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BOOTSTRAP CONFIDENCE BANDS IN NONPARAMETRIC REGRESSION 

M. H. Neumann 
Weierstrass Institute for Applied 
Analysis and Stochastics 
Mohrenstr. 39 
Berlin, 10117, Germany 

ABSTRACT. In the present paper we construct asymptotic confidence bands in non-
parametric regression. Our assumptions admit unequal variances of the observati-
ons and nonuniform, possibly considerably clustered design. The confidence band 
is based on an undersmoothed local linear estimator, and an appropriate quantile is 
obtained via the wild bootstrap proposed by Hardle and Mammen (1990). We de-
rive certain rates (in the sample size n) for the error in coverage probability, which 
is an improvement of existing results for methods that rely on the asymptotic dis-
tribution of the maximum of some Gaussian process. We propose a practicable rule 
for a data-dependent choice of the bandwidth. 
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1. INTRODUCTION 

Whenever we have a nonparametric curve estimate, confidence bands are an impor-
tant means to get an impression about the accuracy that can be expected for the 
particular estimator. Such bands seem to be much more informative than pointwise 
confidence intervals, which are also a major direction of research, when one has to 
decide if some feature of the estimated curve should be considered as structure of the 
unknown function or should be explained due to random fluctuations of the estimate. 
There already exists a long list on previous attempts on this subject, most of them 
are mentioned in the bibliography in Eubank and Speckman (1993). Much work was 
stimulated due to a paper by Bickel and Rosenblatt (1973), who primarily derived 
confidence bands for kernel density estimators, but provided additionally a useful 
technical result on the distribution of the maximum of certain Gaussian processes, 
which are stationary after centering, and serve as limit processes of the deviation 
process of kernel estimators if the sample size tends to infinity. 
In the random design model, Liero (1982) for the Nadaraya-Watson kernel estimator, 
Johnston (1982) for the Yang estimator and Hardle (1989) for M-smoothers esta-
blished confidence bands based on the limiting distribution of the deviation process. 
There exist similar results by Major (1973) for histogram estimators, Revesz (1979) 
and Bjerve, Doksum, Yandell (1985) for nearest neighbor estimators. All of these 
authors used undersmoothing to make the effect of bias negligible. 
A different approach was used in Knafl, Sacks, Ylvisaker (1982) and Hall, Titterington 
(1988), who constructed conservative confidence bands without undersmoothing, but 
on the basis of the prior knowledge of upper bounds for the roughness of the regression 
m. 
Bootstrap methods were used in this context by Hardle, Bowman ( 1988) for point wise 
confidence intervals and Hardle, Marron (1991) for the construction of a fixed number 
of simultaneous error bars. Bootstrap techniques were also proposed by Faraway 
and Jhun (1990) in density estimation and by Faraway (1990) in regression with 
i.i.d. errors for bandwidth choice and construction of confidence intervals. However, 
there was no rigorous result proved for the performance of confidence bands. An 
interesting comparison of the small sample behaviour of various methods was made 
by Loader (1993). 
The latest development in this area that came to our attention is the paper by 
Eubank and Speckman (1993). These authors argued that methods which rely on 
undersmoothing are difficult to apply in practice, since there does not exist any 
natural guideline how to define an asymptotically undersmoothed bandwidth in a 
reasonable way for a fixed sample size n. Instead of pure undersmoothing they 
produced an estimator with asymptotically negligible bias by a two-step method due 
to adding a bias corrector to the initial estimator. It turns out that the estimators at 
both stages can be furnished with natural, MSE-optimal bandwidths, which makes 
the application of usual bandwidth selectors possible. 
In the present paper we start with a fixed design model as Eubank and Speckman 
(1993) did, and we improve some of the shortcomings of that paper that were alre-



3 

ady mentioned by these authors. In particular, we admit heteroscedastic errors and 
nonuniform design, which result in a considerably nonstationary process as limit of 
the deviation process of our estimator. In view of the possibly considerably irregular 
design we apply the local linear estimator proposed by Fan ( 1992). It was shown in 
that paper that local linear estimators share the advantages of the N adaraya-Watson 
estimator and the Gasser-Muller estimator both for random and regular nonuniform 
design. Another important improvement of the method of Eubank and Speckman is, 
that we also include the boundary region of the estimator, which can be quite large 
in practical applications with finite sample size. 
We do not know if we can appropriately modify our equally sized confidence band 
to apply exact asymptotic results as given in Bickel, Rosenblatt (1973) or Qualls, 
Watanabe (1972) for essentially stationary Gaussian processes to determine a proper 
quantile in our situation. Instead, we apply the wild bootstrap proposed by Hardle, 
Mammen (1990), which was already implicitly contained in Wu (1986), to find an 
appropriate quantile for the error process. In distinction to all of the abovementioned 
papers we are able to derive certain rates (in n) for the decay of the error in cove-
rage probability, which seems to be a strong argument in favor of our new method. 
Moreover, we conjecture that one could state for the approach based on the limiting 
process only an asymptotically vanishing error in coverage probability, but without 
any algebraic rate. 
The treatment of the bias problem is essentially by undersmoothing, but we propose 
a practicable rule to determine the bandwidth also in a completely data-driven way. 
Even if we use formally undersmoothing, this method is not far from the approach 
in Eubank, Speckman (1993). 

2. THE METHOD AND THE MAIN RESULT 

Throughout this paper we consider the model 

¥,; = m(xi) + ci, i = 1, ... ,n, (2.1) 
where the errors ei are independent, but not necessarily identically distributed with 
Eci = 0, Ee~ = Vi, obeying 
(AE) 0 < Vinf ~Vi ~ Vsup < co, EjcilM ~ O(M) < co for all i, M. 

