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Abstract

Data from functional magnetic resonance imaging (fMRI) consists of time series of
brain images which are characterized by a high noise level and a low signal-to-noise
ratio. We provide a complete procedure for fMRI analysis. In order to reduce noise
and to improve signal detection the fMRI data is spatially smoothed. However, the
common application of a Gaussian filter does this at the cost of loss of information on
spatial extend and shape of the activation area. We suggest to use the propagation-
separation procedures introduced by Polzehl and Spokoiny (2005) instead. We show
that this significantly improves the information on the spatial extend and shape of the
activation region with similar results for the noise reduction. Signal detection is based
on locally varying thresholds defined by random field theory. Effects of adaptive and
non adaptive smoothing are illustrated by artificial examples and an analysis of real
data.

1 Introduction

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive tool for studying the
functionality of the brain and localizing cognitive functions. It has become increasingly
important in neurosciences as well as for clinical applications such as presurgical planning.
In a typical fMRI experiment with block design the patient has to perform one or several
tasks alternated by some period of rest. However, activation in brain is not subject to
direct measurement. fMRI-experiments therefore detect a change in blood oxygenation
(BOLD response) Lange (1996); Lange and Zeger (1997) instead. A higher oxygenation

level is associated with increased neuronal activity necessary to solve the task.

fMRI data is obtained as time series of three dimensional images. It is characterized by a
high noise level and a very low signal-to-noise ratio. The spatial resolution (voxel size) is
typically of the order of 3 — 4mm. The time series can be as long as 1" = 100 to 7" = 1000
scans with a repetition time of typically 2 or 3 seconds. The data is correlated in space

and time.

In this paper we adopt the common view of a linear model for the time series Y; = (Y};) in
each voxel i Worsley et al. (2002):

Y;:Xﬁi-i-&‘i. (1)



Here, X denotes the design matrix. The first columns of X correspond to the experimental
stimuli and contain the expected BOLD responses connected with the tasks. Other columns
contain variables to model orthogonal effects such as drift or signals from heartbeat and
breathing. The errors ¢; = (¢;;) are correlated in space and time. The parameter vector
0B; is to be estimated. Interest usually is in one of the parameters associated with a
stimulus in the experiment or in a contrast v; = ¢! 3;, i.e. a linear combination of such
parameters. More sophisticated non-linear models also exist Purdon et al. (2001) but will

not be considered in this paper.

In activated voxel we expect the parameter of interest or contrast v; = ¢! 3 to differ signif-
icantly from zero. We may therefore test the hypotheses H: 7; = 0 against an alternative
A: ~; # 0. This induces a severe multiple test problem. A voxelwise analysis, using indi-
vidual critical values, produces a large portion of false positive signals. At the same time
small signals are concealed due to high variability of the parameter estimates. The use of
a global critical value, i.e. specification of an error probability to observe a false positive

in any voxel, usually leads to no signal detection at all.

One solution is to smooth the parameter array. This reduces variability, while the mean
value is preserved in spatially extended regions with similar values of 7. At the same
time a correlation structure is induced in the three-dimensional parameter field I' = {v;},
i = (ig,iy,1,), that allows for much lower global thresholds. However, application of
commonly used methods, like e.g. a Gaussian filter, achieves this at the cost of loss of
information on spatial extend and shape of the activation areas. According to the matched
filter theorem Rosenfeld and Kak (1982); Worsley et al. (1996a) the bandwidth of a non
adaptive Gaussian filter is best chosen as the expected size of the (usually unknown)

activation areas.

In contrast a spatially adaptive method like adaptive weights smoothing (AWS), suggested
in Polzehl and Spokoiny (2000), naturally adapts to the sizes and shapes of the activated
areas rather than over-smoothing them. For theoretical results on a generalization of this
method, the Propagation-Separation (PS) approach, we refer to Polzehl and Spokoiny
(2005). In this paper we suggest to apply a spatially adaptive smoothing procedure in the
analysis of fMRI experiments and show how it improves the inferred information on the

spatial extend and shape of the activated regions.

