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Abstract

This text is devoted to maximal regularity results for second order parabolic sys-

tems on Lipschitz domains of space dimension n ≥ 3 with diagonal principal part,

nonsmooth coefficients, and nonhomogeneous mixed boundary conditions. We show

that the corresponding class of initial boundary value problems generates isomor-

phisms between two scales of Sobolev–Morrey spaces for solutions and right

hand sides introduced in the first part [12] of our presentation. The solutions de-

pend smoothly on the data of the problem. Moreover, they are Hölder continuous

in time and space up to the boundary for a certain range of Morrey exponents.

Due to the complete continuity of embedding and trace maps these results remain

true for a broad class of unbounded lower order coefficients.

7. Formulation of the regularity problem

Many instationary drift-diffusion problems are formulated in terms of second order

parabolic initial boundary value problems with nonsmooth data. To prove existence

and uniqueness results or further qualitative properties like regularity or asymptotic

behaviour of solutions it is useful to get apriori estimates for solutions of the orig-

inal or at least of some auxiliary linear parabolic problem in spaces of bounded or

Hölder continuous functions.

In the first part [12], which contains six sections and two appendices of our presen-

tation, we introduce and discuss in detail new classes of Sobolev–Morrey spaces

allowing a satisfactory treatment of the regularity problem for second order linear

parabolic boundary value problems

(7.1) (Eu)′ + Au + Bu = f ∈ L2(S; Y ∗), u(t0) = 0,

of drift-diffusion-type on regular sets G ⊂ Rn with Lipschitz boundary. The natu-

ral choice for the Hilbert space Y in the functional analytic formulation of elliptic

and parabolic problems with mixed boundary conditions is the Sobolev space

Y = H1
0 (G) and its dual Y ∗ = H−1(G), see also Gröger, Rehberg [16, 17, 18],

and Griepentrog, Recke [10, 14].

In (7.1) the operator E ∈ L2(S; Y ) → L2(S; Y ∗) is associated with the bounded

open time interval S = (t0, t1) and the map E ∈ L(Y ; Y ∗) via (Eu)(s) = Eu(s) for

s ∈ S, u ∈ L2(S; Y ). Here, E ∈ L(Y ; Y ∗) is defined by

〈Ev, w〉Y =

∫

G

avw dλn for v, w ∈ Y .
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The nonsmooth capacity coefficient a ∈ L∞(G◦) satisfies

ε ≤ ess inf
x∈G◦

a(x), esssup
x∈G◦

a(x) ≤
1

ε

for some constant ε ∈ (0, 1]. Moreover, we consider nonsmooth diffusivity coefficients

A ∈ L∞(S; L∞(G◦; Sn)) with values in the set Sn of symmetric (n×n)-matrices, and

we assume that for all ξ ∈ Rn we have

ε ‖ξ‖2 ≤ ess inf
s∈S

ess inf
x∈G◦

A(s)(x)ξ · ξ, esssup
s∈S

esssup
x∈G◦

A(s)(x)ξ · ξ ≤
1

ε
‖ξ‖2.

With regard to problem (7.1) the principal part A : L2(S; Y ) → L2(S; Y ∗) is of the

form

〈Au, w〉L2(S;Y ) =

∫

S

∫

G

A(s)∇u(s) · ∇w(s) dλn ds for u, w ∈ L2(S; Y ).

Given lower order coefficients

b ∈ L∞(S; L∞(G◦; Rn)), b0 ∈ L∞(S; L∞(G◦)), bΓ ∈ L∞(S; L∞(Γ)),

which describe drift and damping phenomena, we define B : L2(S; Y ) → L2(S; Y ∗)

by

〈Bu, w〉L2(S;Y ) =

∫

S

∫

G

(

u(s)b(s) · ∇w(s) + b0(s)u(s)w(s)
)

dλn ds

+

∫

S

∫

Γ

bΓ(s)KΓu(s)KΓw(s) dλΓ ds

for u, w ∈ L2(S; Y ). Here, Γ = ∂G is the Lipschitz boundary of the regular set

G ⊂ Rn, and KΓ ∈ L(H1
0 (G); L2(Γ)) denotes the trace map.

Using Gröger’s functional analytic framework for evolution equations, discussed

in detail in [15] and the first part [12] of our presentation, we get unique solvability

and well-posedness of problem (7.1) in the Hilbert space

WE(S; Y ) =
{

u ∈ L2(S; Y ) : (Eu)′ ∈ L2(S; Y ∗)
}

.

Theorem 7.1 (Unique solvability). The solution operator associated with the par-

abolic problem (7.1) is a linear isomorphism between the spaces L2(S; H−1(G)) and
{

u ∈ WE(S; H1
0(G)) : u(t0) = 0

}

.

Proof. As we will see it suffices to show that the bounded linear Volterra operator

M = A + B + αE : L2(S; Y ) → L2(S; Y ∗) is positively definite whenever α > 1 is

large enough. Due to our assumptions for all u ∈ L2(S; Y ) we obtain

〈(A + αE)u, u〉L2(S;Y ) ≥ ε ‖u‖2
L2(S;Y ) + ε(α − 1)‖u‖2

L2(S;L2(G◦)).
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Moreover, for the trace map KΓ ∈ L(H1
0 (G); L2(Γ)) the multiplicative inequal-

ity (3.1) holds true: We find some constant cG > 0 such that

‖KΓv‖2
L2(Γ) ≤ cG‖v‖H1

0
(G)‖v‖L2(G◦) for all v ∈ H1

0 (G).

Using Young’s inequality for all u ∈ L2(S; Y ) and δ > 0 this yields

∣

∣〈Bu, u〉L2(S;Y )

∣

∣ ≤
δL(cG + 1)

2
‖u‖2

L2(S;Y ) + L

(

cG + 1

2δ
+ 1

)

‖u‖2
L2(S;L2(G◦)).

Here, L = max
{

‖b‖L∞(S;L∞(G◦;Rn)), ‖b0‖L∞(S;L∞(G◦)), ‖bΓ‖L∞(S;L∞(Γ))

}

> 0 is the

common bound of the lower order coefficients. If we choose δ > 0 small enough

and α > 1 large enough such that

δL(cG + 1)

2
< ε, L

(

cG + 1

2δ
+ 1

)

≤ ε(α − 1),

then M = A + B + αE : L2(S; Y ) → L2(S; Y ∗) is positively definite. Applying The-

orem 2.4 the solution operator associated with problem (7.1) maps L2(S; H−1(G))

isomorphically onto
{

u ∈ WE(S; H1
0 (G)) : u(t0) = 0

}

. �

Following the theory of Ladyzhenskaya, Solonnikov, Uraltseva [21] it is

true that the solution u of problem (7.1) is Hölder continuous in time and space

up to the boundary provided that f ∈ Lq(S; W−1,p(G)) and q > 2, p > n with

2/q + n/p < 1. But in contrast to the case n = 2 it has turned out that for n ≥ 3

it is not possible to find q > 2, p > n satisfying 2/q + n/p < 1 such that maximal

regularity

u ∈ Lq(S; W 1,p(G◦)), (Eu)′ ∈ Lq(S; W−1,p(G)),

holds true for every f ∈ Lq(S; W−1,p(G)) without further assumptions on the

smoothness of the data, see also Gröger, Rehberg [16, 17, 18].

Fortunately, we have found alternative function spaces for solutions and right hand

sides meeting both the requirements of Hölder continuity and maximal regularity

in the case n ≥ 3. The main goal of this text is to prove the following maximal

regularity result: For a certain range of parameters 0 ≤ ω < ω̄ε(G) with ω̄ε(G) > n

the class of problems (7.1) generates linear isomorphisms between two scales of

Sobolev–Morrey spaces
{

u ∈ W ω
E (S; Y ) : u(t0) = 0

}

and Lω
2 (S; Y ∗) of solutions

and functionals, respectively. Here, the function space

W ω
E (S; Y ) =

{

u ∈ Lω
2 (S; Y ) : (Eu)′ ∈ Lω

2 (S; Y ∗)
}

⊂ WE(S; Y )

is embedded into a space of Hölder continuous functions for ω > n, where

Lω
2 (S; Y ) ⊂ L2(S; Y ), Lω

2 (S; Y ∗) ⊂ L2(S; Y ∗),
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are suitably chosen Sobolev–Morrey spaces. We refer to the first part [12] for

the theory of the above function spaces.

As the starting point for our regularity theory we consider the case B = 0. In

the first step we are interested in local estimates for solutions of (7.1) restricted to

families of time intervals

Ir(t) = (t − r2, t) ⊂ S,

and cubes

Qr(x) = {y ∈ R
n : |y − x| < r} ⊂ G,

regardless of initial or boundary conditions, see Section 8. Here, t ∈ S and x ∈ G

are fixed, whereas the radius 0 < r ≤ 1 varies in a certain range. One advantage of

considering solutions in the function space WE(S; Y ) is that we can completely avoid

the technique of Steklov averages. Instead of this method we use integration by

parts formulae which can be found in Section 1 and Appendix B of the first part [12]

of our presentation.

We carry over results well-known for the case of constant capacity coefficients,

see Moser [23, 24], Ladyzhenskaya, Solonnikov, Uraltseva [21], Aronson,

Serrin [3], Trudinger [29], and Lieberman [22]. Note, that in the case of non-

smooth capacity coefficients a comprehensive regularity theory for (fundamental)

solutions of Cauchy’s problem can be found in the work of Porper, Eidel-

man [25, 26] generalizing classical results of Aronson [1, 2].

Based on energy estimates for solutions, in Section 9 we obtain local boundedness

results using the Moser iteration technique. As a byproduct, we fill some gap in

the proof of Porper, Eidelman [26, Theorem 2] arised from an illegal extension

of local solutions to solutions of Cauchy’s problem.

Combined with Harnack-type inequalities, see Section 10, this paves the way

to estimate the oscillation of solutions which leads to the Campanato inequality

for the spatial gradients of solutions on concentric cubes, see Section 11. To do so,

we generalize methods introduced by Kruzhkov [19, 20] and used by Hong-Ming

Yin [30] to the case of nonsmooth capacity coefficients. In addition to that, we apply

some special variant of the Poincaré inequality contained in the Appendix A of

the first part [12] of this presentation, see also Struwe [27].

To prove the global regularity result, in Section 12 we define a suitable class of

admissible sets consisting of all regular sets G ⊂ Rn for which the desired regularity

in Sobolev–Morrey spaces holds true for the case B = 0. The invariance of this

concept with respect to the principles of localization, Lipschitz transformation, and

reflection has already turned out to be successful in the elliptic regularity theory,

see Griepentrog, Recke [10, 14]. To show that every regular set is admissible,
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therefore, it remains to prove the admissibility of some standard cuboids. For that

purpose, we use the Campanato inequality for the spatial gradients of solutions on

concentric cubes, see Section 11.

Finally, in Section 13 we end up our considerations with isomorphism properties

for parabolic operators. For bounded lower order coefficients the solution operator

associated with the parabolic problem (7.1) is a linear isomorphism between the

Sobolev–Morrey spaces Lω
2 (S; Y ∗) and

{

u ∈ W ω
E (S; Y ) : u(t0) = 0

}

for all

Morrey exponents 0 ≤ ω < ω̄ε(G), where ω̄ε(G) > n depends on n, ε, S, and G,

only. The solution depends smoothly on the coefficients A, b, b0, bΓ.

Note, that for ω ∈ (n, n + 2] the embedding and trace operators from W ω
E (S; Y )

into spaces of Hölder continuous functions are completely continuous. As a con-

sequence, for n < ω < ω̄ε(G) all the results remain true if the operator B contains

unbounded lower order coefficients

b ∈ Lω
2 (S; L2(G◦; Rn)), b0 ∈ Lω−2

2 (S; L2(G◦)), bΓ ∈ Lω−1
2 (S; L2(Γ)),

belonging to well-known Morrey spaces. Moreover, all the assertions can be gen-

eralized to weakly coupled systems, that means, to problems with principal parts

E and A of diagonal structure and operators B containing strongly coupled lower

order terms.

This allows to prove the unique solvability and regularity of second order drift-

diffusion problems with linear diffusion terms and nonlinear drift terms which de-

scribe, for instance, transport processes of charged particles in semiconductor het-

erostructures, chemotactical aggregation of biological organisms in heterogeneous

environments, or phase separation processes of nonlocally interacting particles, see

also Gajewski, Skrypnik [4, 5, 6] and Griepentrog [11].

In these applications the drift coefficients b are proportional to the spatial gra-

dients ∇v of interaction potentials v which are solutions to similar quasistation-

ary elliptic or parabolic subproblems having exactly the required regularity ∇v ∈

Lω
2 (S; L2(G◦; Rn)). Hence, in the case n ≥ 3 our approach avoids artificial assump-

tions on the smoothness of the data which are in general necessary to prove that,

for instance, ∇v ∈ Lq(S; Lp(G◦; Rn)) holds true for some q > 2, p > n satisfying

2/q + n/p < 1.

8. Local model problem

Assuming that B = 0, we are looking for local estimates for solutions of problem (7.1)

restricted to families of time intervals

Ir(t) = (t − r2, t) ⊂ S,
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and concentric cubes

Qr(x) = {y ∈ R
n : |y − x| < r} ⊂ G,

regardless of initial or boundary conditions. Here, t ∈ R and x ∈ Rn are fixed,

and the radius 0 < r ≤ 1 varies in a certain range. Hence, if there is no fear of

misunderstanding we shortly write Ir and Qr, respectively.

Our local model problem describes, for instance, a heat conduction process during

the time interval Ir inside a cube Qr which contains an inhomogeneous material.

Its thermal properties are described by a nonsmooth heat capacity coefficient a ∈

L∞(Qr) which satisfies

ε ≤ ess inf
y∈Qr

a(y), esssup
y∈Qr

a(y) ≤
1

ε
,

and a nonsmooth heat conduction coefficient A ∈ L∞(Ir; L
∞(Qr; S

n)) with values in

the set S
n of symmetric (n × n)-matrices satisfying

ε ‖ξ‖2 ≤ ess inf
s∈Ir

ess inf
y∈Qr

A(s)(y)ξ · ξ, esssup
s∈Ir

esssup
y∈Qr

A(s)(y)ξ · ξ ≤
1

ε
‖ξ‖2

for all ξ ∈ Rn and some ellipticity constant 0 < ε ≤ 1.

For the functional analytic formulation we choose Hilbert spaces Yr = H1
0 (Qr)

and Xr = H1(Qr). The space Hr = L2(Qr) is equipped with the weighted scalar

product defined by

(v|w)Hr =

∫

Qr

vw dλn
a for v, w ∈ Hr,

where λn
a is the weighted Lebesgue measure defined as

λn
a(Ω) =

∫

Ω

a dλn for Lebesgue measurable subsets Ω ⊂ Qr.

We consider the completely continuous embedding Kr ∈ L(Xr; Hr) of Xr in Hr.

Note that the restriction Kr|Yr ∈ L(Yr; Hr) has a dense range Kr[Yr] in Hr. In

addition to that, we introduce Er : L2(Ir; Xr) → L2(Ir; Y
∗
r ) as the linear operator

associated with Ir and Er = (Kr|Yr)
∗JHrKr ∈ L(Xr; Y

∗
r ).

