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Abstract

The properties of microwave circuits and optical structures can be de-
scribed in terms of their scattering matrix which is extracted from the or-
thogonal decomposition of the electric field. We discretize the Maxwell’s
equations with orthogonal grids using the Finite Integration Technique (FIT).
Maxwellian grid equations are formulated for staggered nonequidistant rect-
angular grids and for tetrahedral nets with corresponding dual Voronoi cells.
The surface of the computation domain is assumed to be an electric or a mag-
netic wall, open-region problems require uniaxial Perfectly Matched Layer
(PML) absorbing boundary conditions. Calculating the excitations at the
ports, one obtains eigenvalue problems and then large-scale systems of linear
algebraic equations. This paper is a revised version of the preprint no. 987.
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1 Introduction

Today, electromagnetic simulation forms an indispensable part in the development
of microwave circuits as well as in diode laser design. Since the simulation methods
are computationally too expensive to handle complete microwave circuits, analysis
has to concentrate on critical parts, such as transmission-line discontinuities and
junctions. These elements can be represented by the basic description shown in Fig.
1: a structure of arbitrary geometry which is connected to the remaining circuit by
transmission lines. The passive structure (e.g. coplanar waveguide, coupled spiral
inductors, via hole, impedance step) forms the central part of the problem. Short
transmission line sections are attached to it in order to describe its interaction with
other circuit elements.
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Figure 1: The basic structure under investigation

2 Scattering Matrix

The aim consists in the computation of the scattering matrix, which describes the
structure in terms of the wave modes on the transmission line sections at the ports.
The wave-mode quantities are derived by assuming the transmission-line sections
to be infinitely long and longitudinally homogeneous. The generalized scattering
matrix is defined as follows:

p p—1
S=(S,0), po=1(1)m,, with m, = Zm(”), p=1+ Zm(q). (1)
p=1 q=1

m®) denotes the number of modes which have to be taken into account at the port p.
P is the number of ports. The modes on a port p are numbered with I, [ = 1(1)m®.
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That means, the dimension m, of this matrix is determined by the total number of
modes at all ports.

The computation of the scattering matrix is outlined as follows.

The scattering matrix can be extracted from the orthogonal decomposition of the
electric field into a sum of mode fields [4]. This has to be done at a pair of neighboring
cross-sectional planes z, and z,,a, on each waveguide for a number of linearly
independent excitations. The electric fields at the planes 2z, and 2, A, are calculated
solving an eigenvalue problem for the infinitely long waveguide (see section 5) and
a boundary value problem for the 3D structure (see section 3), respectively.

The computation of the scattering matrix is based on the orthogonality relation for
the electric and magnetic fields of different modes

/ (Bua(2) % B (2)) - d5 = 1nBim, ()

Q

where §;,,, is the Kronecker symbol. ﬁt,m denotes the transverse magnetic mode
fields.

In the case of degenerate modes, i.e., the algebraic multiplicity of the corresponding
eigenvalues is larger than unity, we have to use first (2) in order to orthogonalize
the modes (see [9]).

For sake of simplicity we assume the cross section is located on the left-handed
(z,y)-plane of the enclosure (see Fig. 1). We consider all exciting modes with
amplitudes a; in positive z-direction and all outgoing modes with amplitudes b; in
negative z-direction. Then the transverse mode field at a cross-sectional plane z is
given by

m(P) m®) m®)
z) = Z a By ek Z by By et = Z wi(2)Eyy (3)
=1 =1 =1
with
wi(2) = are %% 4 bt = qy(2) + bi(2), (4)

where k,, is the propagation constant. The application of (3) with (4) at a pair
of neighboring cross-sectional planes z, and z,;a, gives because of Hin(2p1np) =

Hym(2):
1

— [(E,(2,) x Hym(z,) - d©2 = &55)+5££) = wﬁ,’;)
t\%p t,m\~p )
Thm.
Q
(5)
1 - = 3 (p+Ap (p+Ap) (p+Ap)
77— (Et(zp+Ap) X Ht’m(zp) - dQ = —+ b = Wm .
" Q

We get E;(z,) solving eigenvalue problems for the transmission lines (see section 5).
Hym(2,) can be computed from the known electric field E,,, of mode m (see [9]).
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The values of the weighted mode amplitude sums w are given (see the discussion

to follow). Thus, the normalization constant 7, can be computed by evaluating the
orthogonality relation in the first equation of (5). E:(2,1ap) is computed solving
boundary value problems for the discontinuity (see section 3). Thus, the weighted

(p+Ap)

mode amplitude sums wpm, can be calculated by using the second equation of

(5).

