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21 Introdu
tionThe item of this work is situated on the interse
tion of two mathemati
alquestions: the �rst is on the regularity for the solutions of ellipti
 trans-mission problems (see, e.g. [41, 48, 52, 55, 24, 2, 3, 43, 18, 53, 40, 21, 22℄,and referen
es therein). The other is on the isomorphism property for el-lipti
 operators −∇ · µ∇ : X → Y between suitable Bana
h spa
es X, Yin 
ase of nonsmooth domains and/or dis
ontinuous 
oe�
ient fun
tions µ,see [7, 20, 29, 35, 53, 64, 12℄. In parti
ular, the latter question in view oftransmission problems for spa
es X := W 1,q, Y := W−1,q (boundary 
on-ditions in
orporated) has been treated in [29, 12, 46, 7℄, see also [34℄ andreferen
es therein. All of these have in 
ommon that they transfer geomet-ri
al properties of the underlying domain or/and geometri
al properties ofthe smoothness regions for the 
oe�
ient fun
tion to the fun
tional analyti
quality of the o

urring spa
es W 1,q and W−1,q, respe
tively. Exa
tly thisis also the 
ase in this paper; our aim is to prove a sharpened (and optimal)version of the results from [12, Ch. 4℄, namely:1.1 Theorem. Assume that Ω ⊂ Rd is a bounded domain with Lips
hitzboundary. Further, let Ω◦ ⊂ Ω be another domain whi
h is supposed tosatisfy one of the following 
onditions:i) Ω◦ is C1 domain whi
h does not tou
h the boundary of Ω.ii) The dimension d equals 3, Ω◦ is a Lips
hitz domain, and ∂Ω◦ ∩ Ω isa C1 surfa
e. Moreover, ∂Ω and ∂Ω◦ meet suitably (see the de�nitionbelow).Let µ be a fun
tion on Ω with values in the set of real, symmetri
 d × dmatri
es whi
h is uniformly 
ontinuous on both of the sets Ω◦ and Ω \ Ω̄◦.Additionally, µ is supposed to satisfy the usual ellipti
ity 
onditioness inf
x∈Ω

inf
ξ∈Cd,‖ξ‖

Cd=1
µ(x)ξ · ξ̄ > 0. (1.1)Then there is a q1 > 3 su
h that for every λ from the (
losed) right 
omplexhalf plane

−∇ · µ∇ + λ : W 1,q
0 (Ω) →W−1,q(Ω) (1.2)



1 Introdu
tion 3provides a topologi
al isomorphism for all q ∈]q′1, q1[. If Ω itself is also a C1domain and Ω◦ ful�lls i), then q1 may be taken as ∞.1.2 De�nition. We say that ∂Ω and ∂Ω◦ meet suitably if for any point xfrom the boundary of ∂Ω∩∂Ω◦ whithin ∂Ω there is an open neighbourhood
Ux of x in R3 and a C1 di�eomorphism Φx from Ux onto an open subset of
R

3 su
h that
• Φx(Ux ∩ Ω) equals a 
onvex polyhedron Kx

• Φx(Ux ∩Ω ∩ ∂Ω◦) = Kx ∩Hx, where Hx is a plane whi
h 
ontains Φx(x)and an inner point of Kx.The proof rests heavily on nontrivial regularity results for adequate modelproblems within the same s
ale of spa
es: 
on
erning i), an isomorphy re-sult for the Diri
hlet Lapla
ian on a domain with Lips
hitz boundary [35℄is required and, se
ondly, a result for ∇ · σ∇ on Rd, where σ equals a(real, symmetri
, positive de�nite) d×d matrix on a half spa
e and another
d × d matrix on the 
omplementing half spa
e, see Theorem 3.11 below.In 
ase ii) an isomorphy result for interfa
e problems on polyhedra is addi-tionally needed, see [23℄. Note that our result is a 
ertain 
omplement to[20℄, where for 3D-problems with mixed boundary 
onditions, but withoutheterogeneities isomorphism theorems within the W 1,q ↔ W−1,q s
ales areobtained. Furthermore, it is somewhat similar to the results of [43℄, wherepie
ewise Hölder 
ontinuity of the �rst order derivatives is proved underslightly stronger assumptions on the data. Last but not least Theorem 1.1is related to the results of [15℄, where W 1,∞

loc regularity is proved for thesolution if the right hand side is su�
iently regular.Operators of type (1.2) � whi
h may be seen as the prin
ipal part of thehomogenized version of an ellipti
 operator with inhomogeneous Diri
hletdata � are of fundamental signi�
an
e in many appli
ation areas. This isthe 
ase not only in the me
hani
s (see [42, Ch. IV.3℄), thermodynami
s[57, 54, 13℄, and ele
trodynami
s [56℄ of heterogeneous media, but also inmining, multiphase �ow and mathemati
al biology. Espe
ially in biologi
almodels it often seems unavoidable to take into a

ount heterogeneties, see[25℄ or [11℄ and referen
es therein. Moreover, su
h operators are also ofinterest for the des
ription of submi
ron devi
es by means of a S
hrödingeroperator in e�e
tive mass approximation (see for example [10, 62, 60, 44℄).Here heterostru
tures are the determining features of many fundamental



4e�e
ts (see for instan
e [9, 37℄). With ongoing miniaturisation of ele
troni
devi
es the resolution of material interfa
es be
omes ever more important,so that one de�nitely has to deal with dis
ontinuous 
oe�
ient fun
tionshere. Besides, a large amount of papers exist on the numeri
s of su
h prob-lems (see e.g. [1, 33, 14, 61℄ and referen
es therein).The W 1,q
0 ↔ W−1,q setting is attra
tive for many problems for the fol-lowing reasons: if the gradient of the solution belongs to a summability
lass q, larger than the spa
e dimension d, then the solution is automati-
ally Hölder 
ontinuous - what often is of use for auxiliary problems. Bythe way, this 
annot be a
hieved within the W s,2 s
ale be
ause W 3/2,2 is aprin
ipal threshold in 
ase of jumping 
oe�
ients, see [53℄ for further re-sults. Se
ondly, the result has far rea
hing 
onsequen
es for the treatment ofquasilinear paraboli
 equations in Lp spa
es - as is 
arried out in [46, 51, 36℄.Moreover, our ellipti
 regularity theorem, 
ombined with a result from [8℄,yields maximal paraboli
 regularity on W−1,q, too.Another important appli
ation of the information q > d is the possibility toobtain uniqueness results for asso
iated nonlinear equations and systems,see for example [26, 27℄. Of 
ourse, these things are most relevant in the'physi
al' spa
e dimension 3. Last, but not least, W−1,q is large enough to
ontain (suitable, say bounded) surfa
e densities and even (not too singular)measures, see [65, Ch. 4℄. In parti
ular, this enables to in
lude pres
ribedjump 
onditions for the 
onormal derivative of the solution a
ross the in-terfa
e, see [14℄.The outline of the paper is as follows: First we introdu
e some notation.In the next 
hapter we derive some te
hni
al prerequisites and afterwardsprove Theorem 1.1. Chapter 4 
ontains some perturbation results 
on
ern-ing �rst order operators. In Chapter 5 it is shown by a 
ounterexamplethat if the C1 
ondition on the subdomain is violated in only one point,then one 
ompletely loses the result. Chapter 6 is devoted to 
on
lusionsfor 
orresponding paraboli
 operators, su
h as maximal paraboli
 regularityon W−1,q. Finally, in the Appendix we prove a te
hni
al lemma on domainswith Lips
hitz boundary.



2 Notations, general assumptions 52 Notations, general assumptionsThe real s
alar produ
t ∑d
j=1 xjyj of two ve
tors x = (x1, . . . , xd), y =

(y1, . . . , yd) ∈ Cd is denoted by x · y. Throughout this paper, Ω and Λare always domains in Rd. Con
erning the de�nition of a Lips
hitz domainand a domain with Lips
hitz boundary we refer the reader primarly to [28,Ch. 1.2℄, see also [63, Ch. 1.2℄. If X is a 
omplex Bana
h spa
e, then wedenote the spa
e of X�valued, Bo
hner measurable, p-integrable fun
tionson Λ, (p ∈ [1,∞[), by Lp(Λ;X), whereas L∞(Λ;X) denotes the spa
e ofLebesgue measurable, essentially bounded fun
tions on Λ with values in
X. If X = C, then we write simply Lp(Λ). W 1,q(Λ) stands for the usual(
omplex) Sobolev spa
e on the set Λ (see [28℄ or [59℄). Further, we usethe symbol W 1,q

0 (Λ) for the 
losure of {v|Λ : v ∈ C∞
0 (Rd), supp v ⊂ Λ

} in
W 1,q(Λ). W−1,q′(Λ) denotes the dual to W 1,q

0 (Λ), where q′ here and in thesequel always denotes the adjoint exponent q′ := q
q−1

. If ρ is a Lebesguemeasurable, essentially bounded fun
tion on the domain Λ, taking its valuesin the set of real, symmetri
 d× d matri
es, then we de�ne
−∇ · ρ∇ : W 1,2

0 (Λ) 7−→W−1,2(Λ) (2.1)by
〈−∇ · ρ∇v, w〉 :=

∫

Λ

ρ∇v · ∇w dx ; v, w ∈W 1,2
0 (Λ). (2.2)Here and in the following 〈·, ·〉 always denotes the dual pairing between

W 1,2
0 and W−1,2. The maximal restri
tion of −∇ · ρ∇ to any of the spa
es

W−1,q(Λ) (q > 2) we will denote by the same symbol. If we are given afun
tion, de�ned on a subset of Rd and uniformly 
ontinuous there, thenwe identify it 
anoni
ally with its (uniquely determined) extension to the
losure of this set. The norm in a Bana
h spa
e X will be always indi
atedby ‖ · ‖X . For two Bana
h spa
es X and Y we denote the spa
e of linear,bounded operators from X into Y by B(X;Y ). If X = Y , then we abbre-viate B(X). Finally, we introdu
e the following model sets whi
h will beused later: by E we denote the open unit 
ube in R
d, that means the set

{
x = (x1, ..., xd) ∈ R

d : −
1

2
< x1, ..., xd <

1

2

}
.



