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1 Introduction

The item of this work is situated on the intersection of two mathematical
questions: the first is on the regularity for the solutions of elliptic trans-
mission problems (see, e.g. |41, 48, 52, 55, 24, 2, 3, 43, 18, 53, 40, 21, 22|,
and references therein). The other is on the isomorphism property for el-
liptic operators —V - uV : X — Y between suitable Banach spaces X, Y
in case of nonsmooth domains and/or discontinuous coefficient functions ,
see |7, 20, 29, 35, 53, 64, 12|. In particular, the latter question in view of
transmission problems for spaces X := W4 Y := WW~1¢ (boundary con-
ditions incorporated) has been treated in |29, 12, 46, 7|, see also 34| and
references therein. All of these have in common that they transfer geomet-
rical properties of the underlying domain or/and geometrical properties of
the smoothness regions for the coefficient function to the functional analytic
quality of the occurring spaces W14 and W14, respectively. Exactly this
is also the case in this paper; our aim is to prove a sharpened (and optimal)
version of the results from [12, Ch. 4|, namely:

1.1 Theorem. Assume that Q C R is a bounded domain with Lipschitz
boundary. Further, let Q, C £ be another domain which is supposed to
satisfy one of the following conditions:

i) Q, is C* domain which does not touch the boundary of §2.

ii) The dimension d equals 3, Qo is a Lipschitz domain, and 0, N Q is
a C' surface. Moreover, OS2 and OS), meet suitably (see the definition
below).

Let 1 be a function on Q with values in the set of real, symmetric d x d
matrices which is uniformly continuous on both of the sets Q. and )\ €.
Additionally, 1 1s supposed to satisfy the usual ellipticity condition
ess inf inf w(x)E-€ > 0. 1.1
x€Q £eC||¢]lca=1 () (1)
Then there is a q; > 3 such that for every A from the (closed) right complex

half plane
—V - uV + N W(Q) — Wh(Q) (1.2)
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provides a topological isomorphism for all ¢ €|q,, qi[. If Q itself is also a C!
domain and Qs fulfills i), then ¢1 may be taken as oo.

1.2 Definition. We say that 902 and 0€), meet suitably if for any point x
from the boundary of 02N 0€), whithin 0€) there is an open neighbourhood
Uy of x in R3 and a C! diffeomorphism ®, from Uy onto an open subset of
R? such that

o O, (U N Q) equals a convex polyhedron Ky

o O, (U NN ON,) = Kx NHy, where Hy is a plane which contains &, (x)
and an inner point of K.

The proof rests heavily on nontrivial regularity results for adequate model
problems within the same scale of spaces: concerning i), an isomorphy re-
sult for the Dirichlet Laplacian on a domain with Lipschitz boundary |35]
is required and, secondly, a result for V - ¢V on R, where o equals a
(real, symmetric, positive definite) d X d matrix on a half space and another
d X d matrix on the complementing half space, see Theorem 3.11 below.
In case ii) an isomorphy result for interface problems on polyhedra is addi-
tionally needed, see [23]|. Note that our result is a certain complement to
[20|, where for 3D-problems with mixed boundary conditions, but without
heterogeneities isomorphism theorems within the W14 « W14 scales are
obtained. Furthermore, it is somewhat similar to the results of [43], where
piecewise Holder continuity of the first order derivatives is proved under
slightly stronger assumptions on the data. Last but not least Theorem 1.1
is related to the results of |15], where VVI})COO regularity is proved for the
solution if the right hand side is sufficiently regular.

Operators of type (1.2)  which may be seen as the principal part of the
homogenized version of an elliptic operator with inhomogeneous Dirichlet
data — are of fundamental significance in many application areas. This is
the case not only in the mechanics (see [42, Ch. IV.3]), thermodynamics
[57, 54, 13|, and electrodynamics [56| of heterogeneous media, but also in
mining, multiphase flow and mathematical biology. Especially in biological
models it often seems unavoidable to take into account heterogeneties, see
[25] or [11] and references therein. Moreover, such operators are also of
interest for the description of submicron devices by means of a Schrédinger
operator in effective mass approximation (see for example |10, 62, 60, 44]).
Here heterostructures are the determining features of many fundamental
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effects (see for instance [9, 37]). With ongoing miniaturisation of electronic
devices the resolution of material interfaces becomes ever more important,
so that one definitely has to deal with discontinuous coefficient functions
here. Besides, a large amount of papers exist on the numerics of such prob-
lems (see e.g. [1, 33, 14, 61| and references therein).

The Wol’q « W14 setting is attractive for many problems for the fol-
lowing reasons: if the gradient of the solution belongs to a summability
class ¢, larger than the space dimension d, then the solution is automati-
cally Holder continuous - what often is of use for auxiliary problems. By
the way, this cannot be achieved within the TW*? scale because W?322 is a
principal threshold in case of jumping coefficients, see [53| for further re-
sults. Secondly, the result has far reaching consequences for the treatment of
quasilinear parabolic equations in L? spaces - as is carried out in [46, 51, 36].
Moreover, our elliptic regularity theorem, combined with a result from [8],
yields maximal parabolic regularity on W4, too.

Another important application of the information g > d is the possibility to
obtain uniqueness results for associated nonlinear equations and systems,
see for example |26, 27]. Of course, these things are most relevant in the
"physical’ space dimension 3. Last, but not least, W =14 is large enough to
contain (suitable, say bounded) surface densities and even (not too singular)
measures, see |65, Ch. 4|. In particular, this enables to include prescribed
jump conditions for the conormal derivative of the solution across the in-
terface, see [14].

The outline of the paper is as follows: First we introduce some notation.
In the next chapter we derive some technical prerequisites and afterwards
prove Theorem 1.1. Chapter 4 contains some perturbation results concern-
ing first order operators. In Chapter 5 it is shown by a counterexample
that if the C! condition on the subdomain is violated in only one point,
then one completely loses the result. Chapter 6 is devoted to conclusions
for corresponding parabolic operators, such as maximal parabolic regularity
on W4, Finally, in the Appendix we prove a technical lemma on domains
with Lipschitz boundary.
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2 Notations, general assumptions

The real scalar product Z;l:l z;y; of two vectors x = (x1,...,24), ¥y =
(y1,...,y4) € C?is denoted by x - y. Throughout this paper, Q and A
are always domains in R?. Concerning the definition of a Lipschitz domain
and a domain with Lipschitz boundary we refer the reader primarly to |28,
Ch. 1.2], see also [63, Ch. 1.2]. If X is a complex Banach space, then we
denote the space of X valued, Bochner measurable, p-integrable functions
on A, (p € [1,00]), by LP(A; X), whereas L>(A; X) denotes the space of
Lebesgue measurable, essentially bounded functions on A with values in
X. If X = C, then we write simply LP(A). Wh4(A) stands for the usual
(complex) Sobolev space on the set A (see [28] or [59]). Further, we use
the symbol Wy “(A) for the closure of {v[s : v € C(R?), supp v C A} in
Wha(A). WL (A) denotes the dual to W,“(A), where ¢’ here and in the
sequel always denotes the adjoint exponent ¢ := ﬁ. If pis a Lebesgue
measurable, essentially bounded function on the domain A, taking its values
in the set of real, symmetric d x d matrices, then we define

