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Abstract

The axisymmetric �ow of a thin liquid �lm subject to surface tension,
gravity and centrifugal forces is considered for the problem of a vertically
rotating disk that is partially immersed in a liquid bath. This problem
constitutes a generalization of the classic Landau-Levich drag-out problem
to axisymmetric �ow. A generalized lubrication model that includes the
meniscus region connecting the thin �lm to the bath is derived. The result-
ing nonlinear fourth-order partial di�erential equation is solved numerically
using a �nite element scheme. For a range of parameters steady states are
found. While the solutions for the height pro�le of the �lm near the drag-
out region show excellent agreement with the asymptotic solutions to the
corresponding classic Landau-Levich problem, they show novel patterns
away from the meniscus region. The implications for possible industrial
applications are discussed.

1 Introduction

The many industrial applications of rotating thin �lm �ows have spurred nu-
merous theoretical and experimental studies in the past. Starting with the work
by Emslie et al. [5], various aspects of surface tension driven �ow, including
non-Newtonian e�ects [6], evaporation [16], Coriolis force [13], in�uencing the
morphology and stability of the �lm, have since been investigated. As with these
studies most of them dealt with a con�guration where the �uid layer is moving on
a horizontally rotating disk. Making use of the large scale separation between the
small thickness of the �lm and the length scale of the evolving patterns, thin �lm
models where used to obtain dimension-reduced models of the three-dimensional
free boundary problems.

Far fewer studies are being found for the situation of a disk rotating about a
horizontal axis and partially immersed in a bath of liquid thereby dragging out a
thin �lm onto the disk. This problem involves the meniscus region, that connects
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the �lm to the bath. As a consequence the scale separation in this region is
not large anymore and hence the lubrication approximation is not valid there.
However, the meniscus plays the crucial role of �xing the height of the drawn out
liquid �lm and therefore the meniscus region that connects to the liquid bath must
be accounted for. In a far simpler setting the free boundary problem of falling
and rising thin �lm �ows on vertical and inclined planes has been investigated as
early as the pioneering work by Landau and Levich [11]. Their work lead to the
prediction of the height and shape of the thin �lm emerging out of the meniscus.
The results were improved by Wilson [19] and for the case of a Marangoni-driven
rising �lm by Münch [12], using systematic asymptotic analysis in the limit of
small capillary numbers. Their analyis was applied by Christodoulo et al. [2] in
applications connected to �ow control of rotating oil disk skimmers. Their study
did not extend further into the �ow �eld that governs the thin �lm region on the
remainder of the disk. Up to now no complete model for the vertically rotating
disk, including its numerical solution has appeared. This will be the topic of this
paper.

While the solution to this problem will be of interest to problems such as the
oil disk skimmer, the main application we have in mind is with respect to the
�uid dynamical aspects in connection with the synthesis of Polyethylenterephtha-
lat(PET), which is a commodity product with a wide range of applications, rang-
ing from production of technical yarns to plastic bottles, see [1, 10, 17]. The
synthesis of PET essentially proceeds in two reaction steps. The �rst one is an
esteri�cation reaction that produces a prepolymer. The second reaction step,
which is subject of this study, is polycondensation within the melt phase. Here,
all the important reactions are reversible balance reactions. In order to ensure
high output rates, the low molecular weight by-products, such as Ethylenglykol
(EG), have to be removed from the liquid reactants as e�ciently as possible.
Since the transport of EG within the liquid occurs predominantly by di�usion,
which is a rather slow process, high removal rates can be achieved if the lengths
across which EG has to di�use is short, i.e. the liquid is spread out into thin �lms
over a large area. PET is therefore produced in polycondensation reactors that
typically consist of a horizontal cylinder which is partially �lled with polymer
melt and contains disks (perforated rings or nets) rotating about the horizontal
axis of the cylinder, thus picking up and spreading the melt in form of a thin
�lm over a large area of the disks. The �uid dynamical aspects play therefore an
important role in the production of PET. One of the important challenge in this
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application is the design that maximizes the active surface and the control of the
resulting �uid dynamical problem. We consider here the spreading of a thin �lm
on a single circular disk rotating about a horizontal axis and partially immersed
in the reservoir with the liquid, see �gure 1.

Figure 1: Cross section of a typical PET-reactor. Rotating disks are slightly
immersed in a liquid bath.

