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Abstract

We investigate the stability of the three-phase contact-line of a thin
liquid ridge on a hydrophobic substrate for flow driven by surface tension
and van der Waals forces. We study the role of slippage in the emerging
instability at the three-phase contact-line by comparing the lubrication
models for no-slip and slip-dominated conditions at the liquid/substrate
interface.

For both cases we derive a sharp-interface model via matched asymp-
totic expansions and derive the eigenvalues from a linear stability analysis
of the respective reduced models. We compare our asymptotic results with
the eigenvalues obtained numerically for the full lubrication models.

1 Introduction

Contact-line instabilities for thin liquid films that wet a solid substrate have

been studied for decades, both theoretically and experimentally. The instabilities

are typically driven by forces such as gravity [1, 2, 3, 4], Marangoni stresses or

both [5, 6, 7, 8, 9]. The derivation of reduced mathematical models exploits

the separation of length scales to obtain a simplified lubrication model from the

underlying Stokes equations in conjunction with conservation of mass. The stress

singularity at the three-phase contact line, which is inherited by the resulting

fourth-order partial differential equations, is regularized for example via a slip

boundary condition or a precursor model, where the height of the precursor or

the slip length are usually much smaller than the height of the actual wetting film.

The choice of the boundary condition at the three phase contact line typically

enters only weakly in that it is believed that it does not significantly influence

the eventual appearance of fingers; see for example [3, 8, 10, 11].

Compared to the wetting scenarios, the film thickness in dewetting experiments

is typically orders of magnitude smaller. The physical situation on which we

focus here consists of a thin viscous polymer film that is uniformly spread on a
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substrate such as a silicon wafer with a hydrophobic coating. For such a multi-

layered system one can reconstruct the disjoining pressure from a corresponding

intermolecular potential which is composed of attractive long-range van der Waals

contributions and a short-range term which accounts for Born-type repulsion,

see e.g. [12, 13]. The latter term provides a cut-off by penalizing a thinning

of the film below a positive thickness threshold given by the minimum of the

potential. In such a situation the thin film dewets in a process that is initiated

either spontaneously through spinodal decomposition or is induced, for example

through nucleation. The dry spots, or holes, that form as a result subsequently

grow as the newly-formed contact line recedes, thereby accumulating liquid in

a characteristic capillary ridge at the edge of the hole, which increases in width

and height as the dewetting proceeds. In a variety of experimental situations

it is observed that, while in some cases the growth of the hole continues until

it collides with neighboring holes, in others the ridge of the hole destabilizes

into finger-like structures, eventually pinching off to form droplets. Such finger-

like contact-line instabilities have also been observed for straight (as opposed to

radially-symmetric) dewetting fronts; see [14, 15, 16, 17, 18, 19, 20]. Because

of the impact this has on the emerging macroscopic pattern, it is important to

understand the dynamics leading to such an instability.

For such situations, the relevance for the instability of slippage at the liquid/solid

interface has been discussed by several authors, [21, 22, 23, 24, 25]. In [26, 27, 28]

the dewetting rate and shape of the ridge have been treated using approximate

formulas derived from scaling arguments and energy balances. In comparison to

wetting phenomena, however, contact-line instabilities for dewetting thin films in

the context of lubrication theory have received much more limited attention.

In order to capture the dynamics of the contact-line instability it is convenient

to describe the evolution of the film surface z = h(x, y, t) via a lubrication ap-

proximation that includes the influence of surface tension and the intermolecular

potential φ(h) of the air/liquid/solid layer. Coordinates have been introduced

here so that x, y denote directions parallel to the (planar) substrate and z the

direction normal to it. In this case the pressure at z = h(x, y, t) is given to leading

order in the thin-film approximation by

p = −Δh + φ′(h). (1.1)

where φ′(h) is the first derivative of the intermolecular potential with respect to

the liquid film thickness h. A typical choice for φ(h), and the one we will adopt
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in this paper, is [12]

φ′(h) = ε−1Φ′(h/ε), where Φ(v) =
1

8v8
− 1

2v2
. (1.2)

Note that Φ′(1) = 0 and Φ′′(1) > 0, so that φ has a minimum at h = ε � 1; the

reason for incorporating the dependencies upon ε embodied by (1.2) will become

clear in sections 3 and 4. This implies that very thin films with a thickness

scale of ε are energetically preferred to, in particular, thicker films, and the latter

therefore tend to dewet. Making use of the length-scale separation in the x, y

vs. z directions, one can then derive the lubrication model [29] from the Stokes

equations and (1.1), namely

ht + ∇ · [hn∇ (Δh − φ′(h))] = 0, (1.3)

stated here (as are all equations in this paper) in non-dimensional form. Here hn

is the mobility coefficient, where the power n depends on the boundary conditions

at the liquid/solid interface. A widely used condition relates the slippage velocity

u of the liquid at the wall to the local shear rate uz via

u = b uz at z = 0, (1.4)

