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ABSTRACT. Several results concerning asymptotical mean square stability of 
an equilibrium point (here the null solution) of specific linear stochastic systems 
given at discrete time-points are presented and proven. It is shown that the.mean 
square stability of the implicit Euler method, taken from the monograph of Kloe-
den and Platen (1992) and applied to linear stochastic differential equations, is 
necessary for the mean square stability of the corresponding implicit Mil'shtein 
method (using the same implicitness parameter). Furthermore, a sufficient con-
dition for the mean square stability of the implicit Euler method can be verified 
for autonomous systems, while the principle of 'monotonic nesting' of the mean 
square stability domains holds for linear systems. The Euler method taking any 
integration step size with drift-implicitness 0.5 is able to indicate mean square 
stability of any equilibrium point of the continuous time system. As a practicable 
alternative for controlling the temporal mean square evolution, the class of Bal-
anced methods with deterministic, positive scalar correction provides the most 
mean square stable numerical solution known under 'low smoothness conditions' 
so far. The paper summarizes and continues the .stability examinations of Schurz 
(1993). The results can also be used to deduce recommendations for the practical 
implementation of numerical methods solving nonlinear systems in terms of their 
linearization. Finally, effects of the presented mean square calculus are shown by 
the Kubo oscillator perturbed by white noise and a simplified system of noisy 
Brusselator equations. 
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1. A BRIEF INTRODUCTION AND SOME MOTIVATION 

Stability is one of the most fascinating and desireable properties of objects in na-
tural sciences. Stable long-term behaviour of both exact and numerical solutions is 
required in many applications, e.g. for numerical computation of Lyapunov expo-
nents (Pardoux and Talay [65] or Talay [80, 82]), for the approximation of stochas-
tic oscillators (Wedig [86]), in quantum optical systems (Smith and Gardiner [75]), 
in approximate Markov chain filtering (Kloeden et al. [46]) or for simulation of 
discretized parametric estimators (Kloeden et al. [4 7]) relying on the theory of 
exponential families (cf. Kuchler and S¢rensen [53] or Heyde [32]). The stability 
of any equilibrium point of them ensures us that small perturbations of the initial 
values or perturbations during the temporal evolution are not influencing decisively 
the further dynamical behaviour of the considered object. Particularly, in the field 
of numerical integration of stochastic differential equations we do need some guar-
antee to have this kind of stability too. Here, the dynamical behaviour of the exact 
and numerical solutions is fairly complicated, even more complicated than in de-
terministic analysis. 
In stochastic analysis we have a large variety of different stability concepts. For 
excellent surveys see Khas'minskij [42], Kozin [49] or Kushner [50]. The works of 
Bunke, Car'kov, Kac and Krasovskij, Levit and Jakubovic, Mil'shtein and Repin, 
Sasagawa, Willems, Wenham, among many others, treat the mean square stability 
problem only for continuous time systems, especially for the object of stochastic 
differential equations. A pioneer work for more general stochastic stability theory 
of such continuous systems has been done by Khas'minskij [42]. 
Of course, several attempts concerning the examination of discrete stochastic sys-
tems has also been made. These investigations go back up to the early works of 
Furstenberg [20] on random matrix products and were intensively continued by 
many authors, e.g. Bougerol and Lacroix [8], Cohen and Newman [15], Morozan 
[61] or Willems [87]. In this paper we restrict ourselves to stability examinations for 
discrete time systems solving numerically stochastic differential equations. These 
very specific stochastic systems are naturally fixed at discrete time points. See the 
monographs of Mil'shtein [58), Kloeden and Platen [44], the survey paper of Talay 
[80] or in the succeeding section for numerical integration methods solving these 
equations. 
For numerical solutions with additive noise, Mil'shtein [58] has examined, as one 
of the first, the stability in probability. Further attempts have been made by Her-
nandez and Spigler [30], Kloeden and Platen [45]. In these contributions the inves-
tigation draws back to an one-dimensional complex-valued test equation and the 
increment function of the corresponding numerical method. This increment func-
tion is decomposed in a deterministic and stochastic part. Then, only the deter-
ministic part is investigated in concern with asymptotical stability. This approach 
may be considered as representative for stochastic dynamics with 'small noise', es-
pecially with very small additive noise. For multiplicative and more general noise, 
the neglect of the stochastic parts is not possible and would lead to inadequate 
conclusions. In many applications the dynamical behaviour is decisively influenced 
on the stochastic terms. Also some attempts to investigate multiplicative noise 
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cases and stability have been done. For example, Mitsui and Saito [60], Hernandez 
and Spigler [31], Hofmann and Platen [33] and Schurz [71]. They only considered 
one-dimensional complex-valued test equations. Hofmann and Platen [33] have 
examined the situation with a very specific equation using a very strong stabil-
ity criterion (via the 'essup criterion for increment functions' of special numerical 
methods). In this concept one must be able to control more or less all moments 
what surely is seldom possible. More general approaches concerning mean square 
stability could be found by Willems (87], Artemiev (6] and Schurz [72]. These au-
thors could already state some sufficient conditions for mean square stability of 
numerical methods. 
This paper summarizes, extends and proves further results of contributions [71, 72] 
on mean square stability of equilibria in order to gain more insight of the stability 
behaviour of these discrete systems. Throughout the paper the examination goes 
back to linear systems, keeping in mind that they are obtained as the linearization 
of corresponding nonlinear stochastic systems. Note that we will not discuss and 
enlighten the relation between the original nonlinear system and its corresponding 
linearized one. Khas'minskij (42] has done it for stochastic differential equation 
to a great extent, but it is still an open question for the discrete systems to be 
mentioned here. It is assumed that the original nonlinear system has components 
(drift and diffusion) vanishing simultaneously at any constant. This is the case, e.g. 
in population dynamics, if Lotka-Volterra systems are disturbed by multiplicative 
noise, see Gard (22]. For simplicity we suppose that the null solution is an equili-
brium solution, i.e. a stationary solution of the considered system. 
We remind the reader that there are two basic methods to examine the stability 
of general nonlinear systems (as well as linear ones), the method of stochastic Lya-
punov functions and that of examination of the corresponding linearized system 
about a stationary solution. In this paper we try to avoid applying directly the 
technique of stochastic Lyapunov functions. Nevertheless, a corresponding discrete 
Lyapunov technique for stochastic numerical methods still has to be explored. Then 
one could even treat more fancy and accurately some nonlinear systems. The direct 
approach is preferable for mean square stability examinations of linear numerical 
methods. Mean square stability is just the subject where exact computations can 
be done. The requirement of almost sure stability represents a relatively strong 
stability assertion. Thus, it is natural to look at weaker stability concepts. Fur-
thermore, in many physical phenomena, engineering and environmental problems 
only the moment evolution is of interest, e.g. see Karmeshu and Bansal [39] in Nu-
clear Science or Karmeshu and Schurz (40, 41] in Hydrology and Seismology. Under 
these circumstances a natural and weaker concept is that of moment stability. For 
a sophisticated approach to moment stability, e.g. ~ee Baxendale [7]. Arnold [3] or 
Arnold, Oeljeklaus and Pardoux [4] among many other authors have also enlight-
ened the relation between almost sure and moment stability. The latter works focus 
on continuous time systems of stochastic differential equations. 
The paper consists of eight further sections. In the next section we introduce two 
discrete time systems (numerical methods) to be examined for the class of bilinear 
stochastic differential equations. There some basic definitions and results concern-
ing the mean square stability of the continuous time systems are also assembled. 
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In section 3 we formulate and prove a necessary condition for the stability of one 
of the discrete systems (Mil'shtein methods). The main result in this section also 
gives an occasion to concentrate the examinations on implicit Euler methods, hence 
methods of lowest convergence order, and to think new about the relation (balance) 
between convergence and stability. After it, a simple example taken from Schurz 
[71] illustrates some observed effects, together with numerical experiments for the 
Kubo oscillator. Sections 5 and 6 are devoted to the study of linear autonomous 
systems. In section 5 we state sufficient conditions for the mean square stability of 
the simplest numerical methods (implicit Euler methods). Section 6 explains the 
principle of 'monotonic nesting' of stability domains discovered by Schurz [71, 72] 
for the two discrete linear systems. In the succeeding section a simple and practica-
ble alternative to the implicit m~thods examined before is presented by Balanced 
methods with deterministic, positive scalar correction (weights) for control on the 
numerical mean square evolution. Finally, in section 8 the noisy, pl.anar Brusselator 
equations are used to demonstrate effects of the presented mean square stability 
calculus. At the end we give a summary and conclusions in section 9. 