The use of such an idea for fMRI analysis has already been suggested in Polzehl and
Spokoiny (2001). However, Polzehl and Spokoiny (2001) left several important questions
open. The approach was restricted to periodic activations. Furthermore it did not consider

temporal and spatial correlation present in the data. And finally it failed to provide a



formal solution to select appropriate thresholds for signal detection. In this paper we will
overcome all these drawbacks and provide a complete procedure for structurally adaptive

fMRI analysis using the PS approach.

The paper is organized as follows. In Section 2 we describe the estimation of the param-
eters (3; in our analysis. This includes the description of the linear model (1) and the
prewhitening used to account for the temporal autocorrelation. After voxelwise estimation
of 3; we apply a Propagation-Separation procedure to the map of contrasts I' = {7;}. We
then define thresholds for signal detection using Random Field Theory, see Worsley (1994);
Worsley et al. (1996b). Details of the procedure are outlined in Section 3. In Section 4 we
illustrate the application of the procedure to real fMRI data as well as artificial examples to

underline the advantages of the method in different situations. Section 5 gives a summary.

2 Voxelwise analysis of time series

In fMRI the BOLD effect is used as a natural contrast employing the fact that voxel with
increased neuronal activity are characterized by a higher oxygenation level. The expected
BOLD response can be modeled by a convolution of the task indicator function with
the hemodynamic response function. This function has been measured Glover (1999) and
models the fact that although neuronal activation is thought to be practically instantaneous
to the stimulus, blood oxygenation is subject to some delay and shows a more complicated
structure than a simple indicator function. In fMRI experiments one finds a characteristic
form for the measured BOLD response. Several suggestions have been made to model the
hemodynamic response function h(t). We follow Worsley et al. (2002) and give the h(t) as

the difference of two gamma functions Glover (1999):

() oo (£52) () (452

with a1 = 6, ao = 12, b1 = 0.9, bo = 0.9, and d; = a;b;, ¢ = 0.35 where ¢ is the time in

seconds.

Given the stimulus s(¢) as a task indicator function, we arrive at the expected BOLD

response as convolution of s(t) and h(t):

z(t) = /000 h(u)s(t — u)du.

The resulting function x(¢) is evaluated at the T scan acquisition times ¢;. Fig. 1 illustrates

the function x(t) for a typical experimental design.

We consider the linear model (1) for the time series Y; in each voxel i after reconstruction

of the raw data and motion correction. The first ¢ columns of X contain values of the
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Figure 1: Upper: BOLD response for a stimulus at three onset times given in scans. Lower: Data
and fit using the linear model (1) in one voxel . We account for the BOLD response as well as
some slow drift terms that can be well approximated by polynomials. Data: H. Voss, Citigroup

Biomedical Imaging Center, Weill Medical College of Cornell University

expected BOLD response for the different stimuli evaluated at scan acquisition times. The
other p — ¢ columns are chosen to be orthogonal to the expected BOLD responses and to
account for a slowly varying drift and possible other external effects, see Worsley et al.
(2002). The error vector ¢; has zero expectation and is assumed to be correlated in time. In
order to access the variability of the estimates of 3; correctly we have to take the correlation
structure of the error vector ¢; into account. Here we follow Worsley et al. (2002); Worsley
(2005) assuming an AR(1) model to be sufficient for commonly used MRI scanners. The
autocorrelation coefficients p; are estimated from the residual vector r; = (r41,...,71) of
the fitted model (1) as

T T
Pi = Z TitTi(t—1)/ Z -
t=2

t=1

This estimate of the correlation coefficient is biased due to fitting the linear model (1)
Worsley et al. (2002). We therefore apply the bias correction given by Worsley et al.
(2002) leading to an estimate p;.

