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Abstract

The paper provides a structural analysis of the feasible set defined by linear
probabilistic constraints. Emphasis is laid on single (individual) probabilistic
constraints. A classical convexity result by Van de Panne/Popp and Kataoka
is extended to a broader class of distributions and to more general functions
of the decision vector. The range of probability levels for which convexity
can be expected is exactly identified. Apart from convexity, also nontriviality
and compactness of the feasible set are precisely characterized at the same
time. The relation between feasible sets with negative and with nonnegative
right-hand side is revealed. Finally, an existence result is formulated for the
more difficult case of joint probabilistic constraints.

Many optimization problems in engineering sciences involve stochastic linear con-
straints of the form

Ez <7, (1)

where z is an n-dimensional decision vector, = is a stochastic matrix of order (m,n)
and 7 is a fixed or stochastic random vector of dimension m (see [12], for instance).
Typically, "here-and-now’ decisions have to be taken, which means that the random
parts of (1) are observed only after deciding upon z. Thus, no matter how z is cho-
sen, a sure feasibility with respect to (1) cannot be guaranteed. However, depending
on the distribution of = (and 1 whenever stochastic), it is possible to choose z in a
way to keep the probability of violating (1) small. More precisely, one can turn (1)
into a probabilistic constraint

P(Zz <n)>p, (2)
where P is a probability measure and p € [0,1] is some probability level (typically
close to 1) at which (1) is required to hold. Inequality (2) is also referred to as a joint
probabilistic constraint as it takes into account the probability of the entire system
(1) to be satisfied. In general, joint probabilistic constraints are difficult to handle
and both their algorithmic treatment and their theoretical investigation keep posing
a lot of challenging questions (see [9] for a comprehensive introduction and [10] for
a review on recent work in this area). It is much easier, although not justified in
all situations, to turn each single inequality of (1) into an individual probabilistic
constraint as follows:

P&, z)<m)>pi, (=1,...,m). (3)



Here, the §; refer to the rows of = and now the probability levels may differ for each
constraint.

For algorithmic purposes it is of much interest to know whether or not the set of
feasible decisions  satisfying (3) is convex. As the intersection of convex sets remains
convex, this issue boils down to the investigation of a single linear probabilistic
constraint

M = {z € R"|P ((£,z) <n) > p},

where ¢ is an n-dimensional random vector and 7 is a scalar (possibly random). The
convexity of M has been investigated first in the classical papers by Van de Panne
and Popp [8] and by Kataoka [5]. They have shown that M is a convex subset of
R™ provided that ¢ has a nondegenerate multivariate normal distribution and that
p > 0.5. This frequently cited result leaves open a lot of questions. First, one could
ask about distributions different from normal ones or about more general functions
of z under which the same result can be maintained. Second, it is clear that the
feasible set M becomes smaller when the level p is increased towards 1. Hence, the
important observation that M is convex for p large enough has to be coupled with
the question of nontriviality because the empty set is convex too. Third, also large
sets like R™ may be convex. This raises the question if there exists a range of small
values of p which guarantees convexity as well. Finally, apart from convexity and
triviality, compactness of M is another issue of theoretical and algorithmic interest.
Nonempty and compact feasible sets guarantee the existence of solutions and allow
to derive stability results for solutions when the usually unknown distribution of ¢
has to be approximated on the basis of estimations or historical observations (see
[2]).

The purpose of this paper is to provide a detailed structural analysis to linear chance
constraints and to give a fairly precise answer to the questions posed. The classical
results of [8] and [5] can be extended to the class of elliptically symmetric distribu-
tions and to certain component-wise convex mappings of z. In the classical setting
of normal distributions, it will be possible to exactly identify the range of p-values
for which convexity, triviality and compactness (or nonconvexity, nontriviality and
unboundedness) hold true. It is interesting to observe, that these results strongly
depend on whether the right-hand side 7 is negative or nonnegative. Under this
case distinction, all structural results become rather different and seemingly inde-
pendent. However, they are not as independent as they might look like. Roughly
speaking, the first main result of this paper states that, for negative right-hand side
and large values of p the feasible set looks like the complement of the feasible set for
nonnegative right-hand side and small values of p. In the more demanding situation
of optimization problems involving joint probabilistic constraints as in (2), an ex-
istence theorem can be derived from the case of single constraints. More precisley,
this theorem allows exactly to calculate a critical p- level above which compactness
and nonemptiness of a joint probabilistic constraint can be guaranteed. Such result
is not only interesting with respect to the existence of solutions but also concerning
stability of solution sets under perturbation (approximation) of the given probability
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distribution.

