<EIn€N*:;§Tn§ :€><n. (54)

Moreover, for any n > 0 and t > 0, there exists n € N* such that, for any v € (0,1),

E((yg,1)) <C = P(r, <t/y) <. (55)
Lemma 6.2 Assume v = nd,.

(a) The couple (y1, (v}, _, 1)) converges in law to a couple of independent random variables
(T, N) where T is an exponentially distributed random variable with parameter 3(x)
defined in (43) and the law of N is the following size-biased version of gy

o FPEewy) = k) ()

which is the law of a shifted Poisson random variable of parameter 0(x).

(56)

(b) For any p > 1, sup,¢(g 1) Ezéx((yn, 1)?) < 0.
Lemma 6.3 Assume v = nd, + 6, (with y # x). Then

(a) vpo — 0 in probability and PV (py < 71) — 1 when v — 0.

(b) For any p € [1,2], SUP~e(0,1) End,+6, ((1/30, 1>p1{p0<ﬁ}) < 0.
(c) imy—oP" (Vo =y) =1 —lim,oP"(Vy = z) = up1(z,y).

Proof of Lemma 6.1. Fix C' > 0 and assume E((y,1)) < C. By Proposition 5.1, there
exists a constant C’ such that E((¢/,1)) < C’ for any ¢t > 0 and v > 0. Therefore, it is
sufficient to show Lemma 6.1 for ¢t = 0.

Now, when the total population size is n, the total mutation rate in the population is
bounded by ~bn, so that the number of mutations M; between times 0 and ¢ is dom-
inated by a point process with intensity ~vb(v,,1)ds. More precisely (using for exam-
ple the coupling argument of Theorem 2 in [3|) M; can be shown to be smaller than
fg Sy 1(i<(,_ 1)y P(di,ds), where P(di,ds) is a Poisson point process on N* x R, with
intensity measure yb ), <, dx(di) ds. Therefore,

_ el _
P(M.), > 1) <E(M.,,) < b / E((v2,1))ds < ebC",
0

which concludes the proof of (54).
Similarly, for t > 0, P(M,;, > n) < tbC’/n, which implies (55). O
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Proof of Lemma 6.2. Fix v € (0,1) and assume that v] = nd,. The number of muta-

tions issued from individuals of type = before time ¢ can be constructed as fg fN* Licyr }PV(di, ds)
where ;" = (v, 1y,}) and P7(di, ds) is a Poisson point process on N* x R, with intensity
measure Yu(z)b(x) Y ;- 0x(di) ds independent of (Y;”;¢ > 0). On another hand, on the

event {t < 71}, Y, = X, where X7 is a scalar logistic branching process with dynamical
parameters ((1 — yu(z))b(x), ¢(x,x),0) and with initial state X] = n. Therefore, for any
bounded function f: N* — R and for any ¢ > 0,

t/
EY(f (v, D)iym > 1) =E [f(X,?/W)eXp (—w(fﬂ)b(w) ; XZ_d8>] - (7)

Now, fix n > 1, ¢t > 0 and a bounded function f : N* — R. On the one hand, since (v/, 1)
is a piecewise constant process,

(2]
EY(f (W= W ym<y) = lim EY Zf Vag-n 1y 1)) L2-nkaym <2-n(k+1)}

and on the other hand, by (57),

2n4]
R Z E” [f Vign 1>)1{2*"k<7n§2*"(k+1)}}
271 "y (k41)277/
. z)b(x 7 X7ds —~yu(z)b(x) Y X]ds
:nETOOZE{ T n/)<e @pia) [ @@ f] ﬂ
274 -
= m@)b(@) lm 27 Z E [ o ) Xy e D Wngs] (58)

where the last equality follows from Lebesgue’s theorem and the facts that |1 —e ™ —u| <
u?/2, that sup,>oE((X])?) < C < oo and that

l+e
‘E < X)ds — aXI?)
t

uniformly in ¢ > 0. This last equation is an immediate consequence of the fact that, for
any s <t and M > 0,

t+e
< [ E1X7 - X0 Dds = ofe)
t

E(|X] - X[) SE(X] + X5 X7 # X/) S E(X7; X7 > M) + E(X/; X/ > M)
+ 2MP(no jump of the process X” occurred on the time interval [s, ¢])
<2C o (1 _ e—M(b(x>+c(x,x>(M—1)>(t—s)) .
- M