2. Two ITERATED LINEAR SYSTEMS AND MEAN SQUARE STABILITY 

Mainly, throughout this paper we consider the following two iterated linear systems 
m 

v(M) == y(M) + (aA +iy(M) + (1 - a)A y(M)) ,6. + "Bjy(M)ti VE+ .In+l n n n+l n n · L._; n n <:.n 
j=l 

m A & 

+ .L B~B! y~M) j j de~(r) de!(s) ti (2.1) 
3,k=l 0 0 

and 
m 

y:(E) - y:(E) + (aA +1Y(E) + (1 - a)A y(E)) ,6. + "Bjy:(E) d VE (2.2) n+l - n n n+l n n L._; n n <:.n ' 
j=l 

for nonrandom real-valued d x d - matrices An and B~, ( d == 1, 2, ... ) and standard 
Gaussian distributed random variables e~(i.i.d.,n = 0, 1,2, ... ,j = 1, ... ,m) start-
ing at Yo E IR.d for a given fixed ,6. > 0. System 2.1 is often called implicit Mil'shtein 
method and 2.2 implicit Euler method with implicitness parameter a E [O, l]. For 
the resolution of the system of algebraic equations 2.1 as well as 2.2 we have to 
require the existence of the inverse of Cn+l (a) := I - a!iAn+l at any step n in 
the case of a> 0. For the same parameter value a we also call the method 2.2 the 
Euler method corresponding to the Mil'shtein method 2.1. 
System 2.1 as well as 2.2 can be interpreted as equidistant numerical solution of 
the stochastic differential equation 

m 

dXt = A(t)Xt dt + L Bj(t)Xt dW/ (2.3) 
j=l 



H. Schurz: Asymptotical Mean Square Stability of Some Linear Numerical Solutions 4 

at time tn = n · fl. Here (W/)j=l,2, ... ,m are independent identically distributed 
Wiener processes with w/ == dv'i and eL == EJ::6(et+l - et) j (WJ = e~ = 0). 
The solution of 2.3 always exists and is unique under appropriate boundedness 
conditions on the matrices A(t) and Bi(t) over the time interval (0, T]. 
Often stochastic differential equations play an important role to discribe the dy-
namical evolution. For theory and applications see Arnold [2], Gard (22], Gardiner 
(23], Gikhman and Skorokhod (24], Honerkamp (34], Horsthemke and Lefever (35], 
Ikeda and Watanabe (36], 0ksendal (63), Soong [77] or Stroock and Varadhan [78). 
The solving of such objects requires numerical techniques and recipes. For conve-
nient qualitative analysis, these stochastic systems, both continuous and discrete 
time ones, are linearized at a stationary point. Eventually one examines the qualita-
tive behaviour of them in a neighbourhood of this equilibrium. Thus, it is reasonable 
to suppose that system 2.3 represents such a system linearized at the equilibrium 
point 0 E JR d. The bilinear system 2.3 turns out to be already quite general and 
complicated one. In contrast to deterministic analysis, most of the linear stochastic 
differential equations are not explicitly solvable (Moreover, the only exception is 
the case of mutually commutative drift A and diffusion matrices Bi). Consequently, 
we do need a detailed stochastic analysis (such as stability analysis) in order to 
'crystallize out' robust and reliable numerical methods for solving them. 
The methods 2.1 and 2.2 enable us to construct the simplest numerical solution 
of 2.3. Other numerical solutions can be systematically constructed by appropri-
ate truncation of the stochastic Taylor formula (methods of higher convergence 
order) which is due to Wagner and Platen [85] or by replacing the occured deriva-
tives by corresponding difference quotients (Runge-Kutta methods). For general 
reviews and recipes on stochastic numerical analysis, we refer to Artemiev [6], 
Greiner et al. (26], Helfand (28], Mil'shtein (58], Kloeden and Platen (44], Newton 
[62], Riimelin (68], Smith and Gardiner [75], Talay (80] or Kloeden, Platen and 
Schurz (48]. Furthermore, Hernandez and Spigler (29, 30, 31] especially consider 
implicit Runge-Kutta methods. Effects of structural peculiarities on the numerical 

· methods have also examined by Klauder and Petersen [43] as well as Drummond 
and Mortimer (17]. The latter two papers especially deal with the situation of multi-
plicative noise. Petersen [66] himself enlightens stability and accuracy of stochastic 
numerical methods together, a view point which is basic for numerical analysis and 
attracts our attention throughout this exposition, with more emphasis on stability. 
Particularly, Shkurko [74] and Torok (83] have studied the numerical solution of 
linear stochastic differential equations. 
In passing we remark that there are a few alternative approaches to treat numer-
ically stochastic differential equations. One is the usage of Monte Carlo methods 
(Russian school, e.g. Sabelfeld) and the other via construction of Markov chain 
approximations. The latter method has been intensively investigated by Kushner 
(51] in the context of stochastic control. theory. Moreover he constructs efficient 
Markov chain approximations for the heavy traffic problem. We leave the decision 
to the reader to find out which approach is more convenient and appropriate. Any-
way, this choice depends on the modelling issue and practical purpose. However, 
the numerical methods mentioned throughout this paper have the advantage to be 
very close to those of the deterministic analysis of ordinary differential equation. 
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They can be considered more or less as natural extension of their deterministic 
counterparts. 
Corresponding convergence results justify the application and meaningfulness of 
methods such as 2.1 and 2.2 as numerical approximation of systems such as 2.3 at 
all. In L 1 (the space of mean absolutely integrable functions) or in L2 (the space 
of mean square integrable functions) the method 2.1 possesses the same (by defini-
tion) convergence order !:::.. and the method 2.2 order 1:::.. 1 / 2 , but in the distributional 
or weak sense both methods are converging with the same order !:::... The following 
results shall be independent of these convergence notions. Convergence and asymp-
totical stability together yield reasonable and well-behaving numerical solutions, 
as in ordinary numerical analysis. Our contribution is based on the concept of mean 
square stability. 

Definition 2.1. Let Xt(xo, to) denote the solution of equation 2.3 starting in x 0 at 
time t0 . Then the null solution X = 0 is called (asymptotically) mean square 
stable iff 

lim lE I IXt( xo, ta)l 1
2 = 0, 

t-+oo 
(2.4) 

where 11 · II denotes the Euclidean vector norm in Rd, and exponentially mean 
square stable iff 

Many authors examined mean square stability of stochastic systems, e.g. Willems 
(87]. Exponential stability of continuous time systems has particularly studied in pa-
pers of Car'kov [12], Sasagawa [69] or Sasagawa and Willems [70). In Khas'minskij 
[42] one also finds a large collection of remarkable results on these subjects. 
The following theorem taken from Arnold [2] (see [42] for a more general proof by 
Lyapunov functions) yields necessary and sufficient conditions on the matrices A 
and Bi in order to guarantee an exponentially mean square stable null solution of 
2.3. It also ensures sufficient conditions for the existence of asymptotically mean 
square stable solutions of linear systems, and shows for which systems it makes 
sense to look at them concerning mean square stability. 

Theorem 2 .1. Assume that the matrix-valued functions A( t) and Bi ( t) in equa-
tion 2.3 are bounded on [to, oo ). Then, for exponential stability of the null solution 
in the mean square sense it is necessary that for any, and sufficient that for a 
particular symmetrical, positive definite, continuous and bounded d x d - matrix 
G(t) with xTG(t)x ~ k1 lxl 2 (k1 > 0) for all t ~ 0 the matrix-valued differential 
equation 

dD(t) + A(t)D(t) + D(t)AT(t) + f Bi(t)D(t)BiT(t) = -C(t) (2.6) 
dt i=l 

possesses a solution matrix D(t) with the same properties as the matrix G(t). 
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Here ()T denotes the transposed of the inscribed vector or matrix. 

Remark. For autonomous systems, equation 2.6 obtains a simpler structure 

m 

1-lD :=AD+ DAT+ L BiDBiT = -Q, (2.7) 
j=l 

i.e. the bounded linear operator 1-l possesses always a positive definite inverse for 
any positive definite matrix Q E §dxd (the space of symmetrical d x d - matrices). 

