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Conditional large deviations
for a sequence of words

Matthias Birkner

22 November 2005

Abstract

Cut an i.i.d. sequence (X;) of “letters” into “words” according to an independent
renewal process. Then one obtains an i.i.d. sequence of words, and thus the level
three large deviation behaviour of this sequence of words is governed by the specific
relative entropy. We consider the corresponding problem for the conditional empirical
process of words, where one conditions on a typical underlying (X;). We find that if
the tails of the word lengths decay super-exponentially, the large deviations under the
conditional distribution are again governed by the specific relative entropy, but the
set of attainable limits is restricted.

We indicate potential applications of such a conditional LDP to the computation
of the quenched free energy for directed polymer models with random disorder.

Key words: Conditional process level large deviations, quenched free energy.
MSC 2000 classification: 60F10, 60G10, 82D60.

1 Scenario and main result

Let E be a countable set (“letters” or “symbols”), v € P(F) a probability measure on FE
with v(z) > 0 for all z € E. Let (X;)icz be an i.i.d.-v sequence, (7;);cz an independent
ii.d.-p sequence with values in {1,2,..., Tpax } resp. {1,2,... } if 7ax = 00. In that case,
we require that tail of the distribution of 7ps decays super-exponentially in the following
strong sense:

FC,Ne>0:Vn: p({n,n+1,...}) < Cexp(—An'T). (1.1)

We also assume that the 7s generate an aperiodic renewal process, i.e. ged{i : p; > 0} = 1.

Cut out the X-sequence according to 7: Put Ty :=0, 1 : =T, 1+ 7_1, T =T ;41 — 7
for ¢ > 0, ‘
VO = (X1, X141, s X130y 1), G EZ (1.2)

with values in E = U E¥ (“words”) (resp. E = Ui BR if Tax < 00). By the indepen-
dence properties of the ingredients, Y = (Y(i))iez is then an i.i.d. sequence with marginal
distribution

¢ ((1,...,75)) = PYO = (21,...,21)) = pi Hy(w,) (1.3)



For a sequence (Y () with values in EZ we write L; = |Y?| for the “length” of the i-th
word (in the present scenario, we have L; = 7;, but it will be convenient to have a variable
for word lengths also if Y does not arise from a construction with a 7-sequence). Note that
we have a (left) shift 6 : EZ — E% on letter sequences and a (left) shift 6 : £ — E” on
word sequences. Let

1 N-1
Ry =+ Z_; 85y (1.4)

be the empirical distribution process of the words with values in P(EZ), the probability
measures on sequences of words.

The sets E and E are countable, so they are Polish spaces with the discrete met-
ric. Then E” and E” are again metric spaces e.g. via dez((21,22,...), (2], 2h,...)) =
S0 o271 (da(zn, ) A1) for A= E or A= E. This metric induces the product topology
on E” resp. E”. We equip P(E%) with the topology of weak convergence. Write Pshift( EZ)
for the shift invariant probability measures on E%, and P*'2(E?) for the set of (f-shift)
ergodic probability measures on EZ. Note that PShift(EZ) is a closed subset of P(EZ).

It is well known that the family of distributions .2’ (Ry) satisfies a large deviation principle,
the rate function is given by

H(Q:Q%) = Jim ~h(@Qlzy: Q5. (15

= lim

N—o0
the specific relative entropy with respect to Q° := Z(Y) = (¢°)®%, see e.g. [3], Cor. 6.5.15
and Lemma 6.5.16. Here #y = o(Yp,...,Yn_1), and h(u; ') denotes the relative entropy
of u with respect to ¢/. Our aim is to understand the almost sure large deviation behaviour
of the family of random probability distributions

Z(Ry | X).

As P(E%) and P(E%) are Polish, we can and shall think in the following of a family of
regular conditional distributions P(Ry € -|X).

Quantities involving the conditional expectation of exponential functionals of Ry appear
naturally in the computation of the quenched free energy for polymer models in disordered
media. In particular, the asymptotic evaluation of the free energy can be formulated as a
conditional large deviation problem, and variational formulas as in Corollary 1 make the
energy-entropy trade-off explicit. This potential application motivated our original interest
in the question studied in this note, see Section 2 for more details.

It is natural to invert the cutting by concatenation: Let the concatenation operator x :
E” — E” be defined in the obvious way by

_ -1 0 0 0 1 1
H((vy( 1)7y(0)7y(1)7"')) = (’”7y§71)7y§ )7y§ )7”‘7y§0)7y§ )7y§ )7)

for y(® = (ygi), . ,y(?) € E. Note that x(y()) has a “time origin” x(y())y = y§0). One
can imagine that because of the conditioning, which fixes a typical realisation of the X-
sequence, the conditional law .2 (R | X) feels restrictions, and that some deviations, which



are simply exponentially unlikely under the unconditional law, become actually impossible
once a typical X is fixed. Let

L—1
% = {Q € P(E?) 1w — ngréo% 3 Spinry = 1% Q- a.s.}, (1.6)
§=0

where w — lim denotes the limit with respect to the weak topology on P(E?%). Q € #
means that under (), the concatenation of words has almost surely the same asymptotic
statistics as a typical realisation of (X;). Obviously Q" € #Z. The following theorem is the
main result of this note, it roughly states that under P(Ry € -|X), only such deviations
can be realised which respect the restriction set Z.