In section 2 we set up the corresponding three-dimensional free boundary prob-
lem. A full three-dimensional analysis of such �ows represents a very time con-
suming task, analytically and numerically. To be able to perform systematic
parameter studies we therefore exploit the large separation of scales to obtain a
dimension-reduced lubrication model. This model will then be extended to match
to the �ow �eld in the meniscus region. For the resulting model we develop in
section 3 a weak formulation and a corresponding �nite element discretization
for the full dynamical problem. In section 4 we solve for a range of parameters
the emerging steady state solutions. Their shapes near the meniscus region are
then compared to the asymptotic solution of the corresponding drag-out problem,
for which we �nd excellent agreement. Finally, we discuss the novel patterns for
the �lm pro�le we �nd away from the meniscus region and discuss the possible
implications on the PET synthesis.
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2 Formulation

2.1 Governing Equations

We consider the isothermal �ow of an incompressible, viscous liquid on a vertical
disk rotating in the vertical plane and partially immersed in the liquid. We
assume that the disk of radius R rotates with the angular velocity Ω about a
horizontal axis, which has distance a to the bath, see �gure 2.
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Figure 2: Con�guration of a single disk within a PET-reactor

To formulate the problem, we introduce cylindrical polar coordinates (r, θ, z) in
the laboratory frame of reference. We let the liquid velocity vector have com-
ponents (u, v, w) and let ω denote the angular velocity vector with components
(0, 0, Ω). The momentum balance equations can be expressed as

ρ

[
ut + uur +

v

r
uθ − v2

r
+ wuz

]
= −pr + µ

[
4u− 2vθ

r2
− u

r2

]
− ρg sin θ (2.1a)

ρ
[
vt + uvr +

v

r
vθ +

uv

r
+ wvz

]
= −pθ

r
+ µ

[
4v +

2uθ

r2
− v

r2

]
− ρg cos θ (2.1b)

ρ
[
wt + uwr +

v

r
wθ + wwz

]
= −pz + µ4w (2.1c)

where
4f =

1

r
(rfr)r +

fθθ

r2
+ fzz. (2.2)
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We let ρ, µ and p denote the density, dynamic shear viscosity and the pressure
of the liquid, respectively. The external force here is gravity and g denotes the
gravitational constant.

The continuity equation is
1

r
(ru)r +

1

r
vθ + wz = 0. (2.3)

For the boundary condition at the surface of the disk, i.e. z = 0, that rotates with
the velocity Ω, we impose the no-slip condition for u and v and the impermeability
condition for w. Hence, we have

u = 0, v = rΩ, w = 0, (2.4)

respectively.

At the free boundary z = h(r, θ, t) we require the normal stress condition

nΠn = 2σκ, (2.5)

the tangential stress conditions

nΠ ti = 0, where i = 1, 2, (2.6)

and the kinematic condition

ht = w − u|hhr − 1

r
v|hhθ, (2.7)

which can also be written, upon using the continuity equation, as

ht = −1

r

∂

∂r
r

∫ h

0

u dz − 1

r

∂

∂θ

∫ h

0

v dz. (2.8)

The normal and the tangential vectors in radial and angular direction are given
by

n =
(−hr,−hθ/r, 1)

(1 + h2
r + h2

θ/r
2)

1/2
, t1 =

(1, 0, hr)

(1 + h2
θ/r

2)
1/2

, t2 =
(0, 1, hθ/r)

(1 + h2
θ/r

2)
1/2

, (2.9)

respectively. The stress tensor Π is symmetric and has the components

Πrr = −p + 2µur, Πθθ = −p + 2µ
(vθ

r
+

u

r

)
, Πzz = −p + 2µwz,

Πrθ = µ
(uθ

r
+ vr − v

r

)
, Πθz = µ

(
vz +

wθ

r

)
, Πrz = µ (wr + uz) .

(2.10)
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Finally, we assume surface tension to be constant and denote it by σ and the
mean curvature is given by

κ =
1

2

(
1

r

∂

∂r

rhr

(1 + h2
r + h2

θ/r
2)

1/2
+

1

r

∂

∂θ

hθ/r

(1 + h2
r + h2

θ/r
2)

1/2

)
. (2.11)

Using this in equations (2.5) and (2.6) we obtain the boundary conditions for the
normal stress

−p +
2µ

1 + h2
r + h2

θ/r
2

[(uθ

r
+ vr − v

r

) hrhθ

r

−(wr + uz)hr −
(
vz +

wθ

r

) hθ

r
+ urh

2
r + (vθ + u)

h2
θ

r3
+ wz

]
(2.12)

= σ

[
1

r

∂

∂r

rhr

(1 + h2
r + h2

θ/r
2)

1/2
+

1

r

∂

∂θ

hθ/r

(1 + h2
r + h2

θ/r
2)

1/2

]
,

the tangential stress condition in radial direction

2(wz − ur)hr −
(uθ

r
+ vr − v

r

) hθ

r
(2.13)

+(wr + uz)(1− h2
r)−

(
vz +

wθ

r

) hrhθ

r
= 0

and the tangential stress condition in angular direction

2
(
wz − vθ

r
− u

r

) hθ

r
−

(uθ

r
+ vr − v

r

)
hr (2.14)

+
(
vz +

wθ

r

) (
1− h2

θ

r2

)
− (wr + uz)

hrhθ

r
= 0.