We then use prewhitening to transform model (1) into a linear model with approximately
independent errors. The prewhitened linear model is obtained by multiplying the terms

in (1) with some matrix A; depending on p;, see Worsley et al. (2002). The prewhitening
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procedure thus results in a new linear model
Yir = Xif + &u (2)

with }71 = A;Y;, )N(Z- = A; X, and g; = A;e;. In the new model the distribution of the errors

€;+ are approximately independent in ¢, such that Vare; = a?IT.

Finally parameter estimates BZ are obtained by least squares from model (2) as

B=(XTX)"'XxTy.

The error variance 012

T'%2 /(T — p) leading to estimated covariance matrices

is estimated from the residui 7; of the linear model (2) as 2 =

Var § = 52(XT X)L,

This leaves us with three dimensional arrays f, S containing the estimated contrasts v; =
¢T'3; and their estimated standard deviations 3; = (cT Var Bic)l/ 2. The voxelwise quotient
6; = %i/$: of both arrays forms a statistical parametric map (SPM) ©. This map is
approximately a random t-field, see Worsley (1994). All arrays carry a correlation structure

induced by the spatial correlation in the fMRI data.

3 Spatial smoothing and signal detection

A voxelwise signal detection may now be based on the statistical parametric map (SPM) O,
i.e. define a voxel as activated if the corresponding value in the statistical parametric map
(SPM) O exceeds a critical value or threshold. Such an analysis is inefficient in the sense
that it either produces a large number of false positive signals or fails to detect many of
the activations. The first situation is typical for applying a voxelwise threshold to the large
number of voxel in the data cube while the second case is characteristic if thresholds are
controlled by a global significance level. Both sensitivity and specitivity of signal detection

can be considerably improved by spatial smoothing of the array I.

Usually spatial smoothing is applied to the original images in the fMRI time series prior
to parameter estimation in the linear model. We note that for parameter estimation,
except for effects from prewhitening, the order in which nonadaptive spatial smoothing
and evaluation of the linear model are performed is arbitrary. If temporal correlations are
spatially homogeneous temporal and spatial smoothing can be interchanged. If temporal
correlation are estimated both alternatives deliver similar results, with probably higher

bias and less variance if spatial smoothing is performed first. Nevertheless smoothing the



contrasts 7; obtained from the original fMRI data allows for a much better assessment for

the variance of 7;, see Subsection 3.5.

For spatial adaptive smoothing the order of both steps is important. The quality of adapta-
tion heavily depends on the signal to noise ratio present in the data. Parameter estimation
in the linear model serves as a variance and dimension reduction step prior to spatial

smoothing and therefore allows for a much better adaptation.

We propose to use a spatial adaptive smoothing procedure based on the Propagation-
Separation approach from Polzehl and Spokoiny (2005) on the array of estimated param-

eters.

3.1 Propagation-Separation approach

We shortly explain the main idea. Let us assume that for each voxel with coordinates
i = (ig,1y,1,) the parameter v can be well approximated by a constant within a local

vicinity U (i) of voxel i. This serves as our structural assumption.

Our estimation problem can now be viewed as consisting of two parts. In order to efficiently
estimate the parameter ; in a voxel ¢ we need to describe a local model, i.e. to assign
weights W; = {wj1,...,wi,}. If we knew the neighborhood U(i) we would define local

weights as w;; = ;e (;) and use the weighted least squares estimate

Bo= D Wi/ Y Wy with @y = wi/3; (3)

J J
as an estimate of ;. Since 7; and therefore /(i) are unknown the assignments will have
to depend on the information on I' that we can extract from the estimates in I and their
estimated variances. If we have good estimates 7; of 7; we can use this information to

infer on the set U(i) by testing the hypothesis

H : '7]' = %Y;- (4)

A weight w;; can be assigned based on the value of a test statistic Tj;, assigning zero
weights if 7; and 7; are significantly different. This provides us with a set of weights
W; = {wi1,...,w;,} that determines a local model in voxel i. These weights can then be

used to obtain new estimates of the parameter function v in each voxel i by (3).