Define o(t) := E[f(X])X] exp(—yu(z)b(z) [, XJds)]. Distinguishing as above between
the cases where XJ > M, X > M, X;y = X, and X7 # X}, one can easily prove that
©(s) — o(t) when s — t, i.e. that ¢ is continuous. Thus, the Riemann sum in the right
hand side of (58) converges to the corresponding integral, and for any v € (0, 1),

t s/v yy
EV(f(@;_yli, 1>)1{’77'1§t}) = u(x)b(x)/o E (f(XJ/V)XSMe_WM(x)b(x) fo/ Xudu> ds.  (59)
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Now, since the individual birth rate of the logistic branching process X7 is decreasing
with respect to v, all the processes X7 can be constructed on a same space in such a way
that, for any 0 < 43 < 9 < 1land t > 0, X;/* < X;*. Therefore, assuming that f is a
nonnegative and nondecreasing function, for any 0 <~ <~y <1,

E (f(X'YO

p )XWO e—vu(a:)b(a:) fOSM ngu) <FE (f(X’Y/ )X’Y e~ 1i(x)b(z) fos/w XZdu)
s/ = s/

s/ s/v

- x)b(x S/ 3 w
<E (f(XS/y)Xg/ve yu(@)b() [ X0d ) .

For any v € (0,1), let us denote by €0 the random variable §(1—yu(x))o(x)- By the ergodic

theorem for positive recurrent Markov chains, ~y f(f a X0du — sE(¢ (0)) when v — 0. Then,
since supso E((X/?)?) < oo, for any s > 0,

: Y0
JimE (£(X

S/W)X‘Z%e*w(x)b(x) o XSdu) —E (f(é‘(’YO))5(70)e*u(z)b(z)E(£(O))5)

and, by Lebesgue’s theorem,

(v0)¢(v0)
limsup EY(f (02, 1)1gmcq) < S0 ETET) (1 - enmenen)

71—

7—0 EE©)
Similarly,
o E(f(£9)e®) - (o)
g g > ZVAS S ) (g L g al@)b()E(ED0))
liipt E7(/ (07— 1 n<0) 2 =, (1-e ).
Letting o decrease to 0 finally yields
: E(f(£)e®) - ©
v Y _ VNS TS ) (o m()b(2)E(EO))t
lim /(07 D)lomsn) = = pem (1-e ). (60
The same method applies to the case of nonincreasing nonnegative functions f, which
completes the proof of Lemma 6.2(a).
Lemma 6.2(b) can be obtained by taking f(x) = 2P A K in (59), then letting first K go to

infinity and next ¢ to infinity (using the fact that fos/ T Xadu > s/v since X, > 1 for any
u > 0), and finally using Proposition 5.1. O

Proof of Lemma 6.3. Before the first mutation, v} = X,'§, + Y,76, where (X, Y,)) is
a two-type logistic branching process with dynamical parameters

BZ(u—meM) C:<d%@cmw> D:(0>
(L =u(y)bly) )’ c(y,z) clyy) )’ 0
On the event {r; > po}, Vo = y if and only if there is fixation in the process (X7,Y7),

Vo = z otherwise, and pg =T

Now, by Lemma 6.1, for any n > 0, there exists e > 0 such that P(r; > ¢/v) > 1 —n.
Since P, 1 (T < oo0) = 1, this implies easily (a). It is then elementary to deduce from the
continuity of the fixation probability with respect to the components of the matrix B that
(c) holds. Finally, (b) follows from the observation that

Enzsx—l—&y ((Vgoa 1>p1{po<7'1}) < En,l((X%)p + (Y’Zf“y)p)
and from Proposition 2.1(c). O
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Proof of Theorem 5.2. Observe that the generator A of the process Z, defined in (42)
can be written as