2.2 Lubrication approximation

The solution of the above three dimensional free boundary problem represents,
analytically and numerically an enormously complex and time consuming task.
The key idea that we make use of here in order to obtain a mathematically and
numerically tractable problem, is the exploitation of the scale separation in most
parts of this �ow problem.

We begin by introducing dimensionsless variables and set

r = Lr̄, θ = θ̄, z = Hz̄,

u = Uū, v = Uv̄, w = Ww̄,

p = P p̄, t = T t̄.

(2.15)
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The characteristic velocity U is set by the velocity of the rotating disk. For given
radius R of the disk we let

U = RΩ. (2.16)

We determine the scale for the characteristic height H by balancing the dominant
viscous term with gravitational term in the u-momentum equation, which yields

H =

√
µU

ρg
. (2.17)

Furthermore, we require that the pressure must also balance the dominant viscous
term, so that

P =
µUL

H2
(2.18)

and that surface tension is important, so that from the normal stress boundary
condition we �nd

P =
σH

L2
. (2.19)

This yields the scale for L as

L =
H(

µU

σ

)1/3
(2.20)

and the time scale is �xed by T = L/U .

We assume that the liquid �lm is very thin and that the velocity in the direction
normal to the disk is much smaller than along the disk. We let

ε =
H

L
¿ 1 (2.21)

be a small parameter and W = εU . Note that this also means that the capillary
number Ca is small,

Ca1/3 =

(
µU

σ

)1/3

=
H

L
¿ 1. (2.22)
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With these scales the non-dimensional equations are

ε2Re
[
ut + uur +

v

r
uθ − v2

r
+ wuz

]
= −pr + uzz − sin θ (2.23a)

+ε2

[
(rur)r

r
+

uθθ

r2
− 2vθ

r2
− u

r2

]
,

ε2Re
[
vt + uvr +

v

r
vθ +

uv

r
+ wvz

]
= −pθ

r
+ vzz − cos θ (2.23b)

+ε2

[
(rvr)r

r
+

vθθ

r2
+

2uθ

r2
− v

r2

]
,

ε4Re
[
wt + uwr +

v

r
wθ + wwz

]
= −pz + ε2wzz (2.23c)

+ε4

[
(rwr)r

r
+

wθθ

r2

]
,

where the Reynolds number is Re= ρUL/µ and we have dropped the ' ¯'s.

The boundary conditions at the disk, z = 0 are

u = 0, v = αr, w = 0, (2.24)

where α = L/R.

The boundary conditions at the free liquid surface z = h(r, θ, t) are the conditions
for normal and tangential stresses

−p +
2ε2

1 + ε2h2
r + ε2h2

θ/r
2

[
ε2

(uθ

r
+ vr − v

r

) hrhθ

r

−(ε2wr + uz)hr −
(
vz + ε2wθ

r

) hθ

r
+ ε2urh

2
r + ε2(vθ + u)

h2
θ

r3
+ wz

]
(2.25)

=

[
1

r

∂

∂r

rhr

(1 + ε2h2
r + ε2h2

θ/r
2)

1/2
+

1

r

∂

∂θ

hθ/r

(1 + ε2h2
r + ε2h2

θ/r
2)

1/2

]
,

2ε2(wz − ur)hr − ε2
(uθ

r
+ vr − v

r

) hθ

r
(2.26)

+(ε2wr + uz)(1− ε2h2
r)− ε2

(
vz + ε2wθ

r

) hrhθ

r
= 0,

2ε2
(
wz − vθ

r
− u

r

) hθ

r
− ε2

(uθ

r
+ vr − v

r

)
hr (2.27)

+
(
vz + ε2wθ

r

) (
1− ε2h2

θ

r2

)
− ε2

(
ε2wr + uz

) hrhθ

r
= 0,

8



and the kinematic boundary condition

∂h

∂t
= −1

r

∂

∂r

(
r

∫ h

0

u dz

)
− 1

r

∂

∂θ

(∫ h

0

v dz

)
. (2.28)

2.3 Meniscus region

The scalings introduced so far are appropriate for the thin �lm region away from
the liquid bath. This yields a leading order theory that retains the terms that
are dominant for the �lm pro�le on the disk, where slopes are small. Near and in
the meniscus, the �lm pro�le becomes (in fact in�nitely) steep and a lubrication
scaling is no longer appropriate. Rather, the pro�le is governed by the balance
of gravity and surface tension forces, much as in a static meniscus, hence the
appropriate length scales for all spatial coordinates is the capillary length scale
lcap =

√
σ/(ρg).

This length scale can be easily expressed in terms of the lubrication length scales
H and L times an appropriate power of ε, so that the new length scales (denoted
by tildes) become

H̃ = ε−3/2H, L̃ = ε−1/2L. (2.29)

The parallel velocity scale is unchanged and equal to U = RΩ, while the normal
is now U , too, instead of εU . The time scale

T̃ =
L̃

U
= ε−1/2T, (2.30)

again is a result of the kinematic condition. The pressure scale is determined by
surface tension, and we �nd

P̃ =
√

σρg = ε−1/2P. (2.31)

Hence, all variables can be transformed to meniscus scalings simply by rescaling
with powers of ε, according to

r = ε−1/2r̃, z = ε−3/2z̃, h = ε−3/2h̃,

u = ũ, v = ṽ, w = ε−1w̃, (2.32)
t = ε−1/2t̃, p = ε−1/2p̃.