1 Results

In the following, we shall consider constraint sets

M7 = {z € R"[P({q(z),§) < a) > p} (a€R,pc(0,1)). (4)

Here, ¢ is an s-dimensional random vector defined on a probability space (2, A, P)
and g : R® — R’ is a mapping from the space of decision vectors to the space of
realizations of the random vector. The indices a and p shall emphasize the fact
that we are going to analyze the structure of the feasible set as a function of the
right-hand side of the considered stochastic inequality and of the probability level
p. Putting g(z) = z, one gets back to the classical linear probabilistic constraint set
My with deterministicright-hand side. Choosing ¢(z) = (z, —1) and considering the
extended (s + 1)-dimensional random vector (¢,7), M, recovers the constraint set
with stochastic right-hand side (see introduction). In this latter case, g is an affine
linear mapping which will figure as an assumption in several subsequent results. As
an immediate consequence of the definition (4), one has the following properties:

My C My, VaeRVpi,p, € (0,1):p1 >p, (5)
g '(0)C M Va>0Vpe (0,1) (6)
g ' (0) C (M2)°  VYa<0Vpe(0,1) (7)

Moreover, the M are closed subsets of R™ under mild assumptions. Indeed, we may
refer to the following consequence of a general closedness characterization provided
in [11] (Prop. 3.1), where we keep the meaning of £ and P:

Lemma 1.1 Let g : R® x R® — R™ be a vector-valued mapping with lower semi-
continuous (in both variables simultaneously) components. Then, the set {z €

R™ P(g(z,£) < 0) > p} is closed.

Corollary 1.2 If in (4), q is a mapping with lower semicontinuous components,

then Mg is closed for all o € R and all p € (0,1).

1.1 On the relation between positive and negative right-
hand side

Before investigating properties of M, like convexity, nontriviality and compactness,
we want to identify the structural relation between constraint sets with positive and
negative right-hand side. The following theorem tells us that, up to closure and
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translation, the sets M are identical to the complements of the ’dual’ sets M.
Convexity and compactness are examples for properties which are not affected by
translation or closure.

Theorem 1.3 Let the distribution of £ be absolutely continuous with respect to the
Lebesgue measure, and let the support of £ be all of R®. Furthermore, assume that q
18 a surjective, affine linear mapping. Then, there exists some d € R™ such that

M ={d} — I {(M;%)} Vaz#0Vpe(0,1).

Proof. We fix arbitrary a # 0, p € (0,1) and start by observing that the function

z+— P((q(2),£) < a) (8)

is continuous at each z ¢ ¢~1(0). Indeed, this condition, together with the fact that
g is continuous, ensures that the set-valued mapping

Ty :={u e R°[{q(y),u) < a}

satisfies lim, ,, T, = T,. Here, the set convergence is taken in the Kuratowski-
Painlevé sense. Along with the assumption, that £ has an absolutely continuous
distribution, this ensures that lim,,, P (¢ € T,,) = P (¢ € T,), whenever all the T,
and T, are closed and convex (see [7], Th. 3, Lemma 1 and Proof of Th. 4).

To proceed with the proof of our Theorem, we may assume that g(z) = Az + b for
some matrix A having full rank. Put

d:= —24AT (AAT) b,

As a consequence, one has that —g(z) = ¢(d — z) for all z € R™ and, in particular
that z € ¢71(0) if and only if d—z € ¢7*(0). For arbitrary z ¢ q~!(0), the following
equivalences hold true:

P((q(z),€) <a)>p & P((g(z),£) >a)<1—p

q(z),§) <—a)<1-p
& P((gld—=z),6) < —a)<1-p. (9)

Here, the last equivalence relies on the fact that ¢(d —z) # 0, so that (¢(d — z), ) =
—a defines a hyperplane in R®, which has probability zero by our assumption on the
distribution of €. Next, we verify the following identity:

A {(M%)°} = {2 € RYP((q(2),6) < —a) <1 —p} Vz¢q'(0). (10)

For z € cl { (Ml__a;,)c}, there exists a sequence 2, — z such that

P({q(2n),£) < —a) <1 —p.