By using (see (4))

ap+ar) — e — gk )Azp7 bp+ar) — ng)eﬂkg’)Azp’ (6)
we eliminate @ "*" and b% " in (5), and obtain
(P) ,+9kE) Az, (p+Ap) (p+Ap) (P) ,—9kP) Az,
G — Wme J — Wm ’ 51(5) _ W — Wm'e™? (7)

e+]k£ﬁ2Azp _ efjkgfr)LAzp e+]k£ﬁ2Azp _ efjkgn,)LAzp

By using (7) reflection coefficients

o) e MhmAn _ wi?
(p)
m m
r) = ~(®) L @+hn) (1,1:) (8)
am W = _ e—l—]kZmAzp
Wm

are computed for all modes p = 1(1)m, and all excitations v = 1(1)m;.

The values w are given, and than we form the vectors

=

Wy, = (W1 ey Dy ey Wina) ', v = 1(1)m,. (9)

The vectors (9) have to be linear independent. That is achieved here by choosing
the components of @, in the following way:

-1
_ |w$£)| for 1<p<my+1-—v p (@)
Wy, = , =m+ m\Y, 10
P { —|w$,’f)| for m;+2—v<p<m, P Z (10)

with
w® =10, m=11)m?, p=11)p. (11)

With this choice of w, (see (9), (10), and (11)) the vectors 7, @, and b, are built
up analogously (see (7) and (8)):

= - - - T & _ P
7, (Frws e s Topps ey Pmg )’y Tow = Tm,
= (= - ~ T = _ =
@ = (G- Oppye- s Omaw) >, Gpy = Gm, (12)
I _ T 7 7 T 7 _ 7(p)
by = (biy,e ybppye b ), by = b

The relation between (p,v) on the one hand and (m,(p)) on the other hand is
given by (10) and (11). The choice of @, and the relations between the indices are
demonstrated by a small example in [9)].



That means, we have to solve m, boundary value problems with the boundary
conditions (see sections 3 and 6)

ms p—1
Et,u - pr,uEt,l(zp)a p = [+ Zm(q)a b= l(l)pa V= l(l)mSa (13)
p=1 qg=1

. +A
in order to compute wﬁﬁ P),

The scattering matrix S (see (1)) is defined by
by, = S&,, v=1(1)ms, (14)
or (see (12))

bpw =D Spo oy, pyv =1(1)m,. (15)
o=1
Because of (5) and (8) we have
Woy = Gpy+ BPJ/_’ C:‘p,V(l + fp,V) = Wpy, _
0 = pryapyy - bP!”’ bpay(]' —I_ pru) = pry,u_)pﬂ/’ p, v (1)ms (16)

Multiplying Eq. (15) with the product [[};*, (1 +7,,) gives

bpw [ [+ 7)) = Spobow [ [(1+Fun), £ =1(1)ms. (17)
p=1 o=1 p=1
Substitution of (16) into the relation (17) gives

Ryy =) SpoWosy or R=SW (18)

o=1

with m
Ww =Wy [ U+7us), Rpw=70Wp. (19)

p=L,u#p

That means, we have to solve m; linear algebraic equations in order to compute the
(m,)? coefficients of S:

WT(S,1, 3 Spm)” = (Rpt, - s Rp)'s,  p=1(1)m,. (20)

3 Boundary Value Problem

A three-dimensional boundary value problem can be formulated using the integral
form of Maxwell’s equations in the frequency domain [1] in order to compute the
electromagnetic field within the structure of interest:

fgﬂﬁ -d§ = /QJW[G] - dg, ]{Q([G]E) -dQ =0, (21)
$Bs—— [awl-ad, § () -as-o (22)

es]]
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D=[dE, B=|uH. (23)

The electric and magnetic flux densities D and B are complex functions of the
spatial coordinates. w = 2xf is the angular frequency of the sinusoidal excitation,
and 72 = —1. f denotes the frequency. In the left-hand sides of formulae (21) and
(22) € is an open surface surrounded by a closed contour 9. The direction of the
element ds of the contour 912 is determined according to a right-hand system. In
the right-hand sides of (21) and (22) U2 is a closed surface with an interior volume.
The complex electric permittivity [¢] and the magnetic permeability [u] are diagonal
tensors.