With these facts in mind, we introduce the notion of the mean square stable null 
solution of discrete time systems, such as 2.1 or 2.2, in an anal<?gous way. For 
the sake of simplicity we only consider equidistant numerical solutions throughout 
this paper, i.e. there is a unique integration step size .6. = tn+l - tn for the time-
discretization ( tn)n=o,1 ,2, ... of a given time interval. Of course, all the results can 
be carried over to nonequidistant discretizations with bounded supremum of local 
integration step sizes. 

Definition 2.2. A numerical solution (Yn)nEN using fixed step size .6. starting in 
Yo at time t 0 has an (asymptotically) mean square stable null solution iff 

35 > 0 V'to ~ 0 V'yo E JR.d llYol I < 5 : lim E llYnll2 = 0. (2.8) 
n-oo 

The limit in 2.8 is understood only at discrete times tn (by definition). In the 
following we examine the time evolution of the symmetrical 2nd moment matrices 

T .. 
P(t) = E Xt(xo, to)Xt (xo, to)= (E x;xt), t ~to (2.9) 

for continuous time system 2.3 and 

(2.10) 

for discrete time systems 2.1 and 2.2 in order to make assertions about mean square 
stability of the null solution. Since 

d 

llP(t)lldxd:::; K · E 11Xtfl2 and E 11Xtl!2 = tr (P(t)) = LPii(t) (2.11) 
i=l 

mean square stability is obviously equivalent to the stability of the corresponding 
matrix system 2.9 or 2.10 (Here II· II is the Euclidean vector norm on JR.d, tr is the 
trace and II · lldxd any compatible matrix norm on JR.dxd, K > 0). 
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3. A NECESSARY CONDITION FOR MEAN SQUARE STABILITY OF SYSTEM (2.1) 

In this section we formulate and prove a relation between the mean square evolution 
of discrete systems 2.1 and 2.2. In stating our main result below we note that the 
inequality character between matrices is understood in the sense of positive semi-
definite matrices S, i.e. 

xT Sx ~ 0 Vx E Rd 

or in other words, if between two positive semi-definite matrices S1 and S2 the 
symbolic relation :::;( +) is used then the following relation is meant 

Vx E Rd x Rd: xT(S2 - S1)x == xT S2x - xT S1x 2:: 0 {=:::} S1 :::;(+) S2 • 

In the following § == §dxd denotes the space of symmetrical real d x d matrices S, 
and §+ == §Jxd the space of positive semi-definite d x d matrices (also symmetrical 
by definition). Thus, §+ attached with the relation :::;(+) is an ordered space. 

Theorem 3.1. Assume that IE Yo(E)Yo(E)T == IE Yo(M)Yo(M)T == IE X 0XJ' E Rdxd is 
a positive semi-definite matrix with Ya being independent of the random variables en, and that the inverses of matrices 

(n==0,1,2, ... ) 

always exist. 
Then, for the linear stochastic systems 2.1 and 2.2 the following inequality holds 

IE y(M)y(M) T 
n n VnE N. (3.1) 

Remarks. From this one immediately concludes that if the implicit Mil'shtein 
method possesses a mean square stable null solution then the corresponding Euler 
method possesses it too. The invertibility of matrices I - a~An+l is ensured if 
1la~A(t)11 < 1 uniformly int E (0, oo ), or if the matrices A( t) have only eigenvalues 
with non.positive real parts, as it is the case in mean square stable, autonomous 
systems 2.3. 

Proof. We prove this theorem by induction. For n == 0 the assertion is obviously 
true by assumption. Suppose the relation 

p~E) :==IE y~E)y~E)T :::;(+) IE y~M)y~M)T ==: p~M) (3.2) 

is satisfied for a fixed n ~ 1 where p~E) and p~M) are positive semi-definite. 
Now we show the validity for n + 1. Systems 2.1 and 2.2 can be rewritten to the 
equivalent form 

y:(M) == c-1 (1 + (1 - a)~A +~Bid VE+ ~ Bi Bkv_j,k ~) y(M) n+ 1 n+ 1 n L..J n ~n L..J n n n n 
j=l ~k=l (3.3) 
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and 

(3.4) 

where 
~ s 

Cn+l =I - a~An+l and Vj•k = j j d<~(r) d<~(s). (3.5) 

Consequently, one obtains the matrix equations 

p(M) - IE -y:(M)-y:(M) T 
n+l - n+l n+l 

0 0 

IE c-1 (1 + (1 - a)A + ~ Bj ti VE+ ~ Bj Bkv_j,k ~) -y:(M)-y:(M) T. n+l n L....J n<:.n L....J n n n n n 
j=l ik=l 

( I+ (1 - a)M~ + fB(~~V"E + .f B!T B(vpti) C;;J~ 
J=l J,k=l 

C;;J1 (I+ (1 - a)~An)P~M)(J + (1- a)~Anf C;;J~ 
m m 

+""c-1 Bj pCM) Bjr c-1 r ~ + "" c-1 Bj Bk p<M) Bkr Bjr c-1r~2;2 (3.6) L....J n+ 1 n n n n+ 1 L....J n+ 1 n n n n n n+ 1 · 
j=l ik=l 

Here have used the following relations. Firstly, it is well-known that 

IE e~ = 0 and 'k IE V~· = 0 Vj,k = 1, ... ,m, 
where the latter represents the martingale property of Ito-integrals. In [44] (Lemma 
5.7.2, p. 191) one encounters with 

(cf. also p. 223 in [44]). Analogously one argues with the remainder terms. Lemma 
5.12.3 from [44] (p. 221) provides us the relation 

~ ~ ~ 

I;(~ )Ijl ,k1 ( ~) = J ljl ,k1 ( s) dW! + J ljl ( s )Ij( s) dW:1 + J ljl ( s) . ll{j=k1 #0} ds 
0 0 0 

where llo is the indicator function of the inscribed set. Thus IE (Ii· lj1 ,k1 ) = 0 
follows for all j, j 1 , k1 = 1, ... , m. The relation 3.6 is finally confirmed after rear-
ranging the matrix products and applying the moment properties mentioned above. 
Returning to 3.6, we introduce the abbreviation 

p(M) = [,p(M) 
n+l n (3.7) . 
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as the operator equation defined via right hand side of 3.6. This operator£ mapping 
§dxd onto §dxd is linear and bounded. Furthermore£ is nonnegative,i.e. £§+ ~ §+. 
This can be easily verified as follows. Since p~M) is positive semi-definite, it can 
be decomposed by the Cholesky factorization such that 

p(M) = L(M) L(M) T 
n n n 

where L~M) is triangular. Thus, there exist matrices Q~ satisfying 
m(m+l) 

P~1:i) = £p~M) = :E Q~ . Q~T 
l=O 

with Qi= c-1 BiL(M) · ~ n n+l n n 

and Qz E {C- 1 Bi Bk L(M) · !). V2, · . k 1 2 } 
n n+ 1 n n n 2 . i' = ' ' ... ' m 

(j = 1,2, ... ,m, l = m + l, ... m(m + 1)). The sum of positive semi-definite 
matrices is again positive semi-definite. So we can conclude that £§+ ~ §+. The 
difference PAM) - PAE) must be positive semi-definite according to the induction 
assumption, hence the relation 

follows ( 0 is the null matrix in§). Finally, we obtain 

p(M) = £p(M) = £p(M) _ £p(E) + £p(E) 
n+l n n n n 

= £p(E) + £(p(M) _ p(E)) >(+) £p(E) >( ) p(E) 
n n n - n - + n+l ' 

on § + where we have used the identity 
m 

£p(E) = p(E) + """" c-1 Bi Bk p(E) Bk T BiT c-1T/:).2;2 
n n+ 1 L...J n+ 1 n n n n n n+ 1 

j,k=l 

(3.8) 

which follows from 3.6 via the definition of the operator £in 3.7. This completes 
the proof of the theorem. D 

Remarks. As we know about the meaning of the relation 3.1, we have obtained 
that even the difference PAM) - PAE) is positive semi-definite for all n E N, pro-
vided that the assumption of Theorem 3.1 is satisfied. The property of positive 
semi-definiteness yields nonnegative diagonal elements of the considered matrix. 
Consequently, Theorem 3.1 also implies that the relation 