where the slip length β is defined as the distance below the substrate at which

the liquid velocity extrapolates to zero. For the above slip boundary condition,

the no-slip condition is obtained if b = 0. On the other hand, for large b one can

show [24], [25] that the mobility is h2. In [24] a linear stability analysis showed

that small perturbations of the receding front are amplified, and by orders of

magnitude larger in the slip-dominated case than in the no-slip one. Moreover,

while the perturbations of the contour lines become very symmetrical with respect

to the maximum of the ridge in the no-slip case, they are asymmetrical in the slip-

dominated regime and in [30] it was shown via numerical simulations that these

properties carry over into the nonlinear dynamics of the perturbations. In the

context of lubrication models for dewetting shear-thickening liquids, [31] derived

asymptotic solutions for the shape of the dewetting ridges, their dewetting rates

and their contact-line instability via matched asymptotic expansions. In [32]

a variational formulation was used to obtain a free boundary problem for the

contact line for the no-slip situation, and a stability analysis of the contact-line

motion was performed in [33].

The purpose of this paper is study the role of slippage on the instability of the

three-phase contact line by comparing linear stability results for the lubrication
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models with mobilities h3 and h2. We pursue this by considering the simplest

situation of the evolution of a perturbed stationary ridge. For this problem we first

derive sharp-interface models for the lubrication models via matched asymptotic

expansions. The resulting reduced models turn out to be simple enough to enable

in some cases the derivation of the dispersion relation analytically and they allow

good – and for the slip-dominated case even excellent – comparison with our

numerical results.

We begin our analysis by first studying the stability of the ridge numerically

in section 2. In section 3 and 4 we derive the sharp-interface models and the

corresponding dispersion relations and compare them to our numerical findings.

2 Stationary ridges and their stability

In this section we study numerically the contact-line instability of a stationary

ridge that initially extends to ±∞ in the y-direction, and is symmetrical about

zero in the x-direction, and assumes the (small) equilibrium height εh∞ for x →
±∞. We thus begin with the lubrication model (1.3), (1.2), together with the

boundary conditions

lim
x→±∞

h(x, y, t) = εh∞. (2.1)

From (1.3), (2.1), the ridge profiles can readily be found by dropping all terms

with derivatives in t and y and integrating the resulting ODE. The constants of

integration are determined by the far-field conditions, and we obtain, after two

integrations,

hx = ±21/2 [φ(h) − φ(εh∞) − φ′(εh∞)(h − εh∞)]
1/2

. (2.2)

The plus sign applies for the left side of the ridge and the minus sign for the

right. We assume in our scalings that the cross-sectional area of the fluid in the

ridge is such that its maximum is one (without losing generality, since this can

always be achieved by rescaling the equation with hmax and redefining ε). This

assumption implies that the right-hand side of (2.2) must be zero for h = 1, i.e.

we must observe the constraint

φ(1) − φ(εh∞) − φ′(εh∞)(1 − εh∞) = 0. (2.3)

This fixes h∞ for a given ε (on which φ depends). One easily finds for (1.2) that

h∞ ∼ 1 + ε/16 as ε → 0. Note that h∞ = 1 + O(ε) holds more generally as long
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as φ′(ε) = 0. Profiles for the ridges for different values of ε are shown in figure

1; note that the base states do not depend on the mobility hn, and hence are the

same for the no-slip and the slip cases.

Next we probe the stability of these equilibrium solutions with respect to distur-

bances in the y-direction via the normal modes ansatz

h(x, y, t) = h0(x) + βh1(x; k)eiky+σt, where 0 < β � 1,

and h0(x) is the previously-found ridge profile. Introducing this into (1.3) and

(2.1) we obtain the O(β) problem

σh1 + ∂x

[
hn

0∂x

(
h1xx − k2h1 − φ′′(h0)h1

)]
−k2hn

0

(
h1xx − k2h1 − φ′′(h0)h1

)
= 0 , (2.4)

and

lim
x→±∞

h1(x; k) = 0. (2.5)

The eigenvalue problem (2.4), (2.5) was solved on a sufficiently large, finite do-

main using a standard finite-difference discretization scheme and inverse vector

iteration to calculate the two eigenvalues with the largest real part, for a range

of wavenumbers k. It turns out that both eigenvalues are real. One is negative

for all k > 0 while the other is positive for all nonzero wave-numbers below a

certain cut-off value kc, and negative k > kc. This unstable one is a peristaltic

mode, whereby the sinusoidal perturbations of the contact lines on each side of

the ridge are out of phase by half a wavelength. The other, i.e. stable, eigenvalue

corresponds to perturbations that are in phase, i.e. are zig-zag modes. Details of

the results can be found in figure 2 for the peristaltic and figure 3 for the zig-zag

mode. Note that the eigenvalues do (of course) depend on the mobility, i.e. on

the value of n. In figure 2 the wavelength of the unstable mode and its growth

rate are slightly larger for the slip than for the no-slip case, while the cut-off