The next three sections are dedicated to the local regularity properties of functions

v ∈ WEr(Ir; Xr) ∩ C(Ir; Hr) satisfying the homogeneous variational problem

(8.1)

∫

Ir

〈(Erv)′(s), w(s)〉Yr ds +

∫

Ir

∫

Qr

A(s)∇v(s) · ∇w(s) dλn ds = 0,
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or the inhomogeneous variational problem

(8.2)

∫

Ir

〈(Erv)′(s), w(s)〉Yr ds +

∫

Ir

∫

Qr

A(s)∇v(s) · ∇w(s) dλn ds

=

∫

Ir

〈f(s), w(s)〉Yr ds

for all test functions w ∈ L2(Ir; Yr) and exterior heat sources f ∈ L2(Ir; Y
∗
r ).

9. Caccioppoli inequalities and local boundedness

Energy estimates. We start our regularity theory with the proof of the local

boundedness of solutions to the homogeneous problem (8.1). To do so, we use the

following energy estimates:

Lemma 9.1 (Caccioppoli inequalities). Let ι ∈ C2(R) satisfy ι′, ι′′ ∈ BC(R) and

assume that ι′′ι ∈ BC(R) is nonnegative. For all 0 < δ < r ≤ 1 and every solution

v ∈ WEr(Ir; Xr) ∩ C(Ir; Hr) of (8.1) the estimates

sup
s∈Iδ

∫

Qδ

|u(s)|2 dλn ≤
20

ε2(r − δ)2

∫

Ir

∫

Qr

|u(s)|2 dλn ds,(9.1)

∫

Iδ

∫

Qδ

‖∇u(s)‖2 dλn ds ≤
20

ε2(r − δ)2

∫

Ir

∫

Qr

|u(s)|2 dλn ds,(9.2)

hold true for the composition u = ι ◦ v ∈ L2(Ir; Xr) ∩ C(Ir; Hr).

Proof. 1. Let 0 < δ < r ≤ 1 and τ ∈ Iδ be fixed. Now, we choose a cut-off function

ζ ∈ C∞
0 (Rn) such that for all y ∈ Rn

0 ≤ ζ(y) ≤ 1, ‖∇ζ(y)‖ ≤
2

r − δ
, ζ(y) =

{

0 if y ∈ R
n \ Qr,

1 if y ∈ Qδ,

and some cut-off function ϑ ∈ C∞(R) such that for all s ∈ R we have

0 ≤ ϑ(s) ≤ 1, |ϑ′(s)| ≤
2

(r − δ)2
, ϑ(s) =

{

0 if s ≤ t − r2,

1 if s ≥ t − δ2.

2. Suppose that v ∈ WEr(Ir; Xr)∩C(Ir; Hr) solves the variational equation (8.1).

Because of (ι2)′′ = 2
(

ι′′ι + |ι′|2
)

∈ BC(R), the function

w = ζ2 · χ[t−r2,τ ] · ϑ
2 · (ι2)′ ◦ v ∈ L2(Ir; Yr)
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is an admissible test function for (8.1). Applying Lemma B.1 the chain rule (B.1)

yields

∫

Ir

〈(Erv)′(s), w(s)〉Yr ds

=

∫

Qr

ζ2|u(τ)|2 a dλn − 2

∫ τ

t−r2

∫

Qr

ζ2ϑ(s)ϑ′(s)|u(s)|2 a dλn ds

≥ ε

∫

Qδ

|u(τ)|2 dλn −
4

ε(r − δ)2

∫

Ir

∫

Qr

|u(s)|2 dλn ds.

3. In addition to that, a straight-forward calculation leads to

∫

Ir

∫

Qr

A(s)∇v(s) · ∇w(s) dλn ds = 2

∫ τ

t−r2

∫

Qr

ζ2ϑ2(s) A(s)∇u(s) · ∇u(s) dλn ds

+ 2

∫ τ

t−r2

∫

Qr

ζ2ϑ2(s) ι′′(v(s))ι(v(s)) A(s)∇v(s) · ∇v(s) dλn ds

+ 4

∫ τ

t−r2

∫

Qr

ϑ2(s) ζu(s) A(s)∇ζ · ∇u(s) dλn ds.

Due to the nonnegativity of ι′′ι ∈ BC(R), Young’s inequality, and the positive

definiteness of A this yields

∫

Ir

∫

Qr

A(s)∇v(s) · ∇w(s) dλn ds ≥

∫ τ

t−r2

∫

Qr

ζ2ϑ2(s) A(s)∇u(s) · ∇u(s) dλn ds

− 4

∫ τ

t−r2

∫

Qr

ϑ2(s)|u(s)|2A(s)∇ζ · ∇ζ dλn ds,

and hence,

∫

Ir

∫

Qr

A(s)∇v(s) · ∇w(s) dλn ds

≥ ε

∫ τ

t−δ2

∫

Qδ

‖∇u(s)‖2 dλn ds −
16

ε(r − δ)2

∫

Ir

∫

Qr

|u(s)|2 dλn ds.

4. Summing up the results of the preceeding steps we arrive at
∫

Qδ

|u(τ)|2 dλn +

∫ τ

t−δ2

∫

Qδ

‖∇u(s)‖2 dλn ds ≤
20

ε2(r − δ)2

∫

Ir

∫

Qr

|u(s)|2 dλn ds.

Because τ ∈ Iδ was arbitrarily fixed at the beginning, we end up with the inequali-

ties (9.1) and (9.2). �
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Remark 9.1. The function ι ∈ C2(R) defined as ι(z) = z for z ∈ R, is an admis-

sible composition function in Lemma 9.1. Hence, the solution v itself satisfies the

Caccioppoli inequalities (9.1) and (9.2).

Local boundedness. To prove the local boundedness of solutions to the homo-

geneous problem (8.1) we use the Moser iteration technique, that means, a re-

cursive application of Caccioppoli inequalities to suitable powers of the solution,

see Moser [23, 24].

Theorem 9.2 (Local boundedness). Let the convex function ι ∈ C2(R) be non-

negative on supp(ι′′) which is assumed to be compact in R. Then there exists

some constant c = c(n, ε) > 0, such that for all 0 < r ≤ 1 and every solution

v ∈ WEr(Ir; Xr) ∩ C(Ir; Hr) of (8.1) the estimate

(9.3) esssup
s∈Ir/2

esssup
y∈Qr/2

|u(s)(y)|2 ≤ c

∫

Ir

∫

Qr

|u(s)|2 dλn ds

holds true for the composition u = ι ◦ v ∈ L2(Ir; Xr) ∩ C(Ir; Hr).

Proof. 1. Let û ∈ L2(Ir; Xr) ∩ C(Ir; Hr) be given and set κ = 1 + 2/n. Then for all

0 < δ ≤ r ≤ 1 Hölder’s inequality yields
∫

Iδ

∫

Qδ

|û(s)|2κ dλn ds ≤

∫

Iδ

(
∫

Qδ

|û(s)|2n/(n−2) dλn

)(n−2)/n(∫

Qδ

|û(s)|2 dλn

)κ−1

ds.

Due to the Sobolev inequality we find a constant c1 = c1(n) > 0 such that
(
∫

Qδ

|w|2n/(n−2) dλn

)(n−2)/n

≤ c1

∫

Qδ

(

|w|2

δ2
+ ‖∇w‖2

)

dλn

for all w ∈ Xδ = H1(Qδ), which yields

∫

Iδ

∫

Qδ

|û(s)|2κ dλn ds ≤
c1

δ2

(

esssup
s∈Iδ

∫

Qδ

|û(s)|2 dλn

)κ−1
∫

Iδ

∫

Qδ

|û(s)|2 dλn ds

+ c1

(

esssup
s∈Iδ

∫

Qδ

|û(s)|2 dλn

)κ−1
∫

Iδ

∫

Qδ

‖∇û(s)‖2 dλn ds.

If û ∈ L2(Ir; Xr) ∩ C(Ir; Hr) satisfies the Caccioppoli inequalities

sup
s∈Iδ

∫

Qδ

|û(s)|2 dλn ≤
20

ε2(̺ − δ)2

∫

I̺

∫

Q̺

|û(s)|2 dλn ds,

∫

Iδ

∫

Qδ

‖∇û(s)‖2 dλn ds ≤
20

ε2(̺ − δ)2

∫

I̺

∫

Q̺

|û(s)|2 dλn ds
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for all δ, ̺ > 0 with r
2
≤ δ < ̺ ≤ r ≤ 1, then we obtain

∫

Iδ

∫

Qδ

|û(s)|2κ dλn ds ≤

(

c1ε
2(̺ − δ)2

20δ2
+ c1

)

(

20

ε2(̺ − δ)2

∫

I̺

∫

Q̺

|û(s)|2 dλn ds

)κ

.

Due to 0 < r
2
≤ δ < ̺ ≤ r ≤ 1 and nκ = n + 2 we have

4(̺ − δ)2 ≤ r2 ≤ 4δ2, ̺(n+2)κ ≤ r2κ+n+2 ≤ (2δ)2κ+n+2,

and we find some constant c2 = c2(n, ε) > 0 such that

1

δn+2

∫

Iδ

∫

Qδ

|û(s)|2κ dλn ds ≤
c2δ

2κ

(̺ − δ)2κ

(

1

̺n+2

∫

I̺

∫

Q̺

|û(s)|2 dλn ds

)κ

.

2. In the following we make use of this estimate for shrinking radii

rk =
r

2
+

r

2k+1
for k ∈ N.

Obviously, for all k ∈ N we have
r

2
< rk+1 < rk ≤ r, rk − rk+1 =

r

2k+2
,

and, hence,
c2r

2κ

k+1

(rk − rk+1)2κ
≤ 4(k+2)κc2 ≤ ck+1

3 for all k ∈ N,

where c3 = c3(n, ε) > 0 is some constant. Setting δ = rk+1, ̺ = rk for all k ∈ N this

yields

(9.4)
1

rn+2
k+1

∫

Irk+1

∫

Qrk+1

|û(s)|2κ dλn ds ≤ ck+1
3

(

1

rn+2
k

∫

Irk

∫

Qrk

|û(s)|2 dλn ds

)κ

.

3. We construct a sequence of smooth functions approximating the convex function

ιk ∈ C(R) defined by ιk(z) = |z|κ
k

for z ∈ R, k ∈ N. To do so, for k, ℓ ∈ N we

define nonnegative convex functions ι⊕k , ι⊖k , ι⊕kℓ, ι⊖kℓ ∈ C(R) by

ι⊕k (z) =

{

0 if z ≤ 0,

zκk
if 0 ≤ z,

ι⊕kℓ(z) =

{

ι⊕k (z) if z ≤ ℓ,

κ
kℓκk−1(z − ℓ) + ℓκk

if ℓ ≤ z,

and

ι⊖k (z) =

{

|z|κ
k

if z ≤ 0,

0 if 0 ≤ z,
ι⊖kℓ(z) =

{

κkℓκ
k−1|z + ℓ| + ℓκ

k
if z ≤ −ℓ,

ι⊕k (z) if −ℓ ≤ z.

Let ϕ ∈ C∞
0 (R) be some nonnegative function which satisfies

supp(ϕ) ⊂ (−1, 1),

∫

R

ϕ(z) dz = 1, ϕ(−z) = ϕ(z) for all z ∈ R.
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Moreover, for ℓ ∈ N we define ϕ⊕
ℓ , ϕ⊖

ℓ ∈ C∞
0 (R) by

ϕ⊕
ℓ (z) = ℓϕ(ℓz − 1), ϕ⊖

ℓ (z) = ℓϕ(ℓz + 1) for z ∈ R.

For k, ℓ ∈ N we consider convolutions σ⊕
kℓ, σ⊖

kℓ ∈ C∞(R) given by

σ⊕
kℓ(z) =

∫

R

ι⊕kℓ(z − s)ϕ⊕
ℓ (s) ds, σ⊖

kℓ(z) =

∫

R

ι⊖kℓ(z − s)ϕ⊖
ℓ (s) ds for z ∈ R.

By construction, for ℓ → ∞ and fixed k ∈ N the sequences
(

σ⊕
kℓ

)

and
(

σ⊖
kℓ

)

converge

monotonously to ι⊕k and ι⊖k : For all k, ℓ ∈ N, and z ∈ R we have

σ⊕
kℓ(z) ≤ ι⊕kℓ(z) ≤ ι⊕k (z), lim

ℓ→∞
σ⊕

kℓ(z) = ι⊕k (z),

σ⊖
kℓ(z) ≤ ι⊖kℓ(z) ≤ ι⊖k (z), lim

ℓ→∞
σ⊖

kℓ(z) = ι⊖k (z).

Both the nonnegative and convex functions ιkℓ = ι⊕kℓ + ι⊖kℓ ∈ C(R) and σkℓ =

σ⊕
kℓ + σ⊖

kℓ ∈ C∞(R) approximate ιk = ι⊕k + ι⊖k ∈ C(R) for fixed k ∈ N: For all k,

ℓ ∈ N, and z ∈ R we have

ικ

k (z) = ιk+1(z), σkℓ(z) ≤ ιkℓ(z) ≤ ιk(z), lim
ℓ→∞

σkℓ(z) = ιk(z),

and σ′′
kℓ ∈ C∞

0 (R). Because of ι ∈ C2(R) and the compactness of supp(ι′′) in R we

get σkℓ ◦ ι ∈ C2(R), (σkℓ ◦ ι)′ = (σ′
kℓ ◦ ι) ι′ ∈ BC(R), and

(σkℓ ◦ ι)′′ = (σ′
kℓ ◦ ι) ι′′ + (σ′′

kℓ ◦ ι)|ι′|2 ∈ BC(R) for all k, ℓ ∈ N.

Due to our assumption ι is nonnegative on supp(ι′′). Together with the monotonicity

of σkℓ on [0,∞) and the nonnegativity of ι′′ and σ′′
kℓ we obtain that (σkℓ ◦ ι)′′ is

nonnegative, too. Hence, for every k, ℓ ∈ N the nonnegative function σkℓ ◦ ι ∈ C2(R)

is an admissible composition function in Lemma 9.1, that means, the compositions

ukℓ = σkℓ ◦ ι ◦ v ∈ L2(Ir; Xr) ∩ C(Ir; Hr)

satisfy the Caccioppoli inequalities (9.1), (9.2). Consequently, from (9.4) it follows

that for all k, ℓ ∈ N we have

(9.5)
1

rn+2
k+1

∫

Irk+1

∫

Qrk+1

|ukℓ(s)|
2κ dλn ds ≤ ck+1

3

(

1

rn+2
k

∫

Irk

∫

Qrk

|ukℓ(s)|
2 dλn ds

)κ

.

4. To prove that for all i ∈ N higher integrability |u|κ
i+1

∈ L2(Iri+1
; Hri+1

) holds

true together with the estimate

(9.6)
1

rn+2
i+1

∫

Iri+1

∫

Qri+1

|u(s)|2κi+1

dλn ds ≤ ci+1
3

(

1

rn+2
i

∫

Iri

∫

Qri

|u(s)|2κi

dλn ds

)κ

,



12 Jens A. Griepentrog

we proceed by induction: Due to the assumptions on ι ∈ C2(R) the composition

u = ι ◦ v ∈ L2(Ir; Xr) ∩ C(Ir; Hr) satisfies the Caccioppoli inequalities. Hence,

for i = 0 the result follows directly from (9.4). Next, we suppose that (9.6) holds

true for i = k − 1. Because of (9.5) and ukℓ = σkℓ ◦ u ≤ ιk ◦ u = |u|κ
k

this yields the

estimate

1

rn+2
k+1

∫

Irk+1

∫

Qrk+1

|ukℓ(s)|
2κ dλn ds ≤ ck+1

3

(

1

rn+2
k

∫

Irk

∫

Qrk

|u(s)|2κk

dλn ds

)κ

.