1E (Y~.~))2 2:: 1E (Y~f))2 

holds for each component of the subscribed vectors. The assumption that the matrix 
1E X 0X5 is positive semi-definite can be considered as reasonable and naturally 
fulfilled, for example for independent initial random variables x~ with 1E x~ = 0. 
Moreover, Theorem 2.1 justifies that the requirement of positive semi-definiteness 
of the initial moment matrix P(O) is not restrictive, cf. also Theorem 8.5.5 in [2]. 
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4. A SIMPLE COMPLEX-VALUED EXAMPLE (KUBO OSCILLATOR) 

For the real Wiener process Wt, the one-dimensional complex-valued stochastic 
differential equation 

has the exact solution 

with its second moment 

1E XtXt = 1E exp(2(.:\ - 1 2 /2)rt + 21r Wt)· I lxoll2 
= llxo!l2 · exp(2(.:\r - 1: /2 + 1[ /2)t + 2,;t) 
= llxo!l2 · exp((2.Ar + lh!i2)t) 

( 4.1) 

where xo E C is nonrandom (zr is the real part, Zi the imaginary part of z E C) 
and * denotes the complex conjugate value. The trivial solution X = 0 of 4.1 is 
mean square stable for the process { Xt : t 2:: 0} iff 2-Ar + I h 112 < 0. 
Applied to equation 4.1 the implicit Mil'shtein 2.1 and Euler methods 2.2 are given 
by 

y(M) = 1 + (1 - a)_A.6_ + l'enVE. + 12 (e~ - 1).6./2. y(M) 
n+l 1 - a.A.6. n 

( 4.2) 

and 

( 4.3) 

respectively. Their second moments p~E/M) = 1E YJEfM)yJE!M)* satisfy the rela-
tions 

Pl~{ = ( lE Ill+ (l -1a2>.a~1lenVE.lt2 H ll'1
2

~~a~~)ll 2 
• fl 2/4) · PlM) 

P.(M). (111 + (1- a).A.6.112+111112.6. + lbll4 .6.2/2)n+l 
0 111 - a-A.6.11 2 

> P.(E). (111+(1-a).A.6.ll2+lhll2.6.)n+l = p(E) 
0 lll-a.A.6.112 n+l (n=0,1,2,. .. ) 

provided that pJM) = 1E yo(M)Ya(M)* 2:: 1E Ya(E)Ya(E)* = pJE) ' and 

p(M) 
n+l 

p(E). (111 + (1- a).A.6.112 + lhll2.6. + lhll4.6.2/2)n+l 
n+l 111 + (1 - a).A.6.112 + I hi 12.6. 

p(E) ( . lhll4.6.2/2 )n+l 
n+l . l + Ill+ (1 - a).A.6.112 + 11111 2.6. 

while assuming identical initial values pJM) = pJE). 

Hence, if the implicit Mil'shtein method 4.2 possesses a mean square stable null 
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solution then the corresponding Euler method 4.3 possesses it too. Moreover, as 
it was already shown in [71], the mean square stability domain of 4.2 is smaller 
than the corresponding mean square stability domain of 4.3 for any implicitness 
a E [O, ir Also, it can be concluded that the implicit Euler method 4.3 has a mean 
square stable null solution if a ~ ~ and 2.Xr + I bl 12 < 0. The latter condition 
coincides with the necessary and sufficient condition for the mean square stability 
of the null solution of complex-valued equation 4.1. Thus, the Euler method 4.2 
with implicitness 0.5 is useful to indicate mean square stability of the equilibrium 
solution of 4.1. For visualization purposes we add figure 1 to this exposition. It 
shows the boundary hyperplane of the mean square stability domain for the implicit 
Euler method with implicitness 0.5. The corresponding region is located below this 
hyperplane. Furthermore, it reflects exactly the domain of mean square stability of 
the null solution of complex-valued test equation 4.1, as already mentioned. 

Figure 1. Boundary hyperplane of the mean square stability domain for the 
implicit Euler methods using implicitness 0.5 applied to bilinear equation 4.1 

Experiments for the Kubo oscillator. Model 4.1 includes the model of the 
Kubo oscillator with white noise perturbations. For a corresponding reference, see 
[34]. In contrast to the model with white noise, the Kubo oscillator with more 
realistic coloured noise perturbations is common to use for modelling of random 
oscillations in nuclear reactions. In this paper we make use of the white noise 
perturbed model in order to demonstrate what can happen with numerical solutions 
if they are not choosen carefully enough. Just as well we suggest this model as one 
favourable test model for numerical methods concerning their mean square stability 
behaviour (in general for p-th mean stability). Note this test procedure is only 
appropriate for one-dimensional stochastic differential equations. , 
The following system of the Kubo oscillator perturbed by white noise has been 
taken from Honerkamp [34]. Driven by one-dimensional real-valued Wiener process 
W( t), the system is given by a complex-valued Stratonovich stochastic differential 
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equation of the form ( i denotes the imaginary unit, i.e. i2 = -1) 
dX(t) = iX(t) dt + ipX(t) o dW(t) ( 4.4) 

for the variable X(t) and parameter p E JR1 on the time interval [O, T]. Equation 
4.4 is explicitly solvable and has the solution 

X(t) = X(O)exp{ipW(t) +it} = X(O)(cos(pW(t) + t) + i sin(pW(t) + t)). 
Obviously, this system describes a stochastic movement on the circle with radius 
llX(O}jj, i.e. it holds llX(t)ll = llX(O)ll for all t ~ 0. Another interesting fact 
occurs, with the Kubo oscillator we study a system where all p-th mean Lyapunov 
exponents l( x 0 ; p) = 0 ( x 0 =f. 0). These exponents establish the exponential rates of 
the p-th moments and determine with their sign exploding or declining behaviour 
of the p-th absolute moments of dynamical systems, for a corresponding definition 
and theory see Arnold and Wihstutz (1986). To ~heck the condition for p-th mean 
stability ( = stability of p-th absolute moments) one receives 

l (p) 1 2 1 2 1 2 1 2 ( ) p = Ar+ 2li + 21'r(P - 1) = -2p + 2p = 0, 4.5 

for system 4.4. Therefore its null solution is not asymptotically p-th mean stable for 
any p > 0, in particular not asymptotically mean square stable. However, because 
of 

p2 
E(X(t))P = (x0 )P exp{-2 p2t +pit} 

with nonrandom X(O) = x 0 , one knows that the p-th moments are converging to 
zero as t ---t oo, i.e. in the mean sense the null solution is stable for this system. 
For the sake of numerical investigation we state the Ito version corresponding to 
4.4. It has the form 

. 1 
dX(t) = (i - 2,p2 )X(t) dt + ipX(t) dW(t) 

or in componentwise description 

dX1(t) = (-~p2X1 (t) -X2(t)) dt - pX2(t)dW(t) (4.6) 

dX2(t) - ( X 1(t) - ~p2 X 2(t)) dt + pX1(t) dW(t) . 

That is, in our system notation of drift and diffusion matrices we find 

A = ( ~ ~ P
2 

_ ;P!) and B = ( ~ - ; ) . ( 4. 7) 

For experiments we choose the following three methods applied to the rriodel system 
4.6 with p =f. 0: 
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(i) The Euler method with implicitness a= ~ 

y:(l) y:(l) - ~ (~p2(y:(l) + y(l)) + y:(2) + y:(2)) ~ - pY:(2) ~ vv: 
n+ 1 n 2 2 n+ 1 n n+ 1 n n n 

y:(2) y:(2) + ~ (y:(l) + y:(l) - ~p2(y:(2) + y:(2))) ~ + pY:(l) ~ vv: 
n+ 1 n 2 n+ 1 n 2 n+ 1 n n n 

(ii) The Mil'shtein method with implicitness a= ~ 

y:(l) - y:(l) - ~ (~p2(y(l) + y:(1)) + v(2) + v(2)) A - pv(2) A HT n+l - n 2 2 n+l n .In+l .In ti .In tiYYn 

-~p2YJ1l((.6.W,.)2 - .6.) 

y(2) y(2) + ~ (y(l) + y:(l) - ~p2(y(2) + y:(2))) ~ + pY:(l) ~ vv: 
n+ 1 n 2 n+ 1 n 2 n+ 1 n n n 

_ ~ P2y~2)( ( .6. W,.)2 _ .6.) 

(iii) The Balanced implicit method (cf. [59)) 

Yn+l = Yn+(I+c0~+c1 1~Wnlt1 (AYn~ + BYn~Wn) 
in vector resp. matrice notation with weight-matrices 

( 
l p2 1 ) ( l p2 + ~ 0) 

c0 = _4
1 

2 or c0 = 4 
P and c1 = 0 . 