We utilize both steps in an iterative procedure. We start with a very local model in each

voxel ¢ given by weights
wl) = Kioe(Ai, j, 1)),

6



where A(i,§,h) = ((iz — jo)? /B2 + (iy — jy)?/h2 + (iz — j2)?/h?)V/? is a weighted distance
between voxel ¢ and j. The initial vector of bandwidths K0 — (h;(vo), héo), hgo)) is chosen
very small, with its components indirect proportional to the size of a voxel in the three
coordinate directions. K, is a 3D Gaussian kernel with FWHM = 1, truncated at
4/v/8In2, ie. Kioe(z) = 6741n2m21—x§4/m‘ Except from truncation this is the common

choice in the fMRI and random fields literature and used here for comparability.

We then iterate two steps, estimation of I' and refining the local models. In the kth
iteration new weights are generated as
k .o k . k k _
w = KA, 5, AP E(C) with ¢ =T /0 and  Ky(z) = e Locs.
The bandwidth 2*) is increased by a constant factor with each iteration k. The term

Ti(»k) _ Ni(k‘*l)(a(kfl) _a('k‘*l))z

J { J

with Ni(k_l) => y @g?_l) is used to specify the penalty Cz(f), see Polzehl and Spokoiny

(2005). Then we recompute the estimates employing the just defined weights as

~k) _ 1 ~(k)~
Vi = W sz‘j ;i

i J

where @@(f) - wz(f)/gj and Nz’(k) =2 @Z(f)
(k)

Without spatial correlation 7, has variance

Vi(k) _ Qz(‘k)/(Nz‘(k))2 < 1/Ni(k) with ng) — Z({D(k))2§'2
J
i.e. the term 1 /Nl.(k) approximately reflects the variability of ﬁ(k)

)

3.2 Correction for spatial correlation

In our situation we have to adjust for the spatial correlation present in the data. The cor-
relation in each direction is estimated as a global value using the residuals from model (2).

This may also be done locally, see e.g. Kiebel et al. (1999).

Let us assume that the spatial correlation present in I results from spatial smoothing using
the location kernel Kj,. and employing bandwidths g = (g5, gy, g.) in the three coordinate
directions. This means that, for a interior voxel ¢, we assume the elements of T to be

generated from a spatially uncorrelated field T’ with Vary, = §l2 as

Fi =D Koo A G 9))3; /Ny with Ny = Kioc(A(i, 4, 9)).
j J



This results in

A(k Zw” ZKIOC ]7lag )

= Nz(k
Then the variance of %(k) is given by
o _ eSS, 0 Kie(AG,L9))
i (N(k))zNQ
ST 05 K AG L))
z]<w§f)>mN2 Z

Let Q4 = Zj Kioe(A(i, 5, 9))%. Note that, except at the boundaries of the data cube, the
sums @, and IV, do not depend on the voxel i. Then for spatially homogeneous variances
57 =5 1le 87 = Qy/N;5,
~(k . 2
S [32, 00 Kioe(AG, 1, 9)] 0
—(k) i
5, (@5 2Qq Z

If the statistical penalty is negligible, i.e. w( ) Kioe(A(i, j, hF))) then

CRNPYIPVEITEC T aah“f)))mocmu,z,g»fv,(m
z 1oc( (7’ I k)))Qg 2
= C(g,h(k))Vi(k),

P0 ~

Y
L

The factor C'(g, h*~1)~! will be used as an adjustment to Ni(kfl) in the definition of 1}(]@

to account for spatial correlation.