—V - pV W (A) — WE2(A) (2.1)

by
(—=V - pVo,w) = / pVou-Vwdx: v,we Wy?(A). (2.2)
A

Here and in the following (-,-) always denotes the dual pairing between
Wy? and W12, The maximal restriction of —V - pV to any of the spaces
W=L4(A) (¢ > 2) we will denote by the same symbol. If we are given a
function, defined on a subset of R? and uniformly continuous there, then
we identify it canonically with its (uniquely determined) extension to the
closure of this set. The norm in a Banach space X will be always indicated
by || - ||x. For two Banach spaces X and Y we denote the space of linear,
bounded operators from X into Y by B(X;Y). If X =Y, then we abbre-
viate B(X). Finally, we introduce the following model sets which will be
used later: by £ we denote the open unit cube in R?, that means the set

1 1
{x = (21,...,24) € R?: —3 <Xy, Tg < 5} )



E_, &, are used as symbols for the lower and upper open half cubes

1
E_=&EN {X: (z1,...,24) € R?: —3 < Tq <0}

and

1
EL ::éfﬂ{x:(xl,...,xd)eRd:O<xd<§}.

Finally, we denote by & the upper plate of £_, & := EN{x: x4 = 0}.

3 Proof of Theorem 1.1

3.a Known results and preliminaries

In this chapter we will prove Theorem 1.1. In order to do so, we first quote
a classical perturbation theorem on the bounded invertibility for operators
(see [38, Ch. IV.1.4 Thm. 1.16] which we will use repeatedly in the sequel:

3.1 Proposition. Let X,Y be Banach spaces. Assume that A,B: X — Y
are linear, continuous operators, such that | A=Y s )| Bllsx,yy < 1. Then
A+ B is a topological isomorphism between X and Y and

I Bllacxayy 1A Ievix)

A7 = (A+ B) Mlserix) <
I ( ) s = 17 IBllscxyy 1A~ sorx)

1A ls0vix)
Next, we quote a result of of Jerison/Kenig (see [35, Thm. 1.1]), which
is a cornerstone for all what follows:

3.2 Proposition. If A C R? is a bounded domain with Lipschitz boundary,
then there is a number ¢ > 3, depending only on the Lipschitz constant
of A, such that the Dirichlet Laplacian provides a topological isomorphism
between Wy (A) and W=Y9(A) for all ¢ €¢,, . If A is a C* domain, q

may be chosen oco.

3.3 Remark. The second assertion may also be directly concluded from
[58] Thm. 4.6.
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In order to generalize Proposition 3.2 to operators V - pV we need the
following lemma, which is proved in the Appendix:

3.4 Lemma. Let A be a bounded domain with Lipschitz boundary and Lip-
schitz constant . If K is a linear bijection of R"™ onto itself, then KA is
again a domain with Lipschitz boundary and the Lipschitz constant of KA
does not exceed ||K|||| K| (v + 1).

This at hand, we can draw the following conclusion from Proposition 3.2:

3.5 Corollary. Let A C R? be a bounded domain with Lipschitz boundary.
If the coefficient function p is a constant real, symmetric, positive definite
dx d matriz on A, then there is a number q; > 3 such that the operator —V -
pV + 1 provides a topological isomorphism between Wol’q(A) and W=H(A)
for all q €4y, q1[. The number g1 may be taken uniformly with respect to any
set of (symmetric) p’s which is, together with the set of inverses, bounded
in B(C?). If A is a C' domain, then ¢, may be chosen as oo.

Proof. The assertion may be deduced immediately from Proposition 3.2:
namely one transforms —V - pV with respect to the coordinate transform
p'/? and ends up with a multiple of the Dirichlet Laplacian. Under the
supposition on the p’s the Lipschitz constants of the transformed domains
p/2A are uniformly bounded by Lemma 3.4. Thus, every —V - pV provides
a topological isomorphism between Wy %(A) and W~14(A) for the asserted
range of ¢’s. The same is true for the operators —V - pV + 1 because the
corresponding resolvents are compact and —1 is not an eigenvalue for any
of these operators. 0O

Having in mind operators with non-constant coefficients, we need the
following interpolation result:

3.6 Theorem. Assume that A C R? is an open set. Let the linear mapping
F : W=Y(A) — Wy YA) be continuous for ¢ = q €]1,00[ and ¢ = ¢ €

-1
|1,00[. Then it is continuous for any q = (% + lq;f) €lq, g2| and

B(W Laz (A); Wy %2 (7))
(3.1)

||FHB(W lq(A) Wl q(A < HFH@ W lql(A) lql ||



The proofis carried out with help of the following representation theorem:

3.7 Proposition. Let A C R? be open and q €]1,00.

i) Any element T € (W9 (A))* may be represented as
(7.4) = /fow+z fydx, b eWHQ)  (32)

with f = (fo, f1, .., fa) € LY(A; CTY) and the additional property

[ llzoacarry = NT o - (3:3)

ii) The same representation (3.2) holds true for any continuous linear
form T which is defined on a closed subspace of WHe (A), in particular
for T € W=Y4(A). In this case f can be chosen such that ||T| =

1/ | zaqascasr).

A proof of the representation formula (3.2) is given in [65, Ch. 4.3]. The
norm equality (3.3) is obtained by an inspection of the proof given there.
ii) is obtained from i) by extending the linear form 7' (norm preserving) to
whole W' (A).

We give now the proof of Theorem 3.6: Assume ¢ € [g1, ¢2]. Then for any
f=(fo, fi, -, fa) € LI(\; C¥*1) we define an element (1+div)f € W=14(A)
by

(1 + div) f, 1 /fow+z -y dx b€ Wi (A).

Further, for any ¢ € [q1,¢] we define a mapping G : L(A;C4) —
L(A; C¥1) by putting G = (1 @ grad)F(1 + div). The crucial point is
the equality

||G||B(L4(A;(Cd+1)) = ||F||B(W—1,q(A),W(}'q(A))a
which results from the following facts:
e 1 ® grad is an isometry from W,(A) into LI(A; C4HY).
e (1-+div) is non-expansive by Holder’s inequality , but, additionally, Propo-
sition 3.7 holds.
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Thus, an application of the Riesz-Thorin interpolation theorem to the map-
pings G : LY(A; C1) — L9(A; C¥*1) gives the assertion. Next we present a
localization principle similar to Lemma 2 of [29]. In essence, this will permit
us to conclude the isomorphism property (1.2) from the same isomorphism
property for adequate local model constellations.