9



Inserting these scalings into (2.23a)�(2.28), yields the rescaled equations:

ε3Re
[
ut + uur +

v

r
uθ − v2

r
+ wuz

]
= −pr + ε3uzz − sin θ (2.33a)

+ε3

[
(rur)r

r
+

uθθ

r2
− 2vθ

r2
− u

r2

]
,

ε3Re
[
vt + uvr +

v

r
vθ +

uv

r
+ wvz

]
= −pθ

r
+ ε3vzz − cos θ (2.33b)

+ε3

[
(rvr)r

r
+

vθθ

r2
+

2uθ

r2
− v

r2

]
,

ε4Re
[
wt + uwr +

v

r
wθ + wwz

]
= −pz + ε3wzz (2.33c)

+ε3

[
(rwr)r

r
+

wθθ

r2

]
,

where the Reynolds number is Re= ρUL/µ = ε1/2ρUL̃/µ = ε1/2R̃e and where
we have dropped the ' ˜'s.

The boundary conditions at the disk, z = 0 are

u = 0, v = α̂r, w = 0, (2.34)

where α̂ = `cap/R.

The boundary conditions for normal and tangential stresses become at z =

h(r, θ, t):

−p +
2ε3

1 + h2
r + h2

θ/r
2

[(uθ

r
+ vr − v

r

) hrhθ

r

−(wr + uz)hr −
(
vz +

wθ

r

) hθ

r
+ urh

2
r + (vθ + u)

h2
θ

r3
+ wz

]
(2.35)

=

[
1

r

∂

∂r

rhr

(1 + h2
r + h2

θ/r
2)

1/2
+

1

r

∂

∂θ

hθ/r

(1 + h2
r + h2

θ/r
2)

1/2

]
,

2(wz − ur)hr −
(uθ

r
+ vr − v

r

) hθ

r
(2.36)

+(wr + uz)(1− h2
r)−

(
vz +

wθ

r

) hrhθ

r
= 0,

2
(
wz − vθ

r
− u

r

) hθ

r
−

(uθ

r
+ vr − v

r

)
hr (2.37)

+
(
vz +

wθ

r

) (
1− h2

θ

r2

)
− (wr + uz)

hrhθ

r
= 0.
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We now retain all terms that appear to leading order either in the lubrication
or the meniscus scalings. Note that, in the meniscus scalings, the velocity �eld
decouples to leading order from the pressure �eld that determines the surface
pro�le. Hence the dominant terms that govern h in these scalings consists of the
pressure and gravity terms, and of surface tension, based on the full nonlinear
expression for curvature. All these terms already appear also in the lubrication
scaling, except for the nonlinear curvature. Hence our approximate model retains
essentially the terms from a leading order lubrication theory and the nonlinear
curvature term, i.e., in the bulk we have,

0 = −pr + ε3uzz − sin θ, 0 = −pθ

r
+ ε3vzz − cos θ, 0 = −pz. (2.38)

Boundary conditions at z = 0 are given by (2.34), and at z = h:

−p =

[
1

r

∂

∂r

rhr

(1 + h2
r + h2

θ/r
2)

1/2
+

1

r

∂

∂θ

hθ/r

(1 + h2
r + h2

θ/r
2)

1/2

]
, uz = 0, vz = 0.

(2.39)
Integrating �rst pz = 0 yields a solution that does not depend on z, and the
parallel components for the velocity can easily be found to be

u = ε−3(pr− sin θ)(z2/2−hz), v = ε−3(pθ/r− cos θ)(z2/2−hz)+ α̂r. (2.40)

We plug this into the mass conservation relation (2.8), which in meniscus variables
is unchanged,

ht = −1

r

∂

∂r
r

∫ h

0

u dz − 1

r

∂

∂θ

∫ h

0

v dz,

and obtain, after rescaling time once more according to t = ε−3t′ ( dropping the
prime):

ht =
1

r

∂

∂r

[
r
h3

3
(pr + sin θ)

]
+

1

r

∂

∂θ

[
h3

3
(pθ/r + cos θ)− Ω̂rh

]
, (2.41)

where we have introduced Ω̂ = µΩ/
√

ρgσ.

