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Abstract

We develop a new version of the direct simulation Monte Carlo method [3]
for coagulation processes governed by homogeneous Smoluchowsky equations. The
method is based on a subdivision of the set of particle pairs into classes, and on an
efficient algorithm for sampling from a discrete distribution, the so-called Walker’s
alias method [4]. The efficiency of the new method is drastically increased compared
to the conventional methods, especially when the coagulation kernel is strongly vary-
ing. The method is applied to solving a problem of islands formation on a surface
due to a diffusion controlled coagulation.

1 Introduction

Formation of clusters and their growth through aggregation is the main feature of many
physical processes, from polymerization and gelation in polymer science, flocculation and
coagulation in aerosol and colloidal chemistry, percolation and coarsening in phase tran-
sitions and critical phenomena, formation of aerosol particles in combustion processes,
agglutination and cell adhesion in biology, to island nucleation and thin film growth in
material science (e.g., see [5], [6], [10], [16], [9]).

The Smoluchowsky equation reads

on 1 >
a—tl = 5 Z Kijnmj — Yy ZKlinia (].)
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where n; is the number density of the {/}-clusters (the particles containing ¢ monomers),
K;; = Kj; is a coagulation coefficient characterizing the frequency collision between an
{i}- and {j}-clusters; it is assumed that the initial size distribution n;(tg) = L(to,[) is
given. Due to homogeneity in space, it is convenient to deal with n; - the number of
{l}-clusters per unit volume, hence we assume this normalization throughout the paper
if otherwise not specified.

This equation governs the aggregation (coagulation) of a set of clusters in bulk, hence the
solution does not depend on the spatial coordinates. More general forms of the coagulation
equation can be found in [17], in particular, we studied in [15] the case
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where v is the velocity of the host gas, D; is the diffusion coefficient, and Fj(t) is the
intensity of source of [-clusters.



We have suggested in [15] a stochastic Lagrangian method for solving the inhomogeneous
equation by a special averaging over the solutions of homogeneous Smoluchowski equation
in the case when the diffusion coefficients do not depend on the size of the particle. Here
we focus on the homogeneous case (1).

1.1 Method of Majorant Frequency (MMF)

Direct stochastic simulation of coagulation was probably first applied in some physics
applications, e.g., see [5], [6], [11], [12]. Let us describe the well known Method of Majorant
Frequency (MMF) (e.g., see [2], [3], [8], [7]) which is quite straightforward and very simple.
It considers the dynamics of states as a Markov process, and simulates this process by
small time steps. The only one notion which is introduced is the majorant coagulation
kernel: it is assumed that a constant K., can be found so that K., > K;; is true for
all < and j. Even if the kernel is an unbounded function, the values of K;; for a finite time
are always finite.

So we start with the initial state of our system which is given. It means that at t = 0 we
know the concentrations n;(0). Then, given the state of the system at time ¢, its state
at time ¢, is evaluated as follows:

1. Simulate a random time interval At according to the exponential distribution
p(T) = Aexp(—AT1), and put tyq =t + At where A\ = N(N — 1) K,,4./2Np.

Here N is the initial number of test particles, N(¢) is the updated (current) number of
particles.

This means, At is random: At = —(1/\)In(a) where « is a random number uniformly
distributed on (0, 1). Note that since NV is taken quite large, 1/ is small, so it is reasonably
simply to choose the time step deterministically as At = 1/A.

2. Sample a pair of clusters uniformly among the N (/N — 1) pairs, say clusters with ¢ and
7 monomers.

3. With the probability p;; = K;j/Kna. the clusters ¢ and j coagulate, i.e., the numbers
n; and n; are decreased by one, the number n,; is increased by one, and N, the number
of particles in the system is decreased by one. Otherwise (i.e., with probability 1 — p;;)
the state of the system is not changed. Then we go to the next time step of the system
evaluation.

It is clear that the number of clusters in the system will be decreasing in time. When the
number N decreases to say 50% of the initial number of simulated clusters, we enrich the
statistics by doubling the system. It means that a copy of the current system is added to
the particle system. Accordingly, Ny and NN are increased by a factor of 2. After this, the
system evolve further as described above. It can be shown that the process converges in
a probabilistic sense to the solution of the Smoluchowski equation.