For the design points Xi = Xi( n) we assume that there exist constants 0 < 0 1 ~ 02 < 
co with 
(An) C1(n(b- a) - logn) ~ #{i I Xi E [a, b)} ~ 02(n(b- a)+ logn) 

for all 0 :::; a < b :::; 1. 
We adopt (An) in our fixed design model rather than the frequently assumed "regular 
design", i.e. J;i f(t) dt = i/n for some probability density f, because it also includes 
cases with considerably more irregular, clustered designs. The following remark shows 
that also the often considered case of "random design" is covered by our assumption. 

Remark l. Assume that the design points Xi are realizations of i.i.d. random variables 
with density f supported on [O, 1], 0 < infxe[o,1] f ( x) ~ supxE[O,l] f ( x) < co. Then · 
(An) is satisfied with probability exceeding 1 - n-A for arbitrary ). and appropriately 
chosen C1, 02. 
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To treat a wide variety of possible designs appropriately, we apply a local linear 
estimator proposed by Fan (1992). It is known that it shares all positive properties 
of the N adaraya-Watson as well as the Gasser-Muller kernel estimator. An additional 
advantage is, that it provides a simple solution to the usual boundary problem. Fan 
considered in his paper only a second order local linear estimator, i.e. an estimator 
which uses the presence of two derivatives of the regression function, but he claimed 
that it is possible to extend this idea to higher regularity. For greater generality, but 
also for some practical points with bandwidth selection described in Section 3 we 
consider higher order local linear estimators, too. 
In the following we assume 

(As) m E Ck[O, 1). 
According to this assumption, we apply a k-th order local linear estimator m( x) of 
m( x ), which is given as a1( x, Yi, ... , Yn), where a= ( a1 , ... , ak)' minimizes 

M~ = f KC~ x;) (Yi - a1 - a2(x - x;)- · · · - ak(x - x;)k-1)
2

. (2.2) 
i=l 

We assume that K is a continuous nonnegative function with K(x) > 0 i:ff lxl < 1. 
It is clear that 

m(x) = 2:wi(x)Yj = W~Y = [(D~KxDxt1 D~KxYh, (2.3) 
where Y = (Yi, ... , Yn)', 

( 

1 ~ ... 
h 

Dx = : : ·. . . . 
1 X-Xn • • • 

h 

[ 
X - X1 X - X l Kx = Diag K( h ), ... 'K( h n) . 

To give a first impression about the performance of this estimator, we state the 
following lemma. 

Lemma 2.1. Assume (AE), (AD), (As). Then 
(i) var(m(x)) = O((nht1 ~, 

(ii) Em(x) - m(x) = O(h ) 
hold uniformly in x E [O, 1]. 

In the present paper we consider confidence bands of the form 

Ix = [m(x) - t,m(x) + t], 
and we intend to determine such a value of t that the property 

P(m(x) E Ix for all x E [O,l])-71 - a 

is satisfied for some prescribed a, 0 < a < 1. 

(2.4) 

(2.5) 

In the special case of i.i.d. errors ci Eubank and Speckman (1993) approximated 
the process {m(x)/)var(m(x))}xe[o,1], via a strong approximation for partial sums 
of i.i.d. random variables, by some stationary Gaussian process and determined the 
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asymptotic (1- a )-quantile of the maximum of the absolute value of the latter process 
by a result of Bickel and Rosenblatt (1973). This yields a uniform confidence band 
with an error in coverage probability of order o(l). 
In our considerable inhomogeneous situation due to unequal variances, nonequidistant 
design and the inclusion of the boundary region we do not know if one can use any 
available result on the maximum of the limiting process to get an analytic expression 
for an asymptotically correct t. Therefore we use the simple idea of bootstrap, which 
is usually applied whenever we do not know what to do with analytic methods. On 
the other hand, in avoiding the approximation step for the distribution of the maximal 
deviation of some Gaussian process we hope to get a better coverage accuracy for the 
confidence band. Because of the heteroscedastic errors, we apply the wild bootstrap 
proposed by Hardle and Mammen (1990). Starting from the residuals 

~ = Yi - m(xi), 
we draw independent random variables ci with zero mean, variances ~2 and ap-

. propriately bounded higher order moments. For simplicity we restrict ourselves to 
either 

(i) ci f'Y N(O, ~2 ) 
or 

(ii) P (ci = -~) = P (ci = +~) = 1/2. 
Now we attempt to mimic the stochastic part mo( x) = L: Wj( x )c j of the process 
(m( x) )xE(o,1] by 

m~(x) = L:wj(x)cj. 
Let t~ be the (1 - a)-quantile of the (random) distribution of the quantity 

T~0 = sup {Jm~(x)J}, 
xE[D,1] 

which is introduced to mimic 

Tn = sup {Jm(x) - m(x)J}. 
xE[0,1] 

Throughout the paper let 5 > 0 be an arbitrarily small and ;\ < oo an arbitrarily 
large constant. The following theorem, which is proved in Section 4, establishes an 
upper bound for the error in coverage probability of the confidence band of size t~ 
around m( x). 
Theorem 2.1. Assume {AD), {AE), {As). Then 

P (m(x) E [m(x) - t:,m(x) - t:J for all x E [O, 1]) 

= 1 - a+ 0 (n8(nht 1!2 + (nh) 112(logn) 112hk). 

It follows that the rate for the coverage probability is nearly optimized by the choice 
h x n -l/(k+i). 

On the other hand, it is known for kernel estimators that all commonly used band-
width selectors are designed to minimize the risk, usually the mean square error, of 
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the estimator. Such a bandwidth would be of order n-1!(2k+l) in our case, and their 
use would lead to a nonvanishing error in coverage probability. A practicable and 
heuristically motivated method to determine an appropriate bandwidth is discussed 
in the next section. 
In view of Remark 1, for random design the assertion (An) of the theorem holds 
conditioned on X == (X1 , ... , Xn)' with probability exceeding 1 - n-;\.. Hence, the 
unconditioned error in coverage probability will be of the same order as given in the 
above theorem. 