3.3 Propagation-Separation algorithm for heteroscedastic correlated data

We now formally describe the resulting algorithm.

e Initialization: Set the initial bandwidth A(?) and compute, for every i, the statistics
N =37 Kioe( A, 3, b)) /52, and U = 37 Kioe (A, 5. 1)), /5
and the estimates
A(O) U(O / N

Set k =1 and (Y = ¢;,h© for some ¢, > 1.



e Adaptation: For every pair 7, j, compute the penalty

¢y = OCat) T

ij
- k—1)y—1 (k D plk=1) _ plk—1)y2
= ()\C(g,h( )) N; (0; - ‘9]' )"

Compute weights w®)

ij as

wl = Kioo(A>D, j,h) Ky (¢F) and @) = wlt) /32,

v v J

(k)

e Local estimation: Now compute new local MLE estimates 7, of y; as
~(k k k . k (k)
50 —u® NG i N =S a®), Zw” i -

J

e Stopping: Stop if h;(,;k) > hmax, otherwise set h*®) = ¢, h*=1 increase k by 1 and
continue with the adaptation step.
(k")

An estimate of the variance of the final estimate 7;" ’ is given by

= T = (g, QI SN2 with Q) = ST (@232

ij J
J

3.4 Choice of parameters - Propagation condition

The proposed procedure involves several parameters. The most important one is the scale
parameter A in the statistical penalty ¢;;. The special case A = co simply leads to a kernel
estimate with bandwidth hp.x. We propose to chose A as the smallest value satisfying
a propagation condition. This condition requires that, if the local assumption is valid
globally, i.e. 7; = v does not depend on ¢, then at each step of the algorithm the adaptive
estimate approximately behaves like its non-adaptive counterpart that employs the same
bandwidth. Particularely the final estimate for hy.x = oo has approximately the same

quality as the global estimate. More formally we request that in this case for each k
EF® -4 < (1+a)EF™ -4 (5)

for a specified constant o > 0. Here

v(k) . Zj KIOC(A(i j? ))/gfij
T T Y Koo AL, h0)) /3

denotes the nonadaptive kernel estimate employing the bandwidth A¥) from step k. The

value A provided by this condition does not depend on the unknown model parameter



and can therefore be approximately found by simulations. We set a default value for A

using a = 0.1.

The second parameter of interest is the maximal bandwidth Ay, which controls both
numerical complexity, i.e. the number of iterations £*, of the algorithm and smoothness

within homogeneous regions.

The initial bandwidth is chosen as ¥ = v, /v/8In2/(v;, vy, v,) in units of v,mm. The

bandwidth is increased after each iteration by a default factor ¢, = 1.25'/3.

Choosing parameters in this procedure by the propagation condition (5) ensures the al-
gorithm to behave like a corresponding non-adaptive smoothing algorithm in large homo-
geneous regions. We conclude, that the maximum bandwidth of the kernel used in the
iterative procedure can be chosen as FWHM of 2-3 times voxel size as usual. In the sta-
tistical map the largest homogeneous region is formed by voxel in areas not related to the
experiments, while smaller regions correspond to areas of activation, that are character-
ized by values of 3 different from zero. Therefore under the hypothesis H: 8 = 0 the AWS
procedure approximately behaves like the non-adaptive smoothing procedure. This is im-
portant for the definition of the thresholds using Random Field Theory. At the same time
the separation property of AWS allows to clearly separate activated areas from regions not

affected by the experiment.

3.5 Properties of [ and S

Adaptive spatial smoothing results in arrays T = (7i) and S = (8;). If no activation is
present in any voxel, i.e the hypothesis H: 4; = 0 holds for all ¢, choosing the smoothing
parameter A by the propagation condition (5) ensures the properties of I' and S = (5;) to
approximately coincide with properties of the corresponding arrays obtained by nonadap-
tive smoothing employing the kernel Kj,. with bandwidth A4, .

We now shortly explain the effect of spatial smoothing on properties of S = (;). Let us

assume that S? = (s?

weights w;; be fixed. Then the distribution of

) is an array of i.i.d. x? variables with d degrees of freedom. Let

2 .2
WA 84
Cs5; = 0872] Y ]2
(225 wij)
w2 Cw;ii)2 w2.)2
with Cs = W can be well approximated by a y>-distribution with (sziwz;i)d ¥
i Wij i Wij
degrees of freedom. A similar behavior is, for sufficiently lage dy, observed for

~2 2
~ . we. 84
Cs5; = Csizj -2 J

(22 wi)?