Theorem 1. Under Assumption (1.1), the following events occur with probability one:

1 -
limsup —logP(Ry € F | X) < — inf  H(Q;Q% for all closed F C P(E%),
N N QEFNZNPshift(E7)
(1.7)
1 -
liminf —logP(Ry € G| X) > — inf  H(Q;Q") for all open G C P(E?).
N N QEGNZNPers(ET)
(1.8)
Corollary 1. For any bounded continuous function ® : EZ — R we have
lim x logE[exp (N / ®(y)Rn(dy)) ‘X]
N N (1.9)
= s | [e)Qun - H@ @)} as
Qegmpshift (EZ)
Remark 1. The same results hold for the “periodised” version
1 V-1
per ,
RN = N Z 591' (y(o)w’y(Nﬂ))p“a
i=0
where (y©,...,yN=D)Per denotes the periodic extension of (y(?,...,yN=D) e EN to an

element of EZ. The proofs are almost literally the same.

Theorem 1 is a full LDP for the family £ (Ry|X), except for the restriction to ergodic Q
in the lower bound. Removing this might require either a refinement of the conditional
tilting employed in Section 5, or an argument that any Q € Pshift (EZ) N Z can be weakly
approximated by shift ergodic @y which are also in %, the latter requirement being the
non-trivial part. On the other hand, the lower bound as stated in (1.8) suffices for the
application in Corollary 1.

Remark 2. Theorem 1 does not hold in this form without assumptions on the tails of p.
In fact, in a situation where p,, decays only algebraically, one can probe exponentially (in
N, the number of pieces one wants to cut) far ahead into the X-sequence in order to find
regions where X looks atypical.



For a concrete example, consider the following scenario: Let (X;) be i.i.d. Ber(1/2), p, =
C/n®, a>2,s0m, =Y np, <oo. Put

ON = min{k eN: Xy =Xpy1 = Xk-i—[N(mp—I—e)} = 1}.

Let ¢'(z1,...,2m) = pml(zy = -+ = 2, = 1), and let O C P(E®%) be a (small)
neighbourhood of (¢')®%. Under (¢*)®Z, all words consist entirely of 1s. Note that log oy ~
N(m, + €)log 2 by the Erdds-Rényi law and P(Ry € O | X) > psy by (5.6) below, so

1 1
N > Timinf L .
l}\Ifn_)lgof N logP(Ry € O|X) > l}w&f % log poy > —00

On the other hand, if (1.7) held true in this scenario, the answer would have to be —oo,
because (¢")%” ¢ %.

By Lemma 5, (1.7) will hold with % replaced by %, but in view of Remark 4 in Section 3,
this amounts essentially only to the unconditional upper bound, which we expect not to
be sharp. The intuitive argument advocated on page 1, that any limiting () must be built
“on top” of a typical X-sequence, is not valid in general. In fact, when p has algebraic
tails, there will be a trade-off on the exponential scale between how deep one probes into
the fixed X-sequence, which allows to find more atypical regions, and the price for those
long jumps. In view of the potential application to the computation of quenched free
energies for polymer models in random media considered in Section 2, it appears a very
interesting problem to find a quantitative description of this phenomenon. This question
will be pursued in future work.

The rest of this paper is organised as follows: In Section 2 we indicate how Corollary 1, or
rather, its analogue in a scenario where in contrast to Assumption (1.1), p has algebraic
tails, could be used to represent the quenched free energy of directed polymer models
with random disorder via a variational formula. We illustrate the use of Corollary 1 by
expressing the quenched free energy of a modified polymer model. Coming back to the
main plot, we give in Section 3 a useful characterisation of the property @ € % under the
additional constraint that () has finite mean word lengths. This characterisation allows
to make a connection between () and an “underlying” i.i.d.-v sequence. In Section 4, we
basically prove the upper bound via comparison with the unconditional LDP, in Section 5
we prove the lower bound by a “conditional tilting” argument. The pieces are collected
together in Section 6 to complete the proofs of Thm. 1 and Cor. 1.

2 Relation to quenched free energy computations

For models of directed polymers in disordered media, the quenched free energy involves
quantities like

k k
F(X) = > TTeimisexo (D (K. X50)) ) (2.1)
0<j1 < <jp i=1 /=1

for suitable functions f : E — R, where X is some i.i.d. sequence. By introducing an
auxiliary sequence (7;) as in Section 1 and defining (V) as in (1.2), this can be expressed

4



" exp /f ) re(dy®) )‘X} (2.2)

where r := m Ry, is the image of Ry, as defined in (1.4), under the projection 7y to the
first coordinate, i.e. the empirical distribution of words. If the family £ (Ry|X) almost
surely satisfies a large deviation principle with a good, non-random rate function J, one
can compute

fim oz () = s { [ f0)(m@)dn) - I(@)} (23)
k—oo k Qepshite(EL)

via Varadhan’s Lemma (under suitable assumptions on f). Note that for such applications,

indeed a level 2 large deviation principle would suffice, which one obtains by a contraction

principle. On the other hand it seems that restrictions like (1.6) can only be expressed

through level 3 objects.