(neutrally-stable) wavenumbers kc are quite close. The difference is even more

dramatic for the zig-zag mode, where the eigenvalue for the slip case is about

twice that for no-slip.
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Figure 1: The ridge profiles for different values of ε. On the right side, the axis for

h0 has been scaled logarithmically to enlarge the thin profiles beyond the ‘contact

lines’.
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Figure 2: The growth rates for the (unstable for 0 < k < kc) peristaltic mode for

different values of ε, for the no-slip case n = 3 (left) and for the slip case n = 2

(right).
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Figure 3: The (negative) growth rates for the (stable) zig-zag mode for different

values of ε, for the no-slip case (left) and for the slip case (right).
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3 Sharp-interface model for the slip-dominated

case

3.1 Derivation of the model

Outer problem

We start from equation (1.3) for n = 2, i.e.,

ht + ∇ · [h2∇ · (�h − ε−1Φ′ (h/ε)
)]

= 0 (3.1)

and the far-field conditions

lim
x→±∞

h(x, y, t) = εh∞; (3.2)

recall that h∞ satisfies (2.3) and is of O(1).

Transformation to inner coordinates near contact line

Let x = (x, y) be a point in the neighbourhood of the contact line, which we

parametrize by r(t, s) = (r1(t, s), r2(t, s)), where s denotes arclength. Then

x = r(t, s) + εzν(t, s) (3.3)

defines the boundary layer with z = O(1), which henceforth denotes the ‘inner’

variable. Note that for an infinite ridge we have two boundary layers, one on each

side of the ridge, hence we have two parameter functions r(t, s) and two pairs of

normal and tangent vectors. The normal vectors ν(t, s) = (r2s(t, s),−r1s(t, s))

point outside the ridge and the unit tangent vectors t(t, s) = (r1s(t, s), r2s(t, s))

are oriented upwards, i.e. such that r2s(t, s) > 0. In the inner region the height

is much less than one, the appropriate scaling being

h = εv. (3.4)

Making use of appendix A we obtain the expression

∇ · (h2∇p
) ∼ ε2

[
2v
(
r1s(1 − εzκ)vs + ε−1r2svz

) (
r1s(1 − εzκ)ps + ε−1r2spz

)
+2v

(
r2s(1 − εzκ)vs − ε−1r1svz

) (
r2s(1 − εzκ)ps − ε−1r1spz

)
+v2

(
ε−2pzz + ε−1κpz + pss − zκ2pz

)]
(3.5)
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where

p ∼ −ε−1vzz − κvz − εvss + εzκ2vz + ε−1Φ′(v) (3.6)

and κ is the curvature of the contact line. Hence, to leading order in ε the second

term of (3.1) is

ε−1
[
v2 (vzz − Φ′(v))

]
z

. (3.7)

Since the first term of (3.1) is transformed to

ht ∼ −εV t(1 − εzκ)vs + V νvz + εvt , (3.8)

where we denote the tangential and normal velocities by

V t = xt · t , V ν = xt · ν , (3.9)

the leading order the inner problem becomes

[
v2 (vzz − Φ′(v))

]
z

= 0 (3.10)

together with the boundary conditions

lim
z→+∞

v = 1, lim
z→+∞

vz = 0, lim
z→+∞

vzz = 0 . (3.11)

Integrating (3.11) twice, using the fact that the potential Φ′(1) = 0, since Φ has

a minimum there, we get vzz = Φ′(v), hence

vz = −21/2 (Φ(v) − Φ(1))1/2 . (3.12)

For matching we need the behavior for large z, which is

vz → −21/2 (−Φ(1))1/2 ≡ −λ as z → ∞. (3.13)

where the constant λ here corresponds to the macroscopic contact angle. For

future reference, we remark that for the specific potential (1.2), the numerical

value for λ is 0.8660. Transformation back to outer variables via

v ∼ zλ , where z =
(r − x) · ν

ε
,

yields

h ∼ (r − x) · ν λ. (3.14)
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The following sharp-interface model then results as the leading-order outer prob-

lem, together with the boundary condition found by matching to (3.14),

ht = −∇ · (h2∇�h) in Ω, (3.15)

∂h

∂ν
= −λ , h = 0 , h2 ∂

∂ν
�h = 0 on ∂1Ω = (s−(y, t), y) (3.16)

∂h

∂ν
= −λ , h = 0 , h2 ∂

∂ν
�h = 0 on ∂2Ω = (s+(y, t), y), (3.17)

where the third boundary condition in (3.16) and (3.17) arises by letting z → −∞,

v → ∞ in (3.10). The tangent and outward-normal vector along ∂1Ω are

t− =
(s−y , 1)√
(s−y )2 + 1

and ν− =
(−1, s−y )√
(s−y )2 + 1

, (3.18)

while along ∂2Ω they are

t+ =
(s+

y , 1)√
(s+

y )2 + 1
and ν+ =

(1,−s+
y )√

(s+
y )2 + 1

. (3.19)