6
E−, E+ are used as symbols for the lower and upper open half 
ubes

E− := E ∩

{
x = (x1, ..., xd) ∈ R

d : −
1

2
< xd < 0

}and
E+ := E ∩

{
x = (x1, ..., xd) ∈ R

d : 0 < xd <
1

2

}
.Finally, we denote by E0 the upper plate of E−, E0 := E ∩ {x : xd = 0}.3 Proof of Theorem 1.13.a Known results and preliminariesIn this 
hapter we will prove Theorem 1.1. In order to do so, we �rst quotea 
lassi
al perturbation theorem on the bounded invertibility for operators(see [38, Ch. IV.1.4 Thm. 1.16℄ whi
h we will use repeatedly in the sequel:3.1 Proposition. Let X, Y be Bana
h spa
es. Assume that A,B : X → Yare linear, 
ontinuous operators, su
h that ‖A−1‖B(Y ;X)‖B‖B(X;Y ) < 1. Then

A+B is a topologi
al isomorphism between X and Y and
‖A−1 − (A +B)−1‖B(Y ;X) ≤

‖B‖B(X;Y ) ‖A
−1‖B(Y ;X)

1 − ‖B‖B(X;Y ) ‖A−1‖B(Y ;X)
‖A−1‖B(Y ;X)Next, we quote a result of of Jerison/Kenig (see [35, Thm. 1.1℄), whi
his a 
ornerstone for all what follows:3.2 Proposition. If Λ ⊂ Rd is a bounded domain with Lips
hitz boundary,then there is a number q1 > 3, depending only on the Lips
hitz 
onstantof Λ, su
h that the Diri
hlet Lapla
ian provides a topologi
al isomorphismbetween W 1,q

0 (Λ) and W−1,q(Λ) for all q ∈]q′1, q1[. If Λ is a C1 domain, q1may be 
hosen ∞.3.3 Remark. The se
ond assertion may also be dire
tly 
on
luded from[58℄ Thm. 4.6.



3.a Known results and preliminaries 7In order to generalize Proposition 3.2 to operators ∇ · ρ∇ we need thefollowing lemma, whi
h is proved in the Appendix:3.4 Lemma. Let Λ be a bounded domain with Lips
hitz boundary and Lip-s
hitz 
onstant γ. If K is a linear bije
tion of Rn onto itself, then KΛ isagain a domain with Lips
hitz boundary and the Lips
hitz 
onstant of KΛdoes not ex
eed ‖K‖‖K−1‖(γ + 1).This at hand, we 
an draw the following 
on
lusion from Proposition 3.2:3.5 Corollary. Let Λ ⊂ Rd be a bounded domain with Lips
hitz boundary.If the 
oe�
ient fun
tion ρ is a 
onstant real, symmetri
, positive de�nite
d×d matrix on Λ, then there is a number q1 > 3 su
h that the operator −∇·
ρ∇ + 1 provides a topologi
al isomorphism between W 1,q

0 (Λ) and W−1,q(Λ)for all q ∈]q′1, q1[. The number q1 may be taken uniformly with respe
t to anyset of (symmetri
) ρ's whi
h is, together with the set of inverses, boundedin B(Cd). If Λ is a C1 domain, then q1 may be 
hosen as ∞.Proof. The assertion may be dedu
ed immediately from Proposition 3.2:namely one transforms −∇ · ρ∇ with respe
t to the 
oordinate transform
ρ1/2 and ends up with a multiple of the Diri
hlet Lapla
ian. Under thesupposition on the ρ′s the Lips
hitz 
onstants of the transformed domains
ρ1/2Λ are uniformly bounded by Lemma 3.4. Thus, every −∇· ρ∇ providesa topologi
al isomorphism between W 1,q

0 (Λ) and W−1,q(Λ) for the assertedrange of q's. The same is true for the operators −∇ · ρ∇ + 1 be
ause the
orresponding resolvents are 
ompa
t and −1 is not an eigenvalue for anyof these operators.Having in mind operators with non-
onstant 
oe�
ients, we need thefollowing interpolation result:3.6 Theorem. Assume that Λ ⊆ R
d is an open set. Let the linear mapping

F : W−1,q(Λ) → W 1,q
0 (Λ) be 
ontinuous for q = q1 ∈]1,∞[ and q = q2 ∈

]1,∞[. Then it is 
ontinuous for any q =
(

θ
q1

+ 1−θ
q2

)−1

∈]q1, q2[ and
‖F‖B(W−1,q(Λ);W 1,q

0 (Λ)) ≤ ‖F‖θ

B(W−1,q1 (Λ);W
1,q1
0 (Λ))

‖F‖
(1−θ)

B(W−1,q2(Λ);W
1,q2
0 (Λ))

.(3.1)



8 The proof is 
arried out with help of the following representation theorem:3.7 Proposition. Let Λ ⊆ Rd be open and q ∈]1,∞[.i) Any element T ∈ (W 1,q′(Λ))∗ may be represented as
〈T, ψ〉 =

∫

Λ

f0ψ +

d∑

j=1

∂ψ

∂xj
fj dx , ψ ∈W 1,q′(Λ)) (3.2)with f = (f0, f1, ..., fd) ∈ Lq(Λ; Cd+1) and the additional property

‖f‖Lq(Λ;Cd+1) = ‖T‖(W 1,q′(Λ))∗ . (3.3)ii) The same representation (3.2) holds true for any 
ontinuous linearform T whi
h is de�ned on a 
losed subspa
e of W 1,q′(Λ), in parti
ularfor T ∈ W−1,q(Λ). In this 
ase f 
an be 
hosen su
h that ‖T‖ =
‖f‖Lq(Λ;Cd+1).A proof of the representation formula (3.2) is given in [65, Ch. 4.3℄. Thenorm equality (3.3) is obtained by an inspe
tion of the proof given there.ii) is obtained from i) by extending the linear form T (norm preserving) towhole W 1,q′(Λ).We give now the proof of Theorem 3.6: Assume q ∈ [q1, q2]. Then for any

f = (f0, f1, ..., fd) ∈ Lq(Λ; Cd+1) we de�ne an element (1+div)f ∈W−1,q(Λ)by
〈(1 + div)f, ψ〉 :=

∫

Λ

f0ψ +

d∑

j=1

∂ψ

∂xj
fj dx , ψ ∈W 1,q′

0 (Λ).Further, for any q ∈ [q1, q2] we de�ne a mapping G : Lq(Λ; Cd+1) →
Lq(Λ; Cd+1) by putting G = (1 ⊕ grad)F (1 + div). The 
ru
ial point isthe equality

‖G‖B(Lq(Λ;Cd+1)) = ‖F‖B(W−1,q(Λ),W 1,q
0 (Λ)),whi
h results from the following fa
ts:

• 1 ⊕ grad is an isometry from W 1,q
0 (Λ) into Lq(Λ; Cd+1).

• (1+div) is non-expansive by Hölder's inequality , but, additionally, Propo-sition 3.7 holds.



3.a Known results and preliminaries 9Thus, an appli
ation of the Riesz-Thorin interpolation theorem to the map-pings G : Lq(Λ; Cd+1) → Lq(Λ; Cd+1) gives the assertion. Next we present alo
alization prin
iple similar to Lemma 2 of [29℄. In essen
e, this will permitus to 
on
lude the isomorphism property (1.2) from the same isomorphismproperty for adequate lo
al model 
onstellations.3.8 Lemma. Let Λ ⊂ Rd be a bounded Lips
hitz domain and O ⊂ Rd beopen su
h that Λ• := Λ∩O is again a Lips
hitz domain. We �x an arbitraryfun
tion η ∈ C∞
0 (Rd) with supp η ⊂ O. Let ρ• denote the restri
tion of the
oe�
ient fun
tion ρ to Λ•. Assume u ∈W 1,2

0 (Λ) to be the solution of
−∇ · ρ∇u+ u = f ∈W−1,2(Λ); (3.4)then the following holds true:i) The linear form

f• : w → 〈f, η̃w〉(where η̃w means the extension by zero to whole Λ) is well de�ned and
ontinuous on W 1,r′

0 (Λ•) whenever f ∈W−1,r(Λ).ii) Let Tu denote the linear form
w −→

∫

Λ•

uρ•∇η · ∇w dxonW 1,2
0 (Λ•). If u ∈W 1,r(Λ), then −ρ•∇u|Λ•

·∇η|Λ•
+Tu ∈W−1,s(Λ•),where s = s(r) is given by

s =

{
rd

d−r
if r ∈ [2, d[any (large) positive number if r ≥ d.