10



with 5’8 depending on both d; and the weighting scheme. We see that the degrees of
freedom for S increase with its smoothness induced by spatial smoothing. Note that this
is in strict contrast to the situation where spatial smoothing is applied to the original
observed images prior to estimation of parameters in the linear model (1), in which case

the degrees of freedom are not affected by the spatial smoothing.

Adaptive smoothing leads to a different weighting scheme in each voxel resulting in spatially
varying smoothness of T and S and spatially varying degrees of freedom in the distribution
3;. On the other side spatial smoothing leads, in each voxel, to a sufficient number of
degrees of freedom, allowing to approximate the distribution of the array 0= (7i/5i) by a

(spatially inhomogeneous) Gaussian field.

3.6 Spatial inhomogeneity

In case of non-adaptive smoothing, e.g. A = oo, and homogeneous variance the spatial
correlation in this field can be characterized by a FWHM bandwidth A5 of a Gaussian
kernel that leads to a variance reduction by a factor of
. . 2
F.Gauss Zk [ ZJ KIOC(A(7’7J7 hmax))KIOC(A(jv ka g))]
1

- . (6)
N}%maac Ng2

Under the assumption v = 0 spatial adaptive smoothing by our Propagation-Separation
procedure, see Subsection 3.3, leads, due to the propagation condition (5), to an approxi-
mately homogeneous field. Local spatial correlation can again be viewed as resulting from

non-adaptive spatial smoothing with a FWHM h! % that yields a variance reduction by

~(k* B 2
ers _ ok [ 0 Kioe(AG . 9))]
- (N2 N2 '

(2

This factor differs from (6) in the sense that it incorporates both spatially varying variances
(k")

52 and spatial inhomogeneity caused by randomness of weights w;;

It also reflects the spatially varying smoothness caused by adaptation of weights to the

underlying structure in I, i.e. a possibly lower smoothness in activated areas.

3.7 Defining p-values

To define appropriate thresholds we follow the argumentation in Worsley (1994) and Wors-
ley et al. (1996a). For a spatially homogeneous Gaussian random field with smoothness
h = (hg, hy, h) in the coordinate directions, measured in FWHM, an appropriate thresh-

old for signal detection can be defined approximating the p-value of an extreme event by

11



its expected Euler characteristic (EC). Worsley et al. (1996a) shows that an approximate
P-value of the maximum Z of a 3D Gaussian random field over a specified search region is

given by

3

P(Z > 2)~ Y Ra(V,h)pa(2) (7)
=0

where Ry is the d-dimensional resel count depending on the volume V' of the search region
and the smoothness measured by the FWHM bandwidths h in mm, see Worsley (1994).
pd(z) is the d-dimensional EC density, see Worsley et al. (1996a) for the case of a Gaussian

random field.

The definition of an approximate P-value, simultaneous over the search region, heavily
depends on the assumption of stationarity of the random field, see e.g. Worsley (2002);
Worsley et al. (1999).

We take a slightly different approach. We first note that for a large search volume the term
for d = 3 clearly dominates in (7). This means that the exceedance probability P(Z > z)
approximately equals to the product of the 3-dimensional resel count and the value of

the 3-dimensional EC density at z. In a homogeneous field the first factor R3(V,h) =

(z—1) (y—1) (2—1) ;;i ZZ ZZZ is proportional to the size of the search volume and indirect
proportional to h hyh.. Here x,y and z are the extensions of the search region in voxel
and v,,v, and v, determine the size of a voxel in mm. The value of the 3-dimensional EC
density p3(z) efficiently measures the exceedance probability per resolution element, which

is spread over a volume of R3(V') such elements.

For a random field with spatially inhomogeneous smoothness we may consider the search
volume to consist of resolution elements of different size, depending on the local smoothness.