From the description of the algorithm it is clear that it may happen that its cost will be
very high. Indeed, if the variation of the coagulation kernel Kj;; is high, the probability



of the coagulation event in the algorithm above (see p.3) is small which implies, we will
have a large number of small time steps till the next change of the state. As an important
example, we mention the coagulation of charged particles where the coagulation kernel is
strongly varying to many orders of magnitude [17].

The method described can be improved by using a finer majorant, instead of the crude
majorant K,,,,. Assume, we have chosen a function K,; such that K;; > K;; for all 7, j.
Then the simulation algorithm above is generalized to the following scheme:

1. Simulate a random time interval At according to the exponential distribution
p(T) = Aexp(—AT1), and put ty 1 = & + At where

A 1 N

1<i#j<N

2. Sample of a pair of indices according to the distribution

A~

K
2Ny’

1<i#j<N

3. With the probability p;; = Z-j/f(ij the clusters ¢ and j coagulate, i.e., the numbers
n; and n; are decreased by one, the number n,; is increased by one, and N, the number
of particles in the system is decreased by one. Otherwise (i.e., with probability 1 — p;;)
the state of the system is not changed. Then we go to the next time step of the system
evaluation.

This method however assumes that Kij /2Ny is simple enough to carry out efficient sam-
pling from this distribution. For instance in [2], an example with a linear majorant
function was considered, and in [8], all the particles are divided into groups, so that inside
the group, the majorant technique is used. This is done after each happened coagulation
event. In addition, in this algorithm the authors use (again, after each coagulation event)
the conventional sampling technique for the discrete distribution to simulate the index of
the group. All this is time consuming, especially for strongly varying coagulation kernels.

2 Stratified sampling with large probabilities (SLP)

To explain the main idea behind the new method, let us suppose we have an extremely
efficient method (EEM) of sampling from an arbitrary discrete distribution. Then we
could imagine that we keep the table of the pair collision probabilities and sample the
collision pairs from this table using the above mentioned method, EEM. Bad news is that
after each coagulation event, we have to recalculate the table of probabilities. The crucial
point of our new method is that the change in the table can be done quite rarely, and
the choice of the class of pair particles is done by the method suggested by Walker [4].
Thus instead of using the rejection method where the coagulation event happens with
small probabilities, we turn to a stratified sampling which ends up with a coagulation
having large probability, so we call the method shortly SLP (stratified sampling with
large probabilities).

Summarizing, the general scheme for solving (1) can be described as follows:
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e First step: we choose the current particle distribution as a given initial distribution
L(to,1).

e Second step: take N particles according to the current distribution, choose a subdi-
vision of the set of all particle pairs into (many) classes; this subdivision is generated
by a subdivision of the whole sizes into a set of size bins; the random index of the
class is sampled by EEM, while inside the sampled class the von Neumann rejection
method is applied. The majorant of the rejection method is fixed: Each coagulation
event {i} + {j} = {k} leads to the corresponding change in the arrays containing
the clusters {i},{j}, {k}; sample the time step At according to the exponential dis-
tribution. The process simulations proceed till the number of particles in the size
bins is twice decreased or increased. After that we go to step 2.

The algorithm can be described in steps, in more details:

The system of Ny particles with the given initial size distribution 7,(0) is considered. The
state at the time ¢ is defined by the vector

L(t) = {ll(t>7 X lNo@)}a
where [;(t) (i =1,..., Ny) is the size of the particle {i}.

We divide the set of particle pairs into classes M(t) = {(l;,1;) : i > j} = UM(t). Let
us assume that the probabilities P, that a collision happens in the class M} are given;
the same for Py;;, the conditional probabilities that a collision of the particle pair (I;, ;)
happens in the sampled class M. The change of the state happens in random time steps
T.

At each time step, so randomly chosen particles pair (;,(;) collide according to probabili-
ties py;j, which born particles of larger size. In the Markov chain of collisions, the random
time step 7 is sampled according to the exponential distribution density

Ky,

r = - ) = . 2
pr = pexp(—p7) P k,(lff}%?m Py, Pyij ¥

The probabilities py;; can be defined by

Prij = ” (3)

This choice is quite natural since it takes the time scale p~! as the minimum over all
classes. It implies also that
<7 > Ky, = P Prijbrij (4)

for (1) = 1/p.