(3.5)iii) Let the operator −∇ · ρ•∇ : W 1,2
0 (Λ•) → W−1,2(Λ•) be de�ned analo-gously to (2.2). Then v := ηu|Λ•

belongs to W 1,2
0 (Λ•) and satis�es

−∇ · ρ•∇v + v = −ρ•∇u|Ω•
· ∇η|Ω•

+ Tu + f•. (3.6)



10Proof. i) The mapping f 7→ f• is the adjoint to w 7→ η̃w whi
h maps
W 1,r′

0 (Λ•) 
ontinuously into W 1,r′

0 (Λ).ii) The 
ase r ≥ d may be redu
ed by the embeddingW 1,r(Λ) →֒ W 1,d−ǫ(Λ)to the 
ase r < d; we treat this latter one: 
learly, one has ρ•∇u|Λ•
· ∇η ∈

Lr(Λ•), what gives by Sobolev embedding and duality ρ•∇u|Λ•
· ∇η|Λ•

∈ W−1, rd
d−r (Λ•) for r ∈ [2, d[. Con
erning Tu, we will show that it is a
ontinuous linear form on W 1,( rd

d−r
)′

0 (Λ•): one 
an estimate
| 〈Tu, w〉 | ≤ ‖u‖

L
rd

d−r (Λ•)
‖ρ‖L∞(Λ;B(Cd)) ‖∇η‖L∞(Λ•) ‖∇w‖

L
( rd
d−r

)′
(Λ•)

. (3.7)Using again Sobolev embedding, the right hand side of (3.7) may be esti-mated by
γ‖u‖W 1,r(Λ•) ‖ρ‖L∞(Λ;B(Cd)) ‖∇η‖L∞(Λ•) ‖w‖

W
1,( rd

d−r
)′

(Λ•)
.iii) For every u ∈ W 1,2

0 (Λ) there is a sequen
e {ul}l 
onsisting of C∞
0 (Rd)fun
tions with support within Λ su
h that liml→∞ ul|Λ = u in W 1,2(Λ). Ob-viously, then any fun
tion ηul has its support within Λ• and liml→∞ ηul|Λ•

=
ηu|Λ•

in W 1,2(Λ•). Se
ondly, for every w ∈W 1,2
0 (Λ•) we have

〈−∇ · ρ•∇v, w〉 + 〈v, w〉 =

∫

Λ•

ρ•∇(ηu) · ∇w dx +

∫

Λ•

ηuw dx =

−

∫

Λ•

w ρ•∇u·∇η dx+

∫

Λ•

uρ•∇η ·∇w dx +

∫

Λ

ρ∇u·∇(η̃w) dx+

∫

Λ

u η̃w dx.(3.8)Applying the de�nitions of Tu and f•, this gives the assertion.Next we want to show the assertion of Theorem 1.1 under the additionalassumption that the 
oe�
ient fun
tion is uniformly 
ontinuous on whole
Ω.3.9 Theorem. Let Λ ⊂ Rd be a bounded domain with Lips
hitz boundaryand ρ a real, symmetri
-valued , uniformly 
ontinuous 
oe�
ient fun
tionon Λ, ellipti
 in the sense of (1.1).



3.a Known results and preliminaries 11i) Then there is a q1 > 3 su
h that for all q ∈]q′1, q1[ it holds true:
sup
x∈Λ̄

‖(−∇ · ρ(x)∇ + 1)−1‖B(W−1,q(Λ);W 1,q
0 (Λ)) <∞.ii) The operator

−∇ · ρ∇ + 1 : W 1,q
0 (Λ) −→W−1,q(Λ) (3.9)is a topologi
al isomorphism for the same range of q's.iii) If Λ is a C1 domain, then q1 may be 
hosen ∞.Proof. The proof will be 
on
luded from Corollary 3.5, for this reason the
orresponding q′s are identi
al with those from Corollary 3.5. i) The set{

ρ(x) : x ∈ Λ̄
} is bounded in B(Rd) while {ρ(x)−1 : x ∈ Λ̄

} is also boundedby the ellipti
ity 
ondition and the (uniform) 
ontinuity of ρ. Thus, byCorollary 3.5, there is a q1 > 3 su
h that for any q ∈]q′1, q1[ and for any
x ∈ Ω̄ the operator −∇ · ρ(x)∇ + 1 provides a topologi
al isomorphismbetween W 1,q

0 (Ω) and W−1,q(Ω). If Ω is a C1 domain, then q1 = ∞. Hen
e,the fun
tion
Λ̄ ∋ x 7→ (−∇ · ρ(x)∇ + 1)−1 ∈ B(W−1,q(Λ);W 1,q

0 (Λ)) (3.10)is well de�ned and, additionally, the mapping
Λ̄ ∋ x 7→ ρ(x) 7→ −∇ · ρ(x)∇ + 1 ∈ B(W 1,q

0 (Λ);W−1,q(Λ))is 
ontinuous. By Proposition 3.1 the fun
tion (3.10) is also 
ontinuous and,hen
e, bounded.ii) First we 
onsider the 
ase q ∈]2, q1[; then (3.9) is inje
tive by Lax-Milgram. Choose for every point x ∈ Λ̄ a ball Bx around x with radius Rxsu
h that for y ∈ Bx ∩ Λ̄

‖ρ(y) − ρ(x)‖B(Rd) <

1

supt∈[2,q] sup
z∈Λ̄ ‖(−∇ · ρ(z)∇ + 1)−1‖B(W−1,t(Λ);W 1,t

0 (Λ))

(3.11)



12holds true. This radius Rx is indeed nonzero, namely: the Lax-Milgramlemma yields
sup
z∈Λ̄

‖(−∇ · ρ(z)∇ + 1)−1‖B(W−1,2(Λ);W 1,2
0 (Λ)) <∞.This, together with i) and interpolation (Theorem 3.6) implies

sup
t∈[2,q]

sup
z∈Λ̄

‖(−∇ · ρ(z)∇ + 1)−1‖B(W−1,t(Λ);W 1,t
0 (Λ)) <∞.We 
hoose a �nite sub
overing Bx1 ...Bxm for Λ̄. Let η1....ηm be a partitionof unity on Λ̄ whi
h is subordinated to this sub
overing. Assume now

f ∈W−1,q(Λ) and let u be a solution of
−∇ · ρ∇u+ u = f. (3.12)By the Lax-Milgram lemma u must be fromW 1,2

0 (Λ). Putting O := ∪m
l=1Bxlwe get from Lemma 3.8

−∇ · ρ∇(ηlu) + ηlu = gl, (3.13)where gl is from W−1,min(s(2),q)(Λ) (see Lemma 3.8). We now set t :=
min(s(2), q) and de�ne for every l ∈ {1, ..., m} a modi�ed 
oe�
ient fun
-tion ρl on Λ as follows:

ρl(y) =

{
ρ(y) if y ∈ Bxl

∩ Λ

ρ(xl) elsewhere on Λ.
(3.14)Be
ause ηlu has its support inBxl

, it satis�es besides (3.13) also the equation
−∇ · ρl∇(ηlu) + ηlu = gl. (3.15)We will now show that gl ∈ W−1,t(Λ) implies ηlu ∈ W 1,t

0 (Λ). Rewriting(3.15) as
−∇ · ρ(xl)∇(ηlu) + ηlu+ ∇ · [ρ(xl) − ρl]∇(ηlu) = gl,one estimates

‖∇ · [ρl − ρ(xl)]∇‖B(W 1,t
0 (Λ);W−1,t(Λ)) ≤ ‖ρ(xl) − ρl‖L∞(Λ;B(Cd)) =
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= ‖ρ(xl) − ρ‖L∞(Br(xl)∩Λ;B(Cd)).Taking into a

ount (3.11), we obtain for all l ∈ {1...m}

‖∇·[ρl−ρ(xl)]∇‖B(W 1,t
0 (Λ);W−1,t(Λ))‖(−∇·ρ(xl)∇+1)−1‖B(W−1,t(Λ);W 1,t

0 (Λ)) < 1.Now one 
an apply again the perturbation result (Proposition 3.1), whi
hsays that −∇·ρl∇+1 : W 1,t
0 (Λ) 7→W−1,t(Λ) is boundedly invertible. Thus,ea
h ηlu must be from W 1,t
0 (Λ), what gives u ∈ W 1,t

0 (Λ). Repeating these
onsiderations with the improved information on the integrability exponentof ∇u � ea
h time using Lemma 3.8 � one, after �nitely many steps, endsup with u ∈ W 1,q
0 (Λ). Hen
e, (3.9) is surje
tive and thus, by the Openmapping theorem, a topologi
al isomorphism. The 
ase q < 2 is obtainedby duality.Further, we need the following te
hni
al lemma, the proof of whi
h 
anbe found in [39, Remark 2.1.3℄:3.10 Lemma. Let Λ be a domain with Lips
hitz boundary. Then for any

x ∈ ∂Λ and any neighbourhood of x there is a (possibly) smaller open neigh-bourhood Vx of x su
h that Λ∩Vx is a (even starlike) domain with Lips
hitzboundary.3.b Core of the proofBefore we prove Theorem 1.1 we have to show a result on our �rst model
onstellation for operators ∇ · σ∇, when σ is dis
ontinuous:3.11 Theorem. Let σ be a 
oe�
ient fun
tion on Rd whi
h equals a real,symmetri
, positive de�nite d × d matrix σ− on Rd
− = {x ∈ Rd : xd < 0}and another real, symmetri
, positive de�nite d × d matrix σ+ on Rd