Due to the monotonous convergence of (σkℓ) to ιk and ικ

k = ιk+1 we apply Fatou’s

lemma to the left hand side and pass to the limit ℓ → ∞. This proves (9.6) for the

case i = k.

5. Applying the estimates (9.6) for i ∈ {0, . . . , k − 1} recursively, we get

1

rn+2
k

∫

Irk

∫

Qrk

|u(s)|2κ
k

dλn ds ≤ c
pk(κ)
3

(

1

rn+2
0

∫

Ir0

∫

Qr0

|u(s)|2 dλn ds

)κk

for all k ∈ N, where we have introduced the polynomial

pk(κ) =

k−1
∑

i=0

(k − i)κi for k ∈ N.

Because of the property

κ
−kpk(κ) =

k−1
∑

i=0

(k − i)κi−k =

k
∑

i=1

iκ−i ≤
κ

(κ − 1)2
for all k ∈ N,

we find some constant c4 = c4(n, ε) > 0 such that

(

1

rn+2
k

∫

Irk

∫

Qrk

|u(s)|2κk

dλn ds

)κ−k

≤
c4

rn+2

∫

Ir

∫

Qr

|u(s)|2 dλn ds,

Finally, passing to the limit k → ∞ we end up with

esssup
s∈Ir/2

esssup
y∈Qr/2

|u(s)(y)|2 ≤ c5

∫

Ir

∫

Qr

|u(s)|2 dλn ds,

where c5 = c5(n, ε) > 0 is some constant. �

Remark 9.2. Note that the function ι ∈ C2(R), given by ι(z) = z for z ∈ R, is

an admissible composition function in Theorem 9.2. Hence, the solution v itself is

locally bounded and satisfies (9.3).
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10. Harnack-type inequalities

To estimate the oscillation of solutions we need not only local boundedness but also

Harnack-type inequalities concerning level sets of nonnegative solutions to the

homogeneous problem (8.1), see Kruzhkov [19, 20] for the case of constant heat

capacity coefficients.

Let Ω ⊂ Rn be open and w : Ω → R be some Lebesgue-measurable function.

Then for every value z ∈ R we introduce the level set

Nz(w, Ω) = {y ∈ Ω : w(y) ≥ z}.

Lemma 10.1 (Measure estimate). There exist constants 0 < κ1, κ2, θ < 1 depending

on n and ε, only, such that for all 0 < r ≤ 1 and every nonnegative solution

v ∈ WEr(Ir; Xr) ∩ C(Ir; Hr) of (8.1) which satisfies

(10.1)

∫

Ir

λn
a

(

N1(v(s), Qr)
)

ds ≥
1

2
λn

a(Qr),

the following pointwise estimate holds true:

(10.2) λn
a

(

Nθ(v(τ), Qκ2r)
)

≥
1

4
λn

a(Qκ2r) for all τ ∈ Iκ1r.

Proof. 1. Let 0 < κ1 < 1
2

be some constant. Assume, that for each s ∈ (t−r2, t−κ2
1r

2)

the inequality

λn
a

(

N1(v(s), Qr)
)

<
1
2
− κ2

1

1 − κ2
1

λn
a(Qr)

holds true. Then by integration over Ir we get the relation

∫ t−κ2
1r2

t−r2

λn
a

(

N1(v(s), Qr

)

ds +

∫ t

t−κ2
1
r2

λn
a

(

N1(v(s), Qr

)

ds

<

∫ t−κ2
1r2

t−r2

1
2
− κ2

1

1 − κ2
1

λn
a(Qr) ds + κ2

1r
2 λn

a(Qr) =
1

2
r2λn

a(Qr)

which is a contradiction to (10.1).

Therefore, we have proved that for every constant 0 < κ1 < 1
2

there exists some

τ1 ∈ (t − r2, t − κ2
1r

2) such that

(10.3) λn
a

(

N1(v(τ1), Qr)
)

≥
1
2
− κ2

1

1 − κ2
1

λn
a(Qr).

2. Let 0 < θ < 1
2

be some constant which will be fixed later. We construct a

sequence of smooth functions approximating the nonnegative convex function ι ∈
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C(R) given by

ι(z) =















−z
θ
− ln θ if z ≤ 0,

− ln(z + θ) if 0 ≤ z ≤ 1 − θ,

0 if 1 − θ ≤ z.

To do so, let ϕ ∈ C∞
0 (R) be some nonnegative function which satisfies

supp(ϕ) ⊂ (−1, 1),

∫

R

ϕ(z) dz = 1, ϕ(−z) = ϕ(z) for all z ∈ R.

For k ∈ N we define ϕk ∈ C∞
0 (R) by

ϕk(z) = kϕ(kz + 1) for z ∈ R,

and we introduce nonnegative convex functions ιk ∈ C∞(R) by

ιk(z) =

∫

R

ι(z − s)ϕk(s) ds for z ∈ R, k ∈ N.

By construction, for k → ∞ the sequence (ιk) converges monotonously to ι. More-

over, for all k ∈ N we have ι′′k ∈ C∞
0 (R) and

0 ≤ ιk(z) ≤ ι(z) ≤ ln 1
θ

for all z ≥ 0, ι(z) = ιk(z) = 0 for all z ≥ 1.

Calculating the derivatives

ι′k(z) = −
1

θ

∫ ∞

z

ϕk(s) ds −

∫ z

z−(1−θ)

ϕk(s)

z + θ − s
ds,

ι′′k(z) = ϕk(z − (1 − θ)) +

∫ z

z−(1−θ)

ϕk(s)

(z + θ − s)2
ds,

and using Hölder’s inequality, for all k ∈ N and z ≥ 0 we obtain

|ι′k(z)|2 =

∣

∣

∣

∣

∫ z

z−(1−θ)

ϕk(s)

z + θ − s
ds

∣

∣

∣

∣

2

≤

(
∫ z

z−(1−θ)

ϕk(s) ds

)(
∫ z

z−(1−θ)

ϕk(s)

(z + θ − s)2
ds

)

≤

∫ z

z−(1−θ)

ϕk(s)

(z + θ − s)2
ds ≤ ι′′k(z).

3. Let 0 < κ1 < 1
2

and 0 < κ2 < 1 be given constants which will be fixed later.

We choose a cut-off function ζ ∈ C∞
0 (Rn) such that for all y ∈ Rn

0 ≤ ζ(y) ≤ 1, ‖∇ζ(y)‖ ≤
2

(1 − κ2)r
, ζ(y) =

{

0 if y ∈ Rn \ Qr,

1 if y ∈ Qκ2r.
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Furthermore, let τ1 ∈ (t − r2, t − κ2
1r

2) and τ2 ∈ Iκ1r be fixed. Because ιk ∈ C∞(R)

and ι′′k ∈ C∞
0 (R) holds true, for all k ∈ N the function

wk = ζ2 · χ[τ1,τ2] · ι
′
k ◦ v ∈ L2(Ir; Yr)

is an admissible test function for (8.1). Using the chain rule (B.1), see Lemma B.1,

for all k ∈ N we get
∫

Ir

〈(Erv)′(s), wk(s)〉Yr ds =

∫

Qr

ζ2ιk(v(τ2)) dλn
a −

∫

Qr

ζ2ιk(v(τ1)) dλn
a .

4. Additionally, by a straight-forward calculation for all k ∈ N we obtain
∫

Ir

∫

Qr

A(s)∇v(s) · ∇wk(s) dλn ds =

∫ τ2

τ1

∫

Qr

ζ2ι′′k(v(s))A(s)∇v(s) · ∇v(s) dλn ds

+ 2

∫ τ2

τ1

∫

Qr

ζA(s)∇ζ · ∇(ιk ◦ v)(s) dλn ds.

Applying the relation ι′′k ≥ |ι′k|
2 on [0,∞) and the positive definiteness of A, for all

k ∈ N we get
∫

Ir

∫

Qr

A(s)∇v(s)·∇wk(s) dλn ds ≥

∫ τ2

τ1

∫

Qr

ζ2A(s)∇(ιk◦v)(s)·∇(ιk◦v)(s) dλn ds

+ 2

∫ τ2

τ1

∫

Qr

ζA(s)∇ζ · ∇(ιk ◦ v)(s) dλn ds.

Hence, Young’s inequality yields some constant c1 = c1(ε, n) > 0 such that
∫

Ir

∫

Qr

A(s)∇v(s) · ∇wk(s) dλn ds

≥
ε

2

∫ τ2

τ1

∫

Qr

ζ2‖∇(ιk ◦ v)(s)‖2 dλn ds − c1

∫ τ2

τ1

∫

Qr

‖∇ζ‖2 dλn ds.

5. Summing up the results of the preceeding steps and using the properties of the

cut-off functions we find some constant c2 = c2(ε, n) > 0 such that for all k ∈ N we

have

(10.4)

∫

Qr

ζ2ιk(v(τ2)) dλn
a +

ε

2

∫ τ2

τ1

∫

Qr

ζ2‖∇(ιk ◦ v)(s)‖2 dλn ds

≤

∫

Qr

ζ2ιk(v(τ1)) dλn
a +

c2

κn
2 (1 − κ2)2

λn
a(Qκ2r).

Neglecting the second integral term on the left hand side, we pass to the limit

k → ∞ in the two remaining integrals: The monotone convergence of (ιk) to ι on
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[0,∞) yields

lim
k→∞

∫

Qr

ζ2ιk(v(τ2)) dλn
a =

∫

Qr

ζ2ι(v(τ2)) dλn
a ≥

∫

Qκ2r\Nθ(v(τ2),Qκ2r)

ι(v(τ2)) dλn
a .

Because v(τ2) + θ ≤ 2θ < 1 and, hence, ι(v(τ2)) ≥ ln 1
2θ

> 0 hold true λn
a-almost

everywhere on Qκ2r \ Nθ(v(τ2), Qκ2r), it follows

(10.5) lim
k→∞

∫

Qr

ζ2ιk(v(τ2)) dλn
a ≥ λn

a

(

Qκ2r \ Nθ(v(τ2), Qκ2r)
)

ln
1

2θ
.

Using the same argument as above, we get

lim
k→∞

∫

Qr

ζ2ιk(v(τ1)) dλn
a =

∫

Qr

ζ2ι(v(τ1)) dλn
a ≤

∫

Qr\N1(v(τ1),Qr)

ι(v(τ1)) dλn
a .

Note, that λn
a-almost everywhere on Qr we have ι(v(τ1)) ≤ ln 1

θ
. This yields

(10.6) lim
k→∞

∫

Qr

ζ2ιk(v(τ1)) dλn
a ≤

(

λn
a(Qr) − λn

a

(

N1(v(τ1), Qr)
))

ln
1

θ
.

Passing to the limit k → ∞ in (10.4) we use (10.5) und (10.6) to get

λn
a

(

Qκ2r \ Nθ(v(τ2), Qκ2r)
)

ln
1

2θ

≤
(

λn
a(Qr) − λn

a

(

N1(v(τ1), Qr)
))

ln
1

θ
+

c2

κn
2 (1 − κ2)2

λn
a(Qκ2r).

In view of (10.3) for every 0 < κ1 < 1
2

there exists some τ1 ∈ (t − r2, t − κ2
1r

2) such

that

λn
a

(

Qκ2r \ Nθ(v(τ2), Qκ2r)
)

ln
1

2θ
≤

1

2(1 − κ2
1)

λn
a(Qr) ln

1

θ
+

c2

κn
2 (1 − κ2)2

λn
a(Qκ2r).

Due to ε ≤ ess infy∈Qr
a(y) and esssupy∈Qr

a(y) ≤ 1/ε we obtain

λn
a(Qr) ≤

(

1 +
1 − κn

2

ε2κn
2

)

λn
a(Qκ2r),

which yields

λn
a

(

Qκ2r \ Nθ(v(τ2), Qκ2r)
)

≤
c2

κn
2 (1 − κ2)2 ln 1

2θ

λn
a(Qκ2r)

+
1

1 − κ2
1

(

1 +
1 − κn

2

ε2κn
2

)(

1

2
+

ln 2

2 ln 1
2θ

)

λn
a(Qκ2r).

Here, we fix constants 0 < κ1 < 1
2

and 0 < κ2 < 1 such that

1

1 − κ2
1

(

1 +
1 − κn

2

ε2κn
2

)

≤
9

8
.
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After that, we choose 0 < θ < 1
2

such that both

ln 2

2 ln 1
2θ

≤
1

18
and

c2

κn
2 (1 − κ2)2 ln 1

2θ

≤
1

8
.

Indeed, we have found three constants 0 < κ1, κ2, θ < 1 depending on ε and n, only,

such that for all τ2 ∈ Iκ1r the estimate

λn
a

(

Qκ2r \ Nθ(v(τ2), Qκ2r)
)

≤
3

4
λn

a(Qκ2r)

holds true, which proves the desired result. �

Theorem 10.2 (Harnack-type inequality). We find constants 0 < γ < 1
2

and

0 < κ < 1
2

depending on n and ε, only, such that for all 0 < r ≤ 1 and every

nonnegative solution v ∈ WEr(Ir; Xr) ∩ C(Ir; Hr) of (8.1) satisfying
∫

Ir

λn
a

(

N1(v(s), Qr)
)

ds ≥
1

2
λn

a(Qr),

the following estimate holds true:

(10.7) ess inf
s∈Iκr

ess inf
y∈Qκr

v(s)(y) ≥ γ.

Proof. 1. In view Lemma 10.1 and estimate (10.2) we find 0 < κ1, κ2, θ < 1 depending

on ε and n, only, such that

(10.8) λn
(

Nθ(v(τ), Qκ2r)
)

≥
1

4
ε2λn(Qκ2r) for all τ ∈ Iκ1r.

2. Let γ > 0 be some constant with γ2 < θ
2

which will be fixed later. We take

a sequence of smooth functions approximating the nonnegative convex function ι ∈

C(R) defined as

ι(z) =















− z
γ2 − ln γ2

θ
if z ≤ 0,

− ln z+γ2

θ
if 0 ≤ z ≤ θ − γ2,

0 if θ − γ2 ≤ z.

To that end, let ϕ ∈ C∞
0 (R) be some nonnegative function which satisfies

supp(ϕ) ⊂ (−1, 1),

∫

R

ϕ(z) dz = 1, ϕ(−z) = ϕ(z) for all z ∈ R.

For k ∈ N we define ϕk ∈ C∞
0 (R) by

ϕk(z) = kϕ(kz + 1) for z ∈ R,
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and we construct nonnegative convex functions ιk ∈ C∞(R) by

ιk(z) =

∫

R

ι(z − s)ϕk(s) ds for z ∈ R, k ∈ N.

By construction, for k → ∞ the sequence (ιk) converges monotonously to ι. Fur-

thermore, for all k ∈ N we have ι′′k ∈ C∞
0 (R) and

0 ≤ ιk(z) ≤ ι(z) ≤ ln θ
γ2 for all z ≥ 0, ι(z) = ιk(z) = 0 for all z ≥ θ.

Using the same arguments as in Step 2 of the proof of Lemma 10.1 we get the relation

|ι′k(z)|2 ≤ ι′′k(z) for all k ∈ N and z ≥ 0.