At the ports p the transverse electric field Et(zp) is given by superposing weighted
transmission line modes E¢;(z,) (see (3)):

m(P)

Et(zp) = Zwl(zp)ﬁt,l(zp)- (24)

The transverse electric mode fields have to be computed solving an eigenvalue prob-
lem for the transmission lines (see section 5). All other parts of the surface of the
computation domain are assumed to be an electric or a magnetic wall:

Exi=0 or Hx=0. (25)

The simulation of open-region problems usually requires absorbing boundary con-
ditions to properly truncate the computational domain. Perfectly matched layers
(PML) are absorption layers. The PML was introduced by Berenger [2] using ar-
tificial electric and magnetic conductivities k. and k,,, respectively, and splitting
the electromagnetic field components (split-field formulation). The PML was later
shown to be equivalent to a complex coordinate stretching of the coordinate space
(coordinate stretching formulation, [3]) and to the uniaxial Maxwellian PML formu-
lation [15].

Using the uniaxial PML formulation the original form of Maxwell’s equations is re-
tained. That means, we could easily implement the PML into an existing code. A
complex permittivity [¢] and a complex permeability [u] diagonal tensor are intro-
duced (see (23), (28), and (29)), resulting in a reflection-free interface between the
computational area and the lossy PML region:

([ = ([AC],  [u] = (w)[A®)] (26)
with
(e) = diag(ea, €y, €2), (1) = diag(pa, by, 112)- (27)

[A©)] and [A®)] are defined for a PML in z-, y-, or z-direction in the following way

(v € {e; u}):

[AW)], = diag(5=, A, Ay) i
AM)] = [A(V)]y = diag(As, 3, Av) with A\, =1 — ’ ';) (28)
[AM)], = diag(A, A, 1) 0

(@)



That means, we get for an overlapping region in z-, y-, and z-direction:

[e] = ()AL [A], M), and  [u] = (u)[AW],[AW], [AB],. (29)

The quantities ¢y and py denote the permittivity and the permeability for a vacuum,
ke and K, the electric and magnetic (introduced for PML) conductivity, respectively.
The lossfree and the lossy case are special variants of (28).

The conductivities have to fulfill the relation

Ke Ky

e B 30

€0 Ko ( )
There is always an electric or magnetic wall (see (25)) behind the PML. On the one
hand, the PML allows computing the leakage due to radiation effects, on the other
hand, the PML can be used to suppress the influence of the boundary on the electric

behavior of the structure.

4 Maxwellian Grid Equations

Maxwellian grid equations are formulated for staggered nonequidistant rectangular
grids [1, 20, 13] and for tetrahedral nets with corresponding dual Voronoi cells using
the Finite Integration Technique with lowest order integration formulae:

_’.d_'m iSi), _)dﬁ% Q.
) Jdsm Y () /Qf / (31)

4.1 Staggered Nonequidistant Rectangular Grids

The use of rectangular grids is the standard approach. In general, it is very well
adapted to planar microwave structures, since most circuits have a basically rectan-
gular geometry. Using (31) Egs. (21,22) are transformed into a set of grid equations:

ATD,,b = jweopoDa €, BD4€=0, (32)
AD,é = —gwD b, BD 4b = 0. (33)

The vectors € and b contain the components of the electric field intensity and the
magnetic flux density of the elementary cells, respectively. The diagonal matrices
Dy)p, DAE, D,, and D4 contain the information on cell dimension and material. A ,
B, and B represent the integrals. A is a singular matrix. B and B are rectangular
matrices. A, B, and B are sparse and contain the values 1,—1, and 0 only. An
explicit derivation and a discussion of the properties of (32) and (33) can be found
in [12].

By eliminating the components of the magnetic flux density from the two equations
on the left-hand sides of (32) and (33), we obtain the system of linear algebraic
equations

(ATDyyu D3 AD, — k3D a )€ =0, ko = wy/Eopio, (34)
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which have to be solved using the boundary conditions (13) and (25), possibly
supplemented by PML. ky denotes the wavenumber in vacuum.

4.2 Tetrahedral Grids and Voronoi Cells

Using rectangular grids a mesh refinement in one point results in an accumulation of
small elementary cells in all coordinate directions, although the refinement is needed
only in inner regions. In addition, rectangular grids are not well suited for treat-
ment of curved and non-rectangular structures. A finite-volume method, which uses
tetrahedral nets with corresponding Voronoi cells for the three-dimensional bound-
ary value problem, reduces the number of elementary cells by local grid refinement
and improves the description of curved structures. The primary grid is formed by
tetrahedra and the dual grid by the corresponding Voronoi cells [10].