As an example, let us consider the (modified) quenched free energy for the random het-
eropolymer model (see [1] and references there), defined as lim 4 log Z x» where

N
Znx = E[GXP (A (X + h)sign(Sy)); Sw = 0],
n=1

where A\, h > 0, (S,,) is a symmetric simple random walk on Z starting at Sy = 0, (X,,) are
ii.d. random variables, independent of S, taking the values =1 with probability 1/2 each,
and F refers to expectation with respect to (S,). In this context, if S, = 0, “sign(S,,)”
is defined as sign(Sn—1). We implicitly assume that N is even, otherwise Z} y = 0.
This is a model for a polymer with a random composition of hydrophilic and hydrophoblc
monomers near an oil-water interface. The “letter” X; models the affinity of monomer
i towards different parts of the solvent. The free energy itself uses the same expression
without the restriction on {Sy = 0}, this difference is irrelevant in the limit (see [1],
Lemma 2).

Note that for the computation of the free energy, the details of the a priori measure on paths
(Sp) are not important. All that matters is the fact that excursions from 0 are independent
and symmetric, the only datum that is required to compute Z3% y is the distribution (py)
of the excursion lengths: By decomposing the path Sy, .S, ... ,7 Sy into excursions away
from 0 and assigning independent random signs to the excursions, we can rewrite

Zix =Y Y Hpjz i 1><Hcosh ()\Z (X; +h) (2.4)

k j1<--<jp=Ni=1 1=jg—1+1

where p, = Py(S1,...,Sn—1 # 0,5, = 0) are the return probabilities for the random walk.
Thus for z > 0 the (random) generating function of Z%; y is given by

0(z) = Z zNZ]’(LX
N

k k Je
- Z Z Z Hpji_ji—l X H 2Ji7Ji=1 cosh <)\ Z (XZ + h))
N k j1<-<jp=Ni=1 =1 imie1t1
- - Fk(X; 2),
k=1



where Fj,(X;z) is the quantity defined in (2.1) with

)4
f((z1,...,2¢)) = llog z + log cosh <)\ Z:(acZ + h)) (2.5)
i=1
Thus if we can (at least in principle) compute the almost sure asymptotic growth rate

1
o(z) := lim %long(X;z)

k—o0

via (2.3), we obtain that the radius of convergence of 6(z) is given by
ro :=sup{z > 0: p(z) < 0},

and hence the quenched free energy f4%¢(\ h) = lim N~!log Zy x can be represented as
fae(\, h) = —logrg. Note that the tails of p,, the return probability of a 1-dimensional
random walk, decay only algebraically in this scenario. In particular, p does not satisfy
Assumption (1.1), so that the application of Corollary 1 to the computation of ¢(z) is not
justified (and would, in view of Remark 2, almost certainly yield an incorrect result). We
reiterate our statement from the end of Remark 2 that in view of the above considerations,
it would be very interesting to extend Theorem 1 to the general case.

In order to illustrate the application of the conditional large deviation principle stated in
Section 1, let us consider a modified model, where

the partition function Z3, y is given by (2.4) with p satisfying Assumption (1.1). (2.6)

This is a model for a situation where the polymer has a strong attraction towards the
interface, as under the a priori measure excursions have short tails. So there can never be
a de-pinning transition (as is the case for the original model, see [1]), but still for fixed
realisation of (X;), the polymer can try to optimise its configuration by grouping excursions
according to stretches of X;s with the same sign, and there will be an energy-entropy trade-
off. In this situation, the application of Corollary 1 is justified, and we can summarise the
discussion above in the following

Proposition 1. For the modified model (2.6) we have

o= o | [ Ho)@mQ)a) - H@:@")} s (27)

QEZNPshift(EL
where in the notation of Section 1, E = {£1}, v(£1) = 1/2, ¢°((21,...,2¢)) = 27%py for

(z1,...,m0) € {£1}, Q° = (¢°)®%, f is defined in (2.5) and Z in (1.6). The quenched
free energy is given by

F(\ h) = —log (sup{z >0:¢(z) < 0})

Note that (2.7) proves that ¢(z) is strictly increasing in z. Even though f is not bounded,
we have for any v > 1

SEP%IOgEQO [eXp (71\7 / () (WORN)(dy))] < o0

6



by Assumption (1.1) and the fact that f(y) < C x |y|. Thus the application of Varadhan’s
Lemma is justified, cf e.g. Condition 4.3.3 in [3].

