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ABSTRACT. In this paper regularization-discretization procedures are developed 
for the numerical solution of moderately ill-posed linear first kind equations ap-
pearing as boundary integral equations for Dirichlet boundary value problems, 
e.g. the Dirichlet-Laplace problem. The method consists in firstly regularizing 
the noisy right-hand side by trigonometric interpolation and then applying a tri-
gonometric collocation procedure to the regularized data. Convergence rates are 
obtained in Sobolev spaces, Holder-Zygmund spaces or Holder spaces according 
to the error analysis of the used procedures for exact data. The method can be 
generalized to other kinds of equations and approximation procedures. 

1. INTRODUCTION 

In this paper we will consider linear integral equations of the first kind 

Au=g (1.1) 

with a smoothing operator A. More precisely, in a Banach scale Es let the operator 
A map a space Bµ injectively onto a space Ev, where 

e=v-µ>0 

is a measure of the smoothing effect of A. Considering A as a mapping of Bµ into 
Bµ with a dense range the number e also characterizes the degree of ill-posedness 
of the problem (1.1) as weakly (0 < e < 1) or moderately (1 :=; e < oo) ill-posed. 
Besides, in the language of pseudodifferential operators the negative number -e is 
the order of the pseudodifferential operator A. 

Equations ( 1.1) of that type appear as boundary integral equations for Dirichlet 
boundary value problems. They enjoy a growing interest of engineers and mathe-
maticians who are providing approximation procedures for their numerical solution 
in an extending rate. If one starts at exactly given data such not severely ill-posed 
problems can be investigated without regularization. 

On one hand the solutions of the considered integral equations are auxiliary quan-
" tities for the solution of boundary value problems given by a single-layer potential 
where integration removes the ill-posedness if the boundary value problem is well-
posed. 

On the other hand in many cases the solution of the integral equation has its own 
independent physical meaning. For instance, in the case of Symm's equation the 
solution can be a distribution of forces, mass or charge density or potential flow, 
while the right-hand side has the meaning of displacements, Newton or Coulomb 
potential or temperature (cf. [5], [4], (9]). 
Therefore, problems (1.1) with noisy data g can be understood as indirect measu-
rement problems where regularization techniques are in order. 

In this paper we will develop regularization procedures for the considered problem 
(1.1) by stabilizing trigonometric collocation procedures taken from [13], (10], [3] in 
the one-dimensional, periodical, elliptic case. Our method is outlined in section 2. 
It can be called a direct discretization method where the pointwise measurements 
are used directly in the computation and the number of equidistant measurement 
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points is taken as the regularization parameter. Concerning other regularization 
methods for that kind of problems, especially Symm's equation, we refer to [2], 
[6], [7], (8]. Section 3 gives some preliminaries about trigonometric polynomials and 
interpolation. The sections 4, 5, 6 concern the regularization procedure and its error 
analysis in Sobolev spaces, Holder-Zygmund spaces and Holder spaces according to 
[13], [10] and [3], respectively. 

I am indepted to S. ProBdorf and G. Vainikko for discussions and useful remarks. 

Throughout the paper the letter c will describe a generic constant. 

2. DESCRIPTION OF THE METHOD 

Let us consider the problem 

Au=g (2.1) 

where A is an injective bounded linear mapping of the Banach space X onto the 
Banach space Y, i.e. D(A) = X, R(A) = Y. Then A-1 as a mapping from Y onto 
X has the same properties. The problem (2.1) is well-posed. 

Let further the problem (2.1) have been solved numerically by the procedure 

Thg, h > 0, 

with a bounded linear operator Th from Y into X such that 

IJA-1g - ThglJx ~ 0 (h ~ 0) for all g E Y (2.2) 

with a known rate of convergence depending on the discretization parameter h. 
Then by the Banach-Steinhaus theorem the stability result 

(2.3) 
holds uniformly in h. 

Now, let X and Y be function spaces over a certain domain and let us assume that 
g is observed by the values 

gi EC, j = 1, .. ., M (2.4) 

at the points 

ti, j = 1,. .. , M (2.5) 

of a grid Gd characterized by a parameter d. (In the one-dimensional case of equi-
distant meshpoints Gd can be characterized by the real parameter d = 1/ M.) Let 
the observed quantities gj have the property 

(2.6) 

where 5 > 0 is a given noise level. Clearly, to approximate g for 5 ~ 0 we must 
have also M ~ oo. 