3. A PRACTICABLE RULE FOR THE BANDWIDTH CHOICE 

In the literature on pointwise confidence intervals one can find two main approaches 
to tackle the bias problem, "undersmoothing" and "bias correction." The essential 
difference between them is, that for the first one the quantile ta is chosen according 
to the stochastic part of that estimator, which defines the center of the confidence 
interval, whereas bias correction usually means that one takes the quantile in accor-
dance to the stochastic part of some initial estimator, which is then corrected by an 
explicit bias estimator. If both approaches exploit the same amount of smoothness 
of the curve, undersmoothing is shown to be potentially better than explicit bias 
correction, which was rigorously proved in Hall (1991) for confidence intervals for a 
density, Hall (1992) for intervals in regression with i.i.d. errors and Neumann (1992) 
for regression with heteroscedastic errors. 
In principle it is possible to define an appropriate explicit bias estimator ~lso for local 
linear estimators, but rather than spending too much time for the consideration of 
this presumably worse method, we restrict our considerations in the present paper to 
undersmoothing. . 
The usual difficulty with undersmoothing in applications is, that all commonly used 
bandwidth selection techniques are closely connected to the optimization of the mean 
square error of the estimator. It turns out that these methods balance bias and 
standard deviation in such a way that they decrease to zero at the same rate. Hence, 
they are not immediately applicable for confidence bands. 
To provide some motivation for our following proposal, we urge the reader, to compare 
first local linear estimators of different regularity. Every inclusion of an additional 
term in the local polynomials to be fitted could also be interpreted as a refinement of 
the former local linear estimator. Keeping this idea in mind, we can choose h mean 
square error-optimal for some local linear estimator of lower regularity. For example, 
we could apply cross-validation to determine h. Because we think that someone could 
object that the use of another estimator for the bandwidth choice is quite arbitrary 
and unnatural, we hasten to point out that the same is done by Eubank and Speckman 
( 1993) for confidence bands based on bias correction. Although the confidence band 
is centered around a bias corrected estimator of higher regularity than the initial 
estimator, the authors proposed to choose the bandwidth MSE-optimally for the 
latter one. 
Now we turn to the effect of the randomness of such a data-driven bandwidth to 
the error in coverage probability. To get some feeling for this effect, we state first a 
simple lemma. 



Lemma 3.1. Assume {An), {AE), {As), h::::: n--r and h - h = Op(n-µ). Then 

mh(x) - mh(x) = Op (n-r-µ(n8 (nht 1! 2 + hk)). 
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The more important question however is, whether our procedure remains consistent 
in the case of a randomly selected bandwidth. Of course, we could try to mimic this 
randomness also by the bootstrap, but this seems to make the method even more 
involved, and the effect is also not immediately clear. The following proposition 
provides an upper bound for the coverage accuracy with random bandwidth h. 
Proposition 3.1. Assume {An), {AE), {As), h:::::: n--r and P (lh - hi 2:: en-µ) < 
en--'. Then 

P (m(x) E [mh(x) - t:,mh(x) + t:] for all x E [O, lJ) 
= 1 - a + 0 (n8(nht 1l2 + (nh) 1l2(logn) 1l2 hk + n-r-µ(n8 + (nh) 112(1ogn) 112 hk) + n--'). 

In view of this result, each randomly chosen bandwidth h with h- h = O(n-8 h, n--') 
for some nonrandom bandwidth h leads to a confidence band with asymptotically 
correct coverage probability. 

4. PROOF OF THE MAIN THEOREM 

Before we turn to the proof of Theorem 2.1, we begin with some preparatory consi-
derations and establish several lemmas on approximations to the deviation process 
(m( x) - m( x) )xE(o,1] · 
If we compare the cumulative distribution functions of two random variables, then 
we can expect that they are close to each other, if the difference between the random 
variables is small with high probability. Because of the frequent use of this fact we 
formalize it by introducing the following notion. 

Definition 4.1. Let {Yn} and { Zn} ( Zn 2:: 0 a.s.) be sequences of random varia-
bles, and let { l'n} be a sequence of positive reals. We write 

Yn = 0( Zn, In), 
if 

P(IYnl > ezn) < e1n 
holds for n 2:: 1 and some e < oo . 

This notion differs obviously from the usual Op, which would provide a similar pro-
perty for n 2:: n 0 and an arbitrary constant I instead of el'n on the right-hand side. 
As a rule, for arbitrary 5, ,:\ > 0 we can conclude under sufficiently strong moment 
conditions on the distributions of the errors by Markov's and Whittle's inequalities 
that 

( 4.1) 
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and 

( 4.2) 

hold uniformly over an E Rn and arbitrary (n x n)-matrices An, where ~ == 
( c: 1 , ... , en)'. Furthermore, we obtain similar assertions for random quantities an 
and An, which is made rigorous by Lemma 5.3 in the next section. 
The following lemma shows how 0 can be used to prove the closeness of two random 
variables. 

Lemma 4.1. Let {Xn} be a sequence of random variables with densities Pn, 
supt{Pn(t)}:::; en. Further, we assume Yn == O(tn1, !'n2). Then 

P(Xn + Yn < t) = P(Xn < t) + O(cnrnl + !'n2) 

holds uniformly in t E ( -oo, oo). 

The proof of this lemma follows immediately from the inequalities 

P(Xn < t-Crni)-P(IYnl > Crni):::; P(Xn+Yn <. t):::; P(Xn < t+Crn1)+P(IYnl > Crn1). 