Proposition 1 allows comparison with the so called annealed free energy, defined as
1
(A h) == lim N log E[Z x],

where E refers to expectation with respect to the distribution of (X;). Defining F"(z2) :=
E[Fk(X;2)], ¢™(2) := lim k™' log F™(z) we obtain

F (N h) = —log <sup{z >0: " (2) < O}>

in complete analogy with the reasoning above. Asunder the annealed measure the “marked”
excursions (Y)) are i.i.d., F"™(2) = (F""(2))* can be computed explicitly, however for
the purpose of comparison with the quenched case, it is instructive to represent

o) = togFe) = s { [ r)m@d - 1Q:Q")

Qe'pshift(E‘Z (2 8)

- o { [ t0atdy) ~ b} =tog Fi(2) = infnigiq ),

qeP(E geP(E)
where ¢**" ((z1...,2¢)) = Fa""( Ty Pt HZ () x exp f((z1,...,3)) is (the marginal of)
the unconstrained maximiser, which depends implicitly on z. Equality between the two
sup-terms above stems from the fact that among all ) with given marginal mqQ = g, the
specific relative entropy H(Q;Q°) is minimised by the product measure Q@ = ¢®%. From
this together with Prop. 1 we see that in the model defined in (2.6), the “quenched to
annealed bound” is always strict, i.e.

F(NR) < f22 (A h) VA>0,h>0 (2.9)
so there is no weak disorder regime.

In order to verify (2.9) suffices to check that p(z) < ¢*""(z) for all z > 0. Fix z > 0, note
that Q™ := (¢"*™)®Z ¢ . A quick way to check this is as follows: In case h > 0,
we see easily that > y1¢"*""(y) > 0, so limp_. Lt E]L:_()l #(Y)); > 0 almost surely
under Q**"" and hence Q™*™ ¢ Z#. On the other hand, if h = 0 we can observe that
Z\y|=f Yy (y) > 0 for any € > 2, 1 < i,j </, i.e. letters are positively correlated
under ¢** o limy,_, o, L™} Z]L:_()l #(Y ) ;6(Y),41 > 0 almost surely under Q**™, and
hence again Q**™ & Z.

As # N afy; is compact by Lemma 3 and does not contain Q**"*, we can find for any
M > 0a 0 > 0 such that Bs(Q"*™) Ny C Z€, and so

o) < sup { [ 1)mQan) - 1@ @)} < ()

ershift(EZ)ﬂ((Ba(Q*’a““) U”ﬁf

for a suitable choice of M and ¢ in view of (2.8).



3 A characterisation of the restriction set

When we cut the sequence X into pieces and then look at the empirical process of these
pieces, we “loose the origin”. In particular, the concatenation «(Y') under a limiting @ €
PShift(EN'Z) need not be shift invariant. For example, if we arrange the 7s in such a way
that the cut-points tend to occur before a certain pattern, then under Ry, the law of the
concatenated sequence will have a (possibly atypical under »®%) inclination to begin with
this pattern.

A way to reinstate shift-invariance (and in some way “get back the underlying i.i.d. se-
quence”) which works when Eg Ly < oo is to size-bias () according to Ly and then “ran-
domise out the origin” — this is familiar from the theory of stationary renewal processes.
Using this idea we obtain in this section a characterisation of the set % defined in (1.6).

For Q € P (E%) with Eqg Lo < oo let Q € P(E”) be defined by

Q(Y(Z) = y(l)vl = _ka s 7k) = mEQ [LO]'(Y() = y( )’Z = _k7' : ’k)] (31)

(for any k € N, y() € E). Let (Y(i))iez have law Q, given Y, V uniform on {0,1,..., Lo —

1}, put )
Z =0V k(Y 0).

We denote the distribution of Z obtained in this way by Uy to stress that it depends on
Q.

We check that ¥ € PSif(EZ): Fix m €N, 2p,...,2, € E. We have

Lo—1
o 1 . -
P(Zo =20y s Zm = zm\Y()) = 7 Z 1(R(Y()),~ = 20,...,/£(Y()),~+m = Zm),
0 =0
hence
]P\I/Q(ZO = 20, 7Zm - Zm)
1 1A
- Eo[Lo— 1Y) =20, 6(Y D)o = 2m
2o 1ol 2 MO = 20k D = )
1 Lo—1
= E le(')i:z, ,/@Y)im:zm.
o 7y el 2 1000 = 20 (Y i = 20)
As @ is shift invariant,
Lo—1
B[ 3 1x(VO)s = ... (VO = 2]
i=0
Lo+-+Ly—1

— EQ[ Z 1(/4;(}/('))7; = 2,... 7/{L(Y(,))H_m _ Zm)]
i=Lo+-+Lg_1

for any k € Z, hence

]P)\IIQ(ZO = 20y - ,Zm = Zm)

1 Lo+-+Ly—1
MEg LOEQ[ ZZ:; Le(¥YY)i =20, . k(YD) i = 2m)]



for all M € N. Similarly, we have

]P\I/Q(Zl = Z0y. .- 7Zm+1 = Zm)
1 Lo+-+Ln—1
) WQLOEQ[ zz:% 1(s(Y i1 = 20, 6V Digms = zm)],
consequently

2

|P\I/Q(Z0 =20, Zm = Zm) —[P’\pQ(Zl =20y Lmtl = Zm)‘ < WQLO

Taking M — oo we see that W) is shift invariant.