We suppose now, that the particles are arranged into Ny size bins
Lk = {lmk = lm, m = 1, ...NQ}, k= 1, ...,N1

so that the initial number of particles is Ny = N;N5. The size boundaries of particles in
the bins are fixed:

bkfl(t) <l < bk(t), Vm = 1, ...NQ, k= 1, ...,Nl. (5)
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the probability P;; that a collision happens in the set Mz (see Py in (2), (3)), is calculated
according to

K- _
P = %, where K = Z Kin. (7)

ij
1<m<A<N;

In the sampled class M;; the number of particles is obviously v;; = v;(v; — &;;) where
v; is the number of nonzero elements in Lz, and ¢;; is the Kronecker symbol. Therefore,
sampling in M3 the pair 45 uniformly means that the probability pi;; mentioned in (3) is

equal to 1/v;;.
Let us define
{ 0 if there exists j # 1 such that v; =v; =V = max v; ,
A = <i<

1 otherwise .

Thus all the probabilities are defined, and we can present the simulation procedure as
follows.

1. Generate the initial state of particles system according to the given n;(0).

2. Arrange the set L(t) = ULy according to (5). Then the probabilities P;; are calcu-
1<k<N,

lated by the formulae (6), (7). .
3. Sample an exponentially distributed time step 7 with parameter p taken as p = &2

/6 )
where 0 < <1, v =v(r —A), v = max v;, and set tyy =t + 7.
1<i<Ni

4. The pair of the class indices 4, j is chosen according to the probabilities F;;. This can
be done by Walker’s alias method [4].

5. Sample the pair of particle indices 4,7 : [; € L;, I; € L; uniformly within the class
M;. It can be carried out with one recall of a, a random generator.

6. With probability as defined in (3), namely, with

_ o Vi Ky
Prij = B >

v = vilv; = 0) (8)

a coagulation step is made, i.e., we remove the particles of sizes [; and [; and add one
particle of size [, = [; +[;. We renew the sets L containing these particles and recalculate
the corresponding values vz, 7. Otherwise, the interaction is fictitious, i.e. nothing is
changed. We note that the relation (4) keeps true at every time step.

7. If the number of particles in any set Lj is changed more than two times (increased or
decreased) in comparison with the one given in the step 2, then we go to step 2. Otherwise,
we go to step 3.



From this description it is seen that one adjusting parameter, (3, appears in the evaluation
of the time step. Decreasing this parameter, we can decrease the time scale to adjust
the method to the type of the coagulation kernel. For practically relevant kernels like
diffusion controlled coagulation, the free molecule regime, the collisions in turbulent flows,
this parameter can be taken close to one, while for regimes of faster coagulation it is
recommended to take this parameter smaller.

We should mention that a doubling procedure is useful for long time simulations: if the
number of particles in the whole system becomes two times less we just take a copy of
the rest of particles and add it to the simulated system to keep the number of particles
constant, see, e.g., [3].

Remark. In the above algorithm, we have for simplicity taken in all of N1 bins an
equal number of particles Ny so that the system started with a total number of particles
Ny = Ny Ny. For example, when the initial particle system consists only of monomers,
this choice 1s quite reasonable. However when the system evolves, it is quite suggestive to
put in different bins a different number of particles, depending on the coagulation activity
of the relevant part of the spectrum.

3 Testing calculations

In this section we present the results of numerical experiments with the developed SLP
method. In Figure 1 we plot the size distribution (left panel) and the second moment (right
panel) of the solution to Smoluchowski equation governing the coagulation of agglomer-
ates of particles in free molecule regime, with taking into account the fractal dimension
which was 1.2 (e.g., see [8]), with the kernel K;; = /(1/i +1/j) - (i*/?>! + j%/*>1)2. The
calculations are compared against the exact results: the solid lines are solutions obtained
by a high accuracy finite element method we constructed in [3|. The error of SLP is about
0.1%, the number of particles was 100000, the number of sections 100.

In Table 1 we present a detailed comparison of MMF with the SLP method. All the
particles were subdivided into M classes, and we give the results for M = 5, M = 20,
M = 100, M = 200. The case M = 1 coincides actually with MMF. In the table, the
numbers show the cost of the method measured in hundreds of thousands of MC steps. It
is seen that the dependence of the cost on the size of subdivision is the following: first, the
cost is decreasing when the number of classes is enlarged, and then, reaching a minimum,
it starts to grow. This can be explained as follows: when we start to increase the number
of classes, the number of rejections inside all classes is decreasing since the smaller the size
of the class the better is the local majorant in each class. This is exactly we had in mind
when introducing the stratified sampling over classes. But then, after reaching a certain
size, the ratio ng;/n in (8) is decreasing as the number of classes increases which implies
that this factor may damp the second “well behaved” factor K, ;,/K;;. This leads to the
mentioned dependence of the cost on the number of classes, and an interesting problem
is to find the optimal number of classes. The gain depends strongly on the number of
particles: the larger the system, the higher is the gain. And of course, this gain will
be even more pronounced for strongly varying kernels which we will demonstrate in the
example presented in the next section.