This entails the inclusion ’C’ in (10) via the continuity of the function (8). For the
reverse inclusion, let 2z be given such that 2z ¢ ¢7*(0) and

P({g(2),€) < —a) <1 —p.

With

sgn a

AT (AAT) 7 (Az + 1),

2p = 2 —
n

one gets that 2z, — z and

_ _ sgn a [ (1—=n"t)(z) fa>0
q(zn) = Azn +b=Az+b— ~ (Az—l—b)—{ (1+nY)q(z) ifa<0.

Consequently, in case that a > 0, one arrives at the inclusion

{u € R*|{g(2n),u) < —a} = {u e R*(q(2),u)
C {u e R {q(z),u)

Thus,
l-p =2 P((g(2),§) < —0)
— P ({a(0),&) € —a) + P (~afl — n7) < {g(z,), ) < —a).
Now, since the strip
{u € Rl —a(l —n7") 7" < (q(zn),u) < —a}

has a nonempty interior, its probability must be strictly positive according to our
assumption that the support of ¢ is all of R*. Thus, we get

L—p> P({q(zn),€) < —a)

which amounts to saying that z, € (Ml__a;,)c. An analogous argumentation applies

to the case o < 0 upon using the respective definition of z,. This establishes (10).

Applying (10) to (9) with z = d — z ¢ ¢ '(0), we may summarize the preceding
considerations in the form

T € M;\q_l(O) =z C [{d} — cl{(Ml__a;,)c}] \q_l(O). (11)
In order to finish the proof, it remains to verify the equivalence
z€MINg ' (0) <=z € [{d} — A {(M2)}] Nng}(0). (12)

If € M2 N q*(0), then also d —z € ¢7'(0) and @ > 0 by (7). Since a # 0, it
follows that —a < 0 and d—z € (Ml__a;,)c, again by (7). This proves the implication
'=—"in (12). Conversely, let

T € [{d} — cl{(Ml__a;,)c}] N q_l(O).



Once more, d — z € ¢ '(0). By definition, there is a sequence z, — d — z with
Tn € (Ml__o;,)c. Assume first, that there is a subsequence of z,, which we do not
relabel, such that z, ¢ ¢~'(0). Then, also d — z,, ¢ ¢~*(0), so that we can apply
(11) to d — z, rather than z. This yields that d — 2, € M. On the other hand,

M is closed according to Corollary 1.2. It follows that
d—z, =z € MJNg*(0),

which establishes the reverse implication in (12) for a special case. It remains to
check the case when d — z, € ¢71(0) for all n. Then, also z, € ¢~(0) for all n.
The assumption a < 0 would lead to the contradiction z, € M; %, via (6). So,
d—z, € M*

=, again by (6). The same closedness argument as in the first special
case yields that 2 € M N ¢~'(0). This completes the proof.

The following example illustrates, why we have to insist on the condition a # 0 in

Theorem 1.3:

Example 1.4 In dimension one, let g(z) = z and £ have a standard normal dis-
tribution. Then, My, = R. All assumptions of Theorem 1.3 are met ezcept that
a = 0. If the theorem would hold true, there should exist some d € R such that

Mc()).s = {d} - Cl{(Mc()).5)c} = {d} —clf = @,

which 1s a contradiction.

1.2 Convexity

We recall the class of elliptically symmetric distributions, whose density (if it exists)
is given by

f() = (det )29 ((z — 6,57 (z — 0))),

where 3 is a positive definite matrix and g is some nonnegative function. In partic-
ular, the s-dimensional normal distribution belongs to this class with mean vector
0, covariance matrix % and

g(t) = (2m) " P exp (~t/2).

However, the class of elliptically symmetric distributions is much broader than just
multivariate normal ones and incorporates, for instance, multivariate versions of
student or exponential distributions ([1], [3]). The characteristic function of an
elliptically symmetric distribution has the form

¢(t) = exp ((2,6)) h ({2, %))



for some scalar function h, called the 'characteristic generator’ of this distribution.

In the following, we use the symbol ||-||, for the norm induced by a positive defi-

nite matrix C, i.e.: ||-|| = +/(z,Cz). Moreover, for a 1-dimensional distribution

function F' we define its p-quantile as

F(p) = inf{t|F(1) > p}.