3.8 Lemma. Let A C R? be a bounded Lipschitz domain and © C R? be
open such that Ag := ANQO is again a Lipschitz domain. We fix an arbitrary
function n € C°(RY) with supp n C O. Let p, denote the restriction of the
coefficient function p to Ay. Assume u € Wol’z(A) to be the solution of

~V - pVu+u=feW ?A); (3.4)

then the following holds true:

i) The linear form
forw— (f,nw)

(where nw means the extension by zero to whole A) is well defined and
continuous on Wo'™ (As) whenever f € W=7 (A).

ii) Let T, denote the linear form

w — upe V7 - Vw dx
Ao

on Wy (A,). Ifu € W (A), then —poVula,-Vn|a,+T, € WH5(A,),

where s = s(r) is given by

. {dfd ifr € [2,d| 35)

any (large) positive number if r > d.

iii) Let the operator —V - p,V : Wy*(Ay) — W12(A,) be defined analo-
gously to (2.2). Then v = nuls, belongs to Wy *(A) and satisfies

—V : ,O.VU _I_ v = _p.vu
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Proof. i) The mapping f — f, is the adjoint to w +— nw which maps
W (As) continuously into W (A).

ii) The case r > d may be reduced by the embedding W' (A) — W14=¢(A)
to the case r < d; we treat this latter one: clearly, one has p,Vuls, - V1 €
L"(A,), what gives by Sobolev embedding and duality peVuls, - V|a,
€ W_l’d%df'(A.) for r € [2,d]. Concerning T,, we will show that it is a

. , (g5 :
continuous linear form on W, *"" (A,): one can estimate

< r
[ (L) | < lull g,

el 99l 190l ear - (37)

Using again Sobolev embedding, the right hand side of (3.7) may be esti-
mated by

Yellwirwa llollze@ses) Vallema ]l e

=7 (Ag)

iii) For every u € Wy*(A) there is a sequence {u;}, consisting of Cg°(R?)
functions with support within A such that lim; ., w[s = u in W2(A). Ob-
viously, then any function nu; has its support within A, and lim;_, o nu;|a, =
nula, in WE2(A,). Secondly, for every w € Wy?(A,) we have

(—=V - peVu,w) + (v,w) = / peV(nu) - Vw dx +/ nuw dx =

—/ wp.Vu-Vndx—i—/ upe V- Vw dx + /qu-V(ﬁzIJ)dij/uﬁfudx.
. Ae A A

(3.8)
Applying the definitions of T,, and f,, this gives the assertion.
]

Next we want to show the assertion of Theorem 1.1 under the additional
assumption that the coefficient function is uniformly continuous on whole

Q.

3.9 Theorem. Let A C R? be a bounded domain with Lipschitz boundary
and p a real, symmetric-valued , uniformly continuous coefficient function
on A, elliptic in the sense of (1.1).



3.A KNOWN RESULTS AND PRELIMINARIES 11

i) Then there is a q1 > 3 such that for all q €]q}, q1] it holds true:

Su%’ [(=V - p(x)V + 1)_1HB(W*LQ(A);WOL‘Z(A)) < 0.
pdS

ii) The operator
—V - pV +1: Wy (A) — W H(A) (3.9)
15 a topological isomorphism for the same range of q’s.

ii) If A is a C* domain, then ¢ may be chosen .

Proof. The proof will be concluded from Corollary 3.5, for this reason the
corresponding ¢'s are identical with those from Corollary 3.5. i) The set
{p(x) : x € A} is bounded in B(R?) while {p(x)~! : x € A} is also bounded
by the ellipticity condition and the (uniform) continuity of p. Thus, by
Corollary 3.5, there is a ¢; > 3 such that for any ¢ €|q}, ¢:[ and for any
x € ) the operator —V - p(x)V + 1 provides a topological isomorphism
between W, 4(Q) and W=54(Q). If Q is a C' domain, then ¢; = co. Hence,
the function

Asx— (V- p(x)V +1)"1 e BIWH(A); Wi (A)) (3.10)
is well defined and, additionally, the mapping
A3 x s p(x) = =V - p(x)V + 1 € BW,Y(A); W H(A))

is continuous. By Proposition 3.1 the function (3.10) is also continuous and,
hence, bounded.

ii) First we consider the case ¢ €]2,¢[; then (3.9) is injective by Lax-
Milgram. Choose for every point x € A a ball By around x with radius Ry
such that for y € By N A

1p(y) — p(%) || By <

1
SUD;e(a,q) SUPzed [ (=V - p(2)V + 1)l ggy—reaymi )

(3.11)
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holds true. This radius Ry is indeed nonzero, namely: the Lax-Milgram
lemma yields

sup [(=V - p(z)V + 1)_1||B(W*1)2(A);W01’2(A)) < 00.
A4S

This, together with i) and interpolation (Theorem 3.6) implies

sup sup [|(=V - p(z)V + 1)_1HB(W*M(A);WOM(A)) < 0.
te(2,q] zeA

We choose a finite subcovering By, ...By,, for A. Let M....Nm be a partition
of unity on A which is subordinated to this subcovering. Assume now
f € W=h4(A) and let u be a solution of

-V -pVu+u = f. (3.12)

By the Lax-Milgram lemma u must be from W, *(A). Putting O := U By,
we get from Lemma 3.8

=V - pV(mu) + mu = g, (3.13)

where g; is from W—LminG29(A) (see Lemma 3.8). We now set ¢t :=
min(s(2),q) and define for every [ € {1,...,m} a modified coefficient func-
tion p; on A as follows:

ouly) = {P(Y) ify € By, N A (3.14)

p(x;) elsewhere on A.
Because nu has its support in By, it satisfies besides (3.13) also the equation
=V - piV(mu) + nu = g. (3.15)

We will now show that g, € W~54(A) implies nu € W, "(A). Rewriting
(3.15) as

=V p(x)V(mu) +qu+ V- [p(x1) — p] V(mu) = g1,
one estimates

IV - lp — p(Xl)]V”B(Wol't(A);W*lvf(A)) < llp(x1) = pull e (a(cay) =
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= llp(x0) = plloe(B, xpnnme)-
Taking into account (3.11), we obtain for all [ € {1...m}

V- lor=p )]V s a1 1=V oGO VD ™ gy gy < 1

Now one can apply again the perturbation result (Proposition 3.1), which
says that —V - p,V+1: W' (A) — W~14(A) is boundedly invertible. Thus,
each mu must be from W, "(A), what gives u € Wy'(A). Repeating these
considerations with the improved information on the integrability exponent
of Vu  each time using Lemma 3.8  one, after finitely many steps, ends
up with v € Wol’q(A). Hence, (3.9) is surjective and thus, by the Open
mapping theorem, a topological isomorphism. The case ¢ < 2 is obtained
by duality. O

Further, we need the following technical lemma, the proof of which can
be found in [39, Remark 2.1.3:

3.10 Lemma. Let A be a domain with Lipschitz boundary. Then for any
x € OA and any neighbourhood of x there is a (possibly) smaller open neigh-
bourhood Vy of x such that ANV is a (even starlike) domain with Lipschitz
boundary.

3.b Core of the proof

Before we prove Theorem 1.1 we have to show a result on our first model
constellation for operators V - ¢V, when o is discontinuous:

3.11 Theorem. Let o be a coefficient function on R which equals a real,
symmetric, positive definite d x d matriz o~ on R? = {x € R? : 24 < 0}
and another real, symmetric, positive definite d X d matriz o* on R‘fr =
{x e R?: 24 > 0}. Then —V -0V + 1 provides a topological isomorphism
between WH4(RY) and W=L4(RY) for all q €]1,00].