For the boundary conditions of equation (2.41) we require that the curvature
approaches zero as the free surface approaches the reservoir Γpool, which is de�ned
by the line r = −a/ sin θ. Hence,

p(r, θ, t) → 0 as r → −a/ sin θ. (2.42)
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The height towards the reservoir is chosen large enough with respect to the height
of the thin �lm until the resulting �lm pro�le has converged. We set

h → 1 as r → −a/ sin θ. (2.43)

Towards the inner (r = Rin) and outer (r = Rout) con�nements of the disk we
assume natural boundary conditions, i.e.

pr + sinθ = 0, as r → Rin, Rout, (2.44)
hr = 0, as r → Rin, Rout. (2.45)

3 Numerical method

3.1 Di�erential formulation

The meniscus equations may be rewritten for simlicity as

r
∂h

∂t
=

∂Qr

∂r
+

∂Qθ

∂θ
, (3.46)

−1

2
r p =

∂qr

∂r
+

∂qθ

∂θ
, (3.47)

where �uxes Qr, qr and Qθ, qθ in r and θ directions are de�ned, respectively:

Qr = r
h3

3
(pr + sin θ), qr =

rhr√
1 + h2

r + h2
θ/r

2
, (3.48)

Qθ =
h3

3
(
1

r
pθ + cos θ) + rΩh, qθ =

hθ

r
√

1 + h2
r + h2

θ/r
2
. (3.49)

For the outlet boundary condition we take natural boundary condition, i.e. zero
�uxes in the direction of a normal vector.

Qr(r, θ, t) = 0, r → Rout, (3.50)
qr(r, θ, t) = 0, r → Rout. (3.51)

Similarly, we choose for the conditions towards the origin natural boundary con-
dition

Qr(r, θ, t) = 0, r → Rin, (3.52)
qr(r, θ, t) = 0, r → Rin. (3.53)

For the immersing boundary condition, where the meniscus connects to the liq-
uid bath we let the curvature of the free surface vanish. Hence, we require the
boundary conditions (2.42) and (2.43).
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3.2 Weak formulation

The weak formulation of the equation systems (3.46, 3.47) under the boundary
conditions (3.50)-(3.53) and (2.42, 2.43) can be derived by the multiplying (3.46)
and (3.47) by a suitable test function φ, integrating over the domain Λ and eval-
uating of the boundary conditions. Then the weak formulation of the boundary
value problem for (3.46,3.47) requires to seek (h, p) ∈ H1, such that

∫

Λ

r
∂h

∂t
φ dΛ = −

∫

Λ

(
Qr ∂φ

∂r
+ Qθ ∂φ

∂θ

)
dΛ +

∫

Γ

Qr φ nr dΓ , (3.54)

1

2

∫

Λ

r p φ dΛ =

∫

Λ

(
qr ∂φ

∂r
+ qθ ∂φ

∂θ

)
dΛ−

∫

Γ

qrφ nr dΓ (3.55)

for all functions φ ∈ V . Respecting the boundary conditions pr = 0, hr = 0, the
following integral equations

∫

Λ

r
∂h

∂t
φ dΛ = −

∫

Λ

(
Qr ∂φ

∂r
+ Qθ ∂φ

∂θ

)
dΛ +

∫

Γ

(
rh3

3
sinθ φ

)
dΓ , (3.56)

1

2

∫

Λ

r p φ dΛ =

∫

Λ

(
qr ∂φ

∂r
+ qθ ∂φ

∂θ

)
dΛ (3.57)

will now be discretised.

3.3 Finite element scheme

For the discretisation of the problem we devide the domain Λ in non-overlapping
triangular elements Λe and replace H1(Λ) and V (Λ) by �nite dimensional sub-
spaces S and V h, respectively. We also choose φ = φi, i = 1, 2, . . . , N with N

denoting the number of nodes in the element Λe and let

he(r, θ, t) =
∑

i=1,N

hi(t)φi(r, θ) , (3.58)

pe(r, θ, t) =
∑

i=1,N

pi(t)φi(r, θ) (3.59)

be the functions that approximate h and p on this element, respectively. The
domain integrals can now be replaced by the sum of integrals taken separatly
over the elements of triangulation.
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Let the time interval [0, T ] be subdivided into intervals with the time step τ ,
tn = tn−1 + τ, n = 1, 2, . . . , NT and denote

hn =




h1(t
n)

h2(t
n)

...
hN(tn)




, pn =




p1(t
n)

p2(t
n)

...
pN(tn)




.