Lemma 1.5 In (4), let q be arbitrary and let & have an elliptically symmetric dis-
tribution with parameters Y3, 8, where % s positive definite. Denote by h its char-
acteristic generator. Then

My = {z € R"F(p)lla(z)llz + (8, q(z)) < o},
where F' 1s the 1-dimensional distribution function induced by the characteristic

function ¢(7) := h(7?).

Proof. The characteristic function of £ is

$e(t) = exp (1(4,0)) b (Jl¢ll3) -

Let z € R™\q7!(0) be arbitrary. Then, the scaled random variable
py e U2 E-0) < q(z) 5> B < q(z) 9>
(q(2),2q(z))  \la(@)l5 la(2)llx
is a well-defined affine linear transformation of £. Following the general calculus rule

blegy+a(T) = exp (17d) - ¢¢(7c)

for characteristic functions, that of 7, calculates as

b () = oxp (it D) g (- Ta(e)) = b ().

la(2)ll5 la(2)ll5

In particular, the distribution of 7, does not depend on z. Its distribution function
is given by F' as introduced in the statement of this lemma. It follows that

Pla)eh<a)2p o P(n< 2 00 5 o p(a B}y

la(2)lls la(2)lx
< F(p)lla(=)]l5 + (6,9(2)) < e

Now, the assertion results from (6) and (7) upon observing that the last inequality
holds true for all z € ¢7*(0) if & > 0 and is violated for all z € ¢g~*(0) if @ < 0.

Proposition 1.6 Let, in addition to the setting of Lemma 1.5, one of the following
assumptions hold true:



e g is affine linear
or

® g has nonnegative, convexr components, 8; > 0 fori1 =1,...,s and all elements
of ¥ are nonnegative..

Then, My 1is convez for all a € R and all p > 0.5. If, moreover, the random vector
€ in Lemma 1.5 has a strictly positive density, then M2 is convex for all o € R and
all p > 0.5.

Proof. By Lemma 1.5, we are done if we can show that both functions

(6,9()) and F7'(p)[lq(z)llz

are convex. This is obvious for (6, g(z)) without restrictions on 4 in case that g is
affine linear and for 6 with nonnegative components in case that the components of
g are convex. Let us turn to the second term now: Since F' is a one-dimensional
symmetric distribution function, it follows that F'(0) = 0.5. Therefore, F~*(p) > 0
for p > 0.5 and also F'~*(p) > 0 for p = 0.5, in the case that F' has a strictly positive
density. It remains to verify thus, that ||g(-)||s; is a convex function. This is evident
in case that g is affine linear. For the alternative case, recall that, for any fixed
z ¢ ¢ 1(0), the optimization problem

max{(q(z),y) | [yl = 1}

has the solution

y* = lla(2)]5" Ba(=).

Since, by assumption, all components of ¢ and all elements of 3} are nonnegative,
the components of y* are nonnegative too. This allows to write that

la(z)lly = (q(z),y") = max{(q(z),v)|llyllg- =1}
= max{(q(z),y) |[[yllg- =1,y € RL}.

for all z ¢ ¢7*(0). The same identity

l9(2)lls = max{(q(z),v) | |yllz— = 1,y € RL}

holds trivially true in case that z € ¢~'(0), hence it is valid for all z € R™ For
y € R3, (q(+),y) is convex by the assumed convexity of the components of g. Sum-
marizing, ||g(-)||y, is convex as a maximum of convex functions (q(-),y).

When reducing Proposition 1.6 to a nondegenerate multivariate normal distribution
of ¢, then its first statement evidently recovers the classical convexity result of [5],[8]
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with random or deterministic right-hand side (see introduction and beginning of Sec-
tion 1). The first statement of Proposition 1.6 was shown in [4] based on the concept
of so-called a-nuclei. In contrast, our proof essentially relies on the representation
Lemma 1.5. This representation allows, in the second statement of Proposition 1.6,
to generalize the convexity result to nonlinear functions g of the decision vector.
A different extension of the classical results to the class of log-concave symmetric
distributions has been obtained in [6]. As the elliptically symmetric distributions
considered here, the log-concave symmetric distributions also contain multivariate
normal distributions (but apart from it also uniform distributions over symmetric,
convex, compact sets).