Lemma 1. Assume that Q € P (E?) satisfies Eq Ly < oo. Then we have Q € Z if
and only if Vg = v®Z. In this case, ZLo(r(Y)) < v®Z.

Proof. Let ¥g = v®2_ Then under Q, the sequence k(Y') almost surely has the ‘right’
asymptotic pattern frequencies (i.e. lim N~! Zii_ol L(0'k(Y)) = v(z) for any z € E,
where f,(z) = 1(z; = 21,...2¢ = 2)). As Q < Q (in fact, the density is (FgLo)/Lo,
which is > 0, bounded), the same holds true for @, i.e. Q € Z.

Now assume that QQ € Z. As Q < @, the sequence Z;, i € Z under ¥ also has the ‘right’
asymptotic pattern frequencies, i.e.

N-1 m
.1
h]{fn N Z 1 Z; =20, Zivm = 2m) = H v(zm) almost surely (3.2)
=0 7=0
for any m € N, 2¢,..., 2, € E. It suffices to verify that any shift invariant sequence (Z;)

satisfying (3.2) is in fact an i.i.d.-v sequence. The limit on the left-hand side of (3.2) is
equal to
P(Zo =20, .-, Zm = 2m|F),
where .7 is the shift-invariant o-field. Thus
m
P(Zo = 20, -+ Zon = 2m) = IE[IP’(ZO — 20se s Doy = zm‘f)} = [T v(zm).
j=0
so that indeed .Z(Z) = v®Z.

Now assume that Vg = v®Z and let A C EZ be a (measurable) v®Z-null set. Then we
have

Lo—1
1 .
— Q7 _ _ i
0= v*5(A) = Wo(A) = g—=Eq [ ;’:0: 14(0'R(Y))],
so in particular Q(k(Y) € A) = 0. This proves that £ (k(Y)) < v®Z. O

Remark 3. If Q € Z and Eg Ly < oo, by the above there is a random V such that under
Q, 0Vk(Y) is distributed like an i.i.d.-v sequence. We can “invert” this relation: There
is (on some probability space) a random pair (A, Z) with values in Z x E” such that
L(Z)=v® and L(0°7) = Z5(k(Y)). For example, one can take (Y, V) under Q, then
define Z := 0Vk(Y), A := V.



Note that the mappings @ — QL Q — Y are not continuous with respect to the weak
topology on PSPt (EZ) (because EZ 3 (y¥); — |y(©)] is not bounded, so weak convergence
need not imply convergence of the first moment of piece lengths). On the other hand, we
have

Lemma 2. Assume that Qn € PShift(EZ) converge weakly to Q and that additionally
Egy [Lo] — Eg. [Lo] as N — oco. Then

QN — Qoo weakly on P(EL) and Vg, — Vg, weakly on P(E?).

Proof. Note that by the assumptions, the family { %4 (Lo), N € N} is uniformly in-
tegrable Hence also for any k& € N, y@ € E, the family {ZLoy (Lol (YO = 4@ 4
—k,...,k)), N € N} is uniformly integrable. This implies

ON(Y D =y i ==k, k) = Qoo (YW =y i = —k,... k).

Similarly, because 0 < ZLO "(k(YO)y =20, .., k(YD) it = 2m) < Lo (for any m € N,
z; € ), we conclude that

\I/QN(ZQ = Z0y--- ,Zm = Zm) — \I’QM(ZO = Z0y--- ,Zm = Zm).

Lemma 3. Let
i ={QePM(E): HQ Q") <M}, M>0

be the level sets of the rate function Q — H(Q;QY). For any M, the set # N a/y; is closed
(in the weak topology on P(E?)). In case Tmax < 00, Z is closed.

Proof. Let (Qn) C Z N y, assume QN —N—oo Qoo Wweakly. As h(ZLp, (Lo);p) <
H(Qn; Q%) < M for all N, where h(%y, (Lo);p) is the relative entropy of the length
of the first word under @ with respect to p, we obtain

log 2 + h(Zgy (Lo); p) < C'M

Ol =MD = g T ot + L)) = e

(3.3)

by (1.1) and the entropy inequality (see e.g. [5], Prop. 8.2 in Appendix 1). This uniform
bound on the tails of the word lengths under Qn implies Eg, Lo — Eqg. Lo, and thus
Qoo € Z by Lemma 2 and Lemma 1. Qo € & because the level sets are compact.

In the situation Tmax < oo we have Eg, Lo — Eg. Lo automatically, and the rest of the
argument remains unchanged. O

Remark 4. In case mhax = 00, the set Z is not closed in the weak topology. In fact,

Z > {Q € PMYE?) 1 Eq[Lo] < oo}.