Ap() = /X (p(x + h) — () B(x)n(x, dh), (61)

where ((z) has been defined in (43) and where k(z,dh) is the probability measure on
X — x defined by

et n—1
K dh) = DS (a1 + h)%z\m, dh)
n=1 ’
)nfl

e ( /. >0 mateet MM e dy>> o(dh). (62)

This means that the TSS model Z with initial state  can be constructed as follows: let
(U(k),k = 0,1,2,...) be a Markov chain in X with initial state x and with transition
kernel k(z,dh), and let (P(t),t > 0) be an independent standard Poisson process. Then,
the process (Z;,t > 0) defined by

Zy:=UoP (/Ot 6(Zs)ds>

is a Markov process with infinitesimal generator (62) [11, Chap. 6]. Let (7},),>1 denote the
sequence of jump times of the Poisson process P and define (Sy,),>1 by 1), = fo " B(Zs)ds
or 5, = oo if fooo B(Zs)ds < T,,. Observe that any jump of the process Z occurs at some
time .S, but that all S,, may not be effective jump times for Z, because of the Dirac mass
at 0 appearing in (62). As will appear below, the sequence (.S,,) can be interpreted as the
sequence of mutation times in the limit process. Whether an effective jump occurs at time
S, or not then corresponds to the fixation or extinction of the mutant.

Let P, denote the law of ¢; conditional on Supp((y) = Zp = =. Fix t > 0, m € N¥,
x € X and a measurable subset I' of X. Under P,, S| and Zg, are independent, S; is an
exponential random variable with parameter §(x), and Zg, has law x(x,-). Therefore, for
any n > 1, applying the strong Markov property to the process Z at time S in the second
line,

m)!

e~ 02 g(z,)m
Px(Sn <t<Spy1,Jzel (= méz) =E, (1{ZtEF}1{Sn§t<Sn+1} 1 o 0Z0) ( t)

t
= / ﬁ(x)eﬁ(“)s/ Poin(Sn1 <t—s<8,, 3zl : (s =md,)k(x,dh)ds. (63)
0 Rk

Moreover,

e—G(x) e(x)m

1—e 9@ m!

P,(0<t<S, 3zl =md.) = 1perye 7@ (64)

These two relations characterize the one-dimensional laws of the process (. The idea of our
proof is to show that the same relations hold when we replace S,, by 7, and the support
of {; by the support of I/g/,y (when it is a singleton) in the limit v — 0.
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More precisely, let us define for any vy € M and n € N
t
p%(t,F,m, VO) = P?/O <pn < 5 < Tpy1, 2 €T Vt)y = m6z>
We will prove the following lemma after the end of this proof.

Lemma 6.4 For any x € X, m,k > 1, n > 0, t > 0 and any measurable subset I' of X,
pn(t,T,my ) := limy o ph (¢, T, m, ké) exists, is independent of k and satisfies

679(1) e(x)m
1 —e ) m!

t
and Yn>1, p,(t,T,m,z)= / ﬁ(x)eﬁ(“)s/ Pn—1(t —s,T'ym,x + h)k(z,dh)ds.
0 RK
(66)

po(t,T,m,z) = 1gzerye 7@ (65)

Comparing (63) and (64) with (65) and (66), this lemma implies that p,(t,I',m,z) =
Pz(Sn <t<Spyr, el G = m(SZ)
Recall that vj = Njd, with sup, ¢ 1) E((Ng)P) < oo for some p > 1. By Proposition 5.1,
SUP.c(0,1) SUPg>0 E((v/,1)?) < +o0 and

P (3zeT:v)
1/

by = =md,) —P,(Fz €T :( =md,)

o0

Z (P (t, T, m, kb)) — pu(t, Tym, x)) | P(N] = k).