+ =
{x ∈ Rd : xd > 0}. Then −∇ · σ∇ + 1 provides a topologi
al isomorphismbetween W 1,q(Rd) and W−1,q(Rd) for all q ∈]1,∞[.Proof. Let x = (x′, xd) ∈ Rd, x′ ∈ Rd−1, and ∂i = ∂xi

, 1 ≤ i ≤ d. Moreover,we identify {x ∈ Rd : xd = 0} with Rd−1. It is su�
ient to prove that theunique solution u ∈W 1,2(Rd) for ea
h of the equations
−∇ · σ∇u+ u = f , f ∈ Lq(Rd) , 2 < q <∞ (3.16)
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−∇ · σ∇u+ u = ∂if , f ∈ Lq(Rd) , 2 < q <∞ (3.17)

i ∈ {1, ..., d}, belongs to W 1,q(Rd). To do this, it is enough to show theestimate
‖u‖W 1,q(Rd) ≤ c‖f‖Lq(Rd) , f ∈ C̃∞ , (3.18)where c denotes a generi
 positive 
onstant and C̃∞ stands for the densesubset of Lq(Rd) de�ned by

C̃∞ = {ψ ∈ C∞
0 (Rd) : ψ = 0 in some neighbourhood of R

d−1} .Applying 
lassi
al ellipti
 theory of transmission problems (e.g., [52℄) to theequation
−∇ · σ∇v + v = f , f ∈ C̃∞ , (3.19)we obtain the inequality
‖v‖W 2,q(Rd

−
∪Rd

+) ≤ c‖f‖Lq(Rd) . (3.20)This assures (3.18) in 
ase of (3.16). We establish (3.18) also in 
ase of(3.17): looking for the solution of (3.17) in the form u = ∂iv + w, weobserve that w has to satisfy the following transmission problem:
−∇ · σ±∇w± + w± = 0 in R

d
± , [w] = −[∂iv] =: g ,

[∂ν,σw] = −[∂ν,σ∂iv] =: h , (3.21)where w± = w|Rd
±
, [w] = (w− − w+)|Rd−1 and

[∂ν,σw] = (σ−ν · ∇w− − σ+ν · ∇w+)|Rd−1 , ν = (0, . . . , 0, 1) .Sin
e v± satisfy the homogeneous di�erential equations near Rd−1, the term
[∂ν,σ∂dv] is a linear 
ombination of ∂j∂dv

±|Rd−1 for j = 1, . . . , d − 1. Thus,by the tra
e theorem and the 
ontinuity of di�erentiation in tangential di-re
tion, we obtain from (3.20) that the estimate
‖[∂iv]‖W 1−1/q,q(Rd−1) + ‖[∂ν,σ∂iv]‖W−1/q,q(Rd−1) ≤ c‖f‖Lq(Rd) (3.22)holds for i = 1, . . . , d. We refer to [59, Ch. 2℄ for the required properties ofSobolev spa
es.



3.b Core of the proof 15To prove (3.18), in view of (3.20) and (3.22), it now su�
es to show thatthe solution of (3.21) satis�es
‖w‖W 1,q(Rd

−
∪Rd

+) ≤ c
(
‖h‖W−1/q,q(Rd−1) + ‖g‖W 1−1/q,q(Rd−1)

)
. (3.23)We will redu
e (3.23) to well known 
ontinuity properties of Poisson oper-ators (see [30℄), the symbols of whi
h 
an be 
al
ulated expli
itly. In orderto do so, we solve (3.21) by taking partial Fourier transform with respe
t to

x′ denoted by Fu = Fu(ξ′, xd) for a fun
tion u(x) on Rd, with F−1 beingthe inverse transform. We set
B± =

(
σ±

ij

)d−1

i,j=1
, a± =

(
σ±

1d, . . . , σ
±
d−1d

)
, b± = σ±

dd ,where σ±
ij are the entries of the matri
es σ±. Applying the partial Fouriertransform to (3.21), we obtain

(−b± ∂2
d + 2ia± · ξ′ ∂d +B±ξ′ · ξ′ + 1)Fw±(ξ′, xd) = 0 in R

d
± ,

Fw−(ξ′, 0) − Fw+(ξ′, 0) = Fg(ξ′) , (3.24)
(b− ∂d − ia− · ξ′)Fw−(ξ′, 0) − (b+ ∂d − ia+ · ξ′)Fw+(ξ′, 0) = Fh(ξ′) .Ignoring the exponentially in
reasing solutions of the homogeneous di�er-ential equations in (3.24), we have

Fw±(ξ′, xd) = C±(ξ′) exp{∓xd (A±(ξ′) + ia± · ξ′)/b±} (3.25)with A±(ξ′) = (b±(1 +B±ξ′ · ξ′)− (a± · ξ′)2)1/2. Then we determine C±(ξ′)from the transmission 
onditions in (3.24),
C−(ξ′) − C+(ξ′) = Fg(ξ′) ,

A−(ξ′)C−(ξ′) + A+(ξ′)C+(ξ′) = Fh(ξ′) ,whi
h gives
C± = (A− + A+)−1 Fh∓A∓(A− + A+)−1 Fg . (3.26)Note that the ellipti
ity of ∇ · σ∇ implies the lower bound

A±(ξ′) ≥ c 〈ξ′〉 , 〈ξ′〉 = (1 + |ξ′|2)1/2 .



16We will only prove the 
orresponding estimate (3.23) for the upper half-spa
e sin
e the proof for Rd
− is 
ompletely analogous. From (3.25) and(3.26) we obtain the representation

w(x′, xd) = F−1k1(ξ
′, xd)Fh(ξ

′) + F−1k2(ξ
′, xd)Fg(ξ

′) =: K1h + K2g(3.27)for xd > 0. Here K1 , K2 are Poisson operators with the symbols
k1(ξ

′, xd) = (A−(ξ′) + A+(ξ′))−1 exp{−xd (A+(ξ′) + ia+ · ξ′)} ,

k2(ξ
′, xd) = −A−(ξ′) k1(ξ

′, xd) . (3.28)Using (3.28) and the expressions for A±, it is not di�
ult to 
he
k that k2is a symbol of order −1, i.e., it satis�es the estimates
‖xm

d ∂
n
d ∂

α
ξ′ k1(ξ

′, ·)‖L2(R+) ≤ cmnα 〈ξ
′〉−3/2−|α|−m+n (3.29)for all ξ′ ∈ R

d−1 , xd ∈ R
+, m,n ∈ N and all multi-indi
es α. Analogously,

k2 is a symbol of order 0, i.e., the −3/2 in the exponent of 〈ξ′〉 in (3.29)has to be repla
ed by −1/2. Therefore, from [30, Thm. 3.1℄ we obtain the
ontinuity of the operators
K1 : W s−1/q,q(Rd−1) → W s+1,q(Rd

+) , K2 : W s−1/q,q(Rd−1) →W s,q(Rd
+)for all s ∈ Z. In parti
ular, together with (3.27) this implies that the W 1,qnorm of w on Rd

+ 
an be estimated by the right hand side of (3.23).We now 
ome to the proof of Theorem 1.1, starting with the settingde�ned under i): �rst, one easily noti
es that the operator in (1.2) is wellde�ned and 
ontinuous for any q ∈]1,∞[. Con
erning the 
ontinuity of theinverse, we restri
t the 
onsiderations �rst to the 
ase q > 2. For these q,(1.2) is inje
tive by the Lax-Milgram lemma. Hen
e, by the Open mappingtheorem it su�
es to show that (1.2) is surje
tive for suitable q's, what wewill do in the sequel. Let for any x ∈ ∂Ω an open neighbourhood Ox begiven whi
h satis�es the following two 
onditions:
i) Ox ∩ Ω̄◦ = ∅.
ii) If Ω is C1, then Ax := Ox ∩Ω is C1; and if Ω has a Lips
hitz boundary,then Ax := Ox ∩ Ω has a Lips
hitz boundary.