2 ~ P2 0 ~ P2 + :2 
For a little more detailed explanation and references for method (iii) we refer to 
section 8. Method (iii) using the first choice of c0 is identical with method (i) for 
this model. Thus, in the following simulations we will draw more attention to the 
second form of the balanced method stated in (iii), just the balanced method with 
the 'pure-diagonal correction' c0 • 

Methods (i) and (iii) remain close to the circle with radius llxoll and do not provide 
asymptotically mean square stable numerical solutions. It seems that they possess 
no 'explosions in mean square sense'. Thus, they replicate accurately enough the 
behaviour of the norm of the exact solution of model 4.4. In contrast to them 
the method (ii) produces mean square instable numerical solutions for all step 
sizes (except for one step size!). Even for the 'completely drift-implicit' Mil'shtein 
method applied to system 4.4 it is not getting better. This can be theoretically 
predicted by so-called stability indicators, cf. [71]. 
To confirm the statements above by experiments with methods (i) - (iii) we plotted 
estimates for the second moments JEllYn 11 2 at the time points Tn on the time interval 
[O, 1] and interpolated linearly the data to be visualized. The corresponding results 
are visible in figure 2. There the dotted line corresponds to the exact level to be 
expected trivially at the height 1.0. Distinctly, the methods (i) and (iii) provide 
better approximations concerning the mean square evolution. They are able to 
control the second moment much longer than the method (ii). Moreover, the second 
moment of the implicit Mil'shtein approximation even seems to 'explode'. Of course, 
the difference depends on the amount of the parameter p, but is still observable 
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for a quite large range of these parameters. Note that these experiments bear more 
experimental character, demonstrating some numerical effects (Explicit solution is 
known here) which may occur in quite more general models. 

5 

l"'plicit Mil'shtein approxi11tation ' 

0 0.2 0.4 0.6 

Rho= 4 
Delta = 8 .81 
Alpha = 8 .5 

1' 
Balanced i"'plicit approxi.,.ation 

a.a tine t 
J. 

Figure 2. Estimates for the mean square evolution of Kubo oscillator approxi-
mated by methods (i) - (iii) using step size ~ = 10-2 with p = 4 started in (1, 0). 

Additionally, for the special model 4.4 one could be tricky. Concerning the in-
formation llX(t)ll = llxall for all t E [O,T], by the use of Yn := llxallYn/llYnll 
as the approximation value for the Kubo oscillator at the time Tn the condition 
llY(rn)ll = llxall would be trivially fulfilled. However, it assumes that llX(t)ll is 
always a constant (above all the information about it). Consequently, only in move-
ments on the circle one can apply this trick. In practice of more general modells, 
such a 'normalization' does not help. Moreover, it would ruin the 'goodness' of the 
approximation. 



H. Schurz: Asymptotical Mean Square Stability of Some Linear Numerical Solutions 15 

5. MEAN SQUARE STABILITY OF (2.2) SOLVING AUTONOMOUS SYSTEMS (2.3) 

In fact, an interesting result concerning mean square stability for the implicit Euler 
methods 2.2 can be formulated. To simplify the considerations we restrict our 
attention to autonomous systems, i.e. systems 2.2 and 2.3 with time-independent 
matrices A and Bi. Furthermore, the validity of relation 2. 7 is required. Thereby we 
examine systems 2.2 where the corresponding differential equation 2.3 has a mean 
square stable null solution. Assume that all real parts of eigenvalues of matrix A 
are negative. This requirement is necessary for mean square stability of the null 
solution of system 2.3. It additionally implies the existence of inverse of I - a.6.A 
for all a 2::: 0 and .6. > 0. For such autonomous systems, the notation 

m 

Yn+1 = (I - a.6.At1(I + (1 - a).6.A + "£Bi.JE.~~) Yn 
j=l 

m 

c-1(a)(C(a) +fl.A+ ../E.LBi~~) Yn (5.1) 
j=l 

is used for the Euler method with implicitness a E [O, 1]. 
0 0 

Let §+ be the interior of the set §+, hence §+ is identical with the open set of 
0 

positive definite matrices in §. Besides, H,-1 ( - §+) denotes the inverse image of 
the negative definite matrices with respect to the operator H defined by 2. 7 on§+. 
The system of second moments Pn = (Pi,j) = (JE Y~Yj) of method 5.1 satisfies the 
inequality 

T . . 
0 ::=;( +) Pn+l = JE Yn+l Yn+l = (JE Y~+l Y~+l) = L Pn 

c-1 (0:) (Pn + (1 - a)2.6.2APnAT + (1- a).6.(APn + PnAT) 

+L'l.tBiPn BiT) c-1T(a) 
J=l 

c-1(a)(Pn + a2 .6.2 APnAT - a.6.(APn + PnAT))C_ 1 T(a) 
m 

+.6.c-1(a)(APn + PnAT + LBi PnBiT)C_ 1T(a) 
j=l 

+(1 - 2a).6.2C-1(a)APnATc- 1 T(a) 

c-1 (0:) ( C(a)PnCT(a) - .6.Q + (1 - 2a).6.2 APnAT) c-1 T(a) 

<c+) Pn + (1 - 2a).6.2C-1 (a)APnATc- 1 T(a) (5.2) 

0 

provided that Pn E H,-1(- §+).where the positive definiteness of matrix Q follows 
from the condition of mean square stability for 2.3 stated in relation 2. 7. The 
inequality in 5.2 is understood once again in terms of positive definiteness of the 
d x d-matrices S, i.e. 0 < xT S1x < xT S2x ¢===> S1 <(+) S2 holds for all vectors 
x E JR.d. Suppose that system 5.1 starts with a positive definite matrix of second 
moments (JE Y~Yd) what is naturally fulfilled for mean square stable systems 2.3. 
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Now, if one chooses o: 2:: ~ the relation 

(5.3) 
follows for all n = 1, 2, .... Consequently, lim £P1c « +) £P0 « +) Po is valid. The 

k-+oo 
limit moment matrix P := lim £k Po must be positive semi-definite because the 

k-+oo 
space §+ of positive semi-definite d x d-matrices is closed. Therefore we obtain 

0 

xT Px < xT Pnx < xT Pax (Po E H-1(- §+)) 

for all vectors x E IR d. 

Consider now the operator £ on the set lK( S) in § + defined by 

OC(S) = {S, £ S, £ 2 S, £ 3 S, ... ,en S, ... , lim £1c S} c H-1 (-§+) c §+ (5.4) 
k-+oo 

0 

for a fixed positive definite matrix S E H,-1 ( - §+). This set is naturally closed by 
its limits. In the following we argue with the principle of Banach-Caccioppoli (cf. 
Theorem 2 (1.XVI) proved in Kantorowitsch and Akilow (38], p. 512). To make 
use of it, we recall that the operator £ is linear and bounded, hence continuous 
on the finite-dimensional space §+. Subsequences of (£n S)nEN must converge to a 
limit lim £k S in K It is relative easy to see that such limits are fixpoints of the 

k-+oo 
operator £. Furthermore we know the zero matrix 0 as trivial fixpoint of£. Now 
we show the uniqueness of the fixpoint on the set K For this purpose the metric 
p(., .) with 

d 

p(S1, 82) = ~ l!f (S1 - S2)fjl 
j=l 

is introduced on the space §+for a basis (fj)i=l, ... ,d of J:Rd. Then it holds 

p(£ Si,£ S2) < p(S1, S2) 

(5.5) 

(5.6) 

for all Si, S2 E OC with S1 =/= S2. £ OC, the image of the compact set OC, is again com-
pact and £ OC C OC, i.e. the operator £ itself is compact (hence fully-continuous). 
Thus, with 5.6 and compactness of £ OC the assumptions of Theorem 2(1.XV I) 
from [38] are satisfied. From this the uniqueness of the fixpoint on OC follows as well 
as that any iteration en S must converge to this unique fixpoint. Additionally, this 
fixpoint is given by the zero matrix 0 E §+. This can be seen from the inequality 

p = £P = P+~c-1(o:)(HP+(l-2o:)~APAT)c-1 T(o:) :::;(+)P 

which is true for all~> 0, and the conclusion HP= 0 for P = lim £k P0 . Note, 
k-+oo 

by theorem 2.1 operator H has a continuous inverse on H,-1(-§+). Hence, it holds 

ker(H) :={SE H-1(-§+) : HS= O} = {O}. 