In the case when g is given by an observation (2.4), (2.5), (2.6), a crucial point for 
the numerical solution of (2.1) is to find a number 

d = d(5) 
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and elements 

P(d,5) E Y 

with the property 

Ilg - P(d, 5)llY ~ 0 (5 ~ 0). 

Then, as an approximation of the solution A-1g of (2.1) 

can be taken where hand dare chosen appropriately. (In our approach we will take 
h = d = d(5).) 
This can be seen from the triangle inequalities 

or 

by estimating the first terms on the right-hand side of (2. 7) resp. (2.8) using the 
stability (2.3) of Th resp. the continuity of A-1, and the second terms using the 
convergence (2.2) of the procedure Th. . · 

More generally, P( d, 5) can be considered as a regularized approximation for the 
exact data g where d is the regularization parameter. The construction of P( d, 5) 
depends on Y (the range space of A) and the data and may be tuned to an a-priori 
information about the solution u (translated to g = Au). It must not depend on the 
operator A and the given procedure Th· The ill-posedness of the problem (2.1) in 
the case of disturbed data then appears as the ill-posedness of the approximation 
of g in the state space Y. 
In [2] the auxiliary regularization process was the regularization of the (compact) 
imbedding Hs C 1 2 that can be interpreted as data smoothing of observations in 
12. 
In this paper the construction of P( d, 5) is closely connected to the regularization of 
an ill-posed approximation problem: to reconstruct g from pointwise measurements 
using trigonometric interpolation. Here the number of equidistant measurements 
serves as the regularization parameter. The parameter choice answers the question 
of how many measurements are needed for given 5 to get convergence in Y of trigo-
nometric interpolation polynomials to the exact data g. 

It should be remarked that in the here considered special case where a trigono-
metric collocation procedure Th is combined with trigonometric approximation for 
the right-hand side g in the just described ,sense the resulting estimates could be 
gained more directly by a mere application of the inverse property of trigonometric 
polynomials ( G. Vainikko ). 
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3. NOTATIONS AND TRIGONOMETRIC INTERPOLATION 

In this paper we are interested in periodic problems over smooth closed curves in 
JR. 2• (Open arcs can be treated by a similar approach.) 

Consequently, let us consider the one-dimensional torus 

1r = R/Z 
and the spaces of complex-valued functions 

with the norms 

ll·lls, ll·lla,ll·llc 
respectively, where H 8 (1r) = Hs is the scale of Sobolev spaces over 1r. Let be further 

<pz(x) = e27rilx x E 1r, l E Z, 
ZM= {l E Z, -M/2 < l:::; M/2}, MEN, 
XM = span{<pz, l E ZM}. 

Additionally, let us consider the equidistant mesh on 1r 

Gd={jd, l::;j::;M}, d=l/M, 
CM the M-dimensional vector space over C. For a given 9d E CM, 

9d = (g1, ... , 9M), 
there is a unique trigonometric interpolation polynomial 

Sdgd( x) = L (d L 9ie-27riljd) <pz( x) 
ZEZM 15i5M 

with the properties 

Sdgd E XM, 
S d9d(j d) = g i , j = 1, ... , M . 

Let for g E 0(1r) 

Sdg 
be the unique d-th interpolation polynomial of g, i.e. Sdg E XM and 

Sdg(jd) = g(jd), j = 1, ... , M 
hold. 

Lemma 3.1. Let <p, 'lj; E XM. Then 

j cp(x),,P(x)dx = d L cp(jd)'lj;(jd). 
'][' l~j~M 

Especially, for 'lj; E X M 

ll,,Pll~ = d I: l'tf;(jd)l 2
• 

15i5M 
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Proof. Using the orthonormality of the basis (3.1) in 1 2 the lemma follows straight-
forwardly from orthogonality relations for trigonometric sums: If 1 ::; j, k ::; M, 

L e-27rild(j-k) = M Djk . 

ZEZM 

Lemma 3.2.· {Inverse property.) Let 'I/; E XM. Then for r ~ s 

(3.6) 

Now, let us consider the trigonometric interpolation as a regularization method for 
the reconstruction of a function f from measured values on an equidistant mesh. 