3. We choose some cut-off function ζ ∈ C∞
0 (Rn) such that for all y ∈ Rn

0 ≤ ζ(y) ≤ 1, ‖∇ζ(y)‖ ≤
2

(1 − κ2)r
, ζ(y) =

{

0 if y ∈ Rn \ Qr,

1 if y ∈ Qκ2r.

Moreover, let τ1 = t−κ2
1r

2 and τ2 ∈ Iκ1r be fixed. Since ιk ∈ C∞(R) and ι′′k ∈ C∞
0 (R)

holds true, for all k ∈ N the function

wk = ζ2 · χ[τ1,τ2] · ι
′
k ◦ v ∈ L2(Ir; Yr)

is an admissible test function for (8.1). Following exactly the same arguments as in

Step 3 and 4 of the proof of Lemma 10.1, we get an estimate analogous to (10.4):

We obtain

(10.9)

∫

Qr

ζ2ιk(v(τ2)) dλn
a +

ε

2

∫ τ2

τ1

∫

Qr

ζ2‖∇(ιk ◦ v)(s)‖2 dλn ds

≤

∫

Qr

ζ2ιk(v(τ1)) dλn
a +

c1

κn
2 (1 − κ2)2

λn
a(Qκ2r)

for some constant c1 = c1(n, ε) > 0.

Due to the fact that ιk(z) ≤ ln θ
γ2 holds true for all z ≥ 0 and k ∈ N, we estimate

the first term of the right hand side by
∫

Qr

ζ2ιk(v(τ1)) dλn
a ≤ λn

a(Qr) ln
θ

γ2
.

Neglecting the first term on the left hand side of (10.9), this yields

(10.10)

∫

Iκ1r

∫

Qκ2r

‖∇(ιk ◦ v)(s)‖2 dλn ds ≤ c2r
n ln

3θ

γ2

for all k ∈ N, where c2 = c2(n, ε) > 0 is some constant.
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In view of (10.8) we apply a weighted version (A.1) of the Poincaré inequality,

see Lemma A.2, to find a constant c3 = c3(ε, n) > 0 such that

∫

Iκ1r

∫

Qκ2r

∣

∣

∣

∣

ιk(v(s)) −

∫

Nθ(v(s),Qκ2r)

ιk(v(s)) dλn

∣

∣

∣

∣

2

dλn ds

≤ c3(κ2r)
2

∫

Iκ1r

∫

Qκ2r

‖∇(ιk ◦ v)(s)‖2 dλn ds.

Using the fact, that for all s ∈ Iκ1r we have v(s) ≥ θ and, hence, ιk(v(s)) = 0

λn-almost everywhere on Nθ(v(s), Qκ2r), the mean value in the integrand of the left

hand side vanishes. Remembering (10.10) this yields some constant c4 = c4(n, ε) > 0

such that

(10.11)

∫

Iκ1r

∫

Qκ2r

|ιk(v(s))|2 dλn ds ≤ c4r
n+2 ln

3θ

γ2
.

4. For every k ∈ N the nonnegative convex function ιk ∈ C∞(R) satisfies ι′′k ∈

C∞
0 (R). Due to Theorem 9.2 we find a constant c5 = c5(n, ε) > 0 such that for

κ = 1
2
min{κ1, κ2} and all k ∈ N we obtain the estimate

esssup
s∈Iκr

esssup
y∈Qκr

|ιk(v(s)(y))|2 ≤ c5

∫

I2κr

∫

Q2κr

|ιk(v(s))|2 dλn ds.

Hence, applying (10.11) and using the monotone convergence of (ιk) to ι on [0,∞),

we arrive at

(10.12) esssup
s∈Iκr

esssup
y∈Qκr

|ι(v(s)(y))|2 ≤ c6 ln
3θ

γ2
,

where c6 = c6(n, ε) > 0 is some constant.

In view of the properties of logarithmic and quadratic functions we fix some con-

stant γ > 0 depending on n and ε, only, such that

γ2 < min
{

θ
2
, θ2
}

, c6

(

ln 3θ − ln γ2
)

< (ln θ − ln γ)2.

Using (10.12) for all s ∈ Iκr this yields
(

ln
θ

v(s) + γ2

)2

≤ c6 ln
3θ

γ2
≤

(

ln
θ

γ

)2

λn-almost everywhere on Qκr \Nθ−γ2(v(s), Qκr). Therefore, for all s ∈ Iκr we obtain

v(s) ≥ γ − γ2 > 0 λn-almost everywhere on Qκr \ Nθ−γ2(v(s), Qκr). Note, that

by definition for all s ∈ Iκr we get v(s) ≥ θ − γ2 > 0 λn-almost everywhere on

Nθ−γ2(v(s), Qκr),
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Finally, by setting γ∗ = min
{

θ − γ2, γ − γ2
}

we have got onstants 0 < γ∗, κ < 1
2

depending on n and ε, only, such that the desired estimate

ess inf
s∈Iκr

ess inf
y∈Qκr

v(s)(y) ≥ γ∗

holds true. �

11. Campanato inequalities

Using both local boundedness and the Harnack-type inequality we prove the

De Giorgi–Moser–Nash inequality to estimate the oscillation of solutions. The

proofs uses ideas of Troianiello [28] and Hong-Ming Yin [30].

Theorem 11.1 (De Giorgi–Moser–Nash inequality). We find two constants

0 < ν < 1 and c > 0 depending on n and ε, only, such that for all 0 < δ ≤ r ≤ 1 and

every solution v ∈ WEr(Ir; Xr) ∩ C(Ir; Hr) of (8.1) we have the following estimate:

(11.1) esssup
s,ŝ∈Iδ/2

esssup
y,ŷ∈Qδ/2

|v(s)(y)− v(ŝ)(ŷ)|2 ≤ c

(

δ

r

)2ν ∫

Ir

∫

Qr

|v(s)|2 dλn ds.

Proof. 1. Let 0 < ̺ ≤ r
2

be given and consider an essentially bounded function

v ∈ WE̺(I̺; X̺) ∩ C(I̺; H̺) which satisfies both

(11.2)

∫

I̺

〈(E̺v)′(s), w(s)〉Y̺ ds +

∫

I̺

∫

Q̺

A(s)∇v(s) · ∇w(s) dλn ds = 0

for all w ∈ L2(I̺; Y̺). We define the bounds m∗, m∗ ∈ R by

(11.3) m∗ = essinf
s∈I̺

ess inf
y∈Q̺

v(s)(y) ≤ esssup
s∈I̺

esssup
y∈Q̺

v(s)(y) = m∗.

In the following step we prove that there exist constants 0 < γ, κ < 1
2

depending on

n, ε, only, and M∗, M∗ ∈ R such that both

(11.4) M∗ ≤ ess inf
s∈Iκ̺

ess inf
y∈Qκ̺

v(s)(y) ≤ esssup
s∈Iκ̺

esssup
y∈Qκ̺

v(s)(y) ≤ M∗

and

(11.5) M∗ − M∗ ≤ (1 − γ)(m∗ − m∗)

holds true:

2. In the case m∗ = m∗ the statement is obviously true. Hence, assume that

m∗ < m∗ and let z∗ ∈ [m∗, m
∗] be the supremum of all z ∈ [m∗, m

∗] which satisfy
∫

I̺

λn
a

(

{y ∈ Q̺ : v(s)(y) < z}
)

ds ≤
1

2
λn

a(Q̺).
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Introducing the level sets

Fk(s) =
{

y ∈ Q̺ : v(s)(y) ≤ z∗ −
1
k

}

,

F (s) =
{

y ∈ Q̺ : v(s)(y) < z∗
}

,

for all s ∈ I̺ and k ∈ N we get Fk(s) ⊂ Fk+1(s) and ∪∞
k=1Fk(s) = F (s) which yields

∫

I̺

λn
a(F (s)) ds = lim

k→∞

∫

I̺

λn
a(Fk(s)) ds ≤

1

2
λn

a(Q̺).

In other words, we have

(11.6)

∫

I̺

λn
a

(

{y ∈ Q̺ : v(s)(y) < z∗}
)

ds ≤
1

2
λn

a(Q̺).

Analogously, introducing the level sets

Gk(s) =
{

y ∈ Q̺ : v(s)(y) < z∗ + 1
k

}

,

G(s) =
{

y ∈ Q̺ : v(s)(y) ≤ z∗
}

,

for all s ∈ I̺ and k ∈ N we get Gk+1(s) ⊂ Gk(s) and ∩∞
k=1Gk(s) = G(s) which yields

∫

I̺

λn
a(G(s)) ds = lim

k→∞

∫

I̺

λn
a(Gk(s)) ds ≥

1

2
λn

a(Q̺).

Hence, we also get

(11.7)

∫

I̺

λn
a

(

{y ∈ Q̺ : v(s)(y) > z∗}
)

ds ≤
1

2
λn

a(Q̺).

2.1. In the case m∗ < z∗ the nonnegative function

v∗ =
v − m∗

z∗ − m∗

∈ WE̺(I̺; X̺) ∩ C(I̺; H̺)

solves (11.2) as well as v. By construction, from (11.6) we get the estimate
∫

I̺

λn
a

(

{y ∈ Q̺ : v∗(s)(y) ≥ 1}
)

ds ≥
1

2
λn

a(Q̺).

Applying Theorem 10.2 there exist two constants 0 < γ, κ < 1
2

depending on n and

ε, only, such that the Harnack-type inequality (10.7)

ess inf
s∈Iκ̺

ess inf
y∈Qκ̺

v∗(s)(y) ≥ γ

holds true. Hence, setting

M∗ = m∗ + γ(z∗ − m∗) = z∗ − (1 − γ)(z∗ − m∗),
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we get

M∗ ≤ ess inf
s∈Iκ̺

ess inf
y∈Qκ̺

v(s)(y),

which remains true in the case z∗ = m∗ due to (11.3).

2.2. Analogously to Step 2.1, in the case z∗ < m∗ the nonnegative function

v∗ =
m∗ − v

m∗ − z∗
∈ WE̺(I̺; X̺) ∩ C(I̺; H̺)

solves (11.2), too. From (11.7) we obtain
∫

I̺

λn
a

(

{y ∈ Q̺ : v∗(s)(y) ≥ 1}
)

ds ≥
1

2
λn

a(Q̺),

and Theorem 10.2 yields

ess inf
s∈Iκ̺

ess inf
y∈Qκ̺

v∗(s)(y) ≥ γ,

where the constants 0 < γ, κ < 1
2

are the same as in Step 2.1. Therefore, setting

M∗ = m∗ − γ(m∗ − z∗) = z∗ + (1 − γ)(m∗ − z∗),

we get

esssup
s∈Iκ̺

esssup
y∈Qκ̺

v(s)(y) ≤ M∗,

which remains true in the case z∗ = m∗ because of (11.3). Summing up the results

of Step 2.1 and 2.2 we have shown both (11.4) and (11.5).

3. For 0 < ̺ ≤ r
2

we define the oscillation of v with respect to I̺, Q̺ by

o(̺) = esssup
s,ŝ∈I̺

esssup
y,ŷ∈Q̺

|v(s)(y)− v(ŝ)(ŷ)|.

A recursive application of (11.3), (11.4), and (11.5), see Step 1, to shrinking radii

̺ = 1
2
κir yields

o
(

1
2
κir
)

≤ (1 − γ)i o
(

r
2

)

for all i ∈ N.

For every pair of radii 0 < δ ≤ r we choose i ∈ N such that κi+1r < δ ≤ κir. In the

case o
(

δ
2

)

> 0 we obtain

ln o
(

δ
2

)

− ln o
(

r
2

)

≤ ln
1

1 − γ
+ (i + 1) ln(1 − γ) ≤ ln

1

1 − γ
+

ln(1 − γ)

ln κ
ln

δ

r
.

Setting ν = ln(1−γ)
lnκ

∈ (0, 1), we get

o
(

δ
2
) ≤

o
(

r
2

)

1 − γ

(

δ

r

)ν
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which holds true also in the trivial case o
(

δ
2

)

= 0. Hence, due to Remark 9.2

concerning the local boundedness of v, for all 0 < δ ≤ r ≤ 1 we end up with

esssup
s,ŝ∈Iδ/2

esssup
y,ŷ∈Qδ/2

|v(s)(y)− v(ŝ)(ŷ)|2 ≤ c

(

δ

r

)2ν ∫

Ir

∫

Qr

|v(s)|2 dλn ds,

where c = c(n, ε) > 0 is some constant. �

Campanato inequalities. Due to the De Giorgi–Moser–Nash inequality we

get the Campanato inequality for the spatial gradients of solutions to the homo-

geneous problem (8.1).

Lemma 11.2 (Campanato inequality). There exist constants c > 0 and ω̄ ∈

(n, n + 2) depending on n and ε, only, such that for all 0 < δ ≤ r ≤ 1 and every

solution v ∈ WEr(Ir; Xr) ∩ C(Ir; Hr) of (8.1) we have
∫

Iδ

∫

Qδ

‖∇v(s)‖2 dλn ds ≤ c

(

δ

r

)ω̄ ∫

Ir

∫

Qr

‖∇v(s)‖2 dλn ds.

Proof. 1. First, we consider the case 0 < δ ≤ r
4
. Setting

v̄ =

∫

I2δ

∫

Q2δ

v(s) dλn ds,

the difference v − v̄ ∈ WEr(Ir; Xr) ∩ C(Ir; Hr) satisfies (8.1) as well as v. In view

of the Caccioppoli inequality (9.2) and the local boundedness, see Remark 9.1

and 9.2, this leads to the estimate
∫

Iδ

∫

Qδ

‖∇v(s)‖2 dλn ds ≤
20

ε2δ2

∫

I2δ

∫

Q2δ

|v(s) − v̄|2 dλn ds

≤ c1δ
n esssup

s∈I2δ

esssup
y∈Q2δ

|v(s)(y) − v̄|2,

where c1 = c1(n, ε) > 0 is some constant. Due to the relation

ess inf
s∈I2δ

ess inf
y∈Q2δ

v(s)(y) ≤ v ≤ esssup
s∈I2δ

esssup
y∈Q2δ

v(s)(y),

this yields

(11.8)

∫

Iδ

∫

Qδ

‖∇v(s)‖2 dλn ds ≤ c1δ
n esssup

s,ŝ∈I2δ

esssup
y,ŷ∈Q2δ

|v(s)(y)− v(ŝ)(ŷ)|2.

2. Introducing the mean value

v̂ =

∫

Ir

∫

Qr

v(s) dλn ds,
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again we make use of the fact, that v − v̂ satisfies (8.1) as well as v. We apply the

De Giorgi–Moser–Nash inequality (11.1) to the function

v − v̂ ∈ WEr(Ir; Xr) ∩ C(Ir; Hr)

to estimate its oscillation: We find two constants c2 > 0 and 0 < ν < 1 depending

on n and ε, only, such that for all 0 < δ ≤ r
4

esssup
s,ŝ∈I2δ

esssup
y,ŷ∈Q2δ

|v(s)(y) − v(ŝ)(ŷ)|2 ≤ c2

(

δ

r

)2ν ∫

Ir

∫

Qr

|v(s) − v̂|2 dλn ds.