n=

< 2P(N] > M) +Z
k=1

Because of Lemma 6.1 (55), the quantity inside the absolute value in the r.h.s. of this
equation converges to 0 when v — 0. Thus,

limP?,(3z €T l/;y/ =md,) =P,(3z €T : { =md,). (67)
~y—0 Yo v

Summing this relation over m € N* and taking I' = X implies that

lim P7, (Supp(ug/ ) is a singleton) = 1. (68)
v—0 Yo R

Now, consider a bounded measurable f : M — R such that f(v) = 0if (v,1) # m € N~
and define the function f: X — R by f(z) = f(md,). Then, it follows from (67) and (68)
that

%IL% EZO (f(zq%)) = %13%1[370 (f(Supp(z/gM)); Supp(uz/ ) is a singleton and (v Vi 1) = m)
= E.(f(Z1); No = m) = E,(f(G) (69)

This equality generalizes to any bounded measurable f : M — R using once again that
suP,e(0,1) E((#, 1)) < 4-o00. This completes the proof of Theorem 5.2 for one-dimensional
distributions.

The extension to finite dimensional marginals can be proved exactly in the same fashion.
O
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Proof of Lemma 6.4. We will prove this lemma by induction over n > 0.

Fix x € X, m,k > 1 and t > 0. First, we have already proved in (57) that

pg(t,F,m, ko) = 1{xeF}Pz(sz <<l/;y/w, 1) =m, yr1 > t)

t/y
= 1gen)E ll{xgmm} exp <—’W(ﬂf)b($) ; Xg—d5>]

where the process X7 is a scalar logistic branching process with dynamical parameters
(1 = yp(x))b(x), c(z,x),0) and with X = n. Using the method that led us to (60), we
get

iii)%pg(tv r',m, kéw) - 1{z€F}P(€9(x) - m) eXp(_M(x)b(x)E(€9(x))t)a

which entails (65).

Then, fix n > 1. Applying the strong Markov property to the process v at time 77, and
using the fact that the mutant trait at this time is  + U where U has law M (z,dh) and
is independent of v _, we get

LT, m, k) — / B, [(um<Pia (= m, Tom, (07 105, + 6)] M, d).
R

(70)
Now, we want to apply the strong Markov property to ©7 at time py to compute the
quantity p)_,(s,T',m, 16, + d,) appearing inside the expectation in the last formula. For
K > 0, distinguishing between the cases where py > 71, (V5 1) > K, Vj =z and Vj =y
yields

pn 1(8 F m, l6 +6 ) l5 +8y |:1{p0<71 <Vp0 1)<K, Vo= x}pn 1( ’VpOaF m, < p0’1>6$)

1 pp<m, (v, 1) <K, Vo=y}Pa—1(s = ¥p0, Iy m, (v, 1)dy)
+ P, 5,({po = T} NE) + P55 ({po < 1} N {{v,,1) > K} N E)
where
E={pn-1<s/y<tn I2€Tl 11, =md.}.
The third term of the r.h.s. converges to 0 when v — 0 because of Lemma 6.3(a) and the
last term converges to 0 when K — +o0 uniformly for v € (0, 1) because of Lemma 6.3(b).

Now, assume that p) ,(¢,T',m,kd,) converges to p,—1(t,I',m,z) as in the statement of
Lemma 6.4. As a consequence of Lemma 6.1 (54), for any ¢t > 0, the function s —

P, _1(s,T',m, kd,) is uniformly continuous on [0, ¢]. Combining this observation with Lemma 6.3(c),

%ii%prl(sar)myléz—f_éy) = ul,l(xay)pn*l(syramay)+(1_ul,1(x7y))pnfl(syramax)° (71)

This uniform continuity argument also applies to s — p) (s, T, m,1d, + &), so that the
convergence in (71) is uniform in s € [0,¢] and [ € {1,..., L}, for fixed L > 1. Therefore,
we can combine Lemma 6.2(a) and (b) as above to get

%1_{% Eké [1{771§t}px—1(t =7, Im, <V;ylfa 1>5$ + 53/)]