3.b Core of the proof 17The existen
e of su
h a neighbourhood is almost obvious in the C1 
ase andfollows from Lemma 3.10 in the other 
ase.We 
hoose a �nite sub
overing Ox1 , ...,Oxk
of ∂Ω and �x from now on anumber q ∈]3,∞[ su
h that

−∇ · µ|Axl
∇ : W 1,q

0 (Axl
) →W−1,q(Axl

) (3.30)is a topologi
al isomorphism for every l ∈ {1, ..., k}. This is possible byTheorem 3.9; in parti
ular, q may be 
hosen as an arbitrarily large number,if Ω is C1. Additionally, observe that (3.30) is then, by interpolation, atopologi
al isomorphism for any other number from the interval [2, q[.Assume now f ∈W−1,q(Ω) →֒ W−1,2(Ω) and u to be a solution of
−∇ · µ∇u+ u = f (3.31)(whi
h belongs to W 1,2

0 (Ω) by the Lax-Milgram lemma). We will show thatthen u ∈W 1,q
0 (Ω).The C1 property of ∂Ω◦ assures for every x ∈ ∂Ω◦ the existen
e of a positivenumber αx, an open neighborhood Vx ⊂ Ω of x and a C1 di�eomorphism

Φx : Vx 7→ αxE su
h that Φx(∂Ω◦ ∩ Vx) = αxE0, Φx(x) = 0 and the
orresponding Ja
obian is identi
al 1, see [63, Ch.I Satz 2.5℄. Without lossof generality we may assume that the 
losure of Vx is also 
ontained in Ω.The transformed of (−∇·µ∇+1)|Vx
under Φx (see [7, Ch. 0.8℄) is then of theform −∇· µ̂x∇+1, where µ̂x is uniformly 
ontinuous on αxE− and on αxE+,respe
tively. We denote limy∈E−,y→0 µ̂x(y) by σ−

x
and limy∈E+,y→0 µ̂x(y) by

σ+
x
. Now let σx be the 
oe�
ient fun
tion on Rd de�ned by

σx = σ±
x

on R
d
± .By Theorem 3.11, −∇ · σx∇ + 1 is a topologi
al isomorphism between

W 1,t(Rd) and W−1,t(Rd) for all x ∈ ∂Ω◦ and all t ∈]1,∞[. Let βx ∈]0, αx]be a number su
h that
‖σx − µ̂x‖L∞(βxE;B(Cd))‖

(
∇ · σx∇ + 1

)−1
‖B(W−1,t(Rd);W 1,t(Rd)) < 1 (3.32)holds for t = 2 and t = q. Su
h βx exists be
ause the se
ond fa
tor is�nite by Theorem 3.11 and the �rst fa
tor 
an be made arbitrarily smallby the properties of µ̂x and σx for βx 7→ 0. Please noti
e that, by our



18interpolation result Theorem 3.6, (3.32) remains true for any other t ∈]2, q[.De�ne Ux as the inverse image of βxE under Φx. Finally, for any x ∈(
Ω\(∪n

l=1Oxl
∪Ω̄◦)

) let Bx be an open ball around x whi
h does not interse
t
∂Ω ∪ ∂Ω◦. Obviously, the systems {Ux}x∈∂Ω◦

, {Bx}
x∈
(
Ω\(∪k

l=1Oxl
∪Ω̄◦)

) forman open 
overing of the (
ompa
t) set Ω \
(
∪k

l=1Oxl
∪ Ω◦

). Let the system
Uxk+1

...Uxm , Bxm+1, ..., Bxn, be a �nite sub
overing. Clearly, then the sets
Ox1 , ...,Oxk

,Uxk+1
...Uxm , Bxm+1, ..., Bxn, ,Ω◦ form an open 
overing of Ω̄. Let

η1, ...ηk, ηk+1, ...ηm, ηm+1, ...ηn, η◦ be a partition of unity over Ω̄ subordinatedto this sub
overing. Re
alling (3.5), from now on we set t := min(s(2), q).Assume l ∈ {1, ..., k}. Then vl := ηlu|Axl
, due to the property u ∈ W 1,2

0 (Ω)and Lemma 3.8, satis�es an equation
−∇ · µl∇vl + vl = fl (3.33)where µl := µ|Axl

and fl ∈W−1,t(Axl
). Be
ause (3.30) also is a topologi
alisomorphism if q is repla
ed by t there, we get vl ∈ W 1,t

0 (Axl
) what gives

ηul ∈ W 1,t
0 (Ω). Let next l be from {k + 1, ..., m}. Then the property u ∈

W 1,2
0 (Ω) and Lemma 3.8 imply that vl := ηlu|Uxl

satis�es an equation (3.33),where this time µl := µ|Uxl
and fl ∈ W−1,t(Uxl

). Moreover, it is 
lear thatboth, vl and fl, have their supports within Uxl
. We transform (3.33) via the

C1-mapping Φxl
. This leads to the following equation for the transformedobje
ts

−∇ · µ̂xl
∇v̂l + v̂l = f̂l (3.34)on βxl

E , where f̂l ∈ W−1,t(βxE). Additionally, f̂l has its support in βxl
E ,what is also true for v̂l. Let σ̌l be the following 
oe�
ient fun
tion, de�nedon Rd:

σ̌l =

{
µ̂xl

on βxl
E

σxl
on Rd \ βxl

E .Be
ause f̂l and v̂l have their supports in βxl
E , (3.34) 
an be extended toan equation on whole Rd; namely: let ζl be a C∞ fun
tion on Rd whi
h isidenti
al 1 on supp(v̂l)∪ supp(f̂l) and whi
h has its support within βxl

E . Ifwe de�ne Fl by 〈Fl, w〉 =
〈
f̂l, ζlw

〉 for w ∈W 1,t′(Rd) and Vl as the extensionof v̂l by zero to whole R
d, then Fl ∈ W−1,t(Rd) and the following equationis ful�lled:

−∇ · σ̌l∇Vl + Vl = −∇ · σxl
∇Vl + Vl + ∇ · (σxl

− σ̌l)∇Vl = Fl. (3.35)



3.b Core of the proof 19Be
ause (3.32) is in parti
ular true for our spe
i�ed t, this implies
‖∇· (σxl

− σ̌l)∇‖B(W 1,t(Rd);W−1,t(Rd))‖
(
−∇·σxl

∇+1
)−1

‖B(W−1,t(Rd);W 1,t(Rd)) ≤

≤ ‖σxl
− σ̌l‖L∞(Rd;B(Cd))‖

(
∇ · σxl

∇ + 1
)−1

‖B(W−1,t(Rd);W 1,t(Rd)) =

= ‖σxl
− µ̂xl

‖L∞(βxl
E;B(Cd))‖

(
∇ · σxl

∇ + 1
)−1

‖B(W−1,t(Rd);W 1,t(Rd)) < 1.This, together with Proposition 3.1, then implies that −∇ · σ̌l∇ + 1 :
W 1,t(Rd) 7→ W−1,t(Rd) is also a topologi
al isomorphism. Consequently,
Vl ∈ W 1,t(Rd), what gives v̂l ∈ W 1,t

0 (βxl
E) and, hen
e, vl = ηlu|Uxl

∈

W 1,t
0 (Uxl

). Be
ause the support of ηlu is within Uxl
we obtain ηlu ∈W 1,t

0 (Ω)for all l = k + 1, ..., m. Lastly, if l ∈ {m+ 1, ..., n}, then one also ends upfor vl := ηlu|Bxl
with an equation of type (3.33) and this same is true for

v0 := η◦u|Ω◦
. The 
orresponding right hand sides are from W−1,t(Bxl

) and
W−1,t(Ω◦), respe
tively (see Lemma 3.8). By Theorem 3.9 ηlu|Bxl

and η◦u|Ω◦are then from W 1,t
0 (Bxl

) and W 1,t
0 (Ω◦), respe
tively. Clearly, then ηlu and

η◦u must be from W 1,t
0 (Ω) what altogether gives u ∈ W 1,t

0 (Ω). Exploitingthis and iterating the above 
onsiderations one improves the summabilityof ∇u in the light of Lemma 3.8 step by step and �nally ends up with
u ∈ W 1,q

0 (Ω). This proves the assertion for λ = 1. For all other λ's weobtain the proof by the 
ompa
tness of the resolvent and the fa
t that no
λ with ℜλ ≤ 0 
an be an eigenvalue. The 
ase q < 2 is obtained by duality.We will now point out how to prove Theorem 1.1 if Condition ii) is ful�lled.The only di�eren
e in the proofs of i) and ii) in Theorem 1.1 is that theboundary points must be treated in di�erent ways; for this we prove thefollowing3.12 Lemma. For any x ∈ ∂Ω there is a neighbourhood Ox and a q = qx >
3 su
h that Ox ∩ Ω is a Lips
hitz domain and

∇ · µ∇ + 1 : W 1,q
0 (Ox ∩ Ω) →W−1,q(Ox ∩ Ω)is a topologi
al isomorphism.In 
ontrast to 
ase i) one 
annot treat the points from ∂Ω in 
ommon,but has to divide ∂Ω into three subsets whi
h have to be treated separately:a) ∂Ω \ ∂Ω◦



20b) the inner points of ∂Ω ∩ ∂Ω◦ within ∂Ω
) the boundary points of ∂Ω ∩ ∂Ω◦ within ∂Ωa) If x ∈ ∂Ω \ ∂Ω◦, then there is an open neighbourhood Wx of x su
h that
Wx ∩ Ω does not interse
t Ω̄◦. Namely, if this were not the 
ase, then xwould be an a

umulation point of Ω̄◦, and, hen
e, belongs to Ω̄◦. Be
ause
x is not from Ω◦ this would mean x ∈ ∂Ω◦, what is wrong. By Lemma 3.10we 
an pass to a (possibly) smaller open neighbourhoodOx su
h that Ox∩Ωis again a domain with Lips
hitz boundary. Thus, the 
oe�
ient fun
tion isuniformly 
ontinuous on Ox∩Ω and the assertion follows from Theorem 3.9.Le us now 
onsider 
ase b). What we want to show is the following: if x isan inner point of ∂Ω ∩ ∂Ω◦ within ∂Ω, then one 
an �nd a neighbourhood
Ox of x su
h that
i) Ox ∩ Ω = Ox ∩ Ω◦and
ii) Ox ∩ Ω is a domain with Lips
hitz boundary.First we 
onstru
t an open neighbourhoodMx of x whi
h ful�llsMx∩Ω =
Mx ∩Ω◦ Namely, be
ause Ω is a Lips
hitz domain (see [28, Ch. 1.2℄ or [63,Ch. I.2.3℄) there is an open neighbourhood Wx of x and a bi-Lips
hitz map
Ψx : Wx → E su
h that Ψx(x) = 0, Ψx(Ω∩Wx) = E+ and Ψx(∂Ω ∩Wx) =
E0. Be
ause x was an inner point of ∂Ω ∩ ∂Ω◦, there is a positive number
rx su
h that rxE0 ⊂ Ψ(∂Ω ∩ ∂Ω◦) ⊂ Ψ(∂Ω◦). But, by supposition, Ω◦ itselfwas a Lips
hitz domain, too; thus there is a number sx ∈]0, rx] su
h that