Proof. Let x = (2/,24) € RY, 2/ € R4 and §; = 0,,, 1 <i < d. Moreover,
we identify {x € R?: 4 = 0} with R4, Tt is sufficient to prove that the
unique solution v € W12(R?) for each of the equations

~V-oVu+tu=f, felLi(RY), 2<g<o (3.16)
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~V-oVu+tu=0f, feli(RY), 2<qg<oc (3.17)

i € {1,...,d}, belongs to W14(R%). To do this, it is enough to show the
estimate

lullwramay < cllfllLamey, f € c, (3.18)

where ¢ denotes a generic positive constant and C° stands for the dense

subset of L4(R?) defined by
C® = {1 € C(RY) :4p) =0 in some neighbourhood of R},

Applying classical elliptic theory of transmission problems (e.g., [52]) to the
equation

—V-oVo+v=f, feC>, (3.19)
we obtain the inequality
||U||W2’Q(RiuRd+) < CHfHLq(Rd) . (3.20)

This assures (3.18) in case of (3.16). We establish (3.18) also in case of
(3.17): looking for the solution of (3.17) in the form u = Jv + w, we
observe that w has to satisfy the following transmission problem:

V-0 *Vuor+w* =0 in R, [w]=—[0w] =g,

[0y 0w] = —[0y.0010] =: ., (3.21)

£ = wlgy, 0] = (W™ — w*)|gas and

where w
0, ow] = (c"v-Vw —oc"v-Vuw)|ger, v=/(0,...,0,1).

Since v* satisfy the homogeneous differential equations near R4~!, the term
[0,,,04v] is a linear combination of 9;0,0%|ga for j =1,...,d — 1. Thus,
by the trace theorem and the continuity of differentiation in tangential di-
rection, we obtain from (3.20) that the estimate

I10s0]llwr-1/a0@a-1) + [[[00,0 00l lw=1/aa@a-r) < e[| Fl ooy (3.22)

holds for i = 1,...,d. We refer to |59, Ch. 2| for the required properties of
Sobolev spaces.
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To prove (3.18), in view of (3.20) and (3.22), it now suffices to show that
the solution of (3.21) satisfies

ol ey < c(Iplw-voagir + lglwrvmoga) - (3.23)

We will reduce (3.23) to well known continuity properties of Poisson oper-
ators (see [30]), the symbols of which can be calculated explicitly. In order
to do so, we solve (3.21) by taking partial Fourier transform with respect to
7' denoted by Fu = Fu(£',z4) for a function u(x) on R, with F~1 being
the inverse transform. We set

+_ (,£)\91 +_ (* + +_ _+
b= = (Uij)m:lv o = (07g,- - 00 1g) BT =05,
where aij; are the entries of the matrices 0. Applying the partial Fourier

transform to (3.21), we obtain
(== 02 +2ia* - € 0y + B - & +1) Fu*r(¢,24) =0 in R%,
Fw™(£,0) — Fwt(£,0) = Fg(¢), (3.24)
(b= 0y —ia™ - &)Y Fw (£,0) — (bT 04 —iat - &) Fw™(¢,0) = Fh(¢').

Ignoring the exponentially increasing solutions of the homogeneous differ-
ential equations in (3.24), we have

Fuw*(¢ 2g) = CF(&) exp{Faq (AT(&) +ia™ - &) /b} (3.25)

with AF(&) = (b*(1 4+ B¢ - &) — (a* - €)?)Y/2. Then we determine C*(¢')
from the transmission conditions in (3.24),

C(§) = CT(¢) = Fy(&),
AT(E) C(E) + AT(E) CT(E) = Fh(E),

which gives
CF=(A + AN Fhr AT(A + AN L Fyg. (3.26)
Note that the ellipticity of V - ¢V implies the lower bound

A:I:(gl) >c <£/> : <£/> _ (1 + |£/‘2>1/2 .
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We will only prove the corresponding estimate (3.23) for the upper half-
space since the proof for R? is completely analogous. From (3.25) and
(3.26) we obtain the representation

w2, xq) = F k(€ 20) FR(E) + F ko€, 1q) Fg(&') =: Kih + Kag
(3.27)
for x4 > 0. Here K, Ky are Poisson operators with the symbols

ki(€ wa) = (A7(8) + AT(€)) ™ exp{—za (AT(£) +ia" - &)},

ko(€,w4) = =A™ (§) k(€ wa) - (3.28)

Using (3.28) and the expressions for A%, it is not difficult to check that ko
is a symbol of order —1, i.e., it satisfies the estimates

||$:inag ?’kl(gla ')HLQ(RJF) S Cmna <€/>—3/2—|a\—m+n (329)

for all ¢ € R, 24 € RT, m,n € N and all multi-indices a.. Analogously,
ks is a symbol of order 0, i.e., the —3/2 in the exponent of (¢') in (3.29)
has to be replaced by —1/2. Therefore, from [30, Thm. 3.1] we obtain the
continuity of the operators

Ky WA Vaa(RIY) e ha(R) G, s W AI(RAT) s (R

for all s € Z. In particular, together with (3.27) this implies that the W14
norm of w on R% can be estimated by the right hand side of (3.23). O

We now come to the proof of Theorem 1.1, starting with the setting
defined under 7): first, one easily notices that the operator in (1.2) is well
defined and continuous for any ¢ €|1, co[. Concerning the continuity of the
inverse, we restrict the considerations first to the case ¢ > 2. For these g,
(1.2) is injective by the Lax-Milgram lemma. Hence, by the Open mapping
theorem it suffices to show that (1.2) is surjective for suitable ¢’s, what we
will do in the sequel. Let for any x € 92 an open neighbourhood Oy be
given which satisfies the following two conditions:

i) Ox N, = 0.
i1) If Q is O, then Ay := O, NQ is CY; and if Q has a Lipschitz boundary,
then A, := O, N has a Lipschitz boundary.
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The existence of such a neighbourhood is almost obvious in the C! case and
follows from Lemma 3.10 in the other case.

We choose a finite subcovering Oy, ..., Ox, of 0 and fix from now on a
number ¢ €]3, co[ such that

—V 4, Ve Wy t(Ay) = WM (Ay) (3.30)

is a topological isomorphism for every [ € {1,...,k}. This is possible by
Theorem 3.9; in particular, ¢ may be chosen as an arbitrarily large number,
if Qis C'. Additionally, observe that (3.30) is then, by interpolation, a
topological isomorphism for any other number from the interval [2, ¢[.
Assume now f € WH(Q) — W~12(Q) and u to be a solution of

V- uwNVu+u=f (3.31)

(which belongs to W, *(Q) by the Lax-Milgram lemma). We will show that
then u € Wy (Q).

The C! property of 0€), assures for every x € 02, the existence of a positive
number oy, an open neighborhood Vi C Q of x and a C* diffeomorphism
Oy Vx — ax€& such that O, (00 N Vy) = ax&y, Px(x) = 0 and the
corresponding Jacobian is identical 1, see |63, Ch.I Satz 2.5|. Without loss
of generality we may assume that the closure of Vy is also contained in €.
The transformed of (=V-uV+1)|y, under @, (see |7, Ch. 0.8]) is then of the
form —V - i,V +1, where fi, is uniformly continuous on ax&_ and on o, &4,
respectively. We denote limyes 40 fix(y) by 05 and limyee, o fix(y) by
o;F. Now let oy be the coefficient function on R? defined by

Ox = 0

d
~ on RY.