Together with (11.8) for 0 < δ ≤ r
4

we obtain

∫

Iδ

∫

Qδ

‖∇v(s)‖2 dλn ds ≤
c3

r2

(

δ

r

)ω̄ ∫

Ir

∫

Qr

|v(s) − v̂|2 dλn ds,

where ω̄ = n + 2ν ∈ (n, n + 2) and c3 = c3(n, ε) > 0 are constants. Hence, using

the Poincaré inequality, see Theorem A.3, we find some constant c4 = c4(ε, n) > 0

such that
∫

Iδ

∫

Qδ

‖∇v(s)‖2 dλn ds ≤ c4

(

δ

r

)ω̄ ∫

Ir

∫

Qr

‖∇v(s)‖2 dλn ds

+ c4

(

δ

r

)ω̄ ∫

Ir

‖(Erv)′(s)‖2
H−1(Qr) ds.

Since v ∈ WEr(Ir; Xr) ∩ C(Ir; Hr) satisfies the variational equation (8.1), for all

0 < δ ≤ r
4

we arrive at the sought-for estimate

∫

Iδ

∫

Qδ

‖∇v(s)‖2 dλn ds ≤ c5

(

δ

r

)ω̄ ∫

Ir

∫

Qr

‖∇v(s)‖2 dλn ds,

where c5 = c5(ε, n) > 0 is some constant. Obviously, a relation of this type holds

true in the case r
4
≤ δ ≤ r, too. �

We conclude our local regularity theory with the Campanato inequality for the

spatial gradients of solutions to the inhomogeneous problem (8.2). This estimate

serves as the starting point of our global regularity theory for second order parabolic

initial boundary value problems in Lipschitz domains with nonsmooth coefficients

and mixed boundary conditions in Sobolev–Morrey spaces.

Theorem 11.3 (Campanato inequality). There exist two constants ω̄ ∈ (n, n+2)

and c > 0 depending on n and ε, only, such that for all 0 < δ ≤ r ≤ 1, every
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functional f ∈ L2(Ir; Y
∗
r ), and every solution u ∈ WEr(Ir; Xr) ∩ C(Ir; Hr) of the

variational equation (8.2) we have

(11.9)

∫

Iδ

∫

Qδ

‖∇u(s)‖2 dλn ds

≤ c

(

δ

r

)ω̄ ∫

Ir

∫

Qr

‖∇u(s)‖2 dλn ds + c

∫

Ir

‖f(s)‖2
Y ∗

r
ds.

Proof. 1. Let u0 ∈ WEr|Yr(Ir; Yr) be the function which solves (8.2) and satisfies

u0(t − r2) = 0, see Theorem 7.1. Using w = u0 as a test function and having in

mind the Sobolev–Friedrichs inequality
∫

Qr

|u0(s)|
2 dλn ≤ 4r2

∫

Qr

‖∇u0(s)‖
2 dλn for s ∈ Ir,

we apply Young’s inequality to obtain the following estimate

ε

∫

Ir

∫

Qr

‖∇u0(s)‖
2 dλn ds ≤

∫

Ir

〈f(s), u0(s)〉Yr ds

≤ c1

∫

Ir

‖f(s)‖2
Y ∗

r
ds +

ε

2

∫

Ir

∫

Qr

‖∇u0(s)‖
2 dλn ds,

where c1 = c1(ε, n) is some constant. Consequently, we get

(11.10)

∫

Ir

∫

Qr

‖∇u0(s)‖
2 dλn ds ≤

2c1

ε

∫

Ir

‖f(s)‖2
Y ∗

r
ds.

2. Let u ∈ WEr(Ir; Xr) ∩ C(Ir; Hr) be a solution of (8.2). Then the difference

v = u − u0 ∈ WEr(Ir; Xr) ∩ C(Ir; Hr) solves the homogeneous problem (8.1). Due

to Lemma 11.2 and v = u − u0, for all 0 < δ ≤ r ≤ 1 we obtain the estimate
∫

Iδ

∫

Qδ

‖∇v(s)‖2 dλn ds ≤ c2

(

δ

r

)ω̄ ∫

Ir

∫

Qr

‖∇v(s)‖2 dλn ds

≤ 2c2

(

δ

r

)ω̄ ∫

Ir

∫

Qr

(

‖∇u(s)‖2 + ‖∇u0(s)‖
2
)

dλn ds,

where ω̄ ∈ (n, n + 2) and c2 > 0 are two constants depending on n and ε.

In view of u = u0 + v and estimate (11.10) this yields the existence of some

constant c3 = c3(n, ε) > 0 such that the desired inequality holds true. �

12. Global regularity for a model problem

Let S = (t0, t1) be a bounded open interval, G ⊂ Rn a regular set, and 0 < ε ≤ 1

some constant. To formulate our model problem we consider the following type of

parabolic operators.
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Definition 12.1 (Parabolic operator). 1. The pair of leading coefficients (a, A) is

called ε-definite with respect to S and G◦ if a ∈ L∞(G◦) fulfills

ε ≤ ess inf
y∈G◦

a(y), esssup
y∈G◦

a(y) ≤
1

ε
,

and A ∈ L∞(S; L∞(G◦; Sn)) satisfies the ellipticity condition

ε ‖ξ‖2 ≤ ess inf
s∈S

ess inf
y∈G◦

A(s)(y)ξ · ξ, esssup
s∈S

esssup
y∈G◦

A(s)(y)ξ · ξ ≤
1

ε
‖ξ‖2

for all ξ ∈ Rn. Here Sn is the set of symmetric (n × n)-matrices.

2. Let the pair (a, A) of leading coefficients be ε-definite with respect to S and

G◦. Consider the operator E ∈ L(H1
0 (G); H−1(G)) associated with a and in-

troduce its time-dependent counterpart E : L2(S; H1
0(G)) → L2(S; H−1(G)) as

usual by (Eu)(s) = Eu(s) for u ∈ L2(S; H1
0 (G)) and s ∈ S. Moreover, for u,

w ∈ L2(S; H1
0 (G)) we define the bounded linear operator A : L2(S; H1

0(G)) →

L2(S; H−1(G)) by

〈Au, w〉L2(S;H1
0
(G)) =

∫

S

∫

G

A(s)∇u(s) · ∇w(s) dλn ds.

3. We define the parabolic operator

P :
{

u ∈ WE(S; H1
0(G)) : u(t0) = 0

}

→ L2(S; H−1(G)),

associated with the maps E and A, by setting

Pu = (Eu)′ + Au for u ∈ WE(S; H1
0(G)) with u(t0) = 0.

We formulate the model problem to find a solution u ∈ WE(S; H1
0(G)) of

(12.1) Pu = f ∈ L2(S; H−1(G)), u(t0) = 0.

Applying Theorem 7.1 the operator P is an isomorphism between the Hilbert

spaces
{

u ∈ WE(S; H1
0(G)) : u(t0) = 0

}

and L2(S; H−1(G)): For every f ∈

L2(S; H−1(G)) the initial boundary value problem (12.1) admits a uniquely de-

termined solution u ∈ WE(S; H1
0(G)). This section is dedicated to the maximal

regularity properties of the parabolic operator P. To that end we introduce the

concept of admissibility for regular sets G ⊂ Rn:

Definition 12.2 (Admissible sets). 1. Let ε ∈ (0, 1] and F ⊂ G ⊂ Rn be two regular

sets. We denote by ω̄ε(F, G) ∈ [0, n + 2] the supremum of all ω̄ ∈ [0, n + 2] such

that for every ω ∈ [0, ω̄), all bounded open intervals S = (t0, t1), every functional
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f ∈ Lω
2 (S; H−1(G)), and all coefficients (a, A) being ε-definite with respect to S and

G◦, for the solution u ∈ WE(S; H1
0(G)) to the model problem (12.1) the estimate

‖RS,Fu‖Lω
2
(S;H1(F ◦)) ≤ c1

(

‖f‖Lω
2
(S;H−1(G)) + ‖u‖WE(S;H1

0
(G))

)

,

holds true, where c1 > 0 is some constant which depends on n, ε, ω, S, G, and F ,

only. In the case F = G we set ω̄ε(G) = ω̄ε(G, G).

2. Let F ⊂ G ⊂ Rn be two regular sets. The set F is called admissible with

respect to G, if and only if ω̄ε(F, G) > n for all ε ∈ (0, 1]. We call G admissible, if

and only if ω̄ε(G) > n for all ε ∈ (0, 1].

Theorem 12.1. If G ⊂ R
n is admissible, then for every 0 ≤ ω < ω̄ε(G) the

restriction Pω of the parabolic operator P associated with the coefficients (a, A) being

ε-definite with respect to S = (t0, t1) and G◦ is a linear isomorphism between the

spaces
{

u ∈ W ω
E (S; H1

0(G)) : u(t0) = 0
}

and Lω
2 (S; H−1(G)).

Proof. Let G ⊂ Rn be admissible and 0 ≤ ω < ω̄ε(G) be some given parameter.

In view of the above definition, for every f ∈ Lω
2 (S; H−1(G)) the solution u ∈

WE(S; H1
0 (G)) of problem (12.1) belongs to Lω

2 (S; H1
0(G)) and satisfies the estimate

(12.2) ‖u‖Lω
2
(S;H1

0
(G)) ≤ c1

(

‖f‖Lω
2
(S;H−1(G)) + ‖u‖WE(S;H1

0
(G))

)

,

where c1 > 0 is some constant depending on n, ε, ω, S, and G, only. Using Re-

mark 3.2 and Theorem 5.6 this yields Au ∈ Lω
2 (S; H−1(G)) and, hence, maximal

regularity (Eu)′ = f − Au ∈ Lω
2 (S; H−1(G)) with a norm estimate

(12.3) ‖(Eu)′‖Lω
2
(S;H−1(G)) ≤ c2

(

‖f‖Lω
2
(S;H−1(G)) + ‖u‖WE(S;H1

0
(G))

)

,

where c2 > 0 is some constant depending on n, ε, ω, S, and G, only.

Since P−1 maps L2(S; H−1(G)) continuously into WE(S; H1
0(G)), see Theorem 7.1,

and Lω
2 (S; H−1(G)) is continuously embedded into the space L2(S; H−1(G)), the

above estimates (12.2) and (12.3) leads to

‖P−1f‖W ω
E(S;H1(G◦)) ≤ c3 ‖f‖Lω

2
(S;H−1(G)) for all f ∈ Lω

2 (S; H−1(G)),

where c3 = c3(n, ε, ω, S, G) > 0 is some constant.

From the theory of functions spaces Lω
2 (S; H−1(G)), see Theorem 5.6, it follows

that the restriction Pω of the parabolic operator P is a bounded linear operator from
{

u ∈ W ω
E (S; H1

0(G)) : u(t0) = 0
}

into Lω
2 (S; H−1(G)). Combining both results, we

have proved the isomorphism property. �

Remark 12.1. We want to emphasize that for admissible sets G ⊂ Rn in the case

n < ω < ω̄ε(G) the solution u = P−1f ∈ L
ω+2
2 (S; L2(G◦)) is Hölder continuous in
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time and space up to the boundary, see Theorem 3.4 and 6.8. Hence, the aim of this

section is to prove the admissibility of all regular sets G ⊂ Rn.

Invariance principles for admissible sets. In the following we prove that the

concept of admissibility is invariant with respect to localization, transformation and

reflection.

Lemma 12.2 (Localization). Let G ⊂ Rn be regular and assume that {U1, . . . , Um},

{V1, . . . , Vm} are two open coverings of G such that for every i ∈ {1, . . . , m} the

inclusion Vi ⊂ Ui holds true, and Vi ∩ G is admissible with respect to Ui ∩ G. Then

the set G is admissible.

Proof. 1. Let ε ∈ (0, 1] and take a smooth partition {χ1, . . . , χm} ⊂ C∞
0 (Rn) of unity

subordinate to the open covering {V1, . . . , Vm} of G. We choose some δ > 0 such

that Qδ(x) ⊂ Vi holds true for every x ∈ supp(χi) and i ∈ {1, . . . , m}. Since Vi ∩ G

is admissible with respect to Ui ∩ G we choose ω̄ ∈ (n, n + 2] satisfying

ω̄ ≤ ω̄ε(Vi ∩ G, Ui ∩ G) for all i ∈ {1, . . . , m}.

2. Let the coefficients (a, A) be ε-definite with respect to S and G◦. For every

i ∈ {1, . . . , m} we define the restriction ai ∈ L∞(Ui ∩ G◦), the associated operator

Ei ∈ L(H1
0 (Ui ∩ G); H−1(Ui ∩ G)). Moreover, we introduce the bounded linear

operator Ai : L2(S; H1
0(Ui ∩ G)) → L2(S; H−1(Ui ∩ G)) by

〈Aiv, w〉L2(S;H1
0
(Ui∩G)) =

∫

S

∫

Ui∩G

A(s)∇v(s) · ∇w(s) dλn ds

for v, w ∈ L2(S; H1
0(Ui ∩ G)).

3. Let ω ∈ (0, ω̄] be fixed. For every functional f ∈ Lω
2 (S; H−1(G)), the corre-

sponding solution u ∈ WE(S; H1
0(G)) of the problem

(Eu)′ + Au = f, u(t0) = 0,

and every i ∈ {1, . . . , m} we define the function

ui = RS,Ui∩G(χiu) ∈ WEi
(S; H1

0 (Ui ∩ G))

and the functional f0i ∈ L2(S; H−1(Ui ∩ G)) by

〈f0i, w〉L2(S;H1
0
(Ui∩G)) =

∫

S

∫

Ui∩G

u(s)A(s)∇χi · ∇w(s) dλn ds

−

∫

S

∫

Ui∩G

w(s)A(s)∇u(s) · ∇χi dλn ds



Maximal regularity in Sobolev–Morrey spaces 29

for w ∈ L2(S; H1
0(Ui ∩ G)). Using Lemma 6.2 and 6.3 we obtain

〈(Eiui)
′ + Aiui − f0i, w〉L2(S;H1

0
(Ui∩G)) = 〈(Eu)′ + Au, ZS,G(χiw)〉L2(S;H1

0
(G))

= 〈f, ZS,G(χiw)〉L2(S;H1
0
(G))

for all w ∈ L2(S; H1
0 (Ui ∩ G)). Thus, setting

fi = f0i + f1i, f1i = LS,Ui∩G(χif) ∈ L2(S; H−1(Ui ∩ G)),

for every i ∈ {1, . . . , m} the function ui ∈ WEi
(S; H1

0(Ui ∩ G)) solves the localized

problem

(12.4) (Eiui)
′ + Aiui = fi, ui(t0) = 0.

4. Due to the continuous embedding of WE(S; H1
0 (G)) in L2

2(S; L2(G◦)), see The-

orem 3.4 and 6.8 and Remark 3.2, we get

‖uA∇χi‖ ∈ L2
2(S; L2(G◦)), −A∇u · ∇χi ∈ L2(S; L2(G◦)).

Using Theorem 5.6 for µ = min{ω, 2} we obtain f0i ∈ Lµ
2(S; H−1(Ui ∩ G)), and we

find a constant c1 > 0 depending on ε, G, and the above partition of unity such that

‖f0i‖Lµ
2
(S;H−1(Ui∩G)) ≤ c1 ‖u‖WE(S;H1

0
(G)) for all i ∈ {1, . . . , m}.

Due to Lemma 5.2 and 5.3 we get f1i ∈ Lµ
2 (S; H−1(Ui ∩ G)) and

‖f1i‖Lµ
2
(S;H−1(Ui∩G)) ≤ c2 ‖f‖Lµ

2
(S;H−1(G)) for all i ∈ {1, . . . , m},

where the constant c2 > 0 depends on the partition of unity.