Proof. Fix an arbitrary Q in PPt (E%) satisfying Eqg Lo < co. Let § € P(E) be given by

cj((xl, . ,a:n)) = % Hy(a;i),
i=1

10



i.e. the length of the word has heavy tails, given the length is n, it looks like
n independent draws from v. Define Qun as follows: under Qu, the blocks
(Y EN) yENHD y (BHDN=1D) g e Z, are iid, Lo (YO, YWY = @
Q’a(YU),...,Y(N*U)- Qn is defined as @y with randomised origin, formally Qy =
N1 Zﬁ_ol Qn o 6. Then we have Qy € PH(EZ) (in fact even Qn € PB(E?)),
QN — Q weakly. Finally, each Qn € % because the word length under ¢ has no mean:
imagine pointing at position U in (Y") under @, where U ~ Unif({1,...,L}). As L — oo,
the probability tends to one that one actually looks inside a “g-word” of the concatenation,
where the pattern frequencies are what they ought to be in a v®%-sequence. O

4 Conditioning and the restriction set, upper bound

First we observe that an unconditional upper bound is automatically also an upper bound
for the conditional distributions:

Lemma 4. For any closed F C P(E%) we have

1
limsup —logP(Ry € F'| X) < — inf  H(Q;Q% a.s. (4.1)
N—oo N QeFnpshift(EZ)

Proof. Write I(F) := inf QeFrpshite(57) H(Q; QO). For ¢ > 0 we have by the unconditional
LDP

P(P(Ry € F|X) > exp(—N(I(F) — 2¢))
< NUBP2IEP(Ry € F|X)] = NUZ29P(Ry € F)
< NUF)=2¢) ,~N(I(F)~¢) _ ,~eN

for N large enough, and hence
1
lim sup N logP(Ry € FI|X) < —I(F) —2¢ a.s.
N—oo

by the Borel-Cantelli Lemma. Take ¢ — 0 to conclude. O

Lemma 5. For any closed F C P(E%) and M > 0 we have a.s.

. 1
limsup —

s Nlog]P’(RNEF]X)S <— inf H(Q;Q0)>\/(—M). (4.2)

QeFNPshift(BL) oty N

Proof. First note that even though Ry is not exactly shift-invariant because of boundary
terms, it is nearly so: for any weak neighbourhood O of PsMif'(E%), there is ng such that
Ry € O for N > ng. As PHf(EZ) is closed in the weak topology, we can restrict to
F N Pshift(EZ) in the right-hand side of (4.2).

Fix § > 0. As Q — H(Q; Q") is a good rate function, the level sets <7y are compact. Thus
there exist ng € N and Q1,...,Qn, € #y such that @y C U2, Bs(Q;), where Bs(Q)
denotes the open ball of radius § around Q € P(EZ). Let

Ji = {1§i§n0:Bg(Qi)ﬂF7§®},
Jy = {] e :Bg(Q]’) NZ + @}

11



Note that

P(Ry e F|X) < (RN € Uje, B5(Q

)[%)

+P(Ruy € (UL, Byl Q»)C

< (RN € Uje s, Bs(Q

+P<RN€( 1 Bs(Q:))

P(RNG(FﬁdMﬂ%%‘X)Jr > PRy € Bs(Q))| X)

JEJ1I\J2
+ IP’<RN € (UL, Bs(@i)"

X),
where (B), := {Q : d(Q,B) < €}.

We have P(Ry € #Z|X) = 1 by ergodicity of (X;), hence P(Ry € Bs(Q;)|X) = 0 for
j € J2\ Ji. Furthermore, (U?zl Ba(Qi))c is closed and contained in 7y, so

IN

inf H(Q:Q% > M,
Qe (v, B5(@:)"

and hence 1
lim sup N log]P’(RN € ( Uiy Ba(Qi))c

N—oo

) < -M a.s.

by Lemma 4. Again by Lemma 4, we have a.s.

lim sup % log P(Ry € (FNahin®),, | X) < —inf {H(Q:Q") : Q € (F Ny Nz nPHi (7)), 1,

N—o0
S0
1
limsupﬁlog]P’<RNeF‘X> < <— inf H(Q;Q0)>\/(—M)
N Qe (Fnannanpshit(B2))
Taking § — 0 and observing that o/ N Z is closed by Lemma 3 yields the claim. O

5 Lower bound

For a random variable W and a probability measure @), we will in the following be writing
Q(W) for the random variable ¢(W), where ¢(w) = Q(W = w). Q(W1,...,Wy), etc is
defined analogously.

Lemma 6. Assume that (Z;);en with values in E” has distribution P' and P' < P = v®Z,
Then we have

) 1
A}E)noo—ﬁ log P(Zy,...,2ZN) = — Zu(x) logv(z) P'-a.s.

T

(i.e. the specific entropy of P' equals that of P).

12



Proof. Let dP' = ®dP, where ® = ¢(Z1,Za,...), Fp:=0(Z1,...,Zy). Then
P,(Zl, . ,ZN) = EP[¢(Z)1(Zl = 21y ,Zn = Zn)]
= V(Zl) o 'Z/(ZN) X V®N(dzl)¢(zl7' B ,Zn,Zi,Zé, . ')7
S0
P(Zy,...,Z,) =v(Z1) - v(ZN)Ep[®|.Z,).
Now Ep[®|.%,] — ® P- (and hence also P’-a.s.), thus

N
%log P2y, 7)) = %Zlog v(Z) + O(1/N) — 3 v() log v(z).
i=1

xT

O

For an E”-valued random variable (Y ));cz, m < n, let us write Zmn = £(Y )| for
the restriction of kK(Y)) to {m,m +1,...,n}.