Let f E Hu, a > 1 /2, 0 ::; s < a. Then the approximation property 

(3.7) 
holds. (See e.g. [1] or (12].) 
Let f~ E CM, f~ =(ff, ... , fiI), d = 1/M, with 

IJJ - J(jd)I ::; 5. (3.8) 

Lemma 3.3. For f E Hu, a > 1/2, 0 ::; s < a, we obtain under the assumptions 
(3. 7) and {3.8) 

If 

then 

Proof. We have 

llJ - Sdfill.,::; llJ - Sdflls + llSdf - Sdfill., · 
Since Sdf, Sdf~ E XM we get from (3.6), (3.5), (3.3), (3.4), (3.8) 

llSdf - SdfJll.,::; cd-"llSdf - SdfJllo 

::; cd-s (d L IJ(jd) - Jf 12) 

112 

15.i5.M 
::; cd-" 5. 

This and (3. 7) give (3.9), (3.11) is an easy consequence. D 

Remarks. 

(3.9) 

(3.10) 

(3.11) 

(1) Fors = 0 the reconstruction off is well-posed. The numbers > 0 is related 
to the degree of ill-posedness. 

(2) The a-priori parameter choice (3.10) corresponds to the number of equidi-
stant measurements being necessary at the noise level 5. 
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4. STABILIZATION IN SOBOLEV SPACES 

In this and the following sections we consider elliptic first kind boundary integral 
equations of negative order /3 on a smooth closed boundary curve r in lR 2• By a 
suitable ccxi-parametrization such an equation can be transformed to a first kind 
integral equation 

j K(t,r)u(r)dr = g(t), t E Jr 
'l1' 

over the one-dimensional torus Jr. A special case is Symm's equation where 

and ' is a parametrization of r. 

( 4.1) 

Let us assume in this section that ( 4.1) is of the type ( 1.1) mentioned in the intro-
duction, where the operator A maps the Sobolev space Hs injectively onto Hs-(3 for 
some s 2:: 0. 

Following [13) we shall first give a numerical procedure Th and its error analysis in 
Sobolev spaces. Then, we shall develop a regularization procedure that stabilizes Th 
in the case of disturbed data. 

Consider an equidistant mesh Gh on Jr, h = 1/ N, NE N (cf. (3.2)). The procedure 
Th is defined for g E Hs-(3 as 

where wh is the solution of the matrix equation 

( 4.2) 

Lh = (z1:.) 
1.J ij ' '/, =]' 

a(t) = j K(t, r)dr. 
'l1' 

Th is a continuous, linear operator from Hs-f3 to Hs with the property 

( 4.3) 

As to the error analysis of Th we cite Theorem 3.2 from [13]: 
"Let u = A-19 be the solution of (4.1) and let u E Hu, a > /3 + 1/2. Then, for 
sufficiently small values of h > 0 the equation ( 4.2) is uniquely solvable and the 
error estimate 

( 4.4) 

holds for /3 ~ s < a ~ s - /3 + 1". 
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Now, let us consider noisy data g. Let be 5 > 0, Gd, d > 0, an equidistant mesh, 
g~ E CM, d = 1/M, and 

lg (j d) - gJ I :::; 5 ' 1 :::; j :::; M . ( 4.5) 
As an approximation for the solution u of ( 4.1) we regard 

u~ := TdSdg~, ( 4.6) 

i.e. we choose h = d and 

P( d, 5) = Sdg~ 
in the notation of section 2. This choice leads to an effective numerical procedure 
since the measured values are directly used. 

Theorem 4.1. Let be u E Hu, a> f3 + 1/2. Then for 

we have 

Choosing 

we obtain 

(3~s<a~s-f3+l 

1 d r-..J 5 u-{J 

Proof. From ( 4.6) and the triangle inequality we have 

llu~ - ulls = llTdSdg~ - A-1glls 
:::; llA-1g - Tdglls + llTdg - TdSdg~lls. 

By ( 4.4) 

(4.7) 

( 4.8) 

( 4.9) 

(4.10) 

( 4.11) 

Then, using ( 4.3), (2.3), (3.6), (3.5) and ( 4.5) we get for the second term in ( 4.10) 

llTdg - TdSdg~lls = llTdSdg - TdSdg~lls 

~ cl ISdg - Sdg~l ls-13 
:::; cd-s+t3 I ISdg - Sdg~l lo 
:::; cd-s+13 l~~ lg(jd) - gJI 

_]_ 

:::; cd-s+f3 5. 