By substitution of equations (3.58, 3.59) into the weak formulation and its implicit
backward Euler discretisation, expressions (3.56, 3.57) can be written in matrix
notation as the following �nite nonlinear system

Lhn+1 + τ
[
Crgh

1 (hn+1, pn+1) + Cθgh
2 (hn+1, pn+1) + s(hn+1)

]
= Lhn, (3.60)

Lpn+1 = 2
[
Crgp

1(h
n+1) + Cθgp

2(h
n+1)

]
(3.61)

where matrices and vectors are de�ned by

Lij =

∫

Λe

r φi φj dΛ , (3.62)

Cr
ij =

∫

Λe

∂φi

∂r
φj dΛ , (3.63)

Cθ
ij =

∫

Λe

∂φi

∂θ
φj dΛ , (3.64)

Mij =

∫

Λe

φi φj dΛ , (3.65)

gh
1 =

rw

3
(qp

r + sinθ) , (3.66)

gh
2 =

w

3

(
qp
θ

r
+ cosθ + r Λ h

)
, (3.67)

gp
1 =

rqh
r

(1 + (qh
r )2 + (qh

θ )2/r2)
1
2

, (3.68)

gp
2 =

qh
θ

r2(1 + (qh
r )2 + (qh

θ )2/r2)
1
2

, (3.69)
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w = M−1a , (3.70)

ai =
∑

m,l,j

hm hl hj

∫

Λ

φm φl φj φi dΛ , (3.71)

Y r = M−1(Cr)T , Y θ = M−1(Cθ)T , (3.72)
qh
r = Y r h, qh

θ = Y θ h , (3.73)
qp
r = Y r p, qp

θ = Y θ p , (3.74)

si =





0, Γe := Λe

⋂
Γ = 0 ,

∫
Γe

(
h3

i

3
r sinθ

)
dΓ , Γe 6= 0 .

(3.75)

Evaluation of matrix and vector coe�cients The various element ma-
tricies and vectors expressed by the equations above are spatial integrals of the
various interpolation functions and their derivatives. These integrals can be eval-
uated analytically. The remaining ones are obtained using numerical quadrature
procedure. Matrix and vector coe�cients for triangular elements are evaluated
using a seven-point quadrature scheme for quadratic triangles.

Triangulation We use the six node quadratic triangular elements as shown in
Figure 3 and following basic functions written in the so called natural coordinates
Li, i = 1, 2, 3 based on area ratios (see in [9]). The grids were generated by using

φ1 = L1(2L1 − 1)

φ2 = L2(2L2 − 1)

φ2 = L3(2L3 − 1)

φ4 = 4L1L2

φ5 = 4L2L3

φ6 = 4L3L1 4 21

6

3

5

Figure 3: Basic functions for a six node quadratic triangular element

the automatic mesh generator [15] based upon the Delaunay re�nement algorithm.

Assembling the global equation system The contributions of the element
coe�cient matrices and vectors (3.62)-(3.75) are added by the common global
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node for the assembling of the global nonlinear equation system similar to [7].
The global equation system can be written in the form

R(U) = F, (3.76)

where U is constructed from the vectors hn+1 and pn+1 in all grid nodes.

Time stepping The time stepping algorithm is customarily implemented with
a Newton-Raphson equilibrium iteration loop. In the each time step the following
nonlinear problem must be solved

G(U) := R(U)− F = 0. (3.77)

The linearized equation can be written on the basis of the Taylor expansion

G(Ui+1) = G(Ui) +
∂G

∂U

∣∣∣∣
U=Ui︸ ︷︷ ︸

K(Ui)

4Ui+1.

At each step of Newton's method, some direct or iterative method must be used to
solve the large linear algebra problem produced by the two-dimensional linearized
operator

K(Ui)4Ui+1 = −G(Ui) (3.78)
with Ui+1 = Ui +4Ui+1 . (3.79)

Here, we �nd it convenient to use the non-symmetric multi-frontal method for
large sparse linear systems from the packet UMFPACK [4].

4 Steady states

4.1 Numerical results

We consider here a disk rotating about the horizontal axis with a constant angular
speed Ω and being, for the rest of this study, half-immersed in the liquid bath. The
triangulation of the computational domain was made in cylindrical coordinates
r, θ. The �nite element mesh, used here, consists of 9533 triangular elements and
19522 nodes. The mesh, shown in Fig. 4, was extra re�ned on the boundary
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Figure 4: Finite Element mesh with 19522 nodes.

Γpool to resolve the meniskus region. The steady state was obtained via time
integration with a adaptiv time step of equations (3.46, 3.47) with a inertial
term and following newton iterations of their without inertial term. As stopping
criterion for the newton iterations a general threshold for the residuum ||G(U)|| <
10−13 is applied. The values of the parameters are chosen to model a glycerin
�lm:

µ = 1 Pa s, ρ = 1000 kg/m3, σ = 72.7e− 3 N/m,

R = 2.723e− 2 m, U = 7.917e− 4 m/s, g = 9.81 m/s2. (4.80)

The initial state has partially constant pro�le on the top of the disk and partially
parabolic one around the bath, shown in the Figure 5.

For this U and R we �nd the angular velocity Ω = U/R = 0.02908 s−1 =

0.277 r.p.m. , where the last equality is obtained by multiplying with 60/2π. For
these values we obtain Ω̂ = 1.089e − 3, the capillary number Ca = 0.01089, and
length scales H̃ = L̃ = lcap = (σ/ρg)1/2 = 2.723e−3 m. The dimensionless radius
of the disk is therefore 10.