From now on we shall assume, for simplicity, that the random vector £ has a nonde-
generate multivariate normal distribution with mean vector p and (positive definite)
covariance matrix X: £ ~ A (g, ¥). Then, by Lemma 1.5,

My = {z € R*®"(p) [[q(z)|l5 + (1, q(z)) < a}, (13)
where ® denotes the distribution function of the one-dimensional standard normal
distribution and ®~!(p) its p-quantile.

Proposition 1.6 tells us for which range of p-values convexity of the constraint set
may be expected. It does not imply, however, nonconvexity of this set for the
remaining p-values. The following proposition clarifies, under which circumstances
nonconvexity may be derived.

Proposition 1.7 Let £ ~ N (p,X) with positive definite 3 and let q be a surjective
affine linear mapping. Then, M is nonconvez in any of the following two situations:

a<0, p<05
or
a>0, &(—||plg) < p<0.5.

Proof. First, let @ < 0 and p < 0.5, whence ®7!(p) < 0. We choose § # 0 such
that (4, u) = 0. By surjectivity of g, there is some h such that q(h) = ¢(0) + . Again
by surjectivity of g, we may choose some z* € ¢~1(0). By virtue of (7), one has that
z* ¢ MZ. For t € R, put z; := z* + th. The affine linearity of g implies that

g(z") = q(z*) + t(q(h) — (0)) = g(z*) + 4.
Then,

&7 (p) la(=e)llz + (1, (=) = 277 (p) la(=") + tél + (1, a(=")) -

Since 6§ # 0 and ®7'(p) < 0, it follows that

lim ®(p) [[q(2:) |5 + (1, q(24)) = lim &7 (p) llg(ze) |5 + (u, (=) = o0.



Consequently, for |t| large enough, one has

&7 (p) lla(zo) 5 + (m:a(20)) < @,

which means that z; € M2 according to (13). In particular, there is some 7 > 0
such that z,,z_, € M. On the other hand,

Tr+T_- . o
T:aa géMp.

Therefore, M is not convex.

Now, let @ > 0 and @ (—||p|x-1) < p < 0.5. In particular, p # 0, beacause
otherwise ® (— ||u||s-:) = 0.5. For each t € R, the surjectivity of ¢ allows to choose
some y; such that ¢(y;) = tX'u. Then,

7 (p) lalye)lls + (o a(we)) = @7 (p)t||pllgs—s + ¢ |2l 5
= (27p) + [|ullg=) tl|1llgms —remoo o0,

where the convergence towards infinity relies on the fact that x4 # 0 and on the
fact that the expression in parentheses is strictly positive by our assumption on the
admissible range of p. Hence, for ¢ large enough, the expression above will exceed
a. In other words, by (13), for ¢ large enough, y, ¢ M. We fix such a point and
call it Z. Now, we may repeat exactly the same argumentation as in the first part of
this proof but with z* replaced by z. This allows again to find points z,,z_, € M
such that

Tr+T_-

2

and hence, convexity of M2 is violated once more.

=z ¢ M,

1.3 Non-emptiness and compactness

So far, we have characterized the convexity of the constraint set. It has to be taken
into account, however, that M might be trivially convex in being identical either
to the empty set or to the whole space. Therefore, a characterization of triviality is
of interest as well.

Proposition 1.8 Let £ ~ N (i, X) with positive definite ¥2. Then,

ME = R* Ya>0 Vp<®(—|lufy)
Me = 0 Ya<0 Vp>o(|ully.).

Moreover, if q 1s surjective, then

M #£ 0 Ya>0 Ype (0,1)
My # 0 Va<0 Vp<®(||ulg).
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Proof. A generalized version of the Cauchy-Schwarz inequality (for symmetric,
positive definite matrices) yields the relation

(ks q(2))] < lla(=)|5; lleell s - (14)

From here, for arbitrary z € R”, one obtains the following pair of inequalities by
case distinction:

&7 (p) la(=)ll5 + (1 a(2))

{ < llg(=)llz (7 (p) + |ullg—+) S0 <a Va>0Vp<&(—|lu|g-)
> llg(=)llz (271 (p) — llullg—+) 20> a Vo <0Vp> & (|ulls-)-

By virtue of (13), this proves the first part of our Corollary. The first statement
of the second part of the corollary is evident from (6) because ¢~'(0) # @ by the
assumed surjectivity of q. Concerning the last statement, define for each ¢ > 0 some
z; such that g(z;) = —tX 'y (which is possible again by surjectivity of q). For any
p < ®(||p]|g-1) and any a, it follows that

a—(p,q(2)) _ a+tt]ufz
la(2)llx tlpel 5

Consequently, there is some z; such that

-1
=l > #74(p).