By Theorem 3.11, —V - 0,V + 1 is a topological isomorphism between
WLH(RY) and W1(RY) for all x € 9, and all ¢ €]1,00[. Let By €]0, o]
be a number such that

N -1
||O'x — ,UXHLOO(BX&B((Cd)) || (V : O'xv + 1) ||B(W—1,t(Rd);W1,t(Rd)) <1 (332)

holds for t = 2 and t = ¢q. Such px exists because the second factor is
finite by Theorem 3.11 and the first factor can be made arbitrarily small
by the properties of jix, and oy for gx +— 0. Please notice that, by our
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interpolation result Theorem 3.6, (3.32) remains true for any other t €]2, ¢.
Define Uy as the inverse image of §x€ under ®y. Finally, for any x €
(Q\(Up; Ox,USQ,)) let By be an open ball around x which does not intersect

02U 09,. Obviously, the systems {Uy},cpq., {Bx} (U, O 02) form
X 1=1Yx Yieo

an open covering of the (compact) set Q\ (U, Ox, U€)). Let the system
U Uy, B , By, be a finite subcovering. Clearly, then the sets

Xk+1" Xm+19 " —
Oxys ooy Oxs Usy - Us s By s ooy B, 5 €0 form an open covering of €. Let

My oMy M1 - Tms Tt 15 ---Tns o b€ a partition of unity over Q subordinated
to this subcovering. Recalling (3.5), from now on we set t := min(s(2), q).
Assume [ € {1,...,k}. Then v; := nul4,,, due to the property u € Wy (Q)
and Lemma 3.8, satisfies an equation

-V - wNvu +v = f (3.33)

where jy = 1] 4, and fi € WH (A, ). Because (3.30) also is a topological
isomorphism if ¢ is replaced by ¢ there, we get v; € Wol’t(.Axl) what gives
nuy € Wyt (Q). Let next [ be from {k+1,...,m}. Then the property u €
W,y ?(Q) and Lemma 3.8 imply that v, := My, satisfies an equation (3.33),
where this time p1; := ply, and fi € W™ (U, ). Moreover, it is clear that
both, v; and f;, have their supports within Uy,. We transform (3.33) via the
C'-mapping @,,. This leads to the following equation for the transformed
objects R

=V 1, VU 4+ 0 = fi (3.34)
on (&, where fi e W=EHB5.E). Additionally, f; has its support in Bx,E.
what is also true for v;. Let ; be the following coefficient function, defined
on R%:

. g, on B, E
o] = d
0%, on R\ 5, €.

Because f; and 9 have their supports in Py, €, (3.34) can be extended to
an equation on whole R% namely: let ¢; be a C* function on R? which is
identical 1 on supp(0;) U supp(f;) and which has its support within Gy €. If

we define F) by (Fj, w) = <fl, Qw> for w € W' (R%) and V] as the extension

of 9 by zero to whole R, then F; € W~1(R?) and the following equation
is fulfilled:

SV G VVi+ V= -V 0 VVi+ Vi+ V- (0x, — 61)VVi=F.  (3.35)
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Because (3.32) is in particular true for our specified ¢, this implies
3 -1
HV . (le — O'l)v||B(W1,t(Rd);W71,t(Rd)) || (—v . ale —|— 1) HB(W*lvt(Rd);let(Rd)) S

. ~1
< flox, — Ul||Loo(Rd;B(<cd))H (V 0%,V + 1) HB(W*lvt(Rd);lef(Rd)) =

~ -1
= lloxs = il emen [ (V - 0V + 1) lsgr-segaywa < 1.

This, together with Proposition 3.1, then implies that —V - &V + 1 :
WE(RY) — WLHRY) is also a topological isomorphism. Consequently,
V, € WHY(RY), what gives &, € W,"(3x,E) and, hence, v, = My, €
Wy (Uy,). Because the support of myu is within Uy, we obtain nu € W, ()
forall l = k+1,...,m. Lastly, if [ € {m + 1,...,n}, then one also ends up
for v, := mu|p,, with an equation of type (3.33) and this same is true for
vg := Nou|q,. The corresponding right hand sides are from W~1(By,) and
W=LH(Q,), respectively (see Lemma 3.8). By Theorem 3.9 nyulp, and noula,
are then from Wy (By,) and W,"(€Q,), respectively. Clearly, then mu and
nou must be from W, (Q) what altogether gives u € Wy"(€). Exploiting
this and iterating the above considerations one improves the summability
of Vu in the light of Lemma 3.8 step by step and finally ends up with
u € Wol’q(Q). This proves the assertion for A = 1. For all other \’s we
obtain the proof by the compactness of the resolvent and the fact that no
A with A < 0 can be an eigenvalue. The case ¢ < 2 is obtained by duality.
We will now point out how to prove Theorem 1.1 if Condition 7) is fulfilled.
The only difference in the proofs of i) and i) in Theorem 1.1 is that the
boundary points must be treated in different ways; for this we prove the
following

3.12 Lemma. For any x € 052 there is a neighbourhood Oy and a ¢ = ¢, >
3 such that Ox N ) is a Lipschitz domain and

V-uV+1: W0, NQ) — W (0, NAN)

15 a topological 1somorphism.

In contrast to case z) one cannot treat the points from 92 in common,
but has to divide 02 into three subsets which have to be treated separately:
a) 90\ 90,
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b) the inner points of 9 N 9N, within 0

¢) the boundary points of 92 N 9, within O

a) If x € 09\ 0€),, then there is an open neighbourhood Wy of x such that
Wy N Q does not intersect Q.. Namely, if this were not the case, then x
would be an accumulation point of )., and, hence, belongs to Q.. Because
x is not from 2, this would mean x € 0€),, what is wrong. By Lemma 3.10
we can pass to a (possibly) smaller open neighbourhood Oy such that O, N
is again a domain with Lipschitz boundary. Thus, the coefficient function is
uniformly continuous on O, N2 and the assertion follows from Theorem 3.9.
Le us now consider case b). What we want to show is the following: if x is
an inner point of 92 N J€), within J€), then one can find a neighbourhood
O of x such that

i) OxNQ =0, NQ,

and

1) Ox N is a domain with Lipschitz boundary.

First we construct an open neighbourhood My of x which fulfills M, NQ =
My N Q, Namely, because (2 is a Lipschitz domain (see [28, Ch. 1.2] or [63,
Ch. 1.2.3|) there is an open neighbourhood Wy of x and a bi-Lipschitz map
Uy : Wy — € such that Uy (x) =0, Uy (QNWy) =& and U, (0Q N W) =
&y. Because x was an inner point of 9€2 N 0€),, there is a positive number
r« such that & C (I N IN,) C ¥(IQ,). But, by supposition, €, itself
was a Lipschitz domain, too; thus there is a number sy €]0, 7] such that

Uy (082) N $xE = $x&p. (3.36)
Now we define My := W ! (sx&) and write
MxNQ = (MxNQ) U (MeNQNI%) U (M (Q\ Q).  (3.37)

From the definition of My and (3.36) it is clear that M, NQNIS, is empty.
Thus, (3.37) reduces to

MxNQ = (MxNQ) U (MxnN (2\Q)). (3.38)

But M, N is -as a continuous image of a connected set- itself connected.
Thus, one of the (open) sets on the right hand side of (3.38) must be empty,
what is definitely not true for My N Q.. This gives M, N Q = M, N Q..
Due to Lemma 3.10 we may pass to a neighbourhood O, C My which then
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(obviously) also satisfies ¢) and, additionally, 7). Hence, the coefficient
function is also uniformly continuous on Oy N €2 and one can again argue
by Theorem 3.9.