We consider a tetrahedron ABC'D with the internal edge AB (see Fig. 2) and the
neighbouring elements, which share the edge AB with it. The electric field inten-
sity components are located at the centers of the edges of the tetrahedra, and the
magnetic flux density components are normal to the circumcenters of the triangular
faces. The Voronoi cells are polytopes. We use the notations given in Table 1 with
X,Y,Z,W € {A,B,C, D}, where X,Y, Z, W are different from each other, in order
to develop the grid equations for tetrahedral nets. Exy and Bxyz satisfy

EXY - _EYX) (35)
BXYZ - BYZX - BZXY - _BYXZ - _BXZY - _BZYXa

respectively. The PML boundary conditions are not implemented for tetrahedral
grids, i.e. one has (see (26)-(28)),

Mo = My = Uy = UXyzZW, €z = €y = € = €EXYZW- (36)

Using a finite volume approach with the lowest-order integration formulae (31),
Egs. (21) and (22) are transformed into a set of grid equations.

Table 1: Notations

X,Y, Z,W | nodes Ixy distance of X to Y

XY edge between X and Y | 1%, distance of Txyzw to XY Z
XYZ triangle d% distance of Sxyz to XY
XYZIW tetrahedron axyz area of XY Z

Sxy center of XY Uxyzw | permeability in XY ZW
Sxyz circumcenter of XY Z Exyzw | permittivity in XY ZW
Txyzw circumcenter of XY ZW

Exy magnitude of the electric field on Sxy

Bxyz magnitude of the magnetic flux density on Sxyz




Figure 2: Tetrahedron with partial areas of the Voronoi cell faces related to node A

Taking into account the constitutive relations (23) the first equation of (21) is dis-
cretized on the dual grid. The internal edge AB is orthogonal to the corresponding
Voronoi cell face over which we have to integrate (see Fig. 2). The closed integration
path 09 (see (21) and (31)) consists of the edges with length s; = I%,-,, and is the
polygon around the periphery of the mentioned Voronoi cell face. The vertices of
the polygon are the circumcenters of the tetrahedra which share the edge AB with
the tetrahedron ABCD. f; = Bxyz denotes the function values on Sxyz.  is the
area of the Voronoi cell face. f = F,p denotes the function value on the center
Sap. Thus, the discretized equation takes the form:

2cp I‘A;CD [12sc Base +15pp Basp) =
w [Sop teancn (4S5 Bpc +dR51S50)] Ean

where the sum is over those tetrahedra ABC'D which share the edge AB.

(37)

The first equation of (22) is discretized using (31) on the primary grid. We have to
integrate over the triangle ABC'. This yields the following form:

laup Eap +1lpc Epc +loca Eca = —jwaapc Bagce- (38)

Now we address the first of the surface integrals (second equation of (21)) revert-
ing to the dual grid. Here, U2 is a closed surface with an interior volume. The
discretization formula (39), with a form similar to the right-hand side of (37) is
obtained, except for the additional outer summation taken over all the nodes B
neighboring A (in the primary grid). For our final integral equation (second equa-
tion of (22)) the primary grid is used again, but now the integration is over the
surface of the tetrahedron ABC'D. As a consequence, the discretized form (40) can



be deduced:

1
Z ( [Z 5€ABCD (dS5 1250 + d2s 156D)

B CcD

EAB> =0, (39)

—aapc Bapc — aacp Bacp +aapp Bapp + apep Beep = 0. (40)

Substituting the components of the magnetic flux density in (37), (38) the number
of unknowns in this system can be reduced by a factor of two:

D C D
ZC’D uAl |:<ZABC + liBD ) Iug Eap + lipclBc Epc+

BCD aABC AQABD AABC
101 9.1 1€ 1
apcloa @ ABp!BD I ABp!DA I _ (41)
AABC cA + QGABD BD + QGABD DA

- w; [ZCD €ABCD (ng IZpc +d3p lgBD)] Eap.

Here, summation is taken over these tetrahedra ABC D, which possess the common
edge AB.

The method requires a triangulation of the domain in tetrahedra. Thus, triangu-
lation algorithms and grid management are of major importance in the numerical
simulation.

Using the grid management interface of the software package pdelib [7], the meshing
algorithm COG [18], [17] has been applied.