Thus, from HP :::;( +) 0 must follow P = 0. Consequently, the asymptotical mean 
square stability of the null solution of the implicit Euler method using implicitness 
o: 2:: 0 .. 5 is obvious, hence the following assertion has been proved. 
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Theorem 5.1. Assume that the null solution is mean square stable for the au-
tonomous stochastic differential equation 2.3, i.e. with constant matrices A and Bi 
(independent of time). 
Then the implicit Euler method 5.1 with a ;::: ~ possesses a mean square stable 
null solution provided that it starts with a positive definite initial moment matrix 
Po = 1E YoYl E 7-l-1(-§+) {the image of the inverse of operator 7-l). 

Therefore we know numerical methods (a 2:: ~) which provide mean square stable 
solutions under appropriate conditions. Moreover, the result we verified above says 
that independently of the size of coefficients of the initial matrix Po any sequence 
(£n Po) must converge against the fixpoint 0 while 2.6. Such a property is called 
stability in large. Furthermore, it has been proven due to this theorem that for 
linear systems there is no need to correct the Euler method by stochastic weights 
in the Balanced methods. These numerical methods were introduced in Mil'shtein 
et al. [59] and give alternative means of achieving numerical stability. A similar 
result to Theorem 5.1 could be simultaneously formulated by Artemiev [6]. In [71] 
one also finds this result for one-dimensional linear complex equations which are 
numerically solved by Balanced method~. 

6. MONOTONIC NESTING PRINCIPLE OF MEAN SQUARE STABILITY DOMAINS 

In this section we present a further interesting result for linear autonomous systems. 
For the numerical methods defined by the iterated linear systems 2.1 and 2.2, the 
property of 'monotonic nesting' of the sequel of mean square stability domains 
(r a)a~o is discovered, i.e. if 0 ~ a1 ~ a2 ~ 1 then the mean square stability domain 
r a2 includes the domain r a1 • These domains can be expressed via the operator £ 
having eigenvalues smaller than one. The following result is established. 

Theorem 6.1. Consider autonomous system 2.1 or 2.2 with its mean square op-
erator La. Then, for 0 ~ a 1 ~. a2 ~ 1 the implication 

(6.1) 
holds, provided that P E §+, and the matrix A has only eigenvalues with nonpositive 
real parts. 

Proof. We prove the assertion only for the implicit Euler methods. The proof for 
the implicit Mil'shtein methods follows similarily. From section 5 we recall that 

£ p(a) p(a) 
a n - n+l 

c-1(a)(J + (1 - a)~A)P~a)(J + (1 - a)~A)TC-1 T(a) 

+~tc-1 (a)Bi p~a) BjT c-1T(a) (6.2) 
j=l 
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with .Ccx§+ ~·§+is valid for the implicit Euler method 2.2 with C(a) =I - aLJ.A. 
Now, suppos·e that .CcxP :::;(+) P holds for any P E §+ in the sense of positive 
semi-definite matrices. Then 

(I - aLJ.A)(.CcxP - P)(I - a~Af = C(a) (.CaP - P) CT(a) 

(1 + (1 - a)LJ.A)P(I + (1 - a)LJ.Af + LJ. fBi P BiT - C( a)PCT( a) 
j=l 

m 

~(AP+ PAT+ LBi P BiT) + (1 - 2a)~2 APAT :::;(+) () (6.3) 
j=l 

follows. Assume 0 :::; a 1 :::; a 2 :::; 1. From this we conclude that 

(I - a2~A)(.Ca2 P - P)(I - a2~A)T 
m 

~(AP+ PAT+ 'LBi P BiT) + (1 - 2a2 )~2APAT 
j=l 

:::;(+) ~(AP+ PAT+ fBi P BiT) + (1 - 2a1 )LJ.2 APAT (6.4) 
j=l 

(1- a1~A)(.Ca1 P - P)(I - a1~Af :::;(+) 0 
(6.5) 

because of positive semi-definiteness of APAT and the relation (1-2a2):::; (1-2a1). 
Thereby, we obtain (I - a2 LJ.A)(.Ca2 P - P)(I - a2 LJ.A? :::;(+) CJ, what the relation 
.Ca2 P :::;(+) P implies. D 

Remarks. The proof of Theorem 6.1 is essentially based on the fact that transfor-
mations C PCT with any invertible matrix C do not change the positive or negative 
semi-definiteness of matrices. See, e.g. Usmani [84]. Consequently, the 'most stable 
null solution in mean square sense' is provided by the completely drift-implicit 
Euler method (Mil'shtein method) with a = 1 within the class of implicit Euler 
methods (Mil'shtein methods, resp.) with implicitness a E [O, 1], at least for li-
near autonomous systems. The assertion of the Theorem 6.1 can be carried over to 
nonautonomous systems if one additionally requires monotonically decreasing real 
parts of eigenvalues of negative semi-definite matrices An or A( t ), respectively, as 
well as this is possible for Theorem 5.1. . 

7. A PRACTICABLE ALTERNATIVE - BIMs WITH SCALAR CORRECTION 

To simplify the implementation of mean square stable numerical methods we pro-
ceed on a little with the examination of a more general class of implicit methods, the 
Balanced implicit methods (BIMs) introduced firstly in Mil'shtein et al. [59]. BIMs 
allow to introduce even implicitness making use of stochasticity. To achieve control 
on the moment evolution, to bound the increments or to effect some positivity of 



H. Schurz: Asymptotical Mean Square Stability of Some Linear Numerical Solutions 19 

numerical solutions they are appropriate numerical methods (cf. also a forthcom-
ing paper of the author about properties of BIMs ). We have already examined 
such methods with the implicit Euler methods and seen that they possess mean 
square stable null solutions if one appropriately chooses the implicitness degree. 
BIMs provide a numerical solution which is weakly and strongly converging to the 
exact solution under appropriate conditions on their correction weights. For proof, 
see [59]. However, they represent nothing else than some 'linearly corrected Euler 
methods'. For the sake of simplification and reduction of computational efforts in 
scheme evaluation while keeping mean square stability control, the further main 
attention is drawn to a simple subclass of BIMs. It only uses purely deterministic 
weights with nonnegative scalars. Thus one avoids the costly inversion of matrices. 
For equidistant time step size ~ this class has the scheme 

m 

YJ!{ = y~B) + A y~B) ~ + ~Bj y~B).~ w~ + (Y~B) - YJ!{)an~ 
j=l 

m 

(1 + O'.n~t1 (J(l + O'.n~) +A~+ ~Bj ~ W~) y~B) (7.1) 
j=l 

for the bilinear SDE 2.3. The numbers an ~ 0 represent the sequence of implicitness 
degrees to be choosen appropriately. Similarly to previous sections we describe the 
mean square evolution by operator£ for BIM 7.1. Considering autonomous systems 
2.3 one encounters with the following assertion. 

Theorem 7 .1. Assume that the autonomous system 2. 3 possesses a mean square 
stable null solution, and the condition 

is satisfied for the sequence ( an)n=0,1,2, ... of positive reals an. 
Then it holds 

0 

(i) £~B) S <(+) S if SE 1-l-1(- §+},a~ a> 0, 
(ii) The operator £~B) : s+ ~ s+ only has the fixpoint 0 on IK defined 

as in 5.4 if a ~ &, hence under 2. 7 the BIMs 7.1 with positive scalar 
correction possess a mean square stable null solution, 

(iii) £~~) S ~(+) S ===:? £~) S ~(+) S, SE§+, 0 ~ a1 ~ a2, 

(iv) £~~) S ~(+) S ===:? £~~)+2aB& S ~(+) S, SE§+, aE, aB E [0, oo) 
0 

( v) £f1~?l/2+a S <c+> S, SE 1-l-1
(- §+), a~ 0, 

0 

(vi) rf1~?1·~+a := {S E §+ : £f1~?1 ;2+a S <c+> S} :J 1-l-1
(- §+),a ~ 0 

where £~B) denotes the mean square stability operator corresponding to BIM 7 .1 
and £~E) the operator corresponding to the implicit Euler method 2.2 as stated in 
6.2 in the previous section. 
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Proof. It is not hard to verify that 