3.2 Stationary-ridge solution

We now assume that the base state is not dependent of t and y, so that it is

determined by the boundary value problem

(h2px)x = 0 , with p = −hxx, (3.20)

∂h

∂ν
= (hx, 0) · (−1, 0) = −hx = −λ, h = 0 , h2hxxx = 0 on s−, (3.21)

∂h

∂ν
= (hx, 0) · (1, 0) = hx = −λ , h = 0 , h2hxxx = 0 on s+. (3.22)

Integrating (3.20) twice and using the third (mass-conservation) boundary con-

ditions in (3.21) and (3.22) we find that hxx = −c. Integrating this twice and

using the first two boundary conditions in (3.21) and (3.22) we get

h =
1

2
c(x − s−)(s+ − x) , and c(s− − s+) = −2λ. (3.23)

Transforming the coordinate system again by setting s+ = s0 and s− = −s0, we

obtain the base state in the simplified form

h0 =
1

2
c(s2

0 − x2) , and cs0 = λ. (3.24)
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If we again normalize by choosing maxh0 = 1 then we obtain

s0 =
2

λ
, and c =

λ2

2
. (3.25)

3.3 Linear stability

We now investigate the linear stability of the base solution of the previous sub-

section. Let

s± = ±s0 + βs±1 (y, t) , p = c + βp1(x, y, t) , h = h0 + βh1(x, y, t). (3.26)

At O(β) we get

h1t = (h2
0p1x)x + h2

0p1yy with p1 = −h1xx − h1yy (3.27)

and the boundary conditions

h1x =
λ2

2
s±1 , at x = ±s0 , (3.28)

h1 = ±λ s±1 , at x = ±s0 , (3.29)

h2
0h1xxx = 0 , at x = ±s0 . (3.30)

We make the usual ansatz

[ s±1 (y, t), p1(x, y, t), h1(x, y, t) ] = [ ŝ±, p̂(x), ĥ(x) ] eσt+iky (3.31)

and obtain from (3.27)-(3.30) and the variable transformation

ξ =
λ

2
x, k̃ =

2

λ
k, σ̃ =

16

λ4
σ, s̃0 =

λ

2
s0 (3.32)

the eigenvalue problem

σ̃ĥ = −
(

h2
0

(
ĥξξ − k̃2ĥ

)
ξ

)
ξ

+ k̃2h2
0

(
ĥξξ − k̃2ĥ

)
(3.33)

ĥξ = ±ĥ , at ξ = ±1 (3.34)

0 = h2
0ĥξξξ , at ξ = ±1 (3.35)

where

h0 = 1 − ξ2. (3.36)

The ODE (3.33) has regular singular points at the boundary, i.e. at ξ = ±1. The

formulation is symmetric in ξ, so the discussion of the behaviour of the general
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Figure 4: The top first eigenvalue (left figure) having even eigenfunction and the

second eigenvalue (right figure) having odd eigenfunction, for the slip-dominated

case. The results for the asymptotic model obtained from (3.32)-(3.36) are shown

by a solid line, the results for the full model shown by dashed lines with symbols.

solution at ξ = ±1 can be done jointly for both points by setting ζ = ξ + 1 and

ζ = 1−ξ for the left and right point respectively. This maps the boundary points

to zero and yields the ODE (dropping the ˆ’ s and ∼ ’s)

hζζζζ +
4(1 − ζ)

ζ(2 − ζ)
hζζζ − 2k2hζζ − k2 4(1 − ζ)

ζ(2 − ζ)
hζ

+

(
σ

ζ2(2 − ζ)2
+ k2ζ2(2 − ζ)2

)
h = 0. (3.37)

The general solution is given by h(ζ) =
∑4

i=1 Cihi(ζ), where the expansions of

the first two basis functions hi are given at ζ = 0 by the Taylor expansions

h1(ζ) = ζ2 + O(ζ4), h2(ζ) = ζ + O(ζ3). (3.38)

The expansions for the remaining two basis functions are

h3(ζ) = 1 + O(ζ6), h4(ζ) = ζ ln(ζ) + O(ζ2 ln(ζ)) (3.39)

if σ = 0, and

h3(ζ) = 1 − σ

8
ζ2 ln(ζ) + O(ζ3), h4(ζ) = 1 − σ

4
ζ ln(ζ) + O(ζ3 ln(ζ)) (3.40)

otherwise. Note that here only h3 in (3.39) is a Taylor expansion, while logarithms

otherwise appear in the expansions for h3 and h4. In fact, h4 is too singular to

satisfy the boundary conditions (3.35), which in terms of ζ require ζ2hζζζ → 0 at

ζ → 0. Thus we must set C4 = 0. The other boundary condition (3.34) requires
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hζ + h → 0, from which we get the condition C2 + C3 = 0. In any case, this

amounts to two conditions that are imposed on the general solution at each end

of the interval, as required for a fourth-order boundary value problem.