Now we begin with our series of approximations. First we- approximate 

T nO = SUP { I 2= W j ( X) c j I } 
xE[0,1) 

on an appropriate probability space by some version of -

Uno = sup {I L Wj(x )~jJ}, 
xE[0,1) 

where ej r-.,J N(O, Vj) are independent. 

( 4.3) 

( 4.4) 

Lemma 4.2. Assume {An), {AE)· Then there exist versions of Tno, Uno on a joint 
probability space such that 

Proof. Let 

be the partial sum process and let 

ij = LVi. 
i~j 

Then we have by Corollary 4 in Sakhanenko (1989, p. 54), that there exists a proba-
bility space such that 

( 4.5) 



which implies by Lemma 5.2 that 

ITno - Unol ::=; sup {J Lwi(x)(c:j - ~j)I} 
x 

< s~p {~ lw1(x) - Wj+i(x)llS1 - W(t1)I + lwn(x)llSn - W(tn)I} 
0 (n°(nht 1 ,n->.). 

D 

In the same way we can prove the analog in the bootstrap world. Let 

and 

where e; r-.J N(O, vj). 

Lemma 4.3. Assume {AD), {AE)· Then, conditioned on Y, 

T~0 - U~0 = 0 ( n 5 (nh t 1
, n->.) 

holds on an appropriate probability space with probability exceeding 1 - n->.. 

9 

Proof. All we have to prove is some analog to ( AE) for the bootstrap random variables 
.::r, ... , c:~. It is clear that the complete analog of ( AE) is not guaranteed for each 
individual random variable, since it is not excluded that the f/s take on quite large 
values. However, it is easy to see that 

( 4.6) 

holds for appropriate C(M) < oo with probability exceeding 1 - n->.. Hence, we 
can again apply Corollary 4 of Sakhanenko (1989) to show that the analog of ( 4.5) is 
true on an appropriate probability space for s; = L:i~j .::; and tj = L:i~j v: instead 
of Si and tj, respectively. The rest of this proof goes in complete analogy to that of 
Lemma 4.2. D 

Lemma 4.4. Assume {AD), {AE)· Then there exist versions of Uno and U~0 on a 
joint probability space with 

Uno - U~0 = 0 (n5(nht1, n->.) . 
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Proof. First we remark that, if we follow the pattern of the proofs of the Lemmas 4.2 
and 4.3, then we would get a weaker estimate. Proceeding in this way, one could 
easily show that 

which implies 
JW(ti)- W(tj)I = 0 (n8(n114 + h-112 ),n->.) 

and now, along the lines of the abovementioned proofs, 

Uno - U~0 = 0 (n8(n 1! 4 + h-1l 2 )(nht1,n->.). 

On the other hand, it is easy to see that we can get for a simple histogram estima-
tor with block length of order h an approximation of the order given in Lemma 4.4. 
To prove the assertion of our lemma, we must improve the naive approach sketched 
above in two directions. On the one hand, since we have not two sequences of different 
distributions with coinciding variances, but sequences of distributions with unequal 
variances, we must localize our partial sum approach to packages of each 0( nh) conse-
cutive random variables. On the other hand, for two random variables Z1 rv N(O, o"i) 
and Z2 rv N(O, an, 0"1 < 0"2, we observe that Z2 = ?iX1 rv N(O, a~) is 'closer to 
Z1 than Z2 = Z1 + Z3 with z3 rv N(O, a~ - o'i) independent of Z1. In other words, 
a multiplicative reconstruction is more powerful than an additive one, and hence we 
will use the same stretches of a Wiener Process to get appropriate versions of { ei} 
and { e£}, respectively. 
First, we split up the error vectors f = (e1 , ... , en)' and f* = (c:~, ... , c:~)' in t6. x h-1 

packages of length dj x nh, 

f =(en, ... ,c1d1 , ••• ,c.6.1,··· ,c.6.da)', 

f* is defined analogously. Let Vjk = Eejk, vjk = Eejk 2 and Wjk( x) = wz( x ), if l 
corresponds to (j, k). Further, let Vj = 2:~~1 Vjk, V/ = 2:~~1 vjk (j = 1, ... , '6.). 
We define 

Sjk = (j - 1) + tjk/Vj , sjk = (j - 1) + tjk/V/. 
Let W(t) be a Wiener Process. We define the following versions off and f* on a joint 
probability space: 

ejk Vj112 (W(sjk) - W(sj,k-1)), 

c:jk V/1 12 (w(sjk) - W(sj,k_ 1 )). 

Obviously, the ejk's as well as the cjk's are independent, var(ejk) = Vjk, var(ejk) = 
vjk· 
As indicated above, we have certain averaged versions of the error processes, 2:~~1 ejk 
and 'E:~1 cjk, which are multiplicatively connected. 
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We decompose 

j,k 
in a "coarse structure" term 

~l(x) == L (Vj112 
-Vj* 112) LWik(x) (w(sjk)- W(sj,k_ 1)) 

j k 

and a "fine structure" term 

~2(x) == L Vj112 L [(W(sjk) - W(sj,k-i)) - (W(sjk) - W(sj,k_ 1))]. 
j k 

In the next section we show that 

(4.7) 

which implies Vj x Vj* x nh and 

mjax { IVj1/2 - Vj*1/2I} == [J ( ns' n->.) . 

Therefore we have 
sup{~1(x)} == 0 (n8(nht1,n->.). 

x 

We rewrite 

Vj1 /
2 L [J.~jk Wj,k(x) dW(t) - J.~;k Wj,k(x) dW(t)] 

j,k S3,k-l sj,k-1 
1/2 lk Vj [wt - w;] dW( t ), k-1 

where 

Wt Wj,k(x) if t E (sj,k-1,Sjk], 
w; Wj,k( x) if t E ( sj,k_1, sjk]. 

By ( 4. 7) and Lemma 5.2 we obtain 

~2(x) == 0 (n8(nht1,n->.). 