£(B) S = S + 
ctn 

Llc;;-2 (AS+ SAT+ tsiSB;T + t.(a,.(AS +SAT)+ ASAT)) (7.3) 

for the methods 7.1 with Cn = 1 + an.6., SE§+ and an~ 0, while 

P (B) = wi y:(B)y:(B) T _ r(B) ( r(B) ( r(B) (wi v(B)v(B) T\ ) ) n+l .llJ n+l n+l - ~an. ~O:n.-l •• ·~ao .llJ .I 0 .I 0 } • · • • 

The expression AS+SAT +ET:1 BiSBiT in 7.3 must be negative definite because of 
Theorem 2.1 due to Khas'minskij. Furthermore, an(AS+SAT)+ASAT is negative 
semi-definite for S E §+,as assumed in 7.2. Thus, the expression £~B) S-S can only 

0 

be a negative definite matrix in 7-l-1(- §+), and hence item (i) is true. Using the 
same fixpoint arguments on the set K like in section 5, the mean square stability of 
the null solution for BIMs 7.1 satisfying 7.2, and hence (ii) turns out to be obvious. 
For the verification of (iii) one encounters with the inequality 

0 ~(+) (1 + a1.6.) (£~~) s - s) (1 + a1.6.) 
m 

= .6.(AS +SAT+ l:BiSBiT) + .6.2(a1(AS +SAT)+ ASAT) 
j=l 

m 

~(+) .6.(AS +SAT+ l:BiSBiT) + .6.2(a 2(AS +SAT)+ ASAT) 
j=l 

= (1 + a2.6.) (c~~) s - s) (1 + a2.6.) 

provided that£~~) S ::;(+) S. Thus, it follows the validity of (iii). Assertion (iv) is 
confirmed by the relation 

(I - aE.6.A) ( £~~) S - S) (I - aE.6.A)T 

t.( AS+ SAT+ ~BiSB3T + (1 - 2aE)LlASAT) 

2:(+) t.( AS+ SAT+ ~BiSBiT + t.(ASAT + (aB + 2aE&)(AS +SAT) 

-2aE(&(AS +SAT)+ ASAT))) 

2'.(+l fl (AS+ SAT+ tB3SB;T + t.(ASAT + (aB + 2aE~)(AS +SAT))) 

(1+(aB+2aEa).6.)2 (£~~~+2aB&) S - s) 
under the requirement 7.2. Finally, ( v) and (vi) are obvious and follow from ( i) with 
the special choice & = llAll/2 directly. Consequently, the verification of Theorem 
7.1 has completed. D 
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Remarks. BIMs 7.1 represent an useful alternative to implicit Euler methods ex-
amined in the previous sections for achieving control on the mean square evolution 
of the numerical solution of SDEs. In fact Theorem 7.1 shows that the costly matrix 
inversion in the implicit Euler methods can be circumvented by BIMs with simple 
scalar correction without loosing mean square stability control. For this purpose 
one takes BIMs 7.1 with the choice an 2:: a 2:: llAll/2, and the requirement 7.2 
is naturally fulfilled under the assumption 2. 7. Thereby their application only as-
sumes the knowledge about the norm of matrix A or its estimate. Additionally 
item (iii) of the theorem above reflects the 'monotonic nesting property' of mean 
square stability domains for BIMs 7.1, whereas (iv) the dominating role of these 
numerical methods in comparison with methods of lower convergence order with 
respect to their mean square stability behaviour. Consequently we have found sim-
ply implementable and implicit methods to be efficient for mean square control. In 
passing, we note that BIMs and the Euler method strongly converge with the same 
order r = 0.5 (i.e. in L1 ), see [59]. Thus, roughly speaking, BIMs can achieve a 
balance between mean square stability and convergence requirements on numerical 
methods. 

8. AN APPLICATION AND EXPERIMENTS FOR THE NOISY BRUSSELATOR 

For modelling unforced periodic oscillations in chemical reactions it is common to 
use the model of the Brusselator. Therein, after neglecting spatial diffusion and 
centering at an equilibrium point, the following system of deterministic nonlinear 
equations (planar Brusselator) occurs 

dx1 
dt 

dx2 
dt (8.1) 

where a is a positive real parameter. When a< 2 the zero solution (x1 , x 2 ) = (0, 0) 
is globally asymptotically stable, but looses stability in a Hopf bifurcation point 
a= 2. The system also possesses a limit cycle for a> 2. 
Now we are especially interested in stability results under stochastic perturbations. 
When the parameter a is stochastically perturbed one encounters with 

dXi1
) = ((a - l)XI1) + a(Xi1

)) 2 + (Xi1) + 1)2 xi2
)) dt + axi1)(1 + xP)) o dWt 

dXi 2
) = ( - aXi1

) - a(Xi1))2 - (Xi1) + 1)2 xi2))dt - aXi1\1 + Xi1
)) o dWt 

(8.2) 

where a= a+aet· et represents Gaussian white noise, i.e. Wt = J~ esds. We deliber-
ately interprete the system 8.2 in Stratonovich sense, as it is preferable in practical 
modelling, cf. also Wong and Zakai [88]. Ehrhardt [18] has already considered the 
noisy Brusselator equations. We continue his considerations with some numerical 
stability analysis for the Brusselator model. Obviously (Xi1), X}2

)) = (0, 0) is an 
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equilibrium of the stochastic system too. After linearizing system 8.2 at this steady 
state one obtains 

( ~~j:;) = [ a~al ! 1 ] ( ~j:;) dt+a [ ! 1 ~] ( ~~:;) odW, (S.
3

) 

which can be equivalently rewritten to its Ito prescription 

( ~~j:; ) = [ a~al_+~:: ~l] ( ~j:; ) dt +a [ !1 ~ l ( ~j:;) d~~:4) 
For simplification we denote with A the drift matrix and with B the diffusion ma-
trix of system 8.4. 
At first we deal with the stability analysis of first and second moments of the exact 
solution of the linearization 8.4 of system 8.2. T.hen it follows the analysis of the 
numerical systems. 
Stability of first moments. The stability analysis for the first moment of the lin-
earized Brusselator equations is done through the examination of the characteristic 
polynomial of the drift matrix A. One encounters with its polynomial 

2 

cA(.A) = det(A-.AJ) = .A 2 -(a-2+~).A+l = .A 2 +b1 .A+b2. 
2 

(8.5) 

Its roots only possess negative real parts iff b1 = 2 - a - cr2
2 > 0. Thereby the 

linearized Brusselator has asymptocially stable first moments iff a + cr2

2 < 2. Thus 
it is easy to see that Stratonovich noise introduced above destabilizes the dynamical 
behaviour in comparison with the deterministic linearization. 
Stability of second moments. Following the school of Arnold and Khas'minskij 
we investigate the behaviour of the matrix differential equation 

p = AP+ PAT+ BP BT, P(O) =Po E §+ 

for the system of second moments P = (Pi,j(t)) = (JEZ(i)z(j)(t)). This system is 
equivalently rewritten to the three-dimensional vector differential equation 

q = ( j~ ) = [ 
2
(a - ;2 + a

2
) ~2 -2}- a2 ] q =: Q q 

q3 -a - ~a2 + 1 a - 2 + u 2 

2 2 

(8.6) 

using the notation qi = p1,1 , q2 = p1,2 and q3 = p2,2. Thereby it remains to ana-
lyze the eigenvalues of matrix Q defined in 8.6. One obtains the characteristic 
polynomial 

(8.7) 
5 

where b1 = 6 - (3a + 2a2
), b2 = 12 - 8a + 2a2 + (3a - 6)a2 + a4

, b3 = 8 - 4( a+ a 2
). 

Applying the Routh-Hurwitz criterion to this polynomial, all real parts of its roots 
are negative iff 

(8.8) 
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It is clear that the behaviour of the Routh-Hurwitz determinant 82 plays the most 
important role for indicating mean square stability. Figure 3 shows several plots of 
the value of this determinant depending on the interaction of system parameters a 
and a. There it is visible how increasing a destabilizes the mean square behaviour 
of the linearized Brusselator system. 

delta_2 

Figure 3. Dependence of Routh-Hurwitz determinant 82 on system parameters. 