Ψx(∂Ω◦) ∩ sxE = sxE0. (3.36)Now we de�ne Mx := Ψ−1
x

(
sxE
) and write

Mx ∩ Ω =
(
Mx ∩ Ω◦

)
∪
(
Mx ∩ Ω ∩ ∂Ω◦

)
∪
(
Mx ∩ (Ω \ Ω̄◦)

)
. (3.37)From the de�nition ofMx and (3.36) it is 
lear thatMx∩Ω∩∂Ω◦ is empty.Thus, (3.37) redu
es to

Mx ∩ Ω =
(
Mx ∩ Ω◦

)
∪
(
Mx ∩ (Ω \ Ω̄◦)

)
. (3.38)But Mx ∩ Ω is -as a 
ontinuous image of a 
onne
ted set- itself 
onne
ted.Thus, one of the (open) sets on the right hand side of (3.38) must be empty,what is de�nitely not true for Mx ∩ Ω◦. This gives Mx ∩ Ω = Mx ∩ Ω◦.Due to Lemma 3.10 we may pass to a neighbourhood Ox ⊂ Mx whi
h then



3.b Core of the proof 21(obviously) also satis�es i) and, additionally, ii). Hen
e, the 
oe�
ientfun
tion is also uniformly 
ontinuous on Ox ∩ Ω and one 
an again argueby Theorem 3.9.It remains 
ase 
), whi
h we will 
onsider now. For doing so, we �rstestablish some preliminaries:3.13 Proposition. [23℄ Assume that K ⊂ R3 is a 
onvex polyhedron andthat H ⊂ R
3 is a plane whi
h 
ontains an inner point of K. Let K+ and

K− be the two 
omponents of K \H, and let ρ be a fun
tion on K, 
onstanton K+ and K−, and whose values are two real, symmetri
, positive de�nite
3 × 3 matri
es there. Then there is a q > 3 su
h that

−∇ · ρ∇ : W 1,q
0 (Ω) →W−1,q(Ω)is a topologi
al isomorphism.3.14 Lemma. Let K ⊂ R

3 be a 
onvex set whose 
losure 
ontains 0. As-sume that ρ is a bounded, measurable, ellipti
 
oe�
ient fun
tion on K,taking its values in the set of real, symmetri
 3 × 3 matri
es and whi
hadditionally satis�es
ρ(αx) = ρ(x) for all x ∈ K, α ∈]0, 1[. (3.39)Let for any α ∈]0, 1] the spa
e W 1,q

0 (αK) be equipped with the norm ψ 7→(∫
αK

|∇ψ|qdx
) 1

q . Then
‖
(
−∇ · ρ|αK∇

)−1
‖B(W−1,q

0 (αK);W 1,q
0 (αK)) = ‖

(
−∇ · ρ∇

)−1
‖B(W−1,q

0 (K);W 1,q
0 (K)).(3.40)Proof. One easily 
he
ks that for any q ∈ [1,∞[ and any α ∈]0, 1[ themapping

Tq,α : W 1,q
0 (K) ∋ ψ 7−→ α1− 3

qψ(α−1(·))provides an isometri
 isomorphism from W 1,q
0 (K) onto W 1,q

0 (αK). After-wards one veri�es the identity
T ∗

q′,α(−∇ · ρ|αK∇)Tq,α = −∇ · ρ∇.



22Assume now that x is a boundary point of ∂Ω∩∂Ω◦ within ∂Ω. Then, bysupposition, there is an open neighbourhoodWx, a C1 mappingΦx, a 
onvexpolyhedron Kx and a plane Hx whi
h together satisfy the 
onditions ofDe�nition 1.2. Modulo a translation we may additionally assume Φx(x) = 0.Let ρx be the 
oe�
ient fun
tion on Kx whi
h is indu
ed by µ|Wx
under themapping Φx. If K+

x
and K−

x
are the two 
omponents of Kx \ Hx, then ρx isuniformly 
ontinuous on both of them. De�ne the matri
es

ρ+
x

:= lim
y→0,y∈K+

ρx(y) and ρ+
x

:= lim
y→0,y∈K−

ρx(y) (3.41)and the 
oe�
ient fun
tion ρ̃x on Kx by
ρ̃x :=

{
ρ+
x
on K+

x

ρ−
x
on K−

x
.

(3.42)Let αx ∈]0, 1[ be a number for whi
h the following is true:
αxΦx(Wx) ⊂ Φx(Wx) (3.43)andess sup

y∈αxKx

‖ρx(y) − ρ̃x(y)‖B(C3)‖
(
−∇ · ρ̃x∇

)−1
‖B(W−1,q

0 (K);W 1,q
0 (K)) < 1.This is possible due to (3.41) and (3.42). In view of Lemma 3.14 then alsoess sup

y∈αxKx

‖ρx(y)− ρ̃x(y)‖B(C3)‖
(
−∇· ρ̃x|αxK∇

)−1
‖B(W−1,q

0 (αxK);W 1,q
0 (αxK)) < 1is true. Completely analogous to the above 
onsiderations one obtains bythe perturbation theorem that

−∇ · ρx|αxK∇ : W 1,q
0 (αxK) →W−1,q(αxK)is also a topologi
al isomorphism. If one de�nes Ox := Φ−1

x

(
αxΦx(Wx)

)(what makes sense in view of (3.43)) then Φx(Ox∩Ω) = αxKx. The latter isa domain with Lips
hitz boundary and, hen
e, a Lips
hitz domain. Be
ause
Φ−1

x
is in parti
ular bi-Lips
hitz in a neighbourhood of αxKx, Ox ∩ Ω itselfis a Lips
hitz domain (see [28, Ch. 1.2 Lem. 1.2.1.3℄. Moreover,

−∇ · µ∇ : W 1,q
0 (Ox ∩ Ω) → W−1,q(Ox ∩ Ω)



4 Perturbation by lower order terms 23is a topologi
al isomorphism. But the resolvent is 
ompa
t and−1 obviouslynot an eigenvalue, hen
e Ox also ful�lls the assertion of Lemma 3.12. Withthe help of Lemma 3.12 the proof for 
ase ii) of Theorem 1.1 
an be 
arriedout as in 
ase i).3.15 Remark. The reader may possibly ask why in 
ase ii) we restri
tourself to d = 3. The answer is: the essential aim of this paper is to prove theisomorphism property for a q whi
h is larger than the spa
e dimension d. Inthis spirit, the two dimensional 
ase (even under more general assumptions)is 
overed by [29℄. If d > 3 we do not have results for the 
orrespondingmodel sets. Nevertherless, d = 3 as the 'physi
al' dimension seems to usthe most important 
ase.In fa
t, in [23℄ more general geometri
 (non
onvex) settings are treated.However, the te
hni
alities here would get mu
h more involved.3.16 Remark. If Ω◦ does not tou
h the boundary of Ω, then one 
anprove the analogous result for the Neumann operator, namely: −∇·µ∇+λprovides a topologi
al isomorphism between W 1,q(Ω) and (W−1,q′(Ω)
)∗ fora q > 3 and all λ from the open right half plane. In this 
ase one usesZanger's result [64℄ instead that of Jerison/Kenig.3.17 Remark. The reader should noti
e that the result generalizes to the
ase where �nitely many C1 domains are in
luded in Ω having positive dis-tan
e to ea
h other and the 
oe�
ient fun
tion being uniformly 
ontinuousone ea
h of them and, of 
ourse, on the 
omplement of their union. Theproof runs along the same lines and has not been 
arried out here only fornotational simpli
ity.3.18 Remark. The isomorphy property 
laimed in Theorem 1.1 remainstrue in 
ase of real spa
es W 1,q

0 (Ω), W−1,q(Ω) and real λ's, be
ause −∇ ·
µ∇ + 1 
ommutes with 
omplex 
onjugation.4 Perturbation by lower order termsIn this 
hapter we will present a 
lass of �rst order terms under the pertur-bation of whi
h our regularity result is (essentially) maintained:



244.1 Theorem. Let q ≥ 2 be a number su
h that
−∇ · ρ∇ : W 1,q

0 (Λ) 7−→W−1,q(Λ)is a topologi
al isomorphism. Assume r > d, ǫ > 0, δ ∈]0, 2[,
s :=

{
q if q > d

d+ ǫ if q ≤ d
, t :=

{(
1
q

+ 1
d

)−1 if q > d
d
δ
if q ≤ d.and a1, ..., ad ∈ Lr(Λ), b1, ...bd ∈ Ls(Λ), c ∈ Lt(Λ).i) The �rst order operator

u→
d∑

l=1

al
∂u

∂xl

+
∂(blu)

∂xl

+ c uis relatively 
ompa
t with respe
t to −∇ · ρ∇.ii) The operator
u→ −∇ · ρ∇u+

d∑

l=1

al
∂u

∂xl
+
∂(blu)