This yields simultaneous local exceedance probabilities as
P(ZZ‘ > Z) ~ ZRd(V’ hi)pd(z) (8)
with R4(V, h;) reflecting the local smoothness. This construction evenly distributes prob-

ability mass over the search volume V at the cost of spatially varying thresholds.

Signal detection is now performed for the random field O based on the approximate p-values

)

pi =Y Ra(V.hi)pa(0i). (9)

12



4 Application of the procedure

In this section we demonstrate various aspects of the procedure introduced in the preceed-

ing Sections in a series of examples.

4.1 Application to artificial data

We first start with an examination of artificial data to show the difference between the use
of adaptive and non adaptive smoothing methods in a known situation. We use a typical
dimension of 64 x 64 x 26 voxel for the datacube. The activation area consists of voxel with
a distance between 5 and 7.5 or 10.5 to 12 from the center of the cube. No activation is
assigned to voxel in the two central vertical slices, which induces gaps of width 2 between
activation areas (see left image in Figure 2 to view the activation area in a central slice).
At each of these voxel a time series of 107 scans is created following an expected BOLD
response as shown in Figure 1. The BOLD response is generated using a convolution of the
hemodynamic response function with a task indicator function with onset times at scans
18, 48, and 78, and a duration time of 15 scans. Heavy autocorrelated noise following
an AR(1) model with an autocorrelation parameter of 0.3 is added at every voxel. In a
second analysis we modify the signal to vary smoothly in radial direction. This models
the fact that blood oxygenation level increases at different scales in the environment of the
activation area due to blood flow. The results of an analysis using a FWHM bandwidth of

hmaz = 3.05v, of this data are shown in Figure 2.

The adaptive smoothing procedure leads to a much better signal detection. In order to
discuss this in more detail we show, how the detection depends on the signal strength
and shape of the activation area. Four different kinds of areas are used: an ellipsoid with
principal axis 1.5 and 3, a sphere with radius 2, a cube of size 3, and the configuration used
in Figure 2, respectively. We generate an artificial SPM O of estimated parameters for the
BOLD-response as signal plus standard normal noise. Furthermore we assign x% 7' = 100

random variates to resemble variances of the estimated parameters.

In Figure 3 signal detection using adaptive (PS) and non adaptive smoothing is compared.
We vary the assigned signal size in the activation area from 0.6 to 5. This is shown on
the x-axis of the diagrams. The number of detected voxel is increasing with the signal
size with both methods. However, the analysis using adaptive smoothing is capable to
detect smaller signals. Furthermore, while the number of false positive detected voxel is
practically zero, for gaussian filtering the number of false positives increases with signal

size. The adaptive smoothing method naturally adapt to the different sizes and shapes of

13
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Figure 2: Analysis of an artificial fMRI experiment shown in a central slice (from left to right): a)
Signal size for the expected BOLD response assigned to the voxel. In the upper row of images an
indicator function was used for the signal strength, while in the lower row this function is smooth
in radial direction. b) Result of a voxelwise analysis without smoothing, which produces a large
portion of false positives. On the other hand, if thresholds are controlled by a global significance
level the analysis generally fails to detect many if not all activations. ¢) Result of an analysis using
the adaptive smoothing procedure (PS) described in this paper. We see almost no false positive
activations (see Figure 3 for details) and some none detected voxel. d) In contrast to this the result
of an analysis using non-adaptive smoothing shows an oversmoothed border of the activation areas.

Gaps between areas are only partly preserved in case of non-adaptive smoothing.

activation areas rather than over-smoothing them.

4.2 Application to real data

With the results of the preceeding section in mind we now consider real fMRI-data. The
images were acquired at Citigroup Biomedical Imaging Center, Weill Medical College of
Cornell University on a GE 3T scanner using 2D gradient echo EPI sequence with TE/TR
= 40/2000 ms. 26 axial slices of 4mm thickness and a matrix size of 64 x 64 were acquired.
Task were performed in three blocks during 3.7 min of scanning time. The task for the data
presented here was right hand finger tapping. After reconstruction of the raw data and
motion correction, we analyzed the data. In Figure 4 we compare the results of this analysis
in selected slices using non adaptive smoothing (upper row) and adaptive smoothing (PS).