Lemma 7. Assume Q € Z N PM(EL) is shift-ergodic and satisfies mq = Eqg Ly < 0.
Then for any € > 0 there is 6(€) such that

<Q(L07 L 7LN—1‘ZO,N(WLQ+E))>
Hf\i_ol PL;
<Q(Lo, s LN-11Z0 N(mg +e))

H(Q: Q") —8(e) < lim nf — log

< i - 1
S 1msup — 1log
N—oo N

holds Q-almost surely, and §(e) — 0 as e — 0.

Note that the term appearing in liminf and lim sup is approximately the specific relative
entropy of the word lengths given the concatenation.

Proof. Note that

Q(L07 o 7LN—17 ZO,N(mQ-i-E))
Q(ZO,N(mQ—l—e)) .

Q(L07 L 7LN—1‘Z0,N(mQ+e)) =
By Lemma 1 and Lemma 6, we have

lim —% log Q(Zo,N(mq+e)) = —(mq +€) Z v(z)logv(zx) Q-a.s. (5.1)

N—oo

zeE
Furthermore,
1 N-1
A}l_r)noo N log H) pr;, = Eq log pr, Q-a.s. (5.2)
1=

by ergodicity of Q. Fix ¢ such that (1 + ¢)mg > mg + €, denote

By = {Lo+"'+LN—1 SN(mQ""e)SLO+"'+LN(1+E,)}'

13



Observe that on By,

Q(Y07Y17 o 7YN(1+6’)) S Q(L07 cee 7LN—17ZO,N(mQ+e)) S Q(Y07Y17 o 7YN—1)'

As Q(Uy N> By) = 1 by ergodicity, we obtain

A
|

=

)

. 1
lim sup N log Q(L07 ooy Ly, ZO,N(mQ+e))

N—oo

|
l}\l}l_}éloleOgQ<L(), 7LN—1720,N(’mQ+E)) > _(1 +6,)H(Q)7
where )
H(Q) = lim _N log Q(Y(),Yl, e 7YN—1)

is the specific entropy of (). This together with (5.1) and (5.2) shows that liminf and
lim sup appearing in the statement of the lemma are given by

—mq Y v(z)logv(z) — Eq log pr, — H(Q) (5.3)
zeFE

plus terms that are O(e). It remains to verify that for ) satisfying the assumptions of the
lemma, H(Q; Q") is given by (5.3): Let .y := d(Yy,...,Yn_1). By the form of Q°,

h@Qlryi QL)

1 _ QWY,...,y"N-D)
= — QWY ...,y"")log -
N y“”,.%Nl) QO(y(O)’ ce ay(N 1))
1 _ _
= N Z Q(y(0)7 A 7y(N 1)) log Q(y(0)7 A 7y(N 1))
YO, y(N=1)
1 S Qu© (N-1)y Nflo .
N Yy g Py
y(o) __7y(N*1) ZIO

ly© |+ 4]y -1

1 _ _
% Y QO Y)Y ternley®, Y Y))

y(o)“,,,y(N*l) .7:0

— —H(Q) —Eq log pr, — mQZ ) log v(x)

by ergodicity of () and Lemma 6. O
Lemma 8. Let Q € #Z N PShift(ENZ) be shift-ergodic and satisfy mq = Eqg Lo < oo, let
O C P(E%) be an open neighbourhood of Q. Then we have

hmmf—log]P’(RN €cO0|X)>-H(Q;:Q%  as. (5.4)

N—oo

Proof. Let Q be defined from Q via (3.1) as in Section 3. By Remark 3, there is a
measurable function f : EZ x [0,1] — Z such that if U ~ uniform([0,1]) independent of

X, and A := f(X,U), then .Z(HA(X)) = Z5(k(Y)) (in fact, we can assume A <0). Let
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us further assume that we have set up things on a joint probability space in such a way
that YY) ~ Q and i
k(Y1) = 02(X). (5.5)

We may assume that O is given by

!/gz Qdy)| < e, i=1,. K}

for bounded functions g; : EZ — R depending on finitely many coordinates and €; > 0.
By shift-invariance, we can and shall assume that g1, ..., gk depend only y @ yM) for
some M € N, and we can equivalently treat g; as a function on FM*1,

For z € EZ, M as above, N € N, 0 < jo < j1 < -+ < jn4m write

- 1 «—
N,M A
Rj07j17~~~7jN+M(x) N Z 5(~’U|ji
=0

for the element of P(EM *1) one obtains by cutting z at the given cut-points j; and then
building the empirical measure of order N of M-tuples out of the result. This allows to
rewrite

N+M
P(Ry € O]X) = Z H Pii—ji-rLoon (R]O:le SIN4 M (X))
0<jo<j1<--<jn4+m =0
= Fyo(X), (5:6)
where
{QeP(EM+1 y/ Qdy)| < e,i=1,. K}

is the projection of O to P(EM+1). Note that the random variable lim inf % log Fy,0(X)
is adapted to the tail-o-algebra of X, and thus almost surely constant. This implies

| o] 1
l}\gl_glofﬁlogFMo(X)—l}\lgriglofﬁlogFN,o(H X) as. (5.7)

(as there is a ¢ € R and set B C E7 of full v®Z-measure on which liminf 3 log Fy,0(X) =
¢, and v®% = 1®Z o §).