We solved the eigenvalue problem (3.33)-(3.36), using a finite difference/vector

iteration scheme, and compared the first two eigenvalues with those obtained for

the full model in section 2, both being real for both models. The comparison is

shown in figure 4, in terms of the wavenumber k and eigenvalue σ used in (3.31).

It can be clearly seen that the eigenvalues for the full problem rapidly converge

to the sharp-interface results as ε → 0.

4 Sharp-interface model for the no-slip situa-

tion

4.1 Derivation of the model

Outer problem

We start from equation (1.3) for n = 3, i.e.

ht + ∇ · [h3∇ · (�h − ε−1Φ′ (h/ε)
)]

= 0 (4.1)

and far-field conditions

lim
x→±∞

h(x, y, t) = εh∞; (4.2)

recall that h∞ satisfies (2.3) and is of O(1). To capture the instability we trans-

form to the appropriate slow time scale via the logarithmic time dilatation

τ = δt , δ :=
1

ln(1/ε)
. (4.3)

Then (4.1) becomes

δhτ + ∇ · [h3∇ · (�h − ε−1Φ′ (h/ε)
)]

= 0. (4.4)

Note, that this can also be written as

δhτ −∇ · (h3∇p
)

= 0 where p = −�h + ε−1Φ′ (h/ε) . (4.5)
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Transformation to inner coordinates near contact line

As in section 3 we let

x = r(τ, s) + εzν(τ, s) (4.6)

define the boundary layer with z being the ‘inner’ variable and set

h = εv (4.7)

Making use again of appendix A we obtain the expression

∇ · (h3∇p
) ∼ ε3

[
3v2
(
r1s(1 − εzκ)vs + ε−1r2svz

) (
r1s(1 − εzκ)ps + ε−1r2spz

)
+3v2

(
r2s(1 − εzκ)vs − ε−1r1svz

) (
r2s(1 − εzκ)ps − ε−1r1spz

)
+v3

(
ε−2pzz + ε−1κpz + pss − zκ2pz

)]
(4.8)

where p is given via appendix A, as in (3.6). The first term of (4.5) is transformed

to

δhτ = −εδV t(1 − εzκ)vs + δV νvz + εδvτ . (4.9)

Hence, to leading order, the inner problem reduces to[
v3(vzz − Φ′(v))

]
z

= 0 (4.10)

with

lim
z→∞

v = 1, lim
z→∞

vz = 0, lim
z→∞

vzz = 0 .

As in section 3 we find

vz = −21/2 (Φ(v) − Φ(1))1/2 , (4.11)

so that the slope is

vz → −
√

−2Φ(1) = −λ for z → −∞. (4.12)

Higher order approximations for the slope may be found as demonstrated in

appendix B.

Transition layer

In order to be able to match, we here need an additional transition layer. The

layer that properly connects outer and inner layers is found by setting

ζ = δV ν ln z , v = z ϕ(ζ), (4.13)
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see [34] for details. Substitution of this into (4.8) and (4.9) we obtain the leading-

order problem, assuming 1 − ζ/V ν > 0,

ϕ + ϕ3ϕζ = 0 (4.14)

with solution

ϕ ∼ (K − 3ζ)1/3. (4.15)

Hence ϕ = K1/3 + O(ζ) for ζ → 0. Matching this to the solution of (4.11) using

(4.12), we find that K = λ3 and so

ϕ = (λ3 − 3ζ)1/3. (4.16)

Sharp-interface model

We can now derive a matching condition from (4.16) by transforming it back into

the outer variables. From (4.13) we have

v = z
(
λ3 − 3 δV ν ln z

)1/3
, where z =

(x − r) · ν
ε

(4.17)

so that

h = (x − r) · ν (λ3 − 3V ν)1/3 + O(δ) (4.18)

The following sharp-interface model then results as the leading-order outer prob-

lem, the boundary conditions being found by matching

∇ · (h3∇�h) = 0 in Ω, (4.19)

∂h

∂ν
= −(λ3 + 3V ν)1/3 , h = 0 , h3 ∂

∂ν
�h = 0 on ∂1Ω, (4.20)

∂h

∂ν
= −(λ3 + 3V ν)1/3 , h = 0 , h3 ∂

∂ν
�h = 0 on ∂2Ω. (4.21)

4.2 Stationary-ridge solutions and their linear stability

The stationary-ridge solutions of the sharp-interface model are the same as for the

sharp-interface model for the slip case, i.e. parabolas with maximum normalized

to one, and support [−s0, s0], as stated in (3.24), (3.25). Now we again per-

turb these solutions, including the boundaries of the support, with normal-modes

perturbations,

s± = ±s0 + βs±1 (k) eσ̂τ+iky, h = h0 + βh1(x; k) eσ̂τ+iky, (4.22)