In view of the admissibility of Vi ∩ G with respect to Ui ∩ G there exists some

constant c3 > 0 depending on n, ε, µ, S, G, the coverings {U1, . . . , Um}, {V1, . . . , Vm},

and the partition of unity, only, such that for every i ∈ {1, . . . , m} the solution

ui ∈ WEi
(S; H1

0 (Ui ∩ G)) to the localized problem (12.4) satisfies the estimate

‖RS,Vi∩Gui‖Lµ
2
(S;H1

0
(Vi∩G)) ≤ c3

(

‖f‖Lµ
2
(S;H−1(G)) + ‖u‖WE(S;H1

0
(G))

)

.

In view of Remark 3.3 we arrive at

u =

m
∑

i=1

χiu =

m
∑

j=1

ZS,Gui ∈ Lµ
2 (S; H1

0 (G))

together with the estimate

‖u‖Lµ
2
(S;H1

0
(G)) ≤ c4

(

‖f‖Lµ
2
(S;H−1(G)) + ‖u‖WE(S;H1

0
(G))

)

,

where c4 > 0 is some constant depending on n, ε, µ, S, G, δ, the partition of unity,

and the coverings {U1, . . . , Um}, {V1, . . . , Vm}.
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5. We complete the proof using iterative arguments: Since Step 4 and Theorem 5.6

yields

(Eu)′ = f − Au ∈ Lµ
2 (S; H−1(G)),

and the embedding of W µ
E(S; H1

0 (G)) into L
µ+2
2 (S; L2(G◦)) is continuous, see The-

orem 6.8, there exists some constant c5, c6 > 0 depending on n, ε, µ, S, G, the

partition of unity, and {U1, . . . , Um}, {V1, . . . , Vm} such that

‖u‖W µ
E(S;H1

0
(G)) ≤ c5

(

‖f‖Lµ
2
(S;H−1(G)) + ‖u‖WE(S;H1

0
(G))

)

,

‖u‖
L

µ+2

2
(S;L2(G◦)) ≤ c6

(

‖f‖Lµ
2
(S;H−1(G)) + ‖u‖WE(S;H1

0
(G))

)

.

Using Theorem 3.4 for µ = min{ω, 4} and every i ∈ {1, . . . , m} we obtain

‖uA∇χi‖ ∈ Lµ
2 (S; L2(G◦)), −A∇u · ∇χi ∈ Lµ−2

2 (S; L2(G◦)).

Applying Theorem 5.6 we get f0i ∈ Lµ
2(S; H−1(Ui ∩ G)) for every i ∈ {1, . . . , m}

together with a constant c7 > 0 depending on n, ε, µ, S, G, the partition of unity,

and {U1, . . . , Um}, {V1, . . . , Vm} such that

‖f0i‖Lµ
2
(S;H−1(Ui∩G)) ≤ c7

(

‖f‖Lµ
2
(S;H−1(G)) + ‖u‖WE(S;H1

0
(G))

)

.

Using Lemma 5.2 and 5.3 we see that f1i ∈ Lµ
2 (S; H−1(Ui ∩ G)) and

‖f1i‖Lµ
2
(S;H−1(Ui∩G)) ≤ c8 ‖f‖Lµ

2
(S;H−1(G)) for all i ∈ {1, . . . , m},

where c8 > 0 depends on the partition of unity. As in Step 4 the admissibility of

Vi ∩ G with respect to Ui ∩ G yields u ∈ Lµ
2 (S; H1

0 (G)) and

‖u‖Lµ
2
(S;H1

0
(G)) ≤ c9

(

‖f‖Lµ
2
(S;H−1(G)) + ‖u‖WE(S;H1

0
(G))

)

,

where c9 > 0 is some constant depending on n, ε, µ, S, G, δ, the partition of unity,

and the coverings {U1, . . . , Um}, {V1, . . . , Vm}. Repeating these arguments, after a

finite number of analogous steps we arrive at µ = ω, which proves the admissibility

of G. �

Lemma 12.3 (Transformation). Let F ⊂ G ⊂ Rn be two regular sets and T some

Lipschitz transformation from an open neighborhood of G into Rn. Then F∗ = T [F ]

is admissible with respect to G∗ = T [G], if and only if F is admissible with respect

to G.

Proof. 1. Let L ≥ 1 be a Lipschitz constant of T and ε∗ ∈ (0, 1]. We consider

coefficients (a∗, A∗) being ε∗-definite with respect to S and G◦
∗ and the map E∗ ∈
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L(H1
0 (G∗); H

−1(G∗)) associated with a∗. Moreover, we define the bounded linear

map A∗ : L2(S; H1
0(G∗)) → L2(S; H−1(G∗)) by

〈A∗v∗, w∗〉L2(S;H1
0
(G∗)) =

∫

S

∫

G∗

A∗(s)∇v∗(s) · ∇w∗(s) dλn ds

for v∗, w∗ ∈ L2(S; H1
0(G∗)).

Due to the properties of the Jacobi matrix DT and its determinant JT the pair

(a, A) of transformed coefficients

a = |JT | · T∗a∗, A = |JT | · ((DT )−1)∗(T∗A∗)(DT )−1,

is ε-definite with respect to S and G◦ with ε = ε∗/L
n+2. We introduce the op-

erator E ∈ L(H1
0 (G); H−1(G)) associated with a and the bounded linear map

A : L2(S; H1
0(G)) → L2(S; H−1(G)) by

〈Av, w〉L2(S;H1
0
(G)) =

∫

S

∫

G

A(s)∇v(s) · ∇w(s) dλn ds

for v, w ∈ L2(S; H1
0(G)). Due to the chain rule and the change of variable formula

we have both E∗ = T∗ET∗ and A∗ = T∗AT∗.

2. Suppose that F is admissible with respect to G and fix 0 ≤ ω < ω̄ε(F, G). For

every functional f ∗ ∈ Lω
2 (S; H−1(G∗)) the problem

(E∗u∗)
′ + A∗u∗ = f ∗, u∗(t0) = 0,

admits a uniquely determined solution u∗ ∈ WE∗
(S; H1

0 (G∗)). Using the invariance

of the Morrey spaces with respect to Lipschitz transformations, see Lemma 5.4

and 6.4, the functions u = T∗u∗ ∈ WE(S; H1
0 (G)) and f ∈ Lω

2 (S; H−1(G)) defined

by T∗f = f ∗ satisfy

〈(Eu)′ + Au, T∗w∗〉L2(S;H1
0
(G)) = 〈T∗(ET∗u∗)

′ + T
∗
AT∗u∗, w∗〉L2(S;H1

0
(G∗))

= 〈(E∗u∗)
′ + A∗u∗, w∗〉L2(S;H1

0
(G∗))

= 〈f, T∗w∗〉L2(S;H1
0
(G))

for all w∗ ∈ L2(S; H1
0 (G∗)). Applying Lemma 4.4 we obtain, that u = T∗u∗ ∈

WE(S; H1
0 (G)) solves the transformed problem

(Eu)′ + Au = f, u(t0) = 0.

3. Due to the admissibility of F with respect to G we find some constant c1 > 0

depending on n, ε, ω, S, F , G such that

‖RS,Fu‖Lω
2
(S;H1(F ◦)) ≤ c1

(

‖f‖Lω
2
(S;H−1(G)) + ‖u‖WE(S;H1

0
(G))

)

.
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In view of the invariance of the Morrey spaces with respect to Lipschitz trans-

formations, see Lemma 4.4, 5.4, and 6.4, we end up with the estimate

‖RS,F∗
u∗‖Lω

2
(S;H1(F ◦

∗
)) ≤ c2

(

‖f ∗‖Lω
2
(S;H−1(G∗)) + ‖u∗‖WE∗

(S;H1
0
(G∗))

)

,

where the constant c2 > 0 depending on n, ε, ω, T , S, F , G. This proves the

admissibility of F∗ with respect to G∗. The proof of the inverse statement can be

done in the same manner. �

Lemma 12.4 (Reflection). If Q̺ is admissible with respect to Q for some 0 < ̺ ≤ 1,

then Q+
̺ and Q−

̺ are admissible with respect to Q+ and Q−, respectively.

Proof. 1. Let 0 < ε ≤ 1. We consider coefficients (a−, A−) being ε-definite with re-

spect to S and Q− and the map E− ∈ L(H1
0 (Q−); H−1(Q−)) associated with a−. Fur-

thermore, we define the bounded linear map A− : L2(S; H1
0(Q

−)) → L2(S; H−1(Q−))

by

〈A−u−, w−〉L2(S;H1
0
(Q−)) =

∫

S

∫

Q−

A−(s)∇v−(s) · ∇w−(s) dλn ds

for u−, w− ∈ L2(S; H1
0(Q

−)).

The pair (a, A) of reflected coefficients

a = R+a−, A = R
+A−,

is ε-definite with respect to S and Q. Let E ∈ L(H1
0 (Q); H−1(Q)) be associated

with a and the bounded linear operator A : L2(S; H1
0(Q)) → L2(S; H−1(Q)) defined

as

〈Av, w〉L2(S;H1
0
(Q)) =

∫

S

∫

Q

A(s)∇v(s) · ∇w(s) dλn ds

for v, w ∈ L2(S; H1
0(Q)). Note, that the properties of the reflection ensure both the

relations ER− = R−E− and AR− = R−A−.

2. Assume that Q̺ is admissible with respect to Q for some ̺ ∈ (0, 1] and let

0 ≤ ω < ω̄ε(Q̺, Q) be fixed. For every functional f− ∈ Lω
2 (S; H−1(Q−)) the problem

(E−u−)′ + A
−u− = f−, u−(t0) = 0,

has a uniquely determined solution u− ∈ WE−(S; H1
0 (Q−)). In view of the invariance

of the Morrey spaces with respect to antireflection, see Lemma 5.5 and 6.5, the

function u = R−u− ∈ WE(S; H1
0(Q)) and the functional f = R−f− ∈ Lω

2 (S; H−1(Q))
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satisfy the identity

〈(Eu)′ + Au, w〉L2(S;H1
0
(Q)) = 〈(ER

−u−)′ + AR
−u−, w〉L2(S;H1

0
(Q))

= 〈R−(E−u−)′ + R
−
A

−u−, w〉L2(S;H1
0
(Q))

= 〈R−f−, w〉L2(S;H1
0
(Q))

for all w ∈ L2(S; H1
0 (Q)). Thus, u = R−u− ∈ WE(S; H1

0(Q)) solves the reflected

problem

(Eu)′ + Au = f, u(t0) = 0.

3. The admissibility of Q̺ with respect to Q yields some constant c1 > 0 depending

on n, ε, ω, ̺, S such that

‖RS,Q̺u‖Lω
2
(S;H1(Q̺)) ≤ c1

(

‖f‖Lω
2
(S;H−1(Q)) + ‖u‖WE(S;H1

0
(Q))

)

.

Consequently, the invariance of the Morrey spaces Lω
2 (S; H−1(Q−)) under antire-

flection, see Lemma 4.5, 5.5, and 6.5, leads to the estimate

‖RS,Q−

̺
u−‖Lω

2
(S;H1(Q−

̺ )) ≤ c2

(

‖f−‖Lω
2
(S;H−1(Q−)) + ‖u−‖WE−(S;H1

0
(Q−))

)

,

where the constant c2 > 0 depends on n, ε, ω, ̺, and S. This yields the admissibility

of Q−
̺ with respect to Q−. Analogously, we prove that Q+

̺ is admissible with respect

to Q+. �

Admissibility of regular sets. To prove the admissibility for every regular set

G ⊂ Rn, we begin with the unit cube Q and the halfcubes Q+, Q−, and Q±. In a

first step we show that the cube Q̺ is admissible with respect to the unit cube Q

for every 0 < ̺ < 1. We use the Campanato inequality for the spatial gradient of

solutions on concentric cubes, see Theorem 11.3.

Lemma 12.5. For 0 < ̺ < 1 the cube Q̺ is admissible with respect to Q.

Proof. 1. Let ε ∈ (0, 1]. We consider coefficients (a, A) which are ε-definite with

respect to S and Q, the operator E ∈ L(H1
0 (Q); H−1(Q)) associated with a, and the

bounded linear map A : L2(S; H1
0(Q)) → L2(S; H−1(Q)) defined by

〈Av, w〉L2(S;H1
0
(Q)) =

∫

S

∫

Q

A(s)∇v(s) · ∇w(s) dλn ds

for v, w ∈ L2(S; H1
0(Q)). Let u ∈ WE(S; H1

0(Q)) be the solution of the problem

(Eu)′ + Au = f, u(t0) = 0,

where f ∈ L2(S; H−1(Q)) is some given functional.
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We define ε-definite coefficients (a, A0) with respect to S0 = (t0 − 1, t1) and Q by

setting

A0(s) =

{

A(s) if s ∈ S,

(δij) otherwise,

and extensions u0 ∈ WE(S0; H
1
0 (Q)), f0 ∈ L2(S0; H

−1(Q)) by

u0(s) =

{

u(s) if s ∈ S,

0 otherwise,
f0(s) =

{

f(s) if s ∈ S,

0 otherwise.

Then u0 ∈ WE(S0; H
1
0 (Q)) solves the extended problem

(E0u0)
′ + A0u0 = f0, u(t0 − 1) = 0,

where the operator E0 : L2(S0; H
1
0 (Q)) → L2(S0; H

−1(Q)) is associated with S0

and E ∈ L(H1
0 (Q); H−1(Q)), and the bounded linear map A0 : L2(S0; H

1
0(Q)) →

L2(S0; H
−1(Q)) is defined by

〈A0v, w〉L2(S0;H1
0
(Q)) =

∫

S0

∫

Q

A0(s)∇v(s) · ∇w(s) dλn ds

for v, w ∈ L2(S0; H
1
0 (Q)).

2. In the next steps we make use of the local regularity properties of u0 ∈

WE(S0; H
1
0(Q)): Let 0 < ̺ < 1 be given. Then, we fix t ∈ S, x ∈ Q̺ arbitrar-

ily, and we consider radii 0 < δ ≤ 1 − ̺. Furthermore, we introduce the oper-

ator Eδ : L2(Iδ(t); H
1(Qδ(x))) → L2(Iδ(t); H

−1(Qδ(x))) associated with Iδ(t) and

Eδ ∈ L(H1(Qδ(x)); H−1(Qδ(x))) which is defined by

〈Eδv, w〉H1(Qδ(x)) =

∫

Qδ(x)

avw dλn for v ∈ H1(Qδ(x)), w ∈ H1
0 (Qδ(x)).