Applying (5.7) |A| times, in view of (5.5), we obtain
lim inf % logP(Ry € O| X) = liminf % log Fn,0(X)

1 K 1
= liminf N log Fiy 0(6° X) = lim inf N log Fy,0(k(Y))

N+M
... 1 ~N,M
> liminf N log Z H Pii=ji-11oan (Rj07j1,.._7jN+AI (R(Y)))
0<jo<j1<-<jn+m<(mq+e)(N+M) =0
> hrnlnf logIE [ 6RN)1(Lo + -+ Ly < (mg + €)(N + M))

X exp < —log Q(Ly, . .. 7LN+L—1J!VH(A3;)|o...(mQ+e)(N+M))
+

+ > log pu) K
=0

Y)|0...(mQ+e)(N+M) .
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Furthermore:

Q(Lo, - -, Ln-116()o. .(more)(N+a1)
Q(L07 s 7LN—l"%(Y)’O...(mQ+e)(N+M))

lim log

Jim = =0 (5.8)

almost surely under ) (and hence also under Q) To see this observe that the quotient

inside the log is equal to

Q(Lo, - Ln-1,6(Y)|o...(mg+e)(N+1)) y Q(E(Y)lo...(mg+e)(N+1))
Q(L()v .oy Ln—1, ’{(Y)|0...(mQ+e)(N+M)) Q(E(Y”O(mQ—l—e)(N—l-M))

The first factor above is Lo/Eq Lo for all N, the second is a fixed strictly positive random
variable — Z5(k(Y)) and Z5(k(Y)) are mutually absolutely continuous — so taking
logarithms and dividing by N yields 0 as N — o0.)

By Lemma 7,
1 Q(Los- s Ln-1l6(Y)lo...(mote)(N+M))
lim sup — log — < < H(Q; Q%) + 4(e) (5.9)
N—oo NV HzJi—EM ! PL;

Q-almost surely (and hence also Q-almost surely). Furthermore, Ry — @ (Q- and Q-
almost surely). Combining, we can bound

Fryo(r(Y)) > exp(— NH(Q:Q") +2¢+6(e)) Q(An|u(Y)),

where
Q(Los -, LN—1[5(Y)0...(mpy+e) (N4 1))
1 Q
oy { | % 198 5T I m e ey il <€ Lo+ + Lytw < (mg + e)(N + M), }
€ Q(L 7~~~7L — |H( )l m € ) )
log L0 Lo g V) (i @0) + e+ 6(e), By € O

As Q(AN|k(Y)) —N—oo 1 (because almost sure limits remain unchanged under typical
conditioning), we obtain liminf £ logP(Ry € O|X) > —H(Q; Q") — 2¢ — §(e). O

6 Proof of Theorem 1 and Corollary 1

Proof of Thm. 1. Taking M — oo in Lemma 5 yields (1.7) for any fixed F C P(E®%)
closed. Using the fact that the weak topology on P(E®Z) is countably generated it is
standard to strengthen the bound to hold with probability one simultaneously for all closed
F, see e.g. [2], proof of Prop. I11.2, (2).

For fixed open G C P(E®%), (1.8) follows from Lemma 8: note that we can restrict to
Q € GNZNPE(E”) with H(Q; Q") < oo, for otherwise the lower bound is trivial. For
such @, we have Eg Ly < oo by (3.3), so that Lemma 8 applies. Again, we can strengthen
the statement to all open sets simultaneously as in [2]. O

Proof of Cor. 1. (1.9) is essentially Varadhan’s Lemma applied to the scenario at hand.
The only twist is that in the lower bound (1.8), we have the restriction that Q € P°&(E?%).
Note that the rate function
.O0)
QH{ H(Q:Q") it Qe
00

otherwise
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has compact level sets by Lemma 3. Thus the upper half of (1.9), namely

hrnsup—logIE[exp N/ RN dy ‘X} sup {}
N Qe%mpshifc (EZ)

is standard, use e.g. Lemma 4.3.6 in [3] in conjunction with (1.7).

Using (1.8) in the standard proof of the lower half (e.g. Lemma 4.3.4 in [3]) we obtain

limj\finf%logE[---‘X} > sup {/CP( NQdy“)) — H(Q; QO)} (6.1)

QeZNPere(EL)

to begin with. The mapping Q — [ ®dQ is linear, @ — H(Q; Q") is affine (see e.g. [4],
(5.4.23)), so using the decomposition of Q € P"if'(E%) into ergodic components (e.g. [4],
Thm. 5.2.16) we see that the right-hand side of (6.1) is in fact equal to

s { [ e)0) - H@:Q")}.

Qe%ﬁPShift (EZ)

completing the proof of (1.9). O
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