It can be clearly seen that the two results differ in the detection of activation areas. The
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Figure 3: Analysis of artificial data for several shapes of the activation area (from left to right):
ellipsoid, sphere, cube, and configuration from Figure 2. Signal size is increasing from 0.6 to 5
(x-axis). The upper row illustrates the dependence of the number of detected voxel on signal
size. Circles and bullets correspond to non adaptive and adaptive smoothing, respectively. The
(maximum) bandwith is chosen according to the size of the activation area. The line indicates the
true number of active voxel. The second row shows the number of not detected voxel. In the lower

row the corresponding number of false positives is provided.

non adaptive smoothing procedure shows the typical effects of applying a gaussian filter.
In contrast to this adaptive smoothing leads to a more detailed shape of the activation
areas. Having the results of our analysis of artificial data and the theoretical properties of
propagation separation method Polzehl and Spokoiny (2005) in mind, we conclude, that

the latter reveals the shape and extend of the activation area.

Additionally the density of the estimated signals 7 from (1) in detected voxel differs for
voxel detected using adaptive and non adaptive smoothing, respectively. Figure 5 illus-
trates this providing densities of ¥ for detected voxel (left plot) and voxel detected by only
one method (right plot). Note that the mean of 7 over voxel detected exclusively using

adaptive smoothing is much larger than the corresponding quantity using non-adaptive
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Figure 4: fMRI: Illustration of fMRI data from a right hand finger tapping experiment. Signal
detection for real fMRI data. Slices 17-20. Upper row: nonadaptive smoothing with bandwidth
(FWHM) h = 13.2mm, Lower row: adaptive smoothing with maximal bandwidth (FWHM) h =
13.2mm showing a much better recognition of shape of activation areas. Data: H. Voss, Citigroup

Biomedical Imaging Center, Weill Medical College of Cornell University.

smoothing.

Finally we demonstrate the effect of considering local thresholds, see Subsection 3.7. We
first estimate the correlation at some voxel from the achieved amount of variance reduction
and then calculate a local threshold according to Random Field Theory using the expected
Euler Characteristic according to (8). This procedure takes into account, that due to the
border preserving properties of the adaptive smoothing method the effective bandwidth
achieved in the smoothing process is less than the maximum bandwidth and varies locally.
The density of such a local threshold is shown in Figure 6 and compared with the global
threshold obtained for non-adaptive smoothing employing bandwidth A,qq-

5 Summary

In this paper we present a general approach to integrate adaptive smoothing into the
analysis of fMRI experiments. While, compared to the use of Gaussian filtering, reaching a
similar amount of noise reduction and sensitivity, information on shape and geometry of the
activation areas is preserved. While the basic idea of the Propagation-Separation approach

has already been discussed in Polzehl and Spokoiny (2005) we show how this can be
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Figure 5: The density of the estimated parameters 5 for all detected voxel (left) and for voxel
detected only by the specified method (right). The dashed line corresponds to non adaptive

smoothing while the solid line is the result from adaptive smoothing.
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Figure 6: Density of local thresholds given by (8) for a global significance level of 0.05 and global
threshold for non-adaptive smoothing for FWHM bandwidth h = A0, = 3.52 v, mm.
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extended for spatially correlated data. We take the local correlation structure into account
to define corresponding local thresholds using Random Field Theory. Finally we show,
that smoothing the map of estimated parameters instead of estimating the parameters
from smoothed images increases the number of degrees of freedom. Hence the array O is

well approximated by a Gaussian field.

We foresee a variety of application. Presurgical planning for tumor resection involves fMRI
experiments for important functions. Since EPI images of the tumor can be made with
high resolution it is of considerable interest to reach a similar level on spatial information
to properly decide the extend of activation areas and possible invasion of the tumor. The

results will be published elsewhere Tabelow et al. (2005).
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