D 

Lemma 4.5. Assume {AD), {AE)· Let Pn denote the density of Uno· Then 

sup {IPn(t)i} == O((nh)112(1ogn)112 ). 
t 
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Proof. First, we split the interval [O, 1] into ~ subintervals, ~ even, 1/( 4h) :::; ~ < 
1/(2h). Define 

zi = sup{l:wj(x)cj}, 
xEAi 

where ~i = [(i - 1)/ ~' i/ ~). 
Let Pnl, p;;1, Pn2 and p;;2 denote the densities of maXiodd{ Zi}, mifiiodd{ Zi}, maXieven {Zi} 
and millieven{Zi}, respectively. (Their existence follows by Theorem 1 in Tsirel'son 
(1975).) Because of Pni(t) = p;:j(-t), j = 1, 2, we have 

Pn(t) :::; 2pn1(t) + 2pn2(t). 
W.l.o.g. we derive an upper estimate for Pn1(t). 
Let j :::; ~ be any odd number and let £j = ( c jl, ... , c jdi )' be the vector of those 
random variables from£, which are necessary to compute m0(x) = Ll wl(x)cz on the 
interval ~j· (The numeration here need not coincide with those from the proof of 
Lemma 4.4.) 
Let ej = ei/JleiJJ, ei = (vj./ 12 , ... , vjd~12 )' and ~i = cov(£j)· It is easy to see that £j 
can be decomposed into the independent summands ~~12 ejej~j 112£j == 1JJeiJJ- 1 ej~j112£j 
and ~}12 (1 - eiej)~j 112£j· We decompose m 0 ( x) correspondingly as 

mo(x) = mo1(x) + mo2(x), 

where, because of LkWjk(x) = 1 for all x E ~j, 

and 

mo1(x) = '2:wik(x)ej~j 112£j = JJeJ- 1 ej~j 112£i ~ N (o, JJeiJJ-2) 
k 

mo2(x) = mo(x) - mo1(x). 
Let mj1 = mo1(x) for any x E ~j and mj2 = supxEAj{mo2(x)}. Since m(x) uses 
only observations }j with Jx - xii :::; h, we get that Z1, ... , ZA-l are independent. 
It is clear that (m11, ... , mA-1,1) is independent of m~dd = (m12, m32, ... , mA-1,2). 
Hence, we have for the conditional distribution of Z = maxj odd{ Zj} that 

P (z ~ t lm~dd) 

P (z1 ~ t lm~dd) + P (z1 < t, Z3 ~ t lm~dd) (4.8) 

+ ... + P ( Z1 < t, ... , ZA-3 < t, ZA-l ~ t lm~dd) 
P ( m11 ~ t - m12) + P (mu < t - m12) P ( m31 ~ t - m32) 
+ ... + P (mu < t - m12) · · · P (mA-3,1 < t - mA-3,2) P (mA-1,1 ~ t - mA-1,2), 

which implies for the conditional density of Z 

! { -p ( z 2'. t I m~dd) } 
< Pm11 (t - m12) + Pm31 (t - m32)P (m11 < t - m12) (4.9) 

+ · · · + Pma-i,1 (t - mA-1,2)P (m11 < t - m12, ... , mA-3,1 < t - mA-3 12) · 



Since mj1 rv N(O, lleill-2 ), it is easy to see that . 

Pm;1 (s) ::; P (m;1 :;:: s) lle;ll ( C + )clog n) + Cn-cf2, 

which implies by ( 4.8) and ( 4.9) 

Pz1m~dd(t) < P (z:;:: t Hdd) myx{lle;ll} ( C + Jc!ogn) + Ct:m-c/2 

0 ((nh) 1f 2~). 

Integration over all possible realizations of m~dd finishes the proof. D 

Now we turn to the proof of the main theorem. 

Proof of Theorem 2.1. By (ii) of Lemma 2.1 and Lemma 4.2 we obtain 

Tn - Uno = 0 ( n6(nht 1 + hk, n->.-1), 

which yields due to Lemma 4.1 and Lemma 4.5 

for each nonrandom t. 
By the Lemmas 4.1, 4.3 through 4.5 we conclude 

for each nonrandom t, which yields in conjunction with ( 4.10) 

13 

P(Tn < t) = P(T:0 < t I Y) + 0 (n6 (nht 1!2 + hk(nh) 112(logn) 112 ,n->.-1 ) 

(4.12) 

for each nonrandom t. 
Now it is easy to show that 

sup {IP(Tn < t) - P(T:0 < t I Y)I} = 0 ( n6(nht 1!2 + hk(nh )112(1og n)1f 2
, n->.) , 

t (4.13) 

which implies in particular 

P(T:0 < t: I Y) + 0 (n6(nht 112 + hk(nh)112(1ogn) 112 ,n->.) 

1 - a+ 0 (n6(nht 1! 2 + hk(nh)1f 2 (logn) 1f 2 ,n->.). (4.14) 

Integrating over t~ we obtain the assertion. D 
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5. PROOFS OF THE SUBORDINATE ASSERTIONS AND SOME TECHNICAL LEMMAS 

5.1. Some additional lemmas. 

Lemma 5.1. Assume {AD)· Then 

holds uniformly in x E [O, 1]. 

Proof. First, observe that 

where Qx is such that 
Q~D~KxDxQx = Ik. 

Keeping the Gram-Schmidt orthogonalization algorithm in mind, it is easy to see 
that one possible choice for Q x is the following one: 

1 - (D:z:1,D:z:2lK - (D:z:1,D:z:i..)K 
(D:z:1,D:z:1)K (D:z:1,D:z:1)K 

Qx 0 1 
* (D:z:,1c-1,D:z:1c)K 

(D:z:,i..-1,D:z:,i..-1 )K 
0 0 1 

1 0 0 

* 0 
0 0 1 

It is easy to see that 

( X - Xi) ( X - Xi) 2
t-

2 

l:K h h x nh. 