/ dsf(z)e @ Zﬂ«v
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Finally, using Lebesgue’s theorem, this limit applies inside the integral in (70), which gives
exactly (66) and ends the proof of Lemma 6.4. O

Proof of Theorem 5.3. Since the limiting law of the process (S7;¢ > 0) is characterized
by its finite dimensional distributions, obtained in Theorem 5.2, we only have to show the
tightness of their laws. Fix T > 0. By Ascoli’s theorem for cA dIA g functions (see e.g.
[2]), we have to show that, for any e, > 0, there is § > 0 such that

limsup P(w'(S7,8) >n) < e (72)
7—0

where the modulus of continuity w’ is defined as
/ 3 . .
w (f7 5) - lnf{ogr?érax_lw(fa [tza tl+1))}

where the infimum is taken over all the finite partitions 0 =ty < 1 < ... < t, = T of
[0,T] such that t;11 —t; > d for any 0 < i < r — 1, and where w is the usual modulus of
continuity

w(f, 1) = sup |[f(t) — f(s)]-

s,tel

Now, for any n > 0,
PV (ppt1 — pn < 0) < PV(py, — 15 > 0) + PV (71 — T < 20).

When v — 0, the first term goes to 0 by Lemma 6.3(a) and Lemma 6.2(b), and the
lim sup of the second term is smaller than 1 — exp(—/30) by Lemma 6.2(a) and (b), where
B :=infycx B(x) > 0. Therefore, by Lemma 6.1(b), for any ¢ > 0, there exists § > 0 such
that

limsupP"(In > 0: ppy1 — pn < 0 and ppy1 <T) <,

which implies (72). O

6.2 Proofs of Theorem 5.5 and Proposition 5.8

Proof of Theorem 5.5. We will use the classical method of tightness and martingale
problem formulation to prove this theorem (e.g. [18]). We divide the proof in three steps.

Step 1. Uniqueness of the limit process.  Strong existence and uniqueness for the SDE (47)
follow standardly from the Lipschitz-continuity of its coefficients.

Step 2. Tightness of the family of laws of Z¢.  For any € > 0, let N¢(dh, du, dt) be a Poisson
point process on R¥ x [0, 1] x R, with intensity measure q.(dh, du, dt) = M (h)dhBxdudt /e,
where 3 and y are constants bounding the functions b and y from above, respectively, and
M has been defined as the integrable function bounding the density m(z,-) of M (z,-) for
any x € R*. Then it is straightforward to check that A, is the infinitesimal generator of
the Markov process Z¢

t ol
Zi = Z; +€/ / / W1y sz ) xize_zs_+vem mzg_m | Ne(dh, du, ds)
0o Jo JRrk {uS 3 2 v }

X M(h)
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Since 8 and x are bounded, a process generated by A, is unique in law (e.g. [11]), and
this construction characterizes the law of the process Z¢ appearing in the statement of
Theorem 5.5. Let us denote this law by P..

Observe that, if we denote by N, the compensated Poisson measure N, — g, Z§ can be
decomposed as Z§ + Zf + Zf, where

t 1
Zfzﬁ/ / / hly s ) xize_zs_+em mzs_m | Ne(dh, du, ds)
0 Jo JRF {“S E % N () }

and
// hB(Z)x(Zs_, Zs_ + eh)M(ZS_, dh)ds
Rk
/ / WB(ZE NN (25, Z5_ + eh) — x(ZE_, 25| M(ZE_, dh)ds
Rk

where the last equality follows from the fact that the mutation step law M(x,-) has 0
expectation.

We will use Aldous’ criterion [1]| to prove the tightness of the family of probability measure
(Po)eso on D(R;,R¥). Fix d,e > 0 and let 7 and 7/ be two stopping times such that
7 <7 < 7446. Since |x(z,x +¢h) — x(x,2)| < eK||h]| for some constant K, ||Z¢, — Z¢|| <
§BK My, where My = sup, [ ||h||>M(x,dh), which is finite by assumption. By standard
results on stochastic integrals with respect to Poisson point measures,

E. (|25 — Z4|) (/ / / 2HhH2 e (z;,Z;M)W;,m}qE(dh,du,ds))
E X M (h)

< 6B Ms.