Based on the octree decomposition technique the software package COG for grid
generation and geometry description allows to generate tetrahedral Delaunay meshes
(8] with local and anisotropic refinement for arbitrary geometries. A tetrahedral
triangulation is roughly spoken a Delaunay triangulation if the circumsphere of each
tetrahedron does not contain any vertices of the grid. COG generates -regardless
rounding errors - accurate representations of vertices, edges and planar areas at
the inner material interfaces and the boundaries of the structures for triangular
and rectangular geometries and for geometries which results from its by coordinate
transformations. Near curved boundaries special coordinate systems are used which
are adapted at a sufficiently large distance to the usual cartesian coordinate system.

Especially, if the circumcenter of a tetrahedron is located within the tetrahedron,
we have a clear physical interpretation. The restriction that the circumcenter of a
tetrahedron is located within the tetrahedron can not fulfilled in general by a mesh
generator. Thus, it can be that the circumcenter of any tetrahedron of the generated
Delaunay triangulation is located outside of the tetrahedron, but COG avoids the
case that this will be for tetrahedra which are located at inner material interfaces
and boundaries. There are no negative distances between two circumcenters. Thus,
apart from the physical interpretation the deduced grid equations can be applied
using the mentioned properties of COG.

As an example we have simulated a junction of a microstrip line with a coaxial
line (see Figs. 3, 4, 5). The structure is symmetric. Thus, only the right half is
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discretized.

For comparison the structure is subdivided in nonequidistant rectangular three-
dimensional elementary cells on the one hand and in tetrahedra on the other hand.
In case of rectangular grids, the order of the system of linear algebraic equations (see
section 6), which corresponds to the boundary value problem (see section 3), is n =
3ngnyn, = 163 944. nynyn, is the number of cells of the structure which is assumed
to be a parallelepiped. We need a high mesh refinement near the microstrip and the
coaxial line which results in an accumulation of elementary cells in all coordinate
directions even though the refinement is not necessary in order to approximate the
solution with the required accuracy.
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The tetrahedral grid consists of n, = 11368 nodes, n; = 58 742 tetrahedra, and
n, = 11446 peripheral cell faces. The order of the corresponding system of linear
algebraic equations is less than the number of edges:

n=mn,+n+n,/2—1="75832. (42)

The disadvantage of rectangular grids, the accumulation of elementary cells in all
coordinate directions, is avoided here. Curved boundaries are better approximated.

5 Eigenvalue Problem Including PML

For the eigenvalue problem, we refer to the rectangular grid [4].

The transverse electric mode fields (see (24)) at the ports of the three-dimensional
structure, which is discretized by means of tetrahedral grids, are computed interpo-
lating the results of the rectangular discretization.

The field distribution at the ports is computed assuming longitudinal homogeneity
for the transmission line structure. Thus, any field can be expanded into a sum of
so-called modal fields which vary exponentially in the longitudinal direction:

E(z,y,z + 2h) = E(z,y, 2)e™*?", (43)

k. is the propagation constant. 2h is the length of an elementary cell in z-direction.
We consider the field components in three consecutive elementary cells. The elec-
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tric field components of the vector € (see (34)) Eu, 1y Eaijnirs Eyisnrrr Byijnss
E.iwois By juorsand B, are expressed by the values of cell £ using ansatz
(43). The longitudinal electric field components E, can be eliminated by means of
the electric-field divergence equation BD4 € = 0 (see (32)). Thus, we get an eigen-
value problem for the transverse electric fields § = Ey;(z,), | = 1(1)m®), (see (24))

on the transmission line region:
GY =g, v = e 4 e — 2 = —4sin’(hk,). (44)

The problem of the transmission line region is reduced to a two-dimensional problem.
A detailed derivation of the eigenvalue problem can be found in [12], [11]. The
eigenvalue problem has to be solved for each port z,, p = 1(1)p, (see (1)). The
sparse matrix G is general complex. The order of G is n = 2n,n, — ny. nyn, is
the number of elementary cells at the port. The size n, depends on the number of
cells with perfectly conducting material. The solutions of the eigenvalue problem
correspond to the propagation constants of the modes. Using a conformal mapping
it can be shown that the eigenvalues corresponding to the few interesting modes of
smallest attenuation are located in a region bounded by two parabolas. The modes
are found solving a controlled sequence of eigenvalue problems of modified matrices
9] applying the invert mode of the Arnoldi iteration with shifts.

The m; (see (1)) eigenvectors (see (13)) determine the number of right-hand sides
of the system of linear algebraic equations (see (48)).