∂xl
+ c u (4.1)also has W 1,q

0 (Λ) as its domain of de�nition.iii) The spe
trum of the operator from (4.1) 
onsists of 
ountably manyisolated eigenvalues with �nite (algebrai
) multipli
ities.Proof. i) It su�
es to show the assertion for the terms separately: ea
h op-erator ∂
∂xl

maps W 1,q
0 (Λ) 
ontinuously into Lq(Λ). The multipli
ation oper-ators a1, ..., ad then 
ontinuously map Lq(Λ) into L( 1

q
+ 1

r
)−1

(Λ) →֒ W− d
r
,q(Λ).Thus, for the terms al

∂
∂xl

the assertion results from the 
ompa
tness of theembedding W− d
r
,q(Λ) →֒ W−1,q(Λ). Con
erning the terms ∂(blu)

∂xl
we �rst
onsider the 
ase q > d: then one has the 
ompa
t embedding W 1,q

0 (Λ) →֒
L∞(Λ) whi
h implies the 
ompa
tness of the mappings

W 1,q
0 (Λ) ∋ u→ blu ∈ Lq(Λ) (4.2)



5 Nonsmooth interfa
es: a 
ounterexample 25and
W 1,q

0 (Λ) ∋ u→
∂(blu)

∂xl

∈W−1,q(Λ). (4.3)If q = d, then the mapping W 1,q
0 (Λ) →֒ L

d(d+ǫ)
ǫ (Λ) is 
ompa
t and so arethe mappings (4.2) and (4.3) in this 
ase. It remains the 
ase q < d:putting τ := d

d+ǫ
, one veri�es the 
ompa
tness of W 1,q

0 (Λ) →֒ W τ,q
0 (Λ) →֒

L( 1
q
− τ

d
)−1

(Λ) and, hen
e, again the 
ompa
tness of the mappings (4.2) and(4.3). We inspe
t the c-term, �rst 
onsidering the 
ase q > d: then themapping W 1,q
0 (Λ) →֒ L∞(Λ) is 
ompa
t. Consequently, the mapping
W 1,q

0 (Λ) ∋ u → c u ∈ L( 1
q
+ 1

d
)−1

(Λ) →֒ W−1,q(Λ)is 
ompa
t, too. If q = d, then the embedding W 1,q
0 (Λ) →֒ L

d
2−δ (Λ) is
ompa
t. This implies the 
ompa
tness of the mapping

W 1,d
0 (Λ) →֒ L

d
2−δ (Λ) ∋ u → cu ∈ L

d
2 (Λ) →֒ W−1,d(Λ).What 
on
erns the 
ase q < d, it su�
es to 
onsider δ's from ]1, 2[. Then wehave the embedding W 1,q

0 (Λ) →֒ L( 1
q
− 1

d
)−1

(Λ). Consequently, the mapping
W 1,q

0 (Λ) ∋ u→ c u ∈ L( 1
q
+ δ−1

d
)−1

(Λ) →֒ W 1−δ,q(Λ) →֒W−1,q(Λ)is also 
ompa
t. ii) follows from a well known theorem on relatively 
om-pa
t perturbations (see [38, Ch. IV.1.3 Thm. 1.11℄).iii) Obviously, the resolvent of−∇·ρ∇ is 
ompa
t. Hen
e, the essential spe
-trum of this operator is empty (see [38, Ch. III.6.8 Thm. 6.29℄). Be
ause theperturbation is relatively 
ompa
t, the essential spe
trum of the perturbedoperator (
.f. (4.1)) is also empty (see [38, Ch. IV.5.6 Thm. 5.35℄). Thus,the assertion follows from another well known theorem (see [38, Ch. IV.5.6Thm. 5.33℄).5 Nonsmooth interfa
es: a 
ounterexampleThe reader may have possibly asked himself whether the C1 property isne
essary or may be weakened without 
hanging the result. The following



26
ounterexample (see [23℄) shows that the situation 
hanges dramati
allyif the interfa
e has only one 
orner point. In parti
ular, this shows thatpie
ewise C1 is (by far) not su�
ient for our result. Namely, quite parallelyto the 
lassi
al example of Meyers (see [47℄) the integrability exponent forthe gradient of the solution of the (planar) homogeneous ellipti
 equationtends to 2 in dependen
e of a suitable parameter. The di�eren
e to Meyer'sexample is that there the ellipti
ity 
onstant tends to zero, while here anonsmooth interfa
e o

urs and the norms of the 
oe�
ient matri
es tendto in�nity.The ba
kground for the 
onsiderations in this 
hapter is the well known
onne
tion between singularities for the solution of an ellipti
 equation andthe eigenvalues of an asso
iated operator pen
il of Sturm-Liouville opera-tors, see [46℄ or [23℄.We 
onsider the following 
oe�
ient fun
tion on R2:
µ(x, y) =





(
1 0

0 t2

) if x, y > 0

(
t 0

0 t

) elsewhere on R
2 , t > 0 ,and, 
orrespondingly, the following ellipti
 problem

∇ · µ∇u = 0. (5.1)Pro
eeding as in [46℄ we are looking for solutions ũ ∈ W 1,2(]0, 2π[) of the(generalized) Sturm-Liouville equation
−(b2ũ

′)′ − λ(b1ũ)
′ − λb1ũ

′ − λ2b0ũ = 0 , (5.2)
ombined with the 
ompatibility 
onditions
w(π/2) = v(π/2) , w(0) = v(2π) ,

(b2∂θw + λb1w)|0 = (b2∂θv + λb1v)|2π , (5.3)
(b2∂θw + λb1w)|π/2 = (b2∂θv + λb1v)|π/2 ,if w = ũ|[0,π/2] and v = ũ|[π/2,2π].



5 Nonsmooth interfa
es: a 
ounterexample 27The 
oe�
ient fun
tions b0, b1, b2 are de�ned as follows:
b0(θ)

def
=

{
cos2 θ + t2 sin2 θ, if θ ∈ [0, π/2[

t, if θ ∈ [π/2, 2π[

b2(θ)
def
=

{
sin2 θ + t2 cos2 θ, if θ ∈ [0, π/2[

t, if θ ∈ [π/2, 2π[

b1(θ)
def
=

{
(t2 − 1) sin θ cos θ, if θ ∈ [0, π/2[

0, if θ ∈ [π/2, 2π[

(5.4)
In order to determine the λ with the smallest possible (positive) real part,we use the ansatz fun
tions (see [17℄)

w(θ) := c+(t cos θ + i sin θ)λ + c−(t cos θ − i sin θ)λand
v(θ) := d+ cosλθ + d− sinλθwith unknown 
oe�
ients c± and d±. Using (5.3) and (5.4), we 
an eliminate

c± and then get the equations
d+(tλ − cos 2πλ) − d− sin 2πλ = 0 ,

d+ sin 2πλ+ d−(tλ − cos 2πλ) = 0 . (5.5)Obviously, the system (5.5) is nontrivially solvable in d+, d− i�
(tλ − cos 2πλ)2 + sin2 2πλ = 0 ,or, what is the same,

cos 2πλ =
tλ + t−λ

2
= cosh(λ ln t) . (5.6)Writing cosh(λ ln t) = cos(iλ ln t) and taking into a

ount the identity

cos θ − cos ρ = −2 sin
θ + ρ

2
sin

θ − ρ

2
,



28(5.6) is equivalent to
sin
(λ

2
(2π + i ln t)

)
sin
(λ

2
(2π − i ln t)

)
= 0 .This is the 
ase i�

λ

2
(2π ± i ln t) = 2kπ , k ∈ Z .Thus, the λ with the smallest (positive) real part is

λ =
8π2

4π2 + ln2 t
± i

4π ln t

4π2 + ln2 t
.One easily noti
es: If t → ∞, then the real parts of these λ's 
onvergeto zero. Assume that λ with ℜλ ∈ (0, 1) is a 
omplex number and ũλ ∈

W 1,2(0, 2π) a 
orresponding fun
tion whi
h satis�es (5.2) together with the
ompatibility 
onditions (5.3). Then the fun
tion
u(x) := (x2

1 + x2
2)

λ/2ũλ(arg(x)) ∈W 1,2
loc (R2)is a solution of equation (5.1) in the distributional sense. Moreover, ũλdoes not vanish identi
ally and, hen
e, its absolute value has a stri
tlypositive lower bound at least on a (nontrivial) subinterval of (0, 2π). Thus,

u ∈ W 1,q
loc (R2) for q ∈ [2,

(
1−ℜλ

2
)−1), but not for q =

(
1−ℜλ

2
)−1. Tendingwith t to ∞, these solutions la
k any 
ommon (lo
al) integrability exponentlarger than 2 for their �rst order derivatives.5.1 Remark. The example is not restri
ted to two dimensions. One 
anadd arbitrarily many dimensions by extending the solution 
onstantly inthese dire
tions � at least in a neighbourhood of zero.6 Paraboli
 operatorsVery often ellipti
 operators in divergen
e form o

ur as the ellipti
 part ofparaboli
 operators (see [5℄ or [31℄). In this 
hapter we will dedu
e fun
-tional analyti
 properties for the 
orresponding paraboli
 operators from our