| Number of particles | M = 1(MMF) M =5 M =20 M =100 M =200 |

5000 14.1 5.59 3.36 4.58 -
20000 62.1 28.5 12.2 16.7 21.2
100000 463.8 165.5 62.9 99.0 73.4
500000 46337.7 - 328.4 244.9 299.1

Table 1: The cost of the SLP method, in MC steps, for different subdivisions in M sections
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Figure 1: The size spectrum at the time ¢ = 100 (left panel), and its second statistical moment
(right panel)

4 Two-dimensional coagulation: diffusion of clusters on
a plane surface

It is well understood that the diffusion on a surface is essentially different from the diffusion
in space. In practice, one often uses uncritically the coagulation coefficients derived for
3D also in problems dealing with a coagulation process on a surface (e.g, see [1]). In this
section we derive the coagulation kernel for particles moving on a plane, with the diffusion
controlled coagulation regime. It turns out that a new correction term is dependent on
the mean size, and hence, the coagulation kernel is dependent on time. This is the case
where the cost of MMF will be strongly increasing in time, so our SLP method seems to
be an extremely useful technique to improve the simulation efficiency. Numerical results
have confirmed this assumption.

4.1 Evaluation of the diffusion controlled coagulation coefficient

Let us recall that in 3D, the diffusion controlled coagulation coefficient is derived explicitly,
starting from the evaluation of the flux of diffusing particles on the surface of a fixed
sphere.



Let us consider a cluster of radius R which is located as the origin, and calculate the flux
of particles which are diffusing with a diffusion coefficient D. In the steady state regime,
the concentration of diffusing particles is found from the Dirichlet problem:

Ac(r)=0, r>R,
with boundary conditions
ciry=¢ r=o0, cr)l=r = Ceq- (9)

Hence the solution is ¢(r) = ¢ + [ceq(R) — ¢|R/r. Therefore, the flux of diffusing particles
on the sphere is then calculated as

J =47 R* DVe¢|,—r = 47 RD [¢ — c.4(R)].

Now, it is clear that the flux of diffusing j-clusters to a fixed i-cluster is
Jij = 4nD(R; + Rj)c
if time is sufficiently large in the sense that t >> (R; + R;)?/D.
If both particles are diffusing, the diffusion constant for the relative motion is D;; =
D; + Dj, so the collision frequency is given by
K;j = JijJe =4n(D; + D,)(R; + R))
which was first derived by Smoluchowski.

In 2D, this approach does not work. Indeed, the general solution of the diffusion equation
is here ¢(r) = a + blog(r), and the boundary condition at r = co cannot be satisfied. It
implies, the time dependent solution in 2D does not have a nonzero steady state limit.

In [13], the diffusion problem in 2D for a system of particles have been solved as follows.
Assume that a particle of radius R is surrounded by a set of particles with the size
distribution n(r,t) for cluster sizes which equals the number of clusters of radius R per
unit area. We seek the flux in the form:

J(R) = k(R)[E — ceq(R)].

The time evolution of the concentration is

agit) - -{ 7k(R) (R, )R} e(t) + 7k R)ceg(R)n(R, t)dR.

0 0

The local concentration ¢(r,t) solves the equation

ch;’ 2 = DAc(r,t) — DE 2 c(r,t) + S
where by definition
DE? = /k(R) n(R,t)dR (10)
0



is the sink term, and
o0

S = / K(R) cog(R) (R, t) dR (11)

is a source term. In steady state conditions S = D¢~ 2¢. This implies, that in steady

state,
{A=¢} () - =0 (12)
and c(r) satisfies the boundary conditions (9).

Obviously, the sink term & plays the role of a screening length, and hence removes the
divergence present in the single particle case.