In the following, we will also consider angular velocities of 1.0, 2.0, 3.0 r.p.m, while
keeping the other dimensional parameters and disk radius �xed. This does not
change the length scales nor the dimensionless radius of the disk, but it changes
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Figure 5: Initial state.

U , the capillary number and Ω̂:

Ω = 1.0 r.p.m. : U = 0.2851e− 2 m/s, Ca = 0.03922, Ω̂ = 3.922e− 3,

Ω = 2.0 r.p.m. : U = 0.5703e− 2 m/s, Ca = 0.07845, Ω̂ = 7.843e− 3,

Ω = 3.0 r.p.m. : U = 0.8555e− 2 m/s, Ca = 0.1177, Ω̂ = 1.176e− 2,

Figures 6, 7 illustrate the steady states obtained for the �uid with the phys-
ical properties of glycerin and a range of rotation velocities of the disk Ω =

0.277, 1.0, 2.0, 3.0 r.p.m., respectively.

One observes for all values of Ω of the steady solutions a region of liquid drag out
with a meniscus pro�le and a region with a capillary wave on the opposite side
of the axis. Such an oscillation of the height is typically found for the reverse
Landau-Levich problem when a liquid thin �lm is falling into a liquid bath, see
for example [3, 8, 18, 20]. It can be seen more clearly when comparing the cross
sections of the liquid pro�les at constant radii. In �gure 8 we compare for the
radius r = 9 the cross section for Ω = 0.277, 1.0, 2.0, 3.0 r.p.m. (Note, that here
as further below, values such as for r without an explicit dimensions are in fact
dimensionless). The �gure also shows that the the average liquid height increases
when Ω increases.

These results are qualitatively in accordance with the Landau-Levich problem for
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the drag-out and falling �lm cases. We will further investigate the quantitative
comparison, which we expect to yield good results close to the meniscus region.

4.2 Asymptotic estimate of the �lm thickness

We now derive an asymptotic approximation of the �lm thickness using a one di-
mensional approximation based on the results of Landau, Levich [11] and Wilson
[19] for the planar-symmetric case.

For our comparisons we focus on the case where the disk is half immersed, i.e.
a = 0. Then, if we only retain the axial components in the stationary form of
(2.41), and after substituting rθ 7→ y, rdθ 7→ dy we obtain the equation

d

dy

[
h3

3
(py + 1)− Ω̂rh

]
= 0, (4.81)

with
p = − d

dy

hy

(1 + h2
y)

1/2
. (4.82)

Boundary conditions are

lim
y→∞

h = h∞, lim
y→0

h = ∞, lim
y→0

p = 0. (4.83)

Integrating (4.81), (4.82) once and using the boundary conditions (4.83) yields

h3 d2

dy2

hy

(1 + h2
y)

1/2
= −3rΩ̂(h− h∞) + (h3 − h3

∞). (4.84)

We rescale this equation to bring it into the form

h = (rΩ̂)1/2h̄, h∞ = (rΩ̂)1/2h̄∞, y = (rΩ̂)1/6ȳ, (4.85)

to get
h̄3 d2

dȳ2

h̄ȳ(
1 + (rΩ̂)2/3h̄2

ȳ

)1/2
= −3(h̄− h̄∞) + (h̄3 − h̄3

∞). (4.86)

For this equation, Wilson's formula [19] gives the asymptotic approximation for
the �lm thickness

h̄∞ = 0.94581 (rΩ̂)1/6,

i.e. from (4.85),
h∞ = 0.94581 (rΩ̂)2/3. (4.87)
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Figure 6: Steady solutions for glycerin at Ω = 0.277, 1.0, r.p.m.
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Figure 7: Steady solutions for glycerin at Ω = 2.0, 3.0 r.p.m.

21



5 10 15 20 25 30
Arc length

0

0.05

0.1

0.15

0.2
h

r=  9,  Ω = 0. 277 rpm
r=  9,  Ω = 1.0  rpm
r=  9,  Ω = 2.0  rpm
r=  9,  Ω = 3.0  rpm

28 29 30
Arc length

0.02

0.04

0.06

0.08

h

r=  9,  Ω = 0. 277 rpm
r=  9,  Ω = 1.0 rpm
r=  9,  Ω = 2.0 rpm
r=  9,  Ω = 3.0 rpm

Figure 8: Comparisons of the pro�les of the cross sections for the �lm pro�le for
radius r = 9. On the right hand side where the �lm is pulled into the bath a
capillary wave is formed. This region is enlarged on the right �gure. Note, �Arc
length� denotes rθ.

Figure 9 shows h∞ as a function of rΩ̂. Good agreement of the one-dimensional
numerical results with the corresponding higher order asymptotic formula is
achieved for small values of rΩ̂.

4.3 Comparison with the Landau-Levich problem

The meniscus pro�le h(y) in �gure 10 is now computed for the values given in
(4.80). Recall that Ω̂ = 1.089e − 3. At r = 9, we have rΩ̂ = 0.009801, hence,
from (4.87), h∞ = 0.0433.