This and (4.11) are giving (4.7), then (4.9) follows by inserting ~4.8). D 

Remarks. 

(1) The method ( 4.6), ( 4.8) has the same velocity ( 4.9) as it was proved in [2] 
for quite another regularization procedure. In the case s = 0, (3 = -1 the 
rate 0( 5 u~1) is optimal. 
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(2) The choice ( 4.8) is an a-priori parameter choice that needs an a-priori regu-
larity information about the solution. 

(3) Essential for the construction of our regularization procedure are the proper-
ties (2.3), ( 4.3), ( 4.4) of Th and the properties (3.5) and (3.6) of trigonometric 
polynomials. The regularization could be based also on other procedures Th 
with those properties and an convergence analysis in Sobolev spaces. 

( 4) Theorem 4.1 can also be proved using Lemma 3.3. Then instead of ( 4.3) the 
approximation property (3. 7) is used. 

(5) In the case s > 1/2 we have Hs C C and 

II· lie~ ell· I ls· 
Then in the assumptions of Theorem 4.1 the estimates ( 4. 7) and ( 4.9) also 
hold for the 0-Norm instead of the Hs-norm. 

5. STABILIZATION IN HOLDER-ZYGMUND SPACES 

In this section we again consider first kind integral equations ( 4.1) with a smoothing 
operator over the one-dimensional torus 1f that can be obtained by a transforma-
tion from boundary integral equations on a smooth closed curve in JR. 2• Here, our 
investigations are based on the paper [10] where the studied numerical procedure is 
a fully discrete collocation method with an error analysis in Holder-Zygmund spaces 
7-lv. 

Let us consider the following Banach spaces of complex-valued functions on 1f: 

cm= {f E 0, Di f E 0, 0 ~ j ~ m} 
with the norm 

I If lie== I: llDi file, 
05j5m 

and for s = m + a > 0 

with the norm 

llJl!Jta = llJllc= + [Dmfr' 
where [Dm Jr is the Holder-Zygmund seminorm. For 'lj; E XN the Bernstein inequ-
ality 

llD'l/lllc ~ cNll'l/Jllc (5.1) 

and the estimate 

[ 'l/J] ex ~ C • Ncx 11 'l/J 11 C (5.2) 

hold (cf. [11]). From (5.1) and (5.2) we have the following inverse properties for 
'lj; EXN: 

ll'l/Jl!Jta ~ cNsll'l/Jllc, 
ll'l/Jllc= ~ cNmll'l/Jllc, 

wheres> 0, m EN, and c can depend on s resp. m. 
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Let now Th be the discrete collocation procedure considered in [10]. Since the 
explicit form of that algorithm is not essential for our purpose we will not quote it 
here. Essential is that Th is a continuous linear mapping from '}-{,8-J3 into '}-(.8 with 
properties (2.3) and ( 4.3) and the following convergence property (cf. [10, Theorem 
2.2]): . 
"Let the periodic elliptic pseudodifferential operator A map '}-{, 9 injectively onto '}-{,s-J3 
and let the solution u of (1.1) be in '}-{,<T, f3 < a < oo. 
Then for f3 < s < a < oo we have the estimate 

(5.5) 

Now let us again consider disturbed data g~ E CM, 5 > 0, on an equidistant mesh 
Gd on 1r with the property ( 4.5) and consider the procedure ( 4.6) 

u~ := TdSdg~, 

where again dis the regularization parameter. 

Theorem 5.1. Let for f3 < s < a < oo the operator A map '}-(.9 injectively onto 
Hs-J3 and let u = A-19 E '}-l<T. Then for an arbitrary A> 1/2 we have the estimate 

If 
1 

d rv 5 <T-(3+>. 

we obtain 

Proof. As in the proof of Theorem 4.1 we have 

llu~ - ullr£" = llTdSdg~ - A-1gllr£" ~ llA-19 - Tdgllr£" + llTdg - TdSdg~llr£" 

and from (5.5) 

llA-1g -Tdgll1l-' ~ cd<r-sl log di llullr£u. 

(5.6) 

(5.7) 

(5.8) 

Besides, by using 11 · I le ~ cl I · 11>. if A > 1/2, and ( 4.3), (2.3), (5.3), (3.6), (3.5) and 
( 4.5) we get 

I ITdg - TdSdg~l 11-l" = I ITdSdg - TdSdg~l 11-l" 
~ cl I Sdg - Sdg~ I lr£•-t1 
~ cdJ3-sllSdg - Sdg~llc 

~ cd13-sllSdg - Sdg~ll>-

~ cdf3-s->. I ISdg - Sdg~l lo 
~ cdJ3-s->. 5. 