If we prove 

ll

Dxl - (Dxi, Dxt)K Dxl - ... - (Dx,l-l, Dxz)K Dx Z-111 > C nh, (5.1) 
( Dxl, Dxl )K ( Dx,l-l, Dx,l-l )K ' K 

then we immediately obtain that 

holds uniformly in x E [O, 1], which yields the assertion. 
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For simplicity we sketch the proof of ( 5.1) only for the simplest case l = 2. By 
K(x) ~ C > 0 for Ix!~ 1/2 we get 

II 
Dx2 - ( Dxl' Dx2 )K Dxl II 

(Dx1,Dx1)K K 

~ Cnh f(x+h/
2
)"

1 
K(z) [z - (Dxi,Dx2)K]

2 
dz + o(nh) > Cnh. 

J(x-h/2)VO ( Dxl, Dxl )K 

The proof of ( 5.1) for l > 2 is analogous. O 

Lemma 5.2. Assume (An). Then 
(i) wi(x) = O((nht1), 

(ii) wi(x) - Wj+i(x) = 0 ((nht 2), 
(iii) d'!: {wi(x)} = 0 (h-1(nht1) 

hold uniformly in j and x E [O, 1]. 

Proof. Observe that 

w;(x) = [(D~KxDxtl ( K(x ~ x;), K(x ~ Xj)(x ~ Xj ), ... , K(x ~ Xj )( x ~ x;)k-l) i. 
which immediately yields (i) and (ii) due to Lemma 5.1. 
Further, we have 

d~ {w;(x)} = [(D~KxDxt1 d~ {( ... )'} - (D:KxDxt 1 ! {D~KxDx}(D:KxDxt1 ( ... )'L, 
which implies (iii). 0 

Lemma 5.3. (uniform 0-approximation) Let An = { a~n)}eee and Anxn = { A~n)}eee 
be families of n-vectors and ( n x n) -matrices, respectively. Further, define the E-

entropy Ee(Anxn) of Anxn, as the minimal number of (n x n)-matrices Ai with the 
property that each A E Anxn can be approximated by some Ai with llA - All ~ E. 

Analogously we define the E -entropy Ee( An) of An . 
Assume (AE), En-1/2-.e(An) = O(n1 ) and En-1-.e(Anxn) = O(n1 ) for some /3 > 
0,1 < oo. Then 
( i) supBE0 { (II a~n) II + n-'3 )-1 I a~n)'f!} = 0( n 5 , n->.) , 

(ii) SUPeee{(Vtr(A~n)A~n)') + n-13t 1 lf'A~n)f _ Ef'A~n)fl} = O(n5 ,n->.) 
holds for appropriate 8 > 0 and A < oo, which can be chosen arbitrarily small and 
large, respectively, if all moments of the €i's are uniformly bounded. 

Proof. For a one-element set 8 == {Ba} we obtain (i) and (ii) by Markov's and 
Whittle's inequalities, see Whittle (1960). For general 8 we derive (i) and (ii) on 
the basis of that set of vectors and matrices, just given by the definition of the 
n-1/ 2-'3-entropy and n-l-'3_ entropy, respectively. Let B denote this parameter from 
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the approximating grid with lla~n) - a~n)ll ::; n-1!2-!3. By Markov's, Whittle's and 
Bonferroni 's inequalities we obtain that, for appropriate positive 5 and A , 

11 (a~ n) ) 1§_11 < 11 ( a~n)) 1§_11 + 11 a~ n) - a~n) 11 11§_11 

0 ( n611a~n)ll + n-1/2-{3n1/2+o) 

0 ( n6 Jla~n)ll + n6 n-{3) 

holds uniformly over B E 8 with a probability exceeding 1 - 0( n-.A), which implies 
( i). (ii) can be proved analogously. D 

5.2. Proofs of the subordinate assertions. 

Proof of Remark 1. W.l.o.g. we prove this assertion for the simplest case Xi ,...., U[O, 1], 
i.e. f = 1. The general case follows then immediately by the transformation 
Xi = p- 1 (Ui), where Fis the c.d.f. of Xi and Ui,...., U[O, 1] are independent random 
variables. Because of our assumption 0 < inf f ( x) ::; sup f ( x) < oo, we have 
0 < inf{d:F-1(x)} ::; sup{fxF-1(x)} < oo, which provides the assertion in the 
general case. 
Let Un(t) = y'n(Gn(t) - t), where Gn(t) = n-1 I: lei 9 , 6, ... , en ,...., U[O, 1] are 
independent. Applying Corollary 1 on p. 622 in Shorack and Wellner (1986) with 
a= C(logn) n-1 , b = 5 = 1/2 and A= 3/./25jaii,, we obtain 

p( sup IUn(d)-Un(c)l 2'.:A) 
a<d-c<b ~ 

24 ( )i
2

) ::; ac53 exp -(1 - 5)5"2 = O(n-.A), (5.2) 

if C is chosen sufficiently large. 
Let now 

We distinguish two cases. 
If d - c 2:: a, then 

If d - c < a, then 

and 

It dFn - t dFI = n-112 IUn(d) - Un(c)I 

< n-1/2>i~ 
= o(Ja~) = O(d-c). 

1d dF = a = O(n-1 logn) 

t dFn ~ [+a dFn = n-112 (Un(c+a) - Un(c)) + t dF 

= O(n-1 logn), · 

which completes the proof. D 

(5.3) 
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Proof of Lemma 2.1. (i) follows immediately from Lemma 5.2. 
First, note that 2:7=1 az( x, Yi, ... , Yn)Dxz is just the projection in the norm 11 · llK of 
the vector Y = (Yi, ... , Yn)' into the linear subspace spanned by the vectors Dxz = 
( x-x1 Z-1 x-xn l-1) / _ • , . . ( h ) , ... , (-h-) , l - 1, ... , k. Smee the Dxz s are lmearly mdependent 
for large enough n, we have 

...... ( ( )l-1 ( )l-1) ai X, X - X1 , ... , X - Xn = hl-l 5il for i, l ::; k. 