14



0 0.5
wavenumber k

-0.15

0

0.15

0.3

gr
ow

th
 r

at
e 

 σ ^

ε = 0.0397
ε = 0.997e-2
ε = 1.00e-3

0 0.4
wavenumber k

-0.08

0

gr
ow

th
 r

at
e 

 σ ^

ε = 0.0397
ε = 0.997e-2
ε = 1.000e-3

Figure 5: Here we show the dominant eigenvalue for the no-slip case (left figure)

in outer scales (see (4.22) and (4.3)). The dashed lines with symbols show the

results for the full model for different values of ε as indicated by the legend. The

solid lines show the asymptotic results, using the eigenvalue σ̂+. The second

(non-positive) eigenvalue for the no-slip case, in outer scales, compared to the

asymptotic result σ̂−. The agreement of full and asymptotic model is quite good,

in particular for longer wavelengths.

with 0 < β � 1. Note that σ̂ corresponds to the time variable τ , i.e. the relation

to the growth rate in the scales of section 2 is σ = δσ̂.

We then obtain to O(β) the following eigenvalue problem, where ′ = d/dx,

h′′
1 − k2h1 = 0, for − 2

λ
< x <

2

λ
, (4.23)

h1 ∓ λs±1 = 0 at x = ±2

λ
, (4.24)

h′
1 −

1

2
λ2s±1 = − σ̂

λ2
s±1 at x = ±2

λ
. (4.25)

Note, that the eigenvalue appears only in the last boundary condition. The ODE

(4.23) is easily solved and upon inserting the general solution into the boundary

conditions one finds nontrivial solutions for h1 and s±1 if σ̂ is equal to one of the

two values,

σ̂+ =
1

2
λ3 (λ − 2ktanh(2k/λ)) (4.26)

and

σ̂− =
1

2
λ3 (λ − 2kcoth(2k/λ)) , (4.27)
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i.e. σ̂± are the two eigenvalues. Note that for for shear-thickening liquids a similar

asymptotic result was found in [31].

In figure 5 we compare the leading eigenvalues in outer scales from the numer-

ical results for the full model by solving the eigenvalue problem (3.33)-(3.36) as

before and comparing to the asymptotic values σ̂+ and σ̂−. Note here that the

eigenvalues σ from section 2 have been rescaled appropriately with δ to match the

scaling used for σ̂±. We find as ε → 0 in figure 5 (right) that the numerical results

approach the asymptotic value near the cut-off (neutrally stable) wavenumber kc.

In particular, the cut-off wavenumbers for the numerical results converge to the

zero crossing of the asymptotic curve. In order to capture the linear stability

behaviour for small wave numbers, we have to investigate the long-wave limit.

The long-wave limit

Consider a long wavelength perturbation of the ridge, so that the scales in the

y-direction are much larger than in the x-direction, i.e. let y = ŷ/δ1/2. Hence,

(4.5) is now

δhτ − (h3px)x − δ(h3pŷ)ŷ = 0, where p = −hxx − δhyy + ε−1Φ′ (h/ε) , (4.28)

so that in this case to leading order

h3px = c(ŷ, τ). (4.29)

The boundary conditions h3px = 0 on ∂1Ω and ∂2Ω imply that c(ŷ, τ) = 0 and

p = p(ŷ, τ). Since, to leading order, p = −hxx, integrating twice from s− to s+

yields the parabolic solution

h = −1

2
p(ŷ, τ)(x − s−)(x − s+). (4.30)

Mass conservation leads to

∂

∂τ

(∫ s+

s−

(
x2 − (s− − s+)x + s−s+

)
dx p

)
=

1

4

∫ s+

s−

∂

∂ŷ

(
(x − s−)3(x − s+)3p3 ∂p

∂ŷ

)
dx (4.31)

and hence
∂

∂τ

[
(s+ − s−)p

]
=

3

1120

∂

∂ŷ

[
(s+ − s−)7∂p4

∂ŷ

]
. (4.32)

16



0 0.5 1

wavenumber  k
^

-0.02

0

0.02

gr
ow

th
 r

at
e 

 σ ^

ε=h
*
/max{h

0
}=0.0397

ε=h
*
/max{h

0
}=0.00997

ε=h
*
/max{h

0
}=0.00100

-1.5 -1 -0.5

log
10

 k

-5

-4

-3

-2

lo
g 10

σ

Figure 6: Here we show the dominant eigenvalue for the no-slip case and the

larger solution of (4.47). Note that we show σ̂, i.e. the eigenvalues are scaled

as in figure 5, but the wavenumber is now in the scalings for the long-wave

approximation, k̂ = k/δ1/2. The inset is a double logarithmic plot of part of the

larger figure.

As the boundary conditions on (4.32) we find by matching to the inner solution

that

s±τ = ± 1

3

(∓h3
x − λ3

)
.