The proof of (5.6) is complete, (5.8) follows by inserting (5.7). D 

Remark. Again the remarks 2 and 3 of section 4 are true. 
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6. CONCERNING THE HELMHOLTZ EQUATION 

Finally, in this section let us regard the equation 

j H~1)(klx -yl)u(y)dy = g(x) (6.1) 
r 

where r is a smooth closed curve (or open arc) in JR. 2 and H~1 ) is the Hankel function 
of order 0 of the first kind. 

The problem (6.1) arises from an exterior Dirichlet problem for the Helmholtz equ-
ation. If the solution of this Dirichlet problem is denoted by w the solution of (6.1) 
can be interpreted as[~~], i.e. the jump of Neumann data at the boundary r (cf. 
[14]). 
In [3] the problem (6.1) is transformed to an equation (1.1) on 'Ir where the operator 
A maps the Holder space 0°·a bijectively onto 0 1,a. Besides, in [3] a trigonometric 
collocation-quadrature method Th is developed with an error analysis in Holder 
spaces. 

It is not difficult to recognize that Th is a continuous linear operator from C1 ·a into 
co,a discretizing the problem on an equidistant mesh and having the properties (2.3) 
and ( 4.3). Then the application of our regularization method ( 4.6) is possible. Using 
(5.4) and being aware of 0 1•a = 1{_1+a for 0 < a < 1 we find for A > 1/2 similar as 
in Theorem 5 .1 

(6.2) 

It is proved in [3] that 1 lu - Tdg I lo,a -7 0 for d -7 0 if a < 1 /2. Clearly from ( 6.2) 
our method converges if d( 6) is such that d- 1-a-'>. 6 -7 0 and d -7 0 for 6 -7 0. If 
a + A < 1 this is fulfilled for d f"V 6112 . 

10 



REFERENCES 

1. Amosov, B.A., On the approximate solution of elliptic pseudo-differential equations on a 
smooth closed curve, Z. Anal. Anw. 9, 545-563 (1990). 

2. Bruckner, G., On the regularization of the ill-posed logarithmic kernel integral equation of the 
first kind, Preprint No. 46, Institut fiir Angewandte Analysis und Stochastik, Berlin 1993. 

3. Chapko, R., Kress, R., On a quadrature method for a logarithmic integral equation of the first 
kind, WSSIAA 2, 127-140 (1993). 

4. Dau tray, R., Lions, J .L., Mathematical Analysis and numerical methods for science and tech-
nology, Springer 1984, Vol. 4, Chapter XI. 

5. Hartmann, F., Methode der Randelemente, Springer 1987. 
6 .. Hsiao, G.C., The finite element method for a class of improperly posed integral equations, in: 

Hammerlin/Hoffmann, Improperly posed problems and their numerical treatment, 117-131 
(1983). 

7. Hsiao, G.C., On the stability of integral equations of the first kind with logarithmic kernels, 
Arc. Rat. Mech. Anal. 94, 179-192 (1986). 

8. Hsiao, G.C., Profidorf, S., On the stability of the spline collocation method for a class of 
integral equations of the first kind, Appl. Anal. 30, 249-261 (1988). 

9. Kress, R., Linear integral equations, Springer 1989. 
10. McLean, W., Profidorf, S., Wendland, W.L., A fully-discrete trigonometric collocation method, 

J. Integral Equations Appl. 5, 103-129 (1993). 
11. McLean, W., Profidorf, S., Wendland, W.L., Pointwise error estimates for the trigonometric 

collocation method applied to singular integral equations and periodic pseudodifferential equ-
ations, J. Integral Equations Appl. 2, 125-146 (1989). 

12. Profidorf, S., Silbermann, B., Numerical Analysis for Integral and Related Operator Equations, 
Akademie-Verlag, Berlin 1991, and Birkhauser-Verlag, Basel, Boston, Stuttgart 1991, 1-542. 

13. Saranen, J ., Schroderus, L., The modified quadrature method for classical pseudodifferential 
equations of negative order on smooth closed curves, JCAM (to appear). 