It remains case c), which we will consider now. For doing so, we first
establish some preliminaries:

3.13 Proposition. [23] Assume that K C R?® is a conver polyhedron and
that H C R? is a plane which contains an inner point of K. Let K, and
K_ be the two components of KK\ 'H, and let p be a function on IC, constant
on K, and K_, and whose values are two real, symmetric, positive definite
3 X 3 matrices there. Then there is a ¢ > 3 such that

—V -V WQ) — W(Q)
18 a topological 1somorphism.

3.14 Lemma. Let K C R? be a conver set whose closure contains 0. As-
sume that p is a bounded, measurable, elliptic coefficient function on IC,
taking its values in the set of real, symmetric 3 X 3 matrices and which
additionally satisfies

plax) = p(x) forall x€K,a€]0,1] (3.39)

Let for any o €]0,1] the space Wy (oK) be equipped with the norm 1 —
1

(JoxcIV0ledr) " Then

—1 -1
1=V Pl V) sy taaomwiaen = 1=V 0V) s oo
(3.40)

Proof. One easily checks that for any ¢ € [1,00[ and any « €]0, 1] the
mapping
3
Tya : Wy '(K) 3 4 a'"59(a™'())
provides an isometric isomorphism from Wy (k) onto Wy (k). After-
wards one verifies the identity

T3 (=Y plaxV)Tyo = =V - pV.
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Assume now that x is a boundary point of 9Q2N0S), within 0€2. Then, by
supposition, there is an open neighbourhood W, a C'! mapping ®,., a convex
polyhedron Ky and a plane Hy which together satisfy the conditions of
Definition 1.2. Modulo a translation we may additionally assume ®y(x) = 0.
Let px be the coefficient function on Iy which is induced by p|yy, under the
mapping @,. If £ and K are the two components of Iy \ Hy, then py is
uniformly continuous on both of them. Define the matrices

T= 1 < d pf:= i < 3.41
poi=_ lm px(y) andpe= lmope(y) (3.41)

and the coefficient function py on Ky by
+on CF
pr 1= {px on M (3.42)
Py on K.
Let ax €]0, 1] be a number for which the following is true:
axPx(Wx) C O (Wk) (3.43)

and

- JURNER |
€ss GSUFI)C 1x(¥) = Px(¥) | 5(cs) |l (—V : va) ||B(WO’1"1(IC);W01"1(IC)) <1
yYcax/Aix

This is possible due to (3.41) and (3.42). In view of Lemma 3.14 then also

. - ~1
€ss ESUF’)C ||Px(Y)_px(Y)||B(<C3)||(_v'/)x|axlcv) ||B(Woflvq(ax;c);wqu(ax;c)) <1
yYcaxAx
is true. Completely analogous to the above considerations one obtains by
the perturbation theorem that

—V - pxlankc V : Wl (axK) — W K)

is also a topological isomorphism. If one defines O, = ®! (axq)x(Wx))
(what makes sense in view of (3.43)) then @ (OxNQ) = a, Kx. The latter is
a domain with Lipschitz boundary and, hence, a Lipschitz domain. Because
®_! is in particular bi-Lipschitz in a neighbourhood of oKy, Ox N itself

X

is a Lipschitz domain (see |28, Ch. 1.2 Lem. 1.2.1.3|. Moreover,
—V VW (0, N Q) — W0, N Q)
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is a topological isomorphism. But the resolvent is compact and —1 obviously
not an eigenvalue, hence Oy also fulfills the assertion of Lemma 3.12. With
the help of Lemma 3.12 the proof for case ii) of Theorem 1.1 can be carried
out as in case ).

3.15 Remark. The reader may possibly ask why in case i) we restrict
ourself to d = 3. The answer is: the essential aim of this paper is to prove the
isomorphism property for a ¢ which is larger than the space dimension d. In
this spirit, the two dimensional case (even under more general assumptions)
is covered by |29]. If d > 3 we do not have results for the corresponding
model sets. Nevertherless, d = 3 as the 'physical’ dimension seems to us
the most important case.

In fact, in |23] more general geometric (nonconvex) settings are treated.
However, the technicalities here would get much more involved.

3.16 Remark. If €}, does not touch the boundary of €2, then one can
prove the analogous result for the Neumann operator, namely: —V - uV 4+ \

provides a topological isomorphism between TW14(Q)) and (W‘l’q'(Q)> for

a ¢ > 3 and all A from the open right half plane. In this case one uses
Zanger’s result [64] instead that of Jerison /Kenig.

3.17 Remark. The reader should notice that the result generalizes to the
case where finitely many C* domains are included in Q having positive dis-
tance to each other and the coefficient function being uniformly continuous
one each of them and, of course, on the complement of their union. The
proof runs along the same lines and has not been carried out here only for
notational simplicity.

3.18 Remark. The isomorphy property claimed in Theorem 1.1 remains
true in case of real spaces W, 4(Q), W~14(Q) and real X’s, because —V -
1V + 1 commutes with complex conjugation.

4 Perturbation by lower order terms

In this chapter we will present a class of first order terms under the pertur-
bation of which our regularity result is (essentially) maintained:
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4.1 Theorem. Let ¢ > 2 be a number such that
—V - pV : Wy l(A) — WH(A)
is a topological isomorphism. Assume r > d,e > 0,6 €]0, 2],
. 1 1\—1 .
s = ¢ifq>d ) t.= (E_I—E) fa>d
d+eifqg<d difg<d.

and ay,...,aq € L"(A), by, ...bg € L*(A), c € L*(A).

i) The first order operator

15 relatively compact with respect to —V - pV.

ii) The operator

8:)31 &rl

d
u—>—V-,0Vu+Zal +cu (4.1)
=1

also has Wol’q(A) as its domain of definition.

iii) The spectrum of the operator from (4.1) consists of countably many
isolated eigenvalues with finite (algebraic) multiplicities.