6 Paraboli
 operators 29ellipti
 regularity result. If X is a 
omplex Bana
h spa
e, then we denote by
W 1,r(]0, T [;X) the set of elements from Lr(]0, T [;X) whose distributionalderivatives also belong to Lr(]0, T [;X) (see [4, Ch. III 1.1℄ for details). Themain result reads as follows:6.1 Theorem. Let Λ be a bounded domain with Lips
hitz boundary and ρ ameasurable, essentially bounded, ellipti
 
oe�
ient fun
tion whi
h takes itsvalues in the set of real, symmetri
 d × d matri
es. Assume that q ∈]1,∞[is a number su
h that

−∇ · ρ∇ : W 1,q
0 (Λ) →W−1,q(Λ)is a topologi
al isomorphism.Then ∂

∂t
− ∇ · ρ∇ satis�es maximal paraboli
 regularity on W−1,q(Λ),pre
isely: If r ∈]1,∞[ is �xed, then for any f ∈ Lr

(
]0, T [,W−1,q(Λ)

) thereis exa
tly one fun
tion w ∈ Lr
(
]0, T [;W 1,q(Λ)

)
∩W 1,r

(
]0, T [;W−1,q(Λ)

) su
hthat
∂w

∂t
−∇ · ρ∇w = f and w(0) = 0. (6.1)6.2 Corollary. Under the above suppositions −∇·ρ∇ generates an analyti
semigroup on W−1,q(Λ).In order to prove this theorem we �rst establish some auxiliary results:6.3 Theorem. Let Λ be a Lips
hitz domain and ρ as in the previous the-orem. Assume q ∈]1,∞[ and let Aq be the Lq(Λ) realization of ∇ · ρ∇,further Dq the domain of this realization. Then ∂

∂t
− Aq satis�es maximalregularity over Lq(Λ), in other words: If r ∈]1,∞[ is �xed, then for any

f ∈ Lr
(
]0, T [;Lq(Λ)

) there is exa
tly one fun
tion w ∈ Lr
(
]0, T [;Dq

)
∩

W 1,r
(
]0, T [;Lq(Λ)

) su
h that (6.1) is satis�ed.Proof. The semigroup generated by A2 on L2(Λ) admits upper Gaussianestimates, see [8℄ or [6℄. But upper Gaussian estimates imply maximalparaboli
 regularity on Lp spa
es [32℄, see also [19℄.6.4 Theorem. Under the suppositions of Theorem 6.1 (−∇ · ρ∇)1/2 pro-vides a topolo
i
al isomorphism between W 1,s
0 (Λ) and Ls(Λ) and between

Ls(Λ) and W−1,s(Λ) for all s ∈ [q′, q].



30Proof. First, interpolation (see Theorem 3.6) and duality show that −∇·ρ∇is a topologi
al isomorphism between W 1,s
0 (Λ) and W−1,s(Λ) for all s ∈

[q′, q]. A deep result of [8, Thm. 4℄ yields the 
ontinuity of the map
(−∇ · ρ∇)1/2 : W 1,s

0 (Λ) → Ls(Λ) (6.2)for all s ∈]1,∞[. By duality one obtains the 
ontinuity of
(−∇ · ρ∇)1/2 : Ls(Λ) 7→W−1,s(Λ) (6.3)for all s ∈]1,∞[. Hen
e, for s ∈ [q′, q] we 
an estimate
‖
(
−∇ · ρ∇)−1/2‖B(Ls(Λ);W 1,s

0 (Λ)) ≤

≤ ‖(−∇ · ρ∇)1/2‖B(Ls(Λ);W−1,s(Λ))‖
(
−∇ · ρ∇

)−1
‖B(W−1,s(Λ);W 1,s

0 (Λ)).This proves that (6.2) in fa
t is a topologi
al isomorphism, if s ∈ [q′, q].The isomorphism property between Ls(Λ) and W−1,s(Λ) follows from thisby duality.6.5 Corollary. Let Dq denote the domain of the Lq(Λ) realization of −∇ ·
ρ∇. Then (−∇ · ρ∇)1/2 provides a topologi
al isomorphism between Dq and
W 1,q

0 (Λ).Proof. −∇ · ρ∇ is a topologi
al isomorphism between Dq and Lq(Λ) while
(−∇ · ρ∇)1/2 is a topologi
al isomorphism between W 1,q

0 (Λ) and Lq(Λ).We will now give the proof of Theorem 6.1: it is 
lear that the establishedisomorphisms for (−∇ · ρ∇)1/2 indu
e the following isomorphisms:
(
−∇ · ρ∇

)−1/2
: Lr

(
]0, T [;W−1,q(Λ)

)
→ Lr

(
]0, T [;Lq(Λ)

) (6.4)
(−∇ · ρ∇)1/2 : Lr

(
]0, T [;Dq) → Lr

(
]0, T [;W 1,q

0 (Λ)
) (6.5)

(−∇ · ρ∇)1/2 : W 1,r
(
]0, T [;Lq(Λ)) →W 1,r

(
]0, T [;W−1,q(Λ)

) (6.6)Further, it is well known that the solution w of (6.1) is obtained as w(t) =∫ t

0
e(t−s)∇·ρ∇f(s)ds. Hen
e, the paraboli
 solution operator 
ommutes with

(−∇ · ρ∇)1/2. Consequently, the maximal regularity property on Lq(Λ)transports via the isomorphisms (6.4), (6.5), (6.6) to the spa
e W−1,q(Λ).Corollary 6.2 is implied by the well known fa
t that maximal paraboli
regularity implies the generation property of an analyti
 semigroup.



7 Appendix 316.6 Remark. The authors are 
onvin
ed that the results on the paraboli
operators are adequate instruments for the treatment of (even non-autonomous)semilinear (see [49, Ch. 5.6℄) and quasilinear paraboli
 problems [45, 50, 16℄.The key point 
on
erning quasilinear equations of, say, the type
∂w

∂t
−∇ ·G(w)µ∇w = H(t, w,∇w)is the fa
t that in 
ase of three-dimensional domains and q > 3 suitable inter-polation spa
es between W 1,q

0 and W−1,q embed 
ontinuously into Hölderspa
es. Thus, if G is a stri
tly positive C1 fun
tion, then the 
oe�
ientfun
tions G(w)µ are of the same quality as µ (in the spirit of Theorem 1.1).Hen
e, the domains of the operators ∇ · G(w)µ∇ do not depend on u ifthis runs through a suitable interpolation spa
e (see [51℄) - what often isrequired in quasilinear paraboli
 theory. We will a

omplish these thingselsewhere in detail.7 AppendixIn the appendix we give the announ
ed proof of Lemma 3.4: let x0 be anypoint from ∂Λ. Then for every ǫ > 0 there is an an orthonormal basis
e1, ..., ed of Rd su
h that ∂Λ 
an be parametrized in a neighbourhood of x0via a Lips
hitz fun
tion ϕ : Rd−1 → R by

x · ed = ϕ
(
x · e1, ...,x · ed−1

)and the Lips
hitz 
onstant lip(ϕ) of ϕ does not ex
eed γ+ǫ. If K : Rd → Rdis a linear bije
tion, then ∂(KΛ) may be parametrized in a neighbourhoodof Kx0 by
Kx · (K−1)∗ed = ϕ

(
Kx · (K−1)∗e1, ..., Kx · (K−1)∗ed−1

)
. (7.1)Clearly, {(K−1)∗e1, (K

−1)∗e2, ..., (K
−1)∗ed} is not ne
essarily an orthonor-mal system. In the sequel we will modify the representation (7.1) in su
ha way that the required orthogonality of the representing 
oordinates isre-established. Let {f1, ..., fd−1} be any orthonormal basis in the subspa
e



32whi
h is generated by {(K−1)∗e1, ..., (K
−1)∗ed−1}. Then, if k ∈ {1, ..., d− 1},any (K−1)∗ek may be written as

(K−1)∗ek =
d−1∑

j=1

αkjfj. (7.2)In this notation, (7.1) reads as
Kx · (K−1)∗ed = ϕ

(d−1∑

j=1

α1jKx · fj , ...,

d−1∑

j=1

αdjKx · fj

)
. (7.3)Let fd be a unit ve
tor, orthogonal to {f1, ..., fd−1}. Then, a

ording to

(K−1)∗ed =
∑d

j=1(K
−1)∗ed · fj fj , (7.3) 
an be expressed as

Kx · fd =
1

(K−1)∗ed · fd

(
ϕ
(d−1∑

j=1

α1jKx · fj , ...,
d−1∑

j=1

αd−1jKx · fj

)
−

−
d−1∑

j=1

Kx · fj (K−1)∗ed · fj

)
. (7.4)We denote the mapping whi
h assigns to the ve
tor (Kx · f1, ..., Kx · fd−1)the right hand side of (7.4) by ψ.Finally we have to estimate the Lips
hitz 
onstant lip(ψ) of ψ: obviously,one has

lip(ψ) ≤
1

|fd · (K−1)∗ed|

(
lip(ϕ)‖αkj‖B(Rd−1) +

√√√√
d−1∑

j=1

(
(K−1)∗ed · fj

)2)
.(7.5)Next we will derive a bound for 1

|(K−1)∗ed·fd|
= 1

|ed·K−1fd|
: one has

K−1fd · ej = fd · (K
−1)∗ej = 0 for j = 1, ..., d− 1.Hen
e, K−1fd = λed, or, equivalently, Ked = 1

λ
fd. This implies

1

|λ|
= ‖

1

λ
fd‖ = ‖Ked‖ ≤ ‖K‖.
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