Now, the solution to the problem (12),(9) is
Ko(r/g)
Ko(R/€)

where K is the zeroth modified Bessel function. So the local flux into the cluster at the
origin is:

c(r) =c+[ceq(R) — ¢ ==

REK\(R/§)
J=2rRVc|lp =2rD ——————=|¢ — ¢.o( R
where K is the first modified Bessel function. So we substitute
REK (R/)
k(R 2rD — 13
=270 e (R 1)
in the equation (10), which yields
K
_or [ EUAE/O n(R,t) dR. (14)
Ko

0

Thus given the size distribution of clusters n(R,t), the sink term & can be obtained by
solving the equation (14).
Now when we have the expression for the flux (13), we can derive the coagulation coeffi-
cient. Summing up the fluxes for two diffusing clusters of sizes R; and R; we obtain
(i + Rj) Ki((Ri + R;)/§)

£ Ko((R; + R;)/€)

Note that the parameter ¢ is defined by (14) through the unknown size distribution
function n(R,1).

(15)

Thus we come to the Smoluchowski equation

anl Z — TLl Z Kllnl (16)

z+] l

coupled with the equation (14); here the size [ of an I-cluster is related to its radius R as
R = Ry V1 where R, is the radius of the monomer.

9
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Figure 2: The quantity (r)/¢, as a function of time.

4.2 Monte Carlo algorithm

Let us describe the Monte Carlo algorithm for solving the Smoluchowski equation (16)
coupled with (14).

Assume that initially, we have only monomers on the plane, the radius of the monomer
being Ry, the area coverage being ¢ = m [° R?n(R,c0) dR. As mentioned, the m-cluster
of radius R consists of m monomers, and R = Ry/m. Hence, dm = %. Let us denote
y = Ro/&. So if we take the initial distribution as the delta-function 6(R — Ry), we get
from (14):

Ki(y)

B ZQKO(y)

which can be easily solved numerically. For example, for ¢ = 0.1 the solution is yo ~ 0.395.
[t means, that initially, the screen length & is given by £ &~ R(/0.395, so it is approximately
2.5 times larger than Ry.

With this value of £ we can make our first step in the Monte Carlo method described
above, till the first coagulation event which leads to the change in the distribution function.
Then we calculate the new value of £ by evaluating approximately the integral in (14)
where in the integrand, the old value of £ is taken. Calculations have shown, that this
method converges very fast. Moreover, the recalculations of £ can be made not after each
coagulation, but after a number of coagulation events, when the distribution function is
not changed much. In Figure 2 we show (R)/{ as a function of time, for the coverage
qg=0.1, and for D = 1.

It is clearly seen, that during the change of the size distribution, the value of (R)/¢ starts
form the initial value of ~ 0.395, then it is rapidly decreasing, and for large time, it
approaches a steady state value of ~ 0.25.

As mentioned above, in the literature (e.g., see [1]) the diffusion controlled coagulation
kernel is often taken as K;; ~ D;+ D;. Compared to this, our kernel has now a correction
term, see (15).

It is interesting to understand how this correction term affects the main properties of the
cluster kinetics, in particular, the mean size and the size distribution.

10
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Figure 3: Left panel: The diffusion coefficient D = 1, the kernel with the correction term. The
size spectra as functions of /(r), for 3 different times: solid line — at a time when the mean size
reached the value (r) = 10; points - (r) = 38, and the dash line (r) = 500. For comparison, the
exact solution for the kernel without the correction term is shown (bold solid line). Right panel:
The average radius as a function of time: the coagulation kernel without (the upper curve) and
with the correction term (lower curve).

We have made calculations for 3 types of diffusion controlled kernels: (1) D; = 1, (2)
D; =1/i,and (3) D; = a/(a + 1), a being a constant.

Let us comment on the results, and we consider first the case D = 1. In Figure 3,
right panel, we compare the mean cluster size: the upper curve corresponds to the kernel
without correction, the lower curve is obtained for the kernel with the correction term.
So it is seen that the correction term leads to a deceleration of the growth, but the
asymptotics in time is the same: (r) ~ %5

However the correction term affects the size distribution dramatically: in the uncorrected
case, the size distribution has a Gaussian-form distribution (which is known explicitly),
while for the case of corrected kernel, the size distribution is a monotonically decaying
function, see Figure 3, left panel. In this picture, we show the size distributions for three
different time instances: solid line was obtained for a time when the mean radius was
equal to 10; points: (r) = 38, and the dash line: (r) = 500. It is seen that the spectrum
is preserved after reaching (r) = 38.