Proof. 1) It suffices to show the assertion for the terms separately: each op-

erator (% maps Wol’q(A) continuously into L4(A). The multiplication oper-

1 _
ators ay, ..., ag then continuously map L?(A) into LGt 1(A) — W54(A).
Thus, for the terms ala%l the assertion results from the compactness of the

embedding W=54(A) — W~24(A). Concerning the terms %jgl“) we first

consider the case ¢ > d: then one has the compact embedding Wy %(A) —
L*>(A) which implies the compactness of the mappings

Wy l(A) 3 u — bu e LY(A) (4.2)



5 NONSMOOTH INTERFACES: A COUNTEREXAMPLE 25

and

0(blu)

Wy i(A) > u — o

e WLta(A). (4.3)

d(d+e)

If ¢ = d, then the mapping Wy %(A) — L~ (A) is compact and so are
the mappings (4.2) and (4.3) in this case. It remains the case ¢ < d:

putting 7 := 24— one verifies the compactness of Wy d(A) — WgY(A) —

L(%_g)fl(]\) and, hence, again the compactness of the mappings (4.2) and
(4.3). We inspect the c-term, first considering the case ¢ > d: then the
mapping Wy Y(A) — L*(A) is compact. Consequently, the mapping

Wal(A) 3 u — cue LD (A)  WH9(A)

is compact, too. If ¢ = d, then the embedding W,“(A) — L%(A) is
compact. This implies the compactness of the mapping

W A) — L2% (A) 5 u — cu € LE(A) — WL4(A).

What concerns the case ¢ < d, it suffices to consider 0’s from |1, 2[. Then we
1 1y—

have the embedding W, “(A) < L&~a) 1(A). Consequently, the mapping
Wy l(A) > u— cu € L(%+%)71(A) s WIS(A) — WL9(A)

is also compact. ii) follows from a well known theorem on relatively com-
pact perturbations (see [38, Ch. 1V.1.3 Thm. 1.11]).

iii) Obviously, the resolvent of —V-pV is compact. Hence, the essential spec-
trum of this operator is empty (see |38, Ch. I11.6.8 Thm. 6.29|). Because the
perturbation is relatively compact, the essential spectrum of the perturbed
operator (c.f. (4.1)) is also empty (see |38, Ch. IV.5.6 Thm. 5.35|). Thus,
the assertion follows from another well known theorem (see [38, Ch. IV.5.6
Thm. 5.33]). O

5 Nonsmooth interfaces: a counterexample

The reader may have possibly asked himself whether the C! property is
necessary or may be weakened without changing the result. The following
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counterexample (see [23]|) shows that the situation changes dramatically
if the interface has only one corner point. In particular, this shows that
piecewise C! is (by far) not sufficient for our result. Namely, quite parallely
to the classical example of Meyers (see |[47|) the integrability exponent for
the gradient of the solution of the (planar) homogeneous elliptic equation
tends to 2 in dependence of a suitable parameter. The difference to Meyer’s
example is that there the ellipticity constant tends to zero, while here a
nonsmooth interface occurs and the norms of the coefficient matrices tend
to infinity.

The background for the considerations in this chapter is the well known
connection between singularities for the solution of an elliptic equation and
the eigenvalues of an associated operator pencil of Sturm-Liouville opera-
tors, see [46] or [23].

We consider the following coefficient function on R?%:

0
t2> ifz,y >0

(. y) = 0
. ) elsewhere on R?, t > 0,

S+ O =

and, correspondingly, the following elliptic problem
V- uVu=0. (5.1)

Proceeding as in [46] we are looking for solutions @ € W12(]0, 27[) of the
(generalized) Sturm-Liouville equation

—(by@') — N(by@t) — Aby@i’ — Nboti = 0, (5.2)
combined with the compatibility conditions
w(m/2) = v(x/2), w(0) = v(27),

(628911) + )\bl’w)‘o = (ang’U + )\bl’U)‘Qﬂ— s (53)
(bgagw + )\blw>|ﬂ—/2 = (62891) -+ >\b1’U)‘7T/2 s

if w= ﬂ|[0,7r/2] and v = ﬂ‘[ﬂ/ggﬂ].
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The coefficient functions by, b1, by are defined as follows:
dof | cos? 0+ t2sin? 6, if 0 € [0, 7/2]
bo(0) = .
t, if 0 € [1/2,2n]
det | sin® 0 + 12 cos? 0, if 6 € [0, 7/2]
ba(0) = .
t, if 0 € [1/2,2n]
det | (t* —1)sinfcos, if 0 € [0,7/2]
bi(0) = .
0, if 0 € [1/2,2n]

(5.4)

In order to determine the A\ with the smallest possible (positive) real part,
we use the ansatz functions (see [17])

w(h) == cy(tcosf +isinh)* 4 c_(tcosh — isinf)*

and
v(0) := dy cos A0 + d_ sin \@

with unknown coefficients ¢y and di.. Using (5.3) and (5.4), we can eliminate
c+ and then get the equations

dy(t* — cos27\) — d_sin 27\ = 0,
dy sin 27\ 4 d_(t* — cos 2m\) = 0. (5.5)
Obviously, the system (5.5) is nontrivially solvable in d, d_ iff
(t* — cos2m\)? +sin? 27\ = 0,
or, what is the same,

it

cos 2T\ = = cosh(AInt). (5.6)

Writing cosh(AInt) = cos(iAInt) and taking into account the identity

. O0+p . O0—p
cos — cosp = —2sin 5 S ——,
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(5.6) is equivalent to
(A : (A :
sm(§(27r + Zlnt)> s1n<§(27r - zlnt)) =0.
This is the case iff
A :
5(27?:&@1:(115) =2kr, keZ.

Thus, the A with the smallest (positive) real part is

872 _ Armint
A= 5 ) 5
472 + In"t 472 + In“t

One easily notices: If ¢ — oo, then the real parts of these \’s converge
to zero. Assume that A\ with R\ € (0,1) is a complex number and u, €
W12(0,2m) a corresponding function which satisfies (5.2) together with the
compatibility conditions (5.3). Then the function

2

u(x) = (22 4 22)M20

ix (arg(x)) € W (R?)

is a solution of equation (5.1) in the distributional sense. Moreover, )
does not vanish identically and, hence, its absolute value has a strictly
positive lower bound at least on a (nontrivial) subinterval of (0,27). Thus,
u € WEHI(R?) for ¢ € [2, (£22)71), but not for ¢ = (:52)~1. Tending
with ¢ to oo, these solutions lack any common (local) integrability exponent

larger than 2 for their first order derivatives.

5.1 Remark. The example is not restricted to two dimensions. One can
add arbitrarily many dimensions by extending the solution constantly in
these directions — at least in a neighbourhood of zero.

6 Parabolic operators

Very often elliptic operators in divergence form occur as the elliptic part of
parabolic operators (see |5] or [31]). In this chapter we will deduce func-
tional analytic properties for the corresponding parabolic operators from our
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elliptic regularity result. If X is a complex Banach space, then we denote by
Whr(10,T[; X) the set of elements from L"(]0,T[; X) whose distributional
derivatives also belong to L"(]0,T[; X) (see |4, Ch. III 1.1] for details). The
main result reads as follows:

6.1 Theorem. Let A be a bounded domain with Lipschitz boundary and p a
measurable, essentially bounded, elliptic coefficient function which takes its
values in the set of real, symmetric d x d matrices. Assume that q €]1, 00|
15 a number such that

—V - pV Wl (A) — W H(A)

18 a topological 1somorphism.