Then for all t ∈ S, x ∈ Q̺, and 0 < δ ≤ 1 − ̺ the restriction

v = RIδ(t),Qδ(x)u0 ∈ WEδ
(Iδ(t); H

1(Qδ(x))) ∩ C(Iδ(t); L
2(Qδ(x)))

of u0 satisfies the localized variational equation

∫

Iδ(t)

〈(Eδv)′(s), w(s)〉H1
0
(Qδ(x)) ds +

∫

Iδ(t)

∫

Qδ(x)

A0(s)∇v(s) · ∇w(s) dλn ds

=

∫

Iδ(t)

〈LQδ(x)f0(s), w(s)〉H1
0
(Qδ(x)) ds

for all w ∈ L2(Iδ(t); H
1
0 (Qδ(x))).
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3. Using the Campanato inequality (11.9), see Theorem 11.3, we find constants

ω̄ ∈ (n, n+2] and c1 > 0 depending on n and ε, only, such that for all t ∈ S, x ∈ Q̺,

and 0 < δ ≤ r ≤ 1 − ̺ we have
∫

Iδ(t)

∫

Qδ(x)

‖∇u0(s)‖
2 dλn ds ≤ c1

(

δ

r

)ω̄ ∫

Ir(t)

∫

Qr(x)

‖∇u0(s)‖
2 dλn ds

+ c1

∫

Ir(t)

‖LQr(x)f0(s)‖
2
H−1(Qr(x)) ds.

Let ω ∈ [0, ω̄) be fixed and f ∈ Lω
2 (S; H−1(Q)). For all t ∈ S, x ∈ Q̺, and

0 < δ ≤ r ≤ 1 − ̺ we obtain

∫

Iδ(t)

∫

Qδ(x)

‖∇u0(s)‖
2 dλn ds

≤ c1

(

δ

r

)ω̄ ∫

Ir(t)

∫

Qr(x)

‖∇u0(s)‖
2 dλn ds + c1r

ω[f ]2Lω
2
(S;H−1(Q)).

Note, that the integral on the left hand side is a nonnegative and nondecreasing

function of the radius 0 < δ ≤ 1−̺. Hence, for all 0 < δ ≤ r ≤ 1−̺ the application

of an elementary inequality yields

(12.5)

∫

Iδ(t)

∫

Qδ(x)

‖∇u0(s)‖
2 dλn ds

≤ c2

(

δ

r

)ω ∫

Ir(t)

∫

Qr(x)

‖∇u0(s)‖
2 dλn ds + c2δ

ω[f ]2Lω
2
(S;H−1(Q)),

where the constant c2 > 0 depends on n, ε, ω, ω̄, ̺, see Giaquinta [7, 8]. After

specifying r = 1−̺ and dividing by δω we take the supremum over all 0 < δ ≤ 1−̺,

t ∈ S, and x ∈ Q̺ to estimate the Morrey seminorm

[‖∇RS,Q̺u‖]
2
Lω

2
(S;L2(Q̺)) ≤ c3

(

‖∇u(s)‖2
L2(S;L2(Q;Rn)) + [f ]2Lω

2
(S;H−1(Q))

)

,

where c3 > 0 depends on n, ε, ω, ω̄, ̺, only.

4. Applying the Poincaré inequality to v = RIδ(t),Qδ(x)u0, see Theorem A.3, for

all t ∈ S, x ∈ Q̺, and 0 < δ ≤ 1 − ̺ we get

∫

Iδ(t)

∫

Qδ(x)

∣

∣

∣

∣

v(s) −

∫

Iδ(t)

∫

Qδ(x)

v(τ) dλn dτ

∣

∣

∣

∣

2

dλn ds

≤ c4δ
2

∫

Iδ(t)

(
∫

Qδ(x)

‖∇v(s)‖2 dλn + ‖LQδ(x)(Eδv)′(s)‖2
H−1(Qδ(x))

)

ds,
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where c4 = c4(n, ε) > 0. Since the restriction v = RIδ(t),Qδ(x)u0 solves the localized

variational equation, see Step 2, we find some constant c5 = c5(ε, n) > 0 such that

∫

Iδ(t)

∫

Qδ(x)

∣

∣

∣

∣

u0(s) −

∫

Iδ(t)

∫

Qδ(x)

u0(τ) dλn dτ

∣

∣

∣

∣

2

dλn ds

≤ c5δ
2

∫

Iδ(t)

(
∫

Qδ(x)

‖∇u0(s)‖
2 dλn + ‖LQδ(x)f0(s)‖

2
H−1(Qδ(x))

)

ds

holds true for all t ∈ S, x ∈ Q̺, and 0 < δ ≤ 1 − ̺. Remembering estimate (12.5)

for r = 1 − ̺ this yields

∫

Iδ(t)

∫

Qδ(x)

∣

∣

∣

∣

u0(s) −

∫

Iδ(t)

∫

Qδ(x)

u0(τ) dλn dτ

∣

∣

∣

∣

2

dλn ds

≤
c6δ

ω+2

(1 − ̺)ω

∫

S

∫

Q

‖∇u(s)‖2 dλn ds + c6δ
ω+2[f ]2Lω

2
(S;H−1(Q)),

where the constant c6 > 0 depends on n, ε, ω, ω̄, ̺, only. After applying the minimal

property of the integral mean value to the left hand side and dividing by δω+2 we

take the supremum over all 0 < δ ≤ 1 − ̺, t ∈ S, and x ∈ Q̺ to obtain an estimate

of the Campanato seminorm

[RS,Q̺u]2
L

ω+2

2
(S;L2(Q̺))

≤ c7

(

‖∇u(s)‖2
L2(S;L2(Q;Rn)) + [f ]2Lω

2
(S;H−1(Q))

)

,

where c7 > 0 depends on n, ε, ω, ω̄, ̺, only.

5. Using Theorem 3.4 and the estimates for the seminorms of RS,Q̺u, see Step 3

and 4, we find some constant c8 > 0 depending on n, ε, ω, ω̄, ̺, only, such that

‖RS,Q̺u‖Lω
2
(S;H1(Q̺)) ≤ c8

(

‖f‖Lω
2
(S;H−1(Q)) + ‖u‖L2(S;H1

0
(Q))

)

.

Consequently, Q̺ is admissible with respect to Q for every 0 < ̺ < 1. �

Lemma 12.6. The unit cube Q is admissible.

Proof. Since Q is a regular set, we find an atlas
{

(T1, U1), . . . , (Tm, Um)
}

for Q, see

Lemma 4.2, and radii 0 < ̺′ < ̺ < 1 such that the systems {V ′
1 , . . . , V

′
m} and

{V1, . . . , Vm} defined by

V ′
i = T−1

i [Q̺′ ], Vi = T−1
i [Q̺] for i ∈ {1, . . . , m},

are open coverings of Q. Using Lemma 12.5 the cube Q̺′ is admissible with respect

to Q̺. Hence, applying Lemma 12.4 the halfcube Q−
̺′ is admissible with respect to

Q−
̺ . Consequently, Lemma 12.3 yields the admissibility of V ′

i ∩ Q with respect to

Vi ∩ Q for every i ∈ {1, . . . , m}. Due to Lemma 12.2 the result follows. �
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Lemma 12.7. The halfcubes Q+, Q− and Q± are admissible sets.

Proof. Because of Lemma 12.4 and 12.6 both the halfcubes Q+ and Q− are admis-

sible. Note, that there exists a Lipschitz transformation from Rn onto Rn which

maps Q+ onto Q±, see Griepentrog, Höppner, Kaiser, Rehberg [9, 13].

Hence, Lemma 12.3 yields the admissibility of Q±. �

Theorem 12.8 (Maximal regularity). For every regular set G ⊂ Rn there exists

some parameter ω̄ε(G) ∈ (n, n + 2] such that for every 0 ≤ ω < ω̄ε(G) the re-

striction Pω of the parabolic operator P associated with the coefficients (a, A) be-

ing ε-definite with respect to S = (t0, t1) and G◦ is a linear isomorphism from
{

u ∈ W ω
E (S; H1

0 (G)) : u(t0) = 0
}

onto Lω
2 (S; H−1(G)).

Proof. Since G is a regular set, we find an atlas
{

(T1, U1), . . . , (Tm, Um)
}

for G, see

Lemma 4.2, and ̺ ∈ (0, 1) such that the system {V1, . . . , Vm} defined by

Vi = T−1
i [Q̺] for i ∈ {1, . . . , m},

is an open covering of the closure G. Applying Lemma 12.7, all the halfcubes Q+
̺ ,

Q−
̺ , and Q±

̺ are admissible sets. Using Lemma 12.6 the cube Q̺ is admissible,

too. Hence, Lemma 12.3 yields the admissibility of the intersection Vi ∩G for every

i ∈ {1, . . . , m}. Due to Lemma 12.2 we arrive at the admissibility of the set G. In

view of Theorem 12.1 this yields the desired isomorphism property for Pω. �

Remark 12.2. Let S = (t0, tℓ) be some bounded open interval. Due the above result

for every 0 ≤ ω < ω̄ε(G) we find some constant c1 > 0 depending on ε, n, ω, G, and

S such that for all coefficients (a, A) being ε-definite with respect to S and G◦, and

every f ∈ Lω
2 (S; H−1(G)) the solution u ∈ WE(S; H1

0 (G)) of problem (12.1) satisfies

the estimate

(12.6) ‖u‖W ω
E(S;H1

0
(G)) ≤ c1‖f‖Lω

2
(S;H−1(G)).

We fix some t1 ∈ S and consider the subinterval S1 = (t0, t1) of S. In the

following we show that estimate (12.6) remains true with the same constant c1 > 0

when both the solution u and the functional f are restricted to u1 ∈ W ω
E (S1; H

1
0 (G))

and f1 ∈ Lω
2 (S1; H

−1(G)), respectively. To do so, we introduce the interval S0 =

(t1 + t0 − tℓ, t1) which contains S1 and has the same length than S. We introduce

ε-definite coefficients (a, A0) with respect to S0 and G◦ by setting

A0(s) =

{

A(s) if s ∈ S1,

(δij) otherwise,
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and define extensions u0 ∈ W ω
E (S0; H

1
0 (G)), f0 ∈ Lω

2 (S0; H
−1(G)) by

u0(s) =

{

u(s) if s ∈ S1,

0 otherwise,
f0(s) =

{

f(s) if s ∈ S1,

0 otherwise.

Then u0 ∈ W ω
E (S0; H

1
0(Q)) solves the extended problem

(E0u0)
′ + A0u0 = f0, u(t0 + t1 − tℓ) = 0,

and satisfies estimate (12.6) with the same constant c1 > 0. Because of the construc-

tion of the extensions and the definition of the norm in the corresponding Morrey

spaces we obtain the desired estimate

‖u1‖W ω
E (S1;H1

0
(G)) = ‖u0‖W ω

E (S0;H1
0
(G)) ≤ c1‖f0‖Lω

2
(S0;H−1(G)) = c1‖f1‖Lω

2
(S1;H−1(G)).

13. Maximal regularity for problems with lower order terms

In this section we conclude with isomorphism properties of second order linear par-

abolic operators with lower order terms. Suppose that ε ∈ (0, 1], G ⊂ Rn is a

regular set, and Γ = ∂G denotes its Lipschitz boundary. Throughout this section

we assume that the parabolic operator P is associated with the pair of leading coeffi-

cients (a, A) being ε-definite with respect to some bounded open interval S = (t0, tℓ)

and G◦.

Bounded lower order coefficients. In order to generalize the isomorphism result

for P, see Theorem 12.8, we consider bounded linear operators generated by lower

order terms:

Definition 13.1. Given a set of lower order coefficients

b ∈ L∞(S; L∞(G◦; Rn)), b0 ∈ L∞(S; L∞(G◦)), bΓ ∈ L∞(S; L∞(Γ)),

we define the bounded linear map B : L2(S; H1
0 (G)) → L2(S; H−1(G)) by

〈Bu, w〉L2(S;H1
0
(G)) =

∫

S

∫

G

(

u(s)b(s) · ∇w(s) + b0(s)u(s)w(s)
)

dλn ds

+

∫

S

∫

Γ

bΓ(s)KΓu(s)KΓw(s) dλΓ ds

for u, w ∈ L2(S; H1
0(G)).

Using Theorem 7.1 the operator P+B is a linear isomorphism between the spaces
{

u ∈ WE(S; H1
0 (G)) : u(t0) = 0

}

and L2(S; H−1(G)): For every f ∈ L2(S; H−1(G))

the initial boundary value problem

(13.1) Pu + Bu = f, u(t0) = 0,
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admits a uniquely determined solution u ∈ WE(S; H1
0 (G)). We show that the iso-

morphism property between the corresponding Sobolev–Morrey spaces carries

over from P to P + B:

Lemma 13.1 (Continuity). For every ω ∈ [0, n + 2] the restriction Bω of B to
{

u ∈ W ω
E (S; H1

0 (G)) : u(t0) = 0
}

is a bounded linear map into Lω
2 (S; H−1(G)).

Proof. The embedding from W ω
E (S; H1

0 (G)) into L
ω+2
2 (S; L2(G◦)) and the trace map

from W ω
E (S; H1

0 (G)) into L
ω+1
2 (S; L2(Γ)) are continuous, and Theorem 6.8 and 6.11.

Due to Remark 3.2 and 3.5 and Theorem 3.4, 3.6, and 5.6, the continuity of Bω from
{

u ∈ W ω
E (S; H1

0 (G)) : u(t0) = 0
}

into Lω
2 (S; H−1(G)) follows. �

Theorem 13.2 (Maximal regularity). Let 0 ≤ ω < ω̄ε(G) be given. For every pair

(a, A) of leading coefficients being ε-definite with respect to S and G◦ and all lower

order coefficients

b ∈ L∞(S; L∞(G◦; Rn)), b0 ∈ L∞(S; L∞(G◦)), bΓ ∈ L∞(S; L∞(Γ)),

Pω + Bω is a linear isomorphism from
{

u ∈ W ω
E (S; H1

0 (G)) : u(t0) = 0
}

onto

Lω
2 (S; H−1(G)).

Proof. 1. First, we prove the surjectivity of Pω+Bω: Let f ∈ Lω
2 (S; H−1(G)) be given

and u ∈ WE(S; H1
0(G)) be the unique solution of problem (13.1). Consequently,

u ∈ WE(S; H1
0(G)) solves the model problem

Pu = (Eu)′ + Au = f − Bu, u(t0) = 0.

Due to Theorem 6.8, 6.11 both the embedding operator from WE(S; H1
0 (G)) into

L
2
2(S; L2(G◦)) and the trace map from WE(S; H1

0(G)) into L
1
2(S; L2(Γ)) are bounded.

Using Theorem 3.4 and 3.6 we get u ∈ L2
2(S; L2(G◦)) and KS,Γu ∈ L1

2(S; L2(Γ)).

Hence, applying Theorem 5.6 for µ = min{ω, 2} we obtain f −Bu ∈ Lµ
2 (S; H−1(G)),

which leads to u ∈ W µ
E(S; H1

0(G)), see Theorem 12.8.

We apply a bootstrap argument: The embedding from W µ
E(S; H1

0(G)) into the

space L
µ+2
2 (S; L2(G◦)) and the trace map from W µ

E(S; H1
0(G)) into L

µ+1
2 (S; L2(Γ))

are continuous, see Theorem 6.8 and 6.11. Using Theorem 3.4 and 3.6 for µ =

min{ω, 4} we get u ∈ Lµ
2 (S; L2(G◦)) and KS,Γu ∈ Lµ−1

2 (S; L2(Γ)). Therefore, by

Theorem 5.6 and 12.8 this yields f − Bu ∈ Lµ
2 (S; H−1(G)) and u ∈ W µ

E(S; H1
0(G)).

After a finite number of analogous steps we arrive at µ = ω which yields the surjec-

tivity of Pω + Bω.