Therefore, for any n > 0,
e _pep o e e o T 408X M
P1Z= 22l 2 n) < PullZo= 221 = D4PZ6=Z20 > 1) < Lo+ s

which converges to 0 when § — 0. This gives the first part of Aldous’ criterion. For the
second part, we have to prove the tightness of (Zf).~ for any ¢ > 0. Similar computations
as above prove easily that (Zf)eo and (Zf)eo are tight, and the tightness of (Z§)eso
follows from the assumption that it is bounded in L.

Step 3. Martingale problem.  Let Py be an accumulation point of (P¢)¢~o when ¢ — 0
on D(R,,R¥), endowed with the canonical filtration ;. Since the martingale problem
for (47) is well-posed, it suffices to show that, for any ¢ € C?(X), under Pg, the process

M (w) = p(wt) — @(wo) — /o App(ws)ds.

on D(R4, X) is a local Fi-martingale. We already know that under P,
t
M) = plun) = plun) = [ Acplwn)ds
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is a local Fy-martingale. Since 3 and y are bounded, this is a square-integrable martingale
as soon as ¢ € Cp.

Fix p € Cbg, s >0 and ¢t > s, and consider p real numbers 0 <t; < ... <t, < s for some
p > 1, and a continuous bounded function ¢ : (RF)? — R. We can write

o s - ]

<

B {a(un. ... ) [ (Aeplwa) - Aaplu))d

{
B {atuns ) [ilun) = o) = [ optwyin] |

B {atun ) [t — () - [ vt .

The first term of the r.h.s. is 0 since M“¥ is a P.-martingale. Because of the uniform
convergence of generators (46), the second term converges to 0 when € — 0. The third
term also goes to 0 when € — 0 since P, converges to Py. Finally, since the l.h.s. does not
depend on ¢, it is 0.

+
+

A classical use of the monotone class theorem allows to extend this equality to all Fs-
measurable bounded functions ¢, so M¥ is a Pg-martingale. This result can easily be
extended to any C? function ¢ by a standard truncation technique, which completes the
proof of Theorem 5.5. O

Proof of Proposition 5.8. It follows from Proposition 4.5 that

0 (m)”_l

2¢(x, n+2)(n+1)(n— 1)!

n=1

and from Proposition 4.6 that

o )= 1 o nf(z)"= 1 00 qg) (2 )Q(x)”_l
g n—i—l (n—1)! g n+2)(n+1)(n—1) Z@ )(Jrﬁ(n—i-l)(n—l)!.

Elementary calculations then give (48) and (49).

For the d-invasibility, using Proposition 4.8 and switching the two sums, we get

nQH(x)nfl
=2 o(@) ) (n+k+1)n+1)

k>1 n>1

The following observation

ZnQUR_l_i dz u” _d ui e —1 et —u+1) -1
n>1(n+1)!_du Y (n+1)!]  du\ du u B u?

n>1
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yields (50). (51) follows from switching the sum and the integral in (50) which is standard
since ¢y, (z) = O(1/n).

Equation (52) can be checked using the fact that e*(u* —kuF =1 4+-k(k—1)u*=2+.. .+ (=1)*k!)
is a primitive of e%u”.

Finally, (53) can be deduced from the facts that ¢1(x) = 1/2¢c(z, z) = 0(x)/2b(x) and

n—2

Vn =2, (04 2bui(@) + (0() —n - Dgula) — 6a) 6,1 (x) = 0.

n—1

Multiplying these equations by (n — 1)z"*! and summing over n > 2 yields

0= (n+1)(n—2)¢n(z)u" +0(x) Y _(n—1)y(x)u"""

n>3 n>2
= (4 1D)(n = Dou(@)u = 0(z) Y " (n — 1) ()"
n>2 n>2
-4 (&% (”x(“) ke = ¢2(““')“>) O, (1) — e (a7 () — O ()
which finally gives (53). O
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