Then % — V - pV satisfies mazimal parabolic regularity on W—H(A),
precisely: If r €]1,00[ is fived, then for any f € L™(]0,T[,W~19(A)) there
is ezactly one function w € L™ (10, T[; WH4(A))NWr(]0, T[; W=14(A)) such
that

ow

YT V-pVw=f and w(0)=0. (6.1)

6.2 Corollary. Under the above suppositions —V -pV generates an analytic
semigroup on W14(A).

In order to prove this theorem we first establish some auxiliary results:

6.3 Theorem. Let A be a Lipschitz domain and p as in the previous the-
orem. Assume q €]1,00[ and let A, be the LI(A) realization of V - pV,
further D, the domain of this realization. Then % — A, satisfies mazimal
reqularity over LY(A), in other words: If r €]1,00[ is fized, then for any
felLr (]O,T[; Lq(A)) there is exactly one function w € L" (]O,T[; Dq) N
W (10, T[; LY(A)) such that (6.1) is satisfied.

Proof. The semigroup generated by Ay on L*(A) admits upper Gaussian
estimates, see [8] or [6]. But upper Gaussian estimates imply maximal
parabolic regularity on L? spaces [32], see also [19]. O

6.4 Theorem. Under the suppositions of Theorem 6.1 (—V - pV)'/? pro-
vides a topolocical isomorphism between W, *(A) and L*(A) and between

LE(A) and W=5(A) for all s € [¢, q].
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Proof. First, interpolation (see Theorem 3.6) and duality show that —V-pV
is a topological isomorphism between Wy*(A) and W=1*(A) for all s €
[d',q]. A deep result of [8, Thm. 4| yields the continuity of the map

(=V - pV)2 W5 (A) — L*(A) (6.2)
for all s €]1, 00[. By duality one obtains the continuity of

(=V - pV)2 L3 (A) > W (A) (6.3)
for all s €]1,00[. Hence, for s € [¢/, g] we can estimate

—1/2
1(=V - pV) /||B(LS(A);W01’S(A)) =

-1

<=V o) yw-rean | (=Y - pV) s —rsaywieay-
This proves that (6.2) in fact is a topological isomorphism, if s € [¢/, ¢
The isomorphism property between L*(A) and W ~1(A) follows from this

by duality. O

6.5 Corollary. Let D, denote the domain of the LI(A) realization of —V -
pV. Then (—V - pV)1/2 provides a topological isomorphism between D, and
Wy (A).

Proof. —V - pV is a topological isomorphism between D, and L?(A) while
(=V - pV)/2 is a topological isomorphism between Wy?(A) and L¢(A). O

We will now give the proof of Theorem 6.1: it is clear that the established
isomorphisms for (=V - pV)/2 induce the following isomorphisms:

—1/2

(—V : pV) L (]O> TT; W_LQ(A)) — L (]O> TT; Lq(A)) (6.4)
(=V - pV)!2: L7(J0,T[; Dy) — L (10, T[; Wy (A)) (6.5)
(=V - pWV)Y2 W (10, T LYA)) — W (10, T WH(A)) (6.6)

Further, it is well known that the solution w of (6.1) is obtained as w(t) =
f(f et=9)V'PV f(s)ds. Hence, the parabolic solution operator commutes with
(—=V - pV)2. Consequently, the maximal regularity property on L7(A)
transports via the isomorphisms (6.4), (6.5), (6.6) to the space W~19(A).
Corollary 6.2 is implied by the well known fact that maximal parabolic
regularity implies the generation property of an analytic semigroup.
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6.6 Remark. The authors are convinced that the results on the parabolic
operators are adequate instruments for the treatment of (even non-autonomous)
semilinear (see [49, Ch. 5.6]) and quasilinear parabolic problems [45, 50, 16].
The key point concerning quasilinear equations of, say, the type

%—1: - V- Gw)uVw = H(t,w, Vw)

is the fact that in case of three-dimensional domains and ¢ > 3 suitable inter-
polation spaces between Wol’q and W54 embed continuously into Holder
spaces. Thus, if G is a strictly positive C! function, then the coefficient
functions G(w)p are of the same quality as p (in the spirit of Theorem 1.1).
Hence, the domains of the operators V - G(w)uV do not depend on w if
this runs through a suitable interpolation space (see [51]) - what often is
required in quasilinear parabolic theory. We will accomplish these things
elsewhere in detail.

7 Appendix

In the appendix we give the announced proof of Lemma 3.4: let xy be any
point from OA. Then for every ¢ > 0 there is an an orthonormal basis
e, ...,eq of R? such that A can be parametrized in a neighbourhood of x,
via a Lipschitz function ¢ : R“! — R by

X-eq = go(x ce1, .., X - €d—1)

and the Lipschitz constant lip(p) of ¢ does not exceed y+e¢. If K : R4 — R4
is a linear bijection, then O(KA) may be parametrized in a neighbourhood
of Kxq by

Kx - (K Yey=p(Kx- (K ") e,..Kx (K ) es). (7.1)

Clearly, {(K1)*e;, (K1) *ey, ..., (K~1)*e4} is not necessarily an orthonor-
mal system. In the sequel we will modify the representation (7.1) in such
a way that the required orthogonality of the representing coordinates is
re-established. Let {fi,..., fs_1} be any orthonormal basis in the subspace
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which is generated by {(K~")*eq, ..., (K ')*eq_1 }. Then, ifk € {1,...,d — 1},
any (K~1)*e, may be written as

d—1
1)*€k == Z akjfj- (72)
j=1
In this notation, (7.1) reads as
d—1 d—1
Kx- (K_l)*ed = (p(z OéleX . fj, ey Z OédeX . fj) (73)
j=1 j=1

Let f; be a unit vector, orthogonal to {fi,..., fa_1}. Then, according to
(K Y eq = S0 (KY)*eq - f; f;, (7.3) can be expressed as

7j=1

d—1 d—1
1
Kx - fd = m((p(; OzleX . fj7 ...,;O&d_leX : fj>—

—ZKX fi (K™ )eq- f]> (7.4)

We denote the mapping which assigns to the vector (Kx - fi, ..., Kx- fq_1)
the right hand side of (7.4) by .

Finally we have to estimate the Lipschitz constant lip(y)) of 1: obviously,
one has

QL

, 1 . i 2
lip(¢)) < m(zw( @)l + | S ((K)eq- 1)),

J=1

(7.5)
one has

. ) 1 _ T
Next we will derive a bound for e fal = kKT

K~ fq- e;j = fa- (K_l)*ej =0 forj=1,...d—1.
Hence, K~'f; = Aeg, or, equivalently, Ke; = )\fd This implies

1

o =5 fdll [ Keall < [IK]-
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Altogether, we obtain

1 1 1
— = — <|IK]. 7.6
[(K=Y)*eq- fal - lea- K=1fal | \_” | 0

By definition, {ay;},; is the matrix representation of (K1) |spanfer,..ea_1}
with respect to two orthonormal bases {ey, ...,e4_1} and {f1, ..., fa_1}. Con-
sequently, one has

levellsa-1) = ICK™) [spanter,oeanp | < NET = (1K (7.7)

Lastly, one estimates

d—1 d

S (K rea ;)" < (| D (ea- K1),

j=1 7j=1

and recognizes that the expression of the right hand side equals ||[PK || <
| K|, where P is the orthoprojector x — x - egeg. This, together with
(7.5), (7.6) and (7.7) gives

lip(¥) < | K[[IEK [ (lip(e) + 1) < KK (y + e+ 1).
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