Inserting (4.30) for h yields

s±τ = ± 1

3

(
1

8
(s+ − s−)3p3 − λ3

)
. (4.33)

For the base state we note that s± and p are independent of y and t, and using

(4.33), we get

h0 = −1

2
p0(x − s−0 )(x − s+

0 ) , p0(s
+
0 − s−0 ) = 2λ . (4.34)

If we put the origin in x-direction in the middle of the parabolic ridge, then

s+
0 = s0 and s−0 = −s0 and

h0 = −1

2
p0(x

2 − s2
0) , p0s0 = λ . (4.35)

Taking maxh0 = s2
0p0/2 = 1 yields the base state

s0 =
2

λ
, p0 =

λ2

2
. (4.36)
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Perturbation about this base state via

s+ = s0 + βs+
1 (ŷ, τ) + O(β2) , s− = −s0 + βs−1 (ŷ, τ) + O(β2) , (4.37)

p = p0 + βp1(ŷ, t) + O(β2) , (4.38)

yields at O(β) the equations

s2
0 p0(s

+
1 − s−1 )τ + s3

0 p1τ =
4

35
s7
0 p3

0 p1ŷŷ, (4.39)

s±1τ = ±
(

p2
0 s3

0 p1 +
1

2
p3

0 s2
0 (s+

1 − s−1 )

)
. (4.40)

A change of variable

s1 :=
1

2
(s+

1 − s−1 ) , m1 :=
1

2
(s+

1 + s−1 ) (4.41)

simplifies the system to

3 s2
0 p0 s1τ + s3

0 p1τ =
6

35
s7
0 p3

0 p1ŷŷ, , (4.42)

s1τ = p2
0 s3

0 p1 + p3
0 s2

0 s1 , (4.43)

m1τ = 0 . (4.44)

Hence using (4.36)

s1τ +
4

3λ
p1τ =

16

35

1

λ
p1yy , s1τ = λ2

(
2

λ
p1 +

λ2

2
s1

)
. (4.45)

The normal modes ansatz

s1(ŷ, τ) = aeσ̂τ+ik̂ŷ and p1(ŷ, τ) = beσ̂τ+ik̂ŷ (4.46)

yields then the following quadratic equation for the growth rate σ̂

σ̂2 +

(
λ4 +

12

35
λ2k̂2

)
σ̂ − 6

35
λ6k̂2 = 0 . (4.47)

A comparison of the larger of the two solutions of (4.47) with the results for

the full model in section 2 is shown in figure 6, in terms of k̂ and σ̂. Indeed,

the agreement is good for small wave numbers and improves as ε is decreased.

The other solution of (4.47) tends to a non-zero O(1) for k → 0, hence does not

correspond to any of the two eigenvalues of the full problem we investigate here,

which are both neutrally stable for k = 0.
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Figure 7: Her we compare the asymptotic composite solution (dashed line) to the

eigenvalue problem for the full problem (3.33)-(3.36) (solid line) for ε = 0.0397

(left) and ε = 1.000×10−3 (right). The wavenumbers and growth rates are scaled

as in section 2.

Composite solution

Finally, we can also compare the asymptotic composite solution with the solution

to the eigenvalue problem for the full problem (3.33)-(3.36). For this we focus

on the first eigenvalue. Equation (4.26) yields an approximation of σ = δσ̂ for

k = O(1), while (4.47) is valid if k̂ = O(1). Expanding the former at k = 0 yields

σ = δσ̂ ∼ δ

(
1

2
λ4 − 2 λ2k2 +

8

3
k4

)
(4.48)

Expanding the solution of (4.47) at k̂ = ∞ we find after replacing k̂ by k/δ1/2

σ = δσ̂ ∼ 1

2
δ λ4 − 35

16
δ
λ6

k2
. (4.49)

Hence δλ4/2 is the common part of both expansions. We therefore construct

the composite solution by multiplying the solution of (4.47) (times δ) with the

expression (4.26) (times δ) and then dividing by the common part. A comparison

of this composite solution with our numerical results for the full model can be

seen in figure 7.

5 Conclusion

In this paper we have derived sharp-interface models for a stationary ridge from

the lubrication models with mobilities h3 and h2, corresponding to the no-slip
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boundary condition at the liquid/solid interface and an intermediate slip condi-

tion, respectively. For this simple situation we were able to derive, in the no-slip

case, analytical expressions for the dispersion relations that characterize the lin-

ear stability of the three-phase contact line. The instability mechanism is closely

related to Rayleigh-Plateau instability of a free cylinder of fluid – as the peri-

staltic pertubations grow, the ridge can be expected to break up and eventually

form droplets with circular contact lines in order to reduce its surface area. Our

approach can be generalized to the situation of a dewetting ridge, the major dif-

ferences being that the base state is not stationary and non-symmetrical due to

the non-symmetrical form of the boundary conditions.
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Appendix A

Transformation to inner variables

For completeness we include here the transformation formulae for the innere

region.