This implies 

L:wj(x)(x-xj)l-l = a1 (x,(x-x1)l- 1 ,. .. ,(x-xn)l-l) = 51[. 
j 

Hence, we have by Taylor series expansion, for some ej between x and Xj, 

D 

Em(x) - m(x) = L wj(x)(m(xj) - m(x)) 
j 

k-1 mU)( x) z m(k)( ej) k 
~~w;(x) I! (x;-x) + ~w3(x) k! (x;-x) (5.4) 

O(hk). 

Proof of Lemma 3.1. From Wj(x, h)-wi(x, h) = O((h-h)h-1(nh)-1) and Lemma 5.3 
we get 

L ( Wj(x, h) - Wj(x, h)) cj = Op ( n5 (h - h)h-1(nht 1!2
) = Op ( n5n-r-µ(nht112

). 

Because of (5.4) and Wj(x) = d~ {wi(x, h)} = O(h-1(nh)- 1 ) we obtain 

m(k)(~ ·) 
L:wj(x)(m(xj)-m(x)) = Lwi(x) k! 1 (xj- x)k = O(hk-1

), 

which yields 

L ( wi(x, h) - Wj(x, h)) m(xj) = Op ((ii - h)hk-l) = Op ( n-y-µhk). 

D 

Proof of Proposition 3.1. According to the proof of Lemma 3.1 we get 

ITn(h) - Tn(h)I ~ sup{lmh(x) - mh(x)I} = 0 (n1 -µ(n8(nht1!2 + hk)) 
x 

and, by similar considerations, 

which proves the assertion in conjunction with Theorem 2.1. D 
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Proof of {4.7). From ~2 = e~ - 2ei(m(xi)-m(xi)) + (m(xi)- m(xi))2 we obtain the 
de corn position 

lt1k - tjkl > L e~z - vJz 

Now we have by ( 4.2) 

Note that 

l<k 

+ 2 2:(m(x1z) - Em(x1i))e1z 
l~k 

+ 2 L(Em(x1z) - m(x1z))e1z 
l~k 

d5 

+ 2:(m(x1z) - m(x1z))2 
l=l 

R1k1 + R1k2 + Rik3 + R14. 

Rjkl = 0 (no k1/2' n ~>..-1) . 

2:(m(x1z) - Em(x1z))e1z = ~'A1i~ 
l<k 

holds for some matrix A11 with (A1k)st = O((nht1) and (A1z)st = 0 for Is -tl > Cnh. 
This implies tr(AjzAj1) == 0(1), which yields by (4.2) 

R 0- ( 6 ->..-1) jk2 = n , n . 

Further, we have by Em(xjz) - m(xiz) = O(h2) and ( 4.1) 

Rjk3 = 0 (noh2k1f2,n->..-1). 

Finally, we get 
R 0- ( 6 ->..-1) j4 = n , n , 

which completes the proof. D 

Acknowledgment. I thank Professor V. Konakov for reference to the papers by Sak-
hanenko and Tsirel'son. 

REFERENCES 

1. Bickel, P. and Rosenblatt, M. (1973). On some global measures of the derivation of density 
function estimators. Ann. Statist. 1, 1071-1095. 

2. Bjerve, S., Doksum, K. A. and Yandell, B. S. (1985). Uniform confidence bounds for regression 
based on a simple moving average. Scand. J. Statist. 12, 159-169. 

3. Eubank, R. L. and Speckman, P. L. (1993). Confidence bands in nonparametric regression. J. 
Amer. Statist. Assoc. 88, 1287-1301. 

4. Fan, J. (1992). Design-adaptive nonparametric regression. J. Amer. Statist. Assoc. 87, 998-1004. 
5. Faraway, J. (1990). Bootstrap selection of bandwidth and confidence bands for nonparametric 

regression. J. Statist. Comput. Simul. 37, 37-44. 



19 

6. Faraway, J. and Jhun, M. (1990). Bootstrap choice of bandwidth for density estimation. J. Amer. 
Statist. Assoc. 85, 1119-1122. 

7. Hall, P. (1991). Edgeworth expansions for nonparametric density estimators, with applications. 
Statistics 22, 215-232. 

8. Hall, P. (1992). Effect of bias estimation on coverage accuracy of bootstrap confidence intervals 
for a probability density. Ann. Statist. 20, 675-694. 

9. Hall, P. and Titterington, D. M. (1988). On confidence bands in nonparametric density estima-
tion and regression. J. Multivariate Anal. 27, 228-254. 

10. Hardle, W. (1989). Asymptotic maximal deviation of M-smoothers. J. Multivariate Anal. 29, 
163-179. 

11. Hardle, W. and Bowman, A. (1988). Bootstrapping in nonparametric regression: Local adaptive 
smoothing and confidence bands. J. Amer. Statist. Assoc. 83, 102-110. 

12. Hardle, W. and Mammen, E. (1990) Bootstrap methods in nonparametric regression. CORE 
Discussion paper 9058, Universite Catholique de Louvain, Louvain-la-Neuve, Belgium. 

13. Hardle, W. and Marron, J. S. (1991). Bootstrap simultaneous error bars for nonparametric 
regression. Ann. Statist. 19, 778-796. 

14. Johnston, G. J. (1982). Probabilities of maximal deviations for nonparametric regression func-
tion estimates. J. Multivariate Anal. 12, 402-414. 