&7 (p) lla(ze)lls + (1, q(2e)) < e
By Lemma (13), this amounts to saying that z, € M.
|

Remark 1.9 Note that the very first statement of Proposition 1.8 confirms that,
for a >0, M is convez not just for p > 0.5 according to Proposition 1.6 but also

forp < & (= lpllz-)-

For algorithmic purposes, not only convexity of the constraint set is of interest
but also its compactness. This, together with the non-emptiness characterized in
Proposition 1.8, will guarantee the existence of solutions.

Proposition 1.10 Let £ ~ N (u,X) with positive definite 3. Moreover, let q :
R™ — R™ be a homeomorphism (i.e., a bijective mapping such that q and q~* are
continuous). Then, for any o € R, MY is unbounded whenever p < ® (||u||y-1) and
compact whenever p > @ ([|ul|51). If p = @ (||u]l5-1), then MZ 1s unbounded in the

case that a > 0 and is compact (actually empty) in the case that o < 0.

Proof. Let 0.5 < p < @(||p||g-1). In particular, 4 # 0, because otherwise

® (||#llg-2) = 0.5. Also, by assumption, ®~'(p) < ||g||g-:. For each ¢ > 0, put
-1 —1

Yy :=q (=t 'u). Then,

&7 () la(w)lls + (ma(we)) = (277 (p) = lkllg-1) tllllg-r —ese0 —00.
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Hence, there is some ¢, such that, by (13), y: € M2 for all ¢ > ¢o. In other words,

g ' (=[to,00) - B71u) € My

Since u # 0, one also has that X'y # 0. Therefore, —[tg, 00)- X'y is an unbounded
set and ¢! (—[to,00) - X'u) is unbounded too because g is a homeomorphism.
Consequently, M7 is an unbounded set. If p < 0.5 then M becomes even larger
due to (5). This proves the first part of our proposition.

If « < 0and p > @(||ul5-1), then MY = ) by Proposition 1.8, so compactness
follows trivially in this situation. Next, let @ > 0 and p > @ (||u|/x-1), whence
®~1(p) > ||p||g-:- The closed ball (w.r.t. the norm induced by ¥)

B = {ylllylly < (@7 (p) — plly-) " o}

is compact, hence ¢7*(B) is compact too. On the other hand, for z € M7, one
derives from (14) and (13) that

la@)lls (27" (p) = llullz—) < @7 (p) lla(@)lls + (1, q(2)) < o,

whence g(z) € B. In other words, M2 C ¢~ '(B). As a closed subset of a compact
set, M2 has to be compact too (for closedness see continuity of the constraint func-
tion in (8)). Finally, let @ > 0 and p = ® (||u|g-:). If x =0, then @~ *(p) = 0 and
My = R™ according to (13). In the case u # 0, one could reapeat the construction
of y; in the beginning of this proof in order to derive that

&7 (p) llawe)lls + (walye)) =0 < a VE>0.

Then, ¢~' (—[0,00) - X~'u) € Mg and unboundedness of MZ would result in the
same way as above.

The following theorem provides a compilation of the results obtained so far. In
order to collect a maximum of information, we restrict the functions g to the class
of regular affine linear mappings, i.e., g(z) = Az + b, with some regular matrix
A. This class satisfies all assumptions made so far and covers in particular the
case of linear chance constraints with stochastic coefficients and deterministic or
stochastic right-hand side. The results on convexity, non-emptiness and compactness
proven in the previous sections, are exhaustive in the sense that they completely
determine, for which constellations of o and p the feasible sets M7 will be convex
or nonconvex, empty or nonempty, compact or unbounded. In this sense, a full
structural characterization is established. Let us define the following regions in the

(p, &)- plane:
R eonv(nond,comp) _ {(p, @)| M} is convex (nonempty, compact)}.

For the purpose of abbreviation, denote § := @ (||y||gx-.) — 0.5 and observe that
8 > 0 and that ® (— ||ul/s-:) = 0.5 — 4.
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Figure 1: Illustration of the regions of convexity (left), non-emptiness (middle) and
compactness (right) in the (p, a)- plane.