We now compare the meniscus pro�le computed with (4.86) for the Landau-Levich
problem with the steady state solution to our problem for the rotating disk. For
this we take results for the cross section along constant radii. In �gure 10 we
performed the comparison for the cross section for the height pro�le at radius
r = 9, for 0 ≤ θ ≤ 180, i.e. from the point where the �lm is dragged out to the
point where it reenters the liquid bath for the case, where Ω = 0.277 r.p.m. We
see that there is excellent quantitative agreement in the vicinity of the meniscus
region as it enters the thin �lm region.
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Figure 9: Comparison of numerical results for the one-dimensional problem (4.84)
with the asymptotic formula for h∞ versus rΩ̂, (4.87).
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Figure 10: Meniscus pro�les computed with the 1D model (4.84) (curves with
symbols), for Ω = 0.277 (circles), 1.0 (stars), 2.0 (plusses), 3.0 (triangles), and com-
parison with the pro�les obtained for the cross section of the �lm pro�le for the
rotating disk. �Arc length� denotes rθ.
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4.4 Comparison with the hyperbolic regime

Further out into the disk region the height pro�le will deviate from the height
obtained for the Landau-Levich problem. There the variation of the height along
the directions parallel to the disk is very small, which is clearly seen in our
numerical simulations, so that surface tension will play a negligible role.

Starting from equation (2.41) we consider the steady state problem
∂

∂r

[
r
h3

3
sin θ

]
+

∂

∂θ

[
h3

3
cos θ − Ω̂rh

]
= 0, (4.88)

to describe the dynamics far away from the meniscus. This can be simpli�ed to
the hyperbolic equation

h2r sin θ
∂h

∂r
+

(
h2 cos θ − Ω̂r

) ∂h

∂θ
= 0 . (4.89)

Using the method of characteristics, this problem can be solved in form of an
intitial value problem for the system of the coupled ordinary di�erential equations

dr

dτ
= h2(r0, 0) r sin θ, r(0) = r0 , (4.90a)

dθ

dτ
= h2(r0, 0) cos θ − Ω̂r, θ(0) = 0 . (4.90b)

Using as the initial condition the height found from (4.86) or simply by making
use of formula (4.87) for a chosen r0 we can integrate (4.90a), (4.90b) to obtain
characteristics. This is shown in �gure 11 for Ω = 0.277 as an example. The
results are similar for the other angular velocities. As can be seen, the comparison
of the characteristics that start from the meniscus region shows good agreement
with the contour lines found from the FEM computation. Note, that the contour
lines that start at the boundary of the rotating disk strongly depend on the
conditions there.

Interestingly, one can a good idea on the �lm pro�le as a function of the angular
velocity Ω̂ by simply solving (4.90a), (4.90b) for r as a function of θ directly by
taking

dr/dτ

dθ/dτ
=

dr

dθ
=

r sin θ

cos θ − Ω̂r/h2
0

, (4.91)

which can be solved to yield

r(θ) =
h2

0

Ω̂


cos θ ±

√
cos2 θ − 2c0

Ω̂

h2
0


 , (4.92)
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Figure 11: Comparison of contour lines from our FEM computation
(black curves) for Ω = 0.277 with the characteristics (white curves) for
r0 = 1.962, 2.670, 3.560, 4.572, 5.759, 6.877 and corresponding heights of h0 =

0.0130, 0.0182, 0.0234, 0.0286, 0.0338, 0.0390, respectively. Note, the correspond-
ing 3D plot in �gure 6.

where the integration constant is

c0 = r(0) cos θ(0)− Ω̂r2(0)

2h2
0

. (4.93)

5 Conclusions

In this work we set up a model for the fully three-dimensional free-boundary
problem for the vertically rotating disk, drawing a thin �lm out of a liquid bath.
We derived a dimension reduced generalized lubrication approximation. For this
two-dimensional nonlinear degenerate fourth-order boundary value problem we
developed a �nite element scheme that captures the evolution of the �lm pro�le
on the complete disk. For a range of parameters we found steady state solutions.
Correspondingly, we performed an asymptotic analysis near the meniscus region
and a careful comparison with cross sections of the numerical solutions along
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constant radii gave excellent agreement. Moreover, we �nd that the height pro-
�le, even though dependent on the thickness that is determined by the meniscus
region, can show considerable variations in the angular as well as the radial direc-
tion. We expect that these new steady state patterns will have implications for
the application problem of a rotating disk in a PET-reactor. There, the chemical
reaction depends crucially on the thickness of the thin �lm, see e.g. the article
by Ra�er et al. [14]. Our results will therefore give important information on the
reaction rate to be expected for such a non-uniform �lm distribution.

It would be an interesting problem to also include visco-elastic e�ects into our
model. This would also be more realistic when modelling highly viscous polymer
�lms.
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