Suppose w̃ is a quantity defined in the inner coordinates (s, z, τ). Then its deriva-

tives are related to the derivatives of the corresponding quantity w in outer co-

ordinates via the invertible transformation matrix

M =

⎛
⎜⎝

0
Q 0

xτ yτ 1

⎞
⎟⎠ , where Q =

(
xs ys

xz yz

)
, (A.1)

by ⎛
⎜⎝ w̃s

w̃z

w̃τ

⎞
⎟⎠ = M

⎛
⎜⎝ wx

wy

wτ

⎞
⎟⎠ . (A.2)
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Since s is arclength, we have

r2
1s + r2

2s = 1 , r1sr1ss + r2sr2ss = 0 , κ(s, τ) = r1sr2ss − r2sr1ss (A.3)

and the (two-dimensional) Frenet-Serret formulae

ts = κν , νs = −κt , (A.4)

so that

r1ss = −κr2s , r2ss = κr1s . (A.5)

Hence

xs = (1 − ε z κ)t , xz = εν , det Q = ε(1 − ε z κ) . (A.6)

Now we can express the derivatives with respect to the outer variables of a quan-

tity w in terms of the inner variables by⎛
⎜⎝ wx

wy

wτ

⎞
⎟⎠ =

⎛
⎜⎝ 0

Q−1
0

−xτ · Q−1 1

⎞
⎟⎠
⎛
⎜⎝ w̃s

w̃z

w̃τ

⎞
⎟⎠

∼

⎛
⎜⎝ r1s(1 + εzκ) −ε−1r2s 0

r2s(1 + εzκ) ε−1r1s 0

−V t(1 + εzκ) −ε−1V ν 1

⎞
⎟⎠
⎛
⎜⎝ w̃s

w̃z

w̃τ

⎞
⎟⎠ (A.7)

as ε → 0, where we have used the approximation 1/(1− εzκ) = 1 + εzκ + O(ε2).

The second derivatives then transform as follows:

wxx ∼ ε−2r2
2sw̃zz − ε−1

[
κr2

1sw̃z + 2r1sr2sw̃sz

]
+ r2

1sw̃ss

−2κr1sr2sw̃s − zκ
[
κr2

1sw̃z + 2r1sr2sw̃sz

]
(A.8)

wyy ∼ ε−2r2
1sw̃zz − ε−1

[
κr2

2sw̃z − 2r1sr2sw̃sz

]
+ r2

2sw̃ss

+2κr1sr2sw̃s − zκ
[
κr2

2sw̃z − 2r1sr2sw̃sz

]
(A.9)

wxy ∼ −ε−2r1sr2sw̃zz − ε−1
[
κr1sr2sw̃z +

(
r2
2s − r2

1s

)
w̃sz

]
+r1sr2sw̃ss − κ

(
r2
2s − r2

1s

)
w̃s

−zκ
[
κr1sr2sw̃z +

(
r2
2s − r2

1s

)
w̃sz

]
(A.10)

�w ∼ ε−2w̃zz − ε−1κw̃z + w̃ss − zκ2w̃z (A.11)
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Appendix B

Higher order approximation for the slope

Higher order in δ approximations for λ (the slope used in the main part of the

paper will be denoted here by λ0) may be achieved by starting with the equation

(4.4)

δhτ + ∇ · (h3∇ · [�h − ε−1Φ′(h/ε)
])

= 0. (B.1)

In inner scales, keeping O(δ) terms, we obtain with h = εg

δṡgz ∼
(
g3 (gzz − Φ′(g))z

)
z

. (B.2)

Integrating yields

δṡ(g − h∞) ∼ g3 (gzz − Φ′(g))z , where h∞ ∼ 1. (B.3)

Let g ∼ g0 + δg1, then to leading order in δ we find

1

2
g2

0z = Φ(g0) − Φ(1), so that λ0 =
√

2(−Φ(1)), (B.4)

or, if we set

g0z = −Ψ(g0) , we find λ0 = Ψ(∞) . (B.5)

To next order we get

ṡ(g0 − 1) = g3
0 (g1zz − Φ′′(g0)g1)z . (B.6)

Integrating this yields

g1zz − Φ′′(g0)g1 = ṡ

∫ z

−∞

g0 − 1

g3
0

dz = ṡ

∫ ∞

g0

g − 1

g3Ψ(g)
dg (B.7)

If we denote

Ω(g0) =

∫ ∞

g0

g − 1

g3Ψ(g)
dg , (B.8)

then, making use of (B.4), we obtain the equation

g0zg1zz − g1g0zzz = ṡΩ(g0)g0z (B.9)

Integrating once we find

g0zg1z − g1g0zz = −ṡ

∫ ∞

z

Ω(g0)g0zdz = ṡ

∫ g0

1

Ω(g) dg. (B.10)
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Thus

−λ0g1z = ṡ

∫ ∞

1

Ω(g) dg as z → −∞. (B.11)

If we now let λ ∼ λ0 + δλ1, then we find

λ1 =
ṡ

λ0

∫ ∞

1

Ω(g) dg . (B.12)

Better comparison with the numerical solutions can now be obtained by replacing

λ by λ0 + δλ1.
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