0 0.5-6 0.5 0.5+56 1 0 0.5-6 0.5 0.5+6 1 0 0.5-6 0.5 0.5+6 1
p p P

Theorem 1.11 In (4), let q be a regular affine linear mapping and let & ~ N (k, %)
with positive definite Y. Then,

Re™ = {[0,0.5 — 8] x [0,00)} U {[0.5,1] x (—o0,00)}

R = {[0,1] x [0,00)} U{[0,0.5 + 6] x (—00,0)}

Reomp {[05 + 57 ]_] X (—oo7 0)} U {(05 + 5, 1] X (0, OO)} .

Proof. Follows from Proposition 1.6 (first statement), Remark 1.9, Proposition
1.7, Proposition 1.8 and Proposition 1.10.

|
The regions R, R and R™P are illustrated in Figure 1.

Remark 1.12 In the special case that yu = 0, one derives that M is convez for all
a>0 and allp € (0,1).

1.4 Application to problems with joint probabilistic con-
straints

It is obvious to apply the previously obtained results for single probabilistic con-
straints like (4) to systems of individual probabilistic constraints like (3) because
the feasible set of the latter system is just the intersection of the feasible sets in-
duced by the single contsraints. Therefore, in this section, we shall address the more
complicated case of joint probabilistic constraints as in (2). Consider the feasible
set

M ={z € R"|P(Sg(z) <a) > p} (p€(0,1)) (15)

defined by a stochastic matrix = of order (m,n) and a deterministic right-hand side
a € R™. Here, g : R* — R" refers to a (possibly nonlinear) mapping of the decision
vector. By

M= {o € RP({g(e), &) S a) > p} (i=1,...,m),
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we denote the feasible set induced by the :-th row of =. Of course, M is not just the
intersection of the M*. However, for any 7, one has the obvious inclusion M C M?.
This simple fact allows to derive the following useful compactness condition for joint
probabilistic constraints:

Theorem 1.13 In (15), assume that the rows & of = are normally distributed ac-
cording to & ~ N (w;,%;) with positive definite covariance matrices ¥; for 1 =
1,...,m. Moreover, let g be a homeomorphism (e.g., q(z) = z). Then, M is com-
pact provided that

p> min @ (|l ).

Proof. According to the assumption, there exists some 7 € {1,... ,m} such that
p> (||/.Li||271). Then, M*® is compact by Proposition 1.10. Consequently, M is
bounded due to M C M*. By Lemma 1.1, M is also closed. Summarizing, M is

compact.

As an immediate corollary to Theorem 1.13, one derives the following existence
result for the optimization problem

min{f(z)|z € M} (16)

with joint probabilistic constraints:

Corollary 1.14 In (16), let f be lower semicontinuous. Let M satisfy the hy-
potheses of Theorem 1.18 in the special case that q(z) = z. Moreover let a > 0
(componentwise). Then, there ezists a solution to (16) provided that

p> min & (|lulls)

Proof. The assumptions a > 0 and ¢(z) = = imply that 0 € M. Hence, M is
nonempty. The result follows from Theorem 1.13 via the Weierstrass Theorem.

Theorem 1.13 and Corollary 1.14 hold true for large enough probability levels p which
are typically encountered in applications of probabilitic constraints. Moreover, the
required level is easily calculated just on the basis of the parameters u; and ¥;. The
additional condition of @ > 0 in Corollary 1.14 is needed to ensure nonemptiness
of the feasible set (which does not affect the compactness result of Theorem 1.13).
From the reverse point of view, a general condition for emptiness can be derived as
follows:
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Theorem 1.15 The feasible set M in (15) is empty if
> mi o p—
p>min® (|luilp ),
where [ := {2+ € {1,... ,m}|a; < 0}.

Proof. With the same inclusion as used in the proof of Theorem 1.13, one may
apply the first statement of Proposition 1.8.

We note that compactness and nonemptiness of feasible sets are crucial conditions
not only for existence but also for stability of solutions and optimal values in prob-
lems like (16) when approximating the underlying, usually unknown probability
distribution by another one which may be based on historical data (see [2]). Often,
there is no chance directly to check the nonemptiness and compactness of a feasible
set defined by a pure probabilistic constraint. Theorem , however, confirms that,
for sufficiently high probability levels p, this assumption holds true in our case and,
moreover, the notion ’sufficiently high’ can be easily quantified exactly.
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