14. Stephan, E.P., Wendland, W.L., An angmented Galerkin procedure for the boundary integral 
method applied to two-dimensional screen and crack problems, Appl. Anal. 18, 183-219 (1984). 

G. BRUCKNER, WEIERSTRASS INSTITUTE FOR APPLIED ANALYSIS AND STOCHASTICS, MoHREN-
STRASSE 39, D - 10117 BERLIN, GERMANY 

11 





Recent publications of the 
Weierstrafi-Institut fiir Angewandte Analysis und Stochastik 

Preprints 1994 

80. Roland Duduchava, Siegfried Prof3dorf: On the approximation of singular 
integral equations by equations with smooth kernels. 

81. Klaus Fleischmann, Jean-Fran~ois Le Gall: A new approach to the single 
point catalytic super-Brownian motion. 

82. Anton Bevier, Jean-Michel Ghez: Remarks on the spectral properties of 
tight binding and Kronig-Penney models with substitution sequences. 

83. Klaus Matthes, Rainer Siegmund-Schultze, Anton Wakolbirtger: Recurrence 
of ancestral lines and offspring trees in time stationary branching popula-
tions. 

84. Karmeshu, Henri Schurz: Moment evolution of the outflow-rate from non-
linear conceptual reservoirs. 

85. Wolfdietrich Muller, Klaus R. Schneider: Feedback stabilization of nonlinear 
discrete-time systems. 

86. Gennadii A. Leonov: A method of constructing of dynamical systems with 
bounded nonperiodic trajectories. 

87. Gennadii A. Leonov: Pendulum with positive and negative dry friction. Con-
tinuum of homoclinic orbits. 

88. Reiner Lauterbach, Jan A. Sanders: Bifurcation analysis for spherically sym-
metric systems using invariant theory. 

89. Milan Kucera: Stability of bifurcating periodic solutions of differential in-
equalities in 1~'3. 

90. Peter Knabner, Cornelius J. van Duijn, Sabine Hengst: An analysis of crystal 
dissolution fronts in flows through porous media Part I: Homogeneous charge 
distri bu ti on. 

91. Werner Horn, Philippe Laurern;ot, Jurgen Sprekels: Global solutions to a 
Penrose-Fife phase-field model under flux boundary conditions for the in-
verse temperature. 

92. Oleg V. Lepskii, Vladimir G. Spokoiny: Local adaptivity to inhomogeneous 
smoothness. 1. Resolution level. 



93. Wolfgang Wagner: A functional law of large numbers for Boltzmann type 
stochastic particle systems. 

94. Hermann Haaf: Existence of periodic travelling waves to reaction-diffusion 
equations with excitable-oscillatory kinetics. 

95. Anton Bovier, Veronique Gayrard, Pierre Picco: Large deviation principles 
for the Hopfi.eld model and the Kac-Hop field model. 

96. Wolfgang Wagner: Approximation of the Boltzmann equation by discrete 
velocity models. 

97. Antbn Bovier, Veronique Gayrard, Pierre Picco: Gibbs states of the Hopfi.eld 
model with extensively many patterns. 

98. Lev D. Pustyl'nikov, Jorg Schmeling: On some estimations of Weyl sums. 

99. Michael H. Neumann: Spectral density estimation via nonlinear wavelet 
methods for stationary non-Gaussian time series. 

100. Karmeshu, Henri Schurz: Effects of distributed delays on the stability of 
structures under seismic excitation and multiplicative noise. 

101. Jorg Schmeling: Estimates of Weyl sums over subsequences of natural num-
bers. 

102. Grigori N. Milstein, Michael V. Tret'yakov: Mean-square approximation for 
stochastic differential equations with small noises. 

103. Valentin Konakov: On convergence rates of suprema in the presence of non-
negligible trends. 

104. Pierluigi Colli, Jurgen Sprekels: On a Penrose-Fife model with zero interfa-
cial energy leading to a phase-field system of relaxed Stefan type. 

105. Anton Bovier: Self-averaging in a class of generalized Hopfi.eld models. 

106. Andreas Rathsfeld: A wavelet algorithm for the solution of the double layer 
potential equation over polygonal boundaries. 

107. Michael H. Neumann: Bootstrap confidence bands in nonparametric regres-
sion'. 

108. Henri Schurz: Asymptotical mean square stability of an equilibrium point 
of some linear numerical solutions with multiplicative noise. 