Numerical simulation and estimation of the Euclidean norm. The mean 
square stability of the described system can be indicated by the temporal behaviour 
of the Euclidean norm of the Brusselator process. Therefore we estimate this term 
in the following in order to demonstrate the effect of the results of the previous 
sections. For numerical simulation of this expression of second moments we make 
use of implicit Euler methods with implicitnesses a = 0, 0.5, 1, just as well a Ba-
lanced method with scalar correction ( aB = II All /2). These methods are applied 
to the linearized Brusselator equations 8.3 with the same initial second moments 
and equidistant step size fl. = 0.01. In figure 4 the estimates corresponding to 
the implicit Euler methods are plotted for increasing time t. Thus the growth 
of the estimates for decreasing implicitness a confirms the monotonicity of the 
mean square evolution. Furthermore one easily recognizes the destabilizing effect 
of Stratonovich noise in comparison with the deterministic evolution. In this figure 
the 'Balanced estimate' has not drawn to avoid confusions. By computer simulation 
it can be seen that it also declines for increasing time t, and it is close to the 'Euler 
estimates'. In passing we note that for a= 1. 7 and a= 0.5 the exact solution of the 
linearization possesses a mean square stable null solution, hence the Euclidean norm 
must decline. This can be easily checked with MAPLE or other algebraic packages. 
A similar effect of monotonicity of the estimates for the mean Euclidean norm 
could be observed with the implicit Mil'shtein methods. However these estimates 
are larger than those corresponding to the implicit Euler methods, cf. also [71}. 
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J.O 

a 

a 

(- (8) 

(- (8.5) 
(- (1) 

30
t1 .... t 

Figure 4. Estimates of the Euclidean norm of several 'Euler solutions'. 

Now it could follow an application of theses methods to the nonlinear Brusselator 
system. However this would involve the algebraic. resolution of implicit systems, 
e.g. by the N ewton-Raphson iteration scheme at each time step. Instead of this, 
we prefer a Balanced method with simple scalar correction. In figure 5 the numerical 
results for the estimation of the Euclidean norm of the nonlinear Brusselator system 
is given for the same parameter choice as above. Thus we suspect that also under 
this kind of nonlinearity the system still behaves mean square stable. 

8 oE- Stochastic euolutlan CBllb> 

a-l--~--J.--=::===~~~~=--==::;:...,,~s;;;;=:,.,~~ 
a 

Figure 5. Evolution of the Euclidean norm of the nonlinear Brusselator in 
comparison with deterministic evolution. 
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9. CONCLUSIONS AND REMARKS 

The analysis of deterministic numerical methods is at a very high stage nowadays, 
cf. Hairer and Wanner (27]. In comparison with this state of the art the analysis 
of stochastic numerical methods possesses still 'infancy character'. Convergence 
results for them have been known fairly long since the early works of Maruyama 
and Mil'shtein, cf. also [44], but the knowledge about stability of these stochastic 
methods is particularly underdeveloped up to now. In so far this paper can be con-
sidered as a small contribution to explain the appearance of stability and instability 
of stochastic numerical methods. To some extent mean square stability analysis for 
methods with lower convergence order is now in a more satisfactory state, except 
for the problem of test equations to be discussed in the nearest future. The solution 
of the problem of stochastic test equations could considerably reduce the compu-
tational effort in stability examinations, cf. Dahlquist (16] for the solution of this 
problem in deterministic analysis. Although the hope to get completely solved this 
problem in stochastic analysis is little, even a partly answere on it could lead to 
decisive simplifications. However, to gain a satisfactory answere seems to be very 
complicated within the framework of stochastic analysis. In the one-dimensional 
situation we may refer to the Kubo oscillator perturbed by white noise for testing 
mean square stability behaviour of numerical methods. 
While examing linear stochastic systems one encounters with multiplicative and ad-
ditive noise. Purely multiplicative noise systems can have deterministic equilibria, 
whereas purely additive noise systems can possess stochastic equilibria. Thus, the 
stability investigation under purely additive noise really requires a new approach 
(more stochastically oriented). This fact has been already noted by Artemiev [5] 
(concept of asymptotical unbiasedness) and in (73] (concept of asymptotical preser-
vation of probabilistic characteristics by numerical solutions). 
We interpreted the stochastic systems in Ito sense. This assumption is not essen-
tial for the application of corresponding stability results, but note the alternative 
of Stratonovich interpretation can destabilize the dynamical behaviour. Of course, 
our results are applicable after transforming the Stratonovich-interpreted system 
into the corresponding equivalent Ito prescription. 
This paper provides us with several conclusions arising from four main contri-
butions to asymptotical mean square analysis of numerical methods for bilinear 
systems with purely multiplicative noise. By Theorem 3.1 one sees that a higher 
order method (higher convergence order) does not improve the mean square sta-
bility behaviour in comparison with that of a corresponding lower order method. 
Thus, it is not recommendable to look for a higher order mean square stable numer-
ical solution before the class of lower order methods, such as implicit Euler or more 
general Balanced methods (see [59]) has not been carefully examined. The proof 
of Theorem 3.1 can be directly generalized to the case of weak approximations or 
weak numerical solutions, because it only uses the independence of the random 
variables e~ and V!·k for i f:. j, k, respectively, as well as some moment properties 
of these random variables. Furthermore, it should be possible to extend this result 
to other higher order both weak and strong numerical solutions arising from Taylor 
methods proposed in [44, 48, 58] in a similar way. Note, thereby it has not been 
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proven that mean square stability behaviour is always worsening with increasing 
convergence order in general. 
A further basic result (Theorem 5.1) concerning mean square stability of the null 
solution of the implicit Euler method solving autonomous linear stochastic dif-
ferential equations could be obtained. For a E [ ~, 1] the Euler method possesses 
a mean square stable null solution under the assumption that the corresponding 
continuous linear system possesses one. That means, it is not necessary to add a 
stochastic term in Balanced methods proposed by Mil'shtein et al. [59] in order 
to achieve control in mean square sense. Note, the validity of this fact for simple 
linear complex-valued systems has been already shown in [71]. 
Furthermore, a 'monotonic nesting principle' of mean square stability domains 
(Theorem 6.1) could be verified. For increasing implicitness a E (0, 1] the mean 
square stability domains r a of the implicit Euler method as well as of the implicit 
Mil'shtein method increase monotonically. Thus, while assuming mean square sta-
bility of the corresponding continuous system the use of completely drift-implicit 
method (a = 1) is recommended for those practical implementations where one 
wants to achieve more stable numerical behaviour than that of the exact solution. 
Note, for a = 0.5 and autonomous systems we have just the situation that ex-
ponential mean square stability of the linear stochastic differential equation 2.3 
is ensured iff the null solution is mean square stable for the corresponding Euler 
method 2.2. Thereby this, and hence a numerical method, can be used to test mean 
square stability of continuous time systems (a possibility for construction of mean 
square stability indicators!). Consequently, our first recommendation is to choose 
a = 0.5 while using an implicit Euler method for linear systems. 
In passing, Theorems 5.1 and 6.1 are also valid for a > 1. This case covers a special 
class of Balanced methods, the class which does not use stochastic weights (a sum 
of matrices multiplied by the current absolute increment of the Wiener process), 
i.e. only with deterministic weight matrix (-a )A (a ~ 0, provided that the matrix 
A is negative semi-definite). See in [59] for their structure. However, for very large 
a > 1 one looses convergence speed, hence also the value of these approximations, 
and finally the numerical solution drifts away from the exact one while gaining nu-
merical moment stability with increasing a. Thus, it exists the task to get the right 
balance between stability and convergence requirements on numerical methods in 
practical modelling. 
Finally, for easier and practicable implementation of implicit methods, we presented 
a result (Theorem 7.1) on Balanced implicit methods (BIMs) with deterministic, 
positive scalar correction factor (weights). It turned out that they are appropriate 
for mean square stability control, i.e. an equilibrium point is mean square stable 
for these methods. For example, BIMs with scalar weights ·en = 1 + an.6.n where 
an ~ llAll/2. They avoid the problem of costly inversion of correction matrices 
or, in general, the resolution of implicit algebraic equations in numerical methods. 
Thus, such specific BIMs considerably reduce the computational effort while using 
implicit methods. 
As it has been seen before, the paper enlightened the mean square stability analy-
sis of some numerical solutions of stochastic differential equations by linearization 
around their equilibria. Although progress concerning mean square stability of dis-
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crete linear systems could be made it is still necessary to extend the examination 
to nonlinear systems. However, the reader has already received recommendations 
through this paper in nonlinear situations. One linearizes the nonlinear equation, 
checks mean square stability of the obtained system, works out appropriate numer-
ical solutions, and finally, one applies a corresponding numerical method (being 
preferable for the linearized equation) to the nonlinear system. This procedure has 
been demonstrated with the system of noisy Brusselator equations, as one example 
for nonlinear applications. 
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