15. Knafi, J ., Sacks, J. and Ylvisaker, D. (1985). Confidence bands for regression functions. J. Amer. 
Statist. Assoc. 80, 683-691. 

16. Liero, H. (1982). On the maximal deviation of the kernel regression function estimate. Math. 
Operationsforsch. Statist., Ser. Statist. 13, 171-182. 

17. Loader, C. R. (1993). Nonparametric regression, confidence bands and bias correction. Procee-
dings of the Interface Between Statistics and Computer Science, 131-136. 

18. Major, P. (1973). On non-parametric estimation of the regression function. Studia Sci. Math. 
Hungar. 8, 347-361. 

19. Neumann, M. H. (1992). Pointwise confidence intervals in nonparametric regression with hete-
roscedastic error structure. Preprint No. 34, Institut fiir Angewandte Analysis und Stochastik, 
Berlin. 

20. Qualls, C. and Watanabe, H. (1972). Ann. Math. Statist. 43, 580-596. 
21. Revesz, P. (1979). On the nonparametric estimation of the regression function. Problems' of 

Control and Information Theory 8, 297-302. 
22. Sakhanenko, A. I. (1989). On the accuracy of normal approximation in invariance principle. 

Trudy Inst. Mat. (Novosibirsk) 13, 40-66. (in Russian) 
23. Shorack, G. R. and Wellner, J. A. (1986). Empirical Processes with Applications to Statistics. 

Wiley, New York. 
24. Tsirel'son, B. S. (1975). The density of the distribution of the maximum of a Gaussian process. 

Theory Probab. Appl. 20, 847-856. 
25. Whittle, P. (1960). Bounds for the moments of linear and quadratic forms in independent 

variables. Theory Prob. Appl. 5, 302-305. 
26. Wu, C. F. J. (1986). Jackknife, bootstrap and other resampling methods in regression analysis. 

Ann. Statist. 14, 1261-1343. 





Recent publications of the 
Weierstrafi-Institut fiir Angewandte Analysis und Stochastik 

Preprints 1993 

78. Grigori Milstein, Michael Nussbaum: Autoregression approximation of a 
nonparametric diffusion model. 

Preprints 1994 

79. Anton Bevier, Veronique Gayrard, Pierre Picco: Gibbs states of the Hopfield 
model in the regime of perfect memory. 

80. Roland Duduchava, Siegfried Pro:Bdorf: On the approximation of singular 
integral equations by equations with smooth kernels. 

81. Klaus Fleischmann, Jean-Fran~ois Le Gall: A new approach to the single 
point catalytic super-Brownian motion. 

82. Anton Bevier, Jean-Michel Ghez: Remarks on the spectral properties of 
tight binding and Kronig-Penney models with substitution sequences. 

83. Klaus Matthes, Rainer Siegmund-Schultze, Anton Wakolbinger: Recurrence 
of ancestral lines and offspring trees in time stationary branching popula-
tions. 

84. Karmeshu, Henri Schurz: Moment evolution of the outflow-rate from non-
linear conceptual reservoirs. 

85. Wolfdietrich Muller, Klaus R. Schneider: Feedback stabilization of nonlinear 
discrete-time systems. 

86. Gennadii A. Leonov: A method of constructing of dynamical systems with 
bounded nonperiodic trajectories. 

87. Gennadii A. Leonov: Pendulum with positive and negative dry friction. Con-
tinuum of homoclinic orbits. 

88. Reiner Lauterbach, Jan A. Sanders: Bifurcation analysis for spherically sym-
metric systems using invariant theory. 

89. Milan Kucera: Stability of bifurcating periodic solutions of differential in-
equalities in 1R 3 . 



90. Peter Knabner, Cornelius J. van Duijn, Sabine Hengst: An analysis of crystal 
dissolution fronts in flows through porous media Part I: Homogeneous charge 
distribution. 

91. Werner Horn, Philippe Laurern;ot, Jurgen Sprekels: Global solutions to a 
Penrose-Fife phase-field model under flux boundary conditions for the in-
verse temperature. 

92. Oleg V. Lepskii, Vladimir G. Spokoiny: Local adaptivity to inhomogeneous 
smoothness. 1. Resolution level. 

93. Wolfgang Wagner: A functional law of large numbers for Boltzmann type 
stochastic particle systems. 

94. Hermann Haaf: Existence of periodic travelling waves to reaction-diffusion 
equations with excitable-oscillatory kinetics. 

95. Anton Bovier, Veronique Gayrard, Pierre Picco: Large deviation principles 
for the Hop:field model and the Kac-Hop:field model. 

96. Wolfgang Wagner: Approximation of the Boltzmann equation by discrete 
velocity models. 

97. Anton Bovier, Veronique Gayrard, Pierre Picco: Gibbs states of the Hop:field 
model with extensively many patterns. 

98. Lev D. Pustyl'nikov, Jorg Schmeling: On some estimations of Weyl sums. 

99. Michael H. Neumann: Spectral density estimation via nonlinear wavelet 
methods for stationary non-Gaussian time series. 

100. Karmeshu, Henri Schurz: Effects of distributed delays on the stability of 
structures under seismic excitation and multiplicative noise. 

101. Jorg Schmeling: Estimates of Weyl sums over subsequences of natural num-
bers. 

102. Grigori N. Milstein, Michael V. Tret'yakov: Mean-square approximation for 
stochastic differential equations with small noises. 

103. Valentin Konakov: On convergence rates of suprema in the presence of non-
negligible trends. 

104. Pierluigi Colli, Jurgen Sprekels: On a Penrose-Fife model with zero interfa-
cial energy leading to a phase-field system of relaxed Stefan type. 

105. Anton Bovier: Self-averaging in a class of generalized Hop:field models. 

106. Andreas Rathsfeld: A wavelet algorithm for the solution of the double layer 
potential equation over polygonal boundaries. 