For the kernel with D; = 1/i and D = a/(a + i) the influence of the correction term
is different: the size distributions for large times are almost the same as in the case
of kernels without correction, see Figures 4 and 5, left panels. Note however that the
correction terms in both these cases lead to an accelerated growth of the average size, and
the asymptotics well agree with the theoretical behaviour (r) ~ %25,

The coagulation process for D = a/(a + i) with the correction term was simulated both
by the MMF and SLP methods, to compare the costs in the case when the kernel is
varying with time as described above. In Figure 6 we compare the costs of these methods
measured in MC steps. It is seen that the gain of the new method compared to MMF is
rapidly increasing in time.
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Figure 6: Comparison of the costs (in MC steps) of the MMF and the new developed method

5 Conclusion

SLP method, a new version of the Method of Majorant Frequency (MMF) for coagulation
processes governed by homogeneous Smoluchowsky equations is developed. The SLP
method is based on a subdivision of the set of particle pairs into classes, so that the local
majorants in the classes are used to a stratified sampling to simulate the collissions with
larger probabilities, so the title SLP. For sampling from discrete distributions, Walker’s
alias method is used. The efficiency of the new method is drastically increased compared
to the conventional methods, especially when the coagulation kernel is strongly varying.
The method is applied to solving a problem of islands formation on a surface due to a
diffusion controlled coagulation. In this case, the coagulation kernel depends both on
time, and on the solution itself. Comparison of the costs of MMF and the new method
presented in Figure 6 shows that the gain of the SLP method compared to MMF rapidly
increases in time.

References

[1] J. Amar, M. Popescu, and F. Family. Rate-equation approach to island capture zones
and size distributions in epitaxial growth. Physical Review Letters, v.86, N14, 3092-
3095.

[2] Eibeck and W. Wagner. An efficient stochastic algorithm for studying coagulation
dynamics and gelation phenomena. STAM J. Sci. Comput., 22 (3), 802-821, 2000.

[3] K. Sabelfeld, S. Rogasinsky, A. Kolodko, and A. Levykin. Stochastic algorithms for
solving the Smolouchovsky coagulation equation and applications to aerosol growth
simulation. Monte Carlo Methods and Appl., 2 (1996), 1, 41-87.

13



[4] Walker A.J. An efficient method for generating discrete random variables with general
distributions. ACM. Trans.Math. Software, 3 (1977), 253-256.

[5] D.T. Gillespie. The stochastic coalescence model for cloud droplet growth. J. Atmo-
spheric Science, 29 (1972), 1496-1510.

[6] Gillespie D.T. An Exact Method for Numerically Simulating the Stochastic Coales-
cence Process in a Cloud. J. Atm. Sci. (1975), 32, 1977-1989.

[7] Guias F. A Monte Carlo Approach to the Smoluchowski Equaion. Monte Carlo Meth-
ods and Appl. (1997), 3, No.4, 313-326.

[8] M. Goodson and M. Kraft. An efficient stochastic algorithm for simulating nano-
particles dynamics. Preprint N3, 2002, Cambridge University.

[9] Kinteics of Aggregation and Gelation, Edited by F. Family and D.P. Landau (North-
Holland, The Netherlands, 1984).

[10] Liffman K. A Direct Simulation Monte Carlo Method for Cluster Coagulation. J.
Comp. Phys. (1992), 100, 116-127.

[11] Lushnikov A.A. Some New Aspects of Coagulation Theory. Izv. Acad. Nauk SSSR,
(1978), 14, No.10, 738-743 (in Russian).

[12] Marcus A.H. Stochastic Coalescence. Technometrics (1968), 10, No.1, 133-148.

[13] Marqusee J.A. Dynamics of late stage phase separations in two dimensions. J. Chem.
Phys. 81 (1984), No.2, 976-981.

[14] Sabelfeld K.K. and Kolodko A.A. Monte Carlo simulation of the coagulation processes
governed by Smoluchowski equation with random coefficients. Monte Carlo Methods
and Appl. (1997), 3, No.4, 275-311.

[15] Sabelfeld K.K. and Kolodko A.A. Stochastic Lagrangian models and algorithms for
spatially inhomogeneous Smoluchowski equation. In: Mathematics and Computers
in Simulation. 61 (2003), 115-137.

[16] Voloshtchuk V.M., Sedunov Ju.S. The Coagulation Processes in Dispersed Systems.
Gidromet., Leningrad, 1975. (in Russian)

[17] Williams M.M.R. and Loyalka S.K. Aerosol Science. Theory and Practice. Pergamon,
New York, 1991.

14