2. In view of Lemma 13.1 the operator Bω is a bounded linear map from the space
{

u ∈ W ω
E (S; H1

0(G)) : u(t0) = 0
}

into Lω
2 (S; H−1(G)). By definition the same holds

true for Pω and, therefore, for the sum Pω + Bω, too. The unique solvability of the
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problem (13.1), and the surjectivity, see Step 1, yields that the operator Pω + Bω

maps
{

u ∈ W ω
E (S; H1

0 (G)) : u(t0) = 0
}

onto Lω
2 (S; H−1(G)). Therefore, by the

Inverse Mapping Theorem it is a linear isomorphism between these spaces. �

Theorem 13.3 (Continuous dependence). Let ε ∈ (0, 1] and 0 ≤ ω < ω̄ε(G) be

given constants. Then for every pair (a, A) of leading coefficients being ε-definite

with respect to S and G◦ and all lower order coefficients

b ∈ L∞(S; L∞(G◦; Rn)), b0 ∈ L∞(S; L∞(G◦)), bΓ ∈ L∞(S; L∞(Γ)),

the assignment (A, b, b0, bΓ) 7→ (P+B)−1 is a continuous map from the metric space

of admissible coefficients equipped with the metric d defined by

d
(

(A, b, b0, bΓ), (A, b, b0, bΓ)
)

= ‖A − A‖L∞(S;L∞(G◦;Sn)) + ‖b − b‖L∞(S;L∞(G◦;Rn))

+ ‖b0 − b0‖L∞(S;L∞(G◦)) + ‖bΓ − bΓ‖L∞(S;L∞(Γ)),

into the Banach space L(Lω
2 (S; H−1(G)); W ω

E (S; H1
0(G))) of solution maps corre-

sponding to problem (13.1).

Proof. We consider the maps P, B, P, and B associated with the sets (a, A, b, b0, bΓ),

(a, A, b, b0, bΓ) of admissible coefficients, respectively. Using the same arguments as

in the proof of Lemma 13.1 for all u ∈ W ω
E (S; H1

0 (G)) we obtain

(13.2) ‖Pu + Bu − Pu − Bu‖Lω
2
(S;H−1(G))

≤ c1d
(

(A, b, b0, bΓ), (A, b, b0, bΓ)
)

‖u‖W ω
E(S;H1

0
(G)),

where c1 = c1(n, ε, ω, S, G) > 0 is some constant. Therefore, for every fixed set

(A, b, b0, bΓ) of admissible coeffcients we find some constant δ > 0 such that for all

admissible coefficients (A, b, b0, bΓ) which satisfy

(13.3) d
(

(A, b, b0, bΓ), (A, b, b0, bΓ)
)

< δ,

the following relation holds true

2 ‖(P + B)−1‖L(Lω
2
;W ω

E )‖P + B − P − B)‖L(W ω
E ;Lω

2
) < 1.

Using the identities

P + B = (P + B)(I − (P + B)−1(P + B − P − B)),

(P + B)−1 − (P + B)−1 = (P + B)−1(P + B − P − B)(P + B)−1,

for all admissible coefficients (A, b, b0, bΓ) which satisfy (13.3) the above estimates

and the von Neumann expansion leads to

‖(P + B)−1‖L(Lω
2
;W ω

E) ≤ 2 ‖(P + B)−1‖L(Lω
2
;W ω

E)
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and, consequently,

‖(P + B)−1 − (P + B)−1‖L(Lω
2
;W ω

E )

≤ 2 ‖(P + B)−1‖2
L(Lω

2
;W ω

E )‖P + B − P − B‖L(W ω
E ;Lω

2
).

Applying (13.2) we end up with the desired estimate

‖(P + B)−1 − (P + B)−1‖L(Lω
2
;W ω

E )

≤ 2c1d
(

(A, b, b0, bΓ), (A, b, b0, bΓ)
)

‖(P + B)−1‖2
L(Lω

2
;W ω

E )

for all admissible coefficients (A, b, b0, bΓ) which satisfy (13.3). �

Unbounded lower order coefficients. It turns out that for the most interesting

range of parameters n < ω < ω̄ε(G) the above results for the parabolic operator

P + B remain true under weaker assumptions on the lower order coefficients. Cor-

responding to Theorem 5.6 it is sufficient to suppose that

b ∈ Lω
2 (S; L2(G◦; Rn)), b0 ∈ Lω−2

2 (S; L2(G◦)), bΓ ∈ Lω−1
2 (S; L2(Γ)).

Lemma 13.4 (Complete continuity). For every ω ∈ (n, n + 2] the restriction Bω

of B to
{

u ∈ W ω
E (S; H1

0(G)) : u(t0) = 0
}

is a completely continuous map into

Lω
2 (S; H−1(G)).

Proof. Let ω ∈ (n, n + 2] be fixed and take σ ∈ (n, ω). Then the embedding from

W ω
E (S; H1

0(G)) into L
σ+2
2 (S; L2(G◦)) and the trace map KS,Γ from W ω

E (S; H1
0 (G))

into L
σ+1
2 (S; L2(Γ)) are completely continuous, see Theorem 6.9 and 6.12. Due to

Remark 3.2, 3.5 and Theorem 3.4, 3.6, and 5.6, this yields that the operator Bω maps
{

u ∈ W ω
E (S; H1

0 (G)) : u(t0) = 0
}

completely continuous into Lω
2 (S; H−1(G)). �

Theorem 13.5 (Maximal regularity). Let ε ∈ (0, 1] and n < ω < ω̄ε(G) be given

constants. For every pair (a, A) of leading coefficients being ε-definite with respect

to S amd G◦ and all lower order coefficients

b ∈ Lω
2 (S; L2(G◦; Rn)), b0 ∈ Lω−2

2 (S; L2(G◦)), bΓ ∈ Lω−1
2 (S; L2(Γ)),

Pω + Bω is a linear isomorphism from
{

u ∈ W ω
E (S; H1

0 (G)) : u(t0) = 0
}

onto

Lω
2 (S; H−1(G)).

Proof. 1. Let n < ω < ω̄ε(G) be given. Since Pω is an isomorphism between
{

u ∈ W ω
E (S; H1

0 (G)) : u(t0) = 0
}

and Lω
2 (S; H−1(G)), see Theorem 12.8, and Bω is

completely continuous from
{

u ∈ W ω
E (S; H1

0 (G)) : u(t0) = 0
}

into Lω
2 (S; H−1(G)),

see Lemma 13.4, the sum Pω + Bω is a Fredholm operator of index zero between

these spaces. Hence, it suffices to prove the injectivity of the linear operator Pω+Bω.
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2. Suppose, that u ∈ W ω
E (S; H1

0 (G)) is a solution of the homogeneous initial

boundary value problem

(13.4) Pu + Bu = 0, u(t0) = 0.

For fixed t1 ∈ S we consider the subinterval S1 = (t0, t1) of S, the restriction

u1 ∈ W ω
E (S1; H

1
0 (G)) of the solution u and the restriction f1 ∈ Lω

2 (S1; H
−1(G)) of

the functional Bu ∈ Lω
2 (S; H−1(G)). Due to Remark 12.2 we get

(13.5) ‖u1‖W ω
E (S1;H1

0
(G)) ≤ c1‖f1‖Lω

2
(S1;H−1(G)),

where the constant c1 > 0 may depend on S but not on t1. To estimate the right hand

side of (13.5) we use Theorem 6.8 and 6.11, Remark 3.2 and 3.5, and Theorem 5.6

to find some constant c2 = c2(n, G) > 0 such that

(13.6) ‖f1‖Lω
2
(S1;H−1(G)) ≤ c2cB‖u1‖C(S1;C(G)),

where cB > 0 is given by

c2
B

= ‖b‖2
Lω

2
(S;L2(G◦;Rn)) + ‖b0‖

2
Lω−2

2
(S;L2(G◦))

+ ‖bΓ‖
2
Lω−1

2
(S;L2(Γ))

.

To estimate the left hand side of (13.5) we consider the interval S0 = (t1+t0−tℓ, t1)

which contains S1 and has the same length than S, and we define the zero extension

u0 ∈ W ω
E (S0; H

1
0(G)) by

u0(s) =

{

u(s) if s ∈ S1,

0 otherwise.

In view of the continuity of the embedding from W ω
E (S0; H

1
0 (G)) into the Hölder

space C0,α(S0; C(G)) for α = (ω − n)/4, see Theorem 3.4 and 6.8, and the defini-

tion of the norms in the corresponding Morrey and Hölder spaces, the above

construction yields

‖u1‖C0,α(S1;C(G)) ≤ ‖u0‖C0,α(S0;C(G)) ≤ c3‖u0‖W ω
E (S0;H1

0
(G)) = c3‖u1‖W ω

E (S1;H1
0
(G)),

where the constant c3 > 0 may depend on S but not on t1. Together with (13.5)

and (13.6) this leads to the key estimate

(13.7) ‖u1‖C0,α(S1;C(G)) ≤ c4‖u1‖C(S1;C(G)),

where the constant c4 = c1c2c3cB > 0 does not depend on t1.

3. Because t1 ∈ S was arbitrarily fixed at the beginning we may choose

tk = t0 + k
ℓ
(tℓ − t0) for k ∈ {1, . . . , ℓ},

where ℓ ∈ N, ℓ > 1 is large enough to satisfy the condition

(13.8) 2c4(tℓ − t0)
α < ℓα.



Maximal regularity in Sobolev–Morrey spaces 43

Furthermore, for k ∈ {1, . . . , ℓ} we introduce the intervals Sk = (tk−1, tk) and the

restrictions uk ∈ W ω
E (Sk; H

1
0 (G)) of u ∈ W ω

E (S; H1
0(G)).

We prove that for every k ∈ {1, . . . , ℓ − 1} from u(tk−1) = 0 it follows that

u(s) = 0 for all s ∈ Sk. To do so, we proceed by induction: Starting from k = 1 and

using (13.7), condition (13.8) ensures that for all s ∈ S1 we have

‖u(s) − u(t0)‖C(G) ≤ (s − t0)
α‖u1‖C0,α(S1;C(G)) ≤

1
2
‖u1‖C(S1;C(G)).

Since u(t0) = 0 this leads to u(s) = 0 for all s ∈ S1.

Assuming that u(tk−1) = 0 holds true for some k ∈ {1, . . . , ℓ−1}, we apply (13.7)

and (13.8) to uk ∈ W ω
E (Sk; H

1
0 (G)) to get

‖u(s) − u(tk−1)‖C(G) ≤ (s − tk−1)
α‖uk‖C0,α(Sk;C(G)) ≤

1
2
‖uk‖C(Sk ;C(G))

for all s ∈ Sk. Therefore, u(tk−1) = 0 yields u(s) = 0 for all s ∈ Sk.

Hence, we have proved, that u = 0 is the unique solution of the homogeneous

problem (13.4) in the space W ω
E (S; H1

0 (G)). Following Step 1, the linear operator

Pω +Bω is an injective Fredholm operator of index zero and, consequently, a linear

isomorphism between W ω
E (S; H1

0 (G)) and Lω
2 (S; H−1(G)). �

Theorem 13.6 (Continuous dependence). Let ε ∈ (0, 1] and n < ω < ω̄ε(G) be

given constants. Then, for every pair (a, A) of leading coefficients being ε-definite

with respect to S and G◦ and all lower order coefficients

b ∈ Lω
2 (S; L2(G◦; Rn)), b0 ∈ Lω−2

2 (S; L2(G◦)), bΓ ∈ Lω−1
2 (S; L2(Γ)),

the assignment (A, b, b0, bΓ) 7→ (P+B)−1 is a continuous map from the metric space

of admissible coefficients equipped with the metric d defined by

d
(

(A, b, b0, bΓ), (A, b, b0, bΓ)
)

= ‖A − A‖L∞(S;L∞(G◦;Sn)) + ‖b − b‖Lω
2
(S;L2(G◦;Rn))

+ ‖b0 − b0‖Lω−2

2
(S;L2(G◦)) + ‖bΓ − bΓ‖Lω−1

2
(S;L2(Γ)),

into the Banach space L(Lω
2 (S; H−1(G)); W ω

E (S; H1
0(G))) of solution maps corre-

sponding to problem (13.1).

Proof. Let the operators P, B, P, B be associated with the sets (a, A, b, b0, bΓ),

(a, A, b, b0, bΓ) of admissible coefficients, respectively. By the same arguments as in

the proof of Lemma 13.4 for all u ∈ W ω
E (S; H1

0 (G)) we get

‖Pu + Bu − Pu − Bu‖Lω
2
(S;H−1(G)) ≤ c1d

(

(A, b, b0, bΓ), (A, b, b0, bΓ)
)

‖u‖W ω
E (S;H1

0
(G)),

where c1 = c1(n, ε, ω, S, G) > 0 is some constant. Hence, for every fixed set

(A, b, b0, bΓ) of admissible coefficients there exists a constant δ > 0 such that for
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all admissible coefficients (A, b, b0, bΓ) which satisfy

(13.9) d
(

(A, b, b0, bΓ), (A, b, b0, bΓ)
)

< δ,

the relation

2 ‖(P + B)−1‖L(Lω
2
;W ω

E )‖P + B − P − B)‖L(W ω
E ;Lω

2
) < 1

holds true. Now we repeat exactly the same arguments as in the proof of Theo-

rem 13.3 to get the estimate

‖(P + B)−1 − (P + B)−1‖L(Lω
2
;W ω

E )

≤ 2c1d
(

(A, b, b0, bΓ), (A, b, b0, bΓ)
)

‖(P + B)−1‖2
L(Lω

2
;W ω

E )

for all admissible coefficients (A, b, b0, bΓ) which satisfy (13.9). �

Remark 13.1. All the results can be generalized to weakly coupled systems, that

means, to problems with principal parts E and A of diagonal structure and opera-

tors B containing strongly coupled lower order terms.

Remark 13.2. One problem left open is the continuous dependence of the solution

u ∈ W ω
E (S; H1

0 (G)) to problem (13.1) on the ε-definite capacity coefficient a. It

would be interesting to know whether the quantity

‖(Eu)′ − (Eu)′‖Lω
2
(S;H−1(G)) + ‖u − u‖Lω

2
(S;H1

0
(G))

can be estimated in terms of ‖f − f‖Lω
2
(S;H−1(G)) and the modified distance

d
(

(a, A, b, b0, bΓ), (a, A, b, b0, bΓ)
)

= ‖a − a‖L∞(G◦) + ‖A − A‖L∞(S;L∞(G◦;Sn)) + ‖b − b‖Lω
2
(S;L2(G◦;Rn))

+ ‖b0 − b0‖Lω−2

2
(S;L2(G◦)) + ‖bΓ − bΓ‖Lω−1

2
(S;L2(Γ)),

defined for admissible coefficients (a, A, b, b0, bΓ), (a, A, b, b0, bΓ). Here, the functions

u ∈ W ω
E (S; H1

0(G)) and u ∈ W ω
E (S; H1

0(G)) are solutions to the problems

(Eu)′ + Au + Bu = f ∈ Lω
2 (S; H−1(G)), u(t0) = 0,

(Eu)′ + Au + Bu = f ∈ Lω
2 (S; H−1(G)), u(t0) = 0.
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188. Basel: Birkhäuser-Verlag, 2005.

[7] Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Sys-

tems. Princeton, New Jersey: Princeton University Press, 1983.

[8] Giaquinta, M.: Introduction to Regularity Theory for Nonlinear Elliptic Systems. Lectures

in Mathematics, ETH Zurich. Basel: Birkhäuser-Verlag, 1993.
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