The PML influences the mode spectrum. The absorption inside the PML operates
through conductive losses, so that an exponential decay of the fields inside the PML
is obtained. The PML achieves a refectionless absorption if the mesh discretization
size goes to zero. Caused by the finite mesh size in the finite simulation domain
spurious modes are generated due to the electric and magnetic walls behind the
absorbing layers. The PML shifts these modes inside the region of propagating
modes. We want to distinguish the spurious modes from the desired ones. As a
result of our numerical calculations we found that examination of the eigenfunctions
provides a useful criterion to select the modes of interest. While the field of guided
modes is concentrated around the waveguide structure, the parasitic box modes
exhibit a strong field accumulation inside the PML area. Thus, modes that are
related to the PML boundary can be detected, using the PPP criterion (Power Part
in PML) which is based on the comparison between the power concentration inside
the PML region to the whole computational domain [19].

This method, developed initially for a reliable calculation of all interesting com-
plex eigenvalues of microwave structures, was expanded then to meet the special
requirements of optoelectronic structure calculations. Relatively large cross sections
and highest frequencies (i.e., small wavelengths) yield increased dimensions for the
eigenvalue problems. Using the results of a coarse grid calculation within the fi-
nal fine grid reduces the numerical efforts significantly. A laser application can be
found in [9]. A self aligned stripe (SAS) laser with a discretized large cross section of
(4050 x 7750) nm is investigated there. Thin layers of 100 nm with complex material

13



properties have to be taken into account. The frequency is fixed to 300 * 102 Hz,
which corresponds to a vacuum wavelengths of 1000 nm. A graded mesh of 121 times
127 elementary cells, including 10-cell PML regions, is used as a coarse grid in order
to find approximately the location of the guided mode. A sequence of 84 eigenvalue
problems have been used to cover the long small region in the complex plane. The
circle that contains the guided mode is known after this step. A graded mesh of
283 times 345 elementary cells, including 10-cell PML regions, is used as a fine grid
in order to find the accurate value of the guided mode in the reduced region. The
computational time is reduced by a factor of 10 using a coarse and a fine grid.

The use of two levels of parallelization results in an additional speedup in terms of
computation time.

6 Systems of Linear Algebraic Equations Includ-
ing PML
All boundary conditions are known after the computation of the eigen mode problem,

and the systems of linear algebraic equations can be solved.

Besides the locations and values of the entries, the matrix representations of (37) -
(41) have the same structure as (32) - (34). Thus, we refer to (34) for the solution
of the linear algebraic equations.

Multiplying (34) by DY yields a symmetric form of linear algebraic equations:
A# =0, A= (DY?ATD,,,D,*ADY?* —k2D,)) (45)
with & = DY?¢. Moreover, the gradient of the electric field divergence
V([ *V - [dE) =0 (46)
is used. It can be written as matrix equation
Bi=0, B=D,'?D,B"D,'BD, D> (47)

The diagonal matrix Dy, is a volume matrix for the 8 partial volumes of the dual
elementary cell. In case of tetrahedral grids, the gradient of the divergence at an
internal point is obtained considering the partial volumes of the appropriate Voronoi
cell.

Taking into account the boundary conditions (13) and (25), Egs. (45) and (47) yield
the form AZ = b and BZ = 0, respectively, and

(A+ B)Z = b, A+ B complex indefinite symmetric, (48)
can be solved faster than AZ = b.
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Independent set orderings [14], Jacobi and SSOR preconditioning using Eisenstat’s
trick [5] are applied to accelerate the speed of convergence of the used block Krylov
subspace method [6, 16] for the system of linear algebraic equations (48) that has
to be solved with the same coefficient matrix, but m, (see (1)) right-hand sides.

The permutations P; transform the matrices A; with Ay = A+ B in the form

. ET
ao— parr= (), (19)

where D; is a diagonal, F;, and H; are sparse matrices. Using the factorized form
of (49) we get a system of linear equations

E:D7* I 0 H,—-ED;'ET Giz )\ Ga
with §; = B, = (¥i1,7i0)" and ¢; = Pib; = (¢i1,Ci2)T. The algorithm for solving
Eq. (48) is described in the following:

—

1. Set AOZA—l-B, fozf, b():g
2. Forward substitution: ¢ =10,...,lev — 1
(a) Compute P;: PA;PT, §; = Py, ¢ = Pb;

(b) Compute Zj11 = ¥ 2, gz’+1 =¢o — E:D; 'y
(c) Compute A;,, = H; — E;D; 'ET

3. Solve Alev-'i:lev = glev for flev
4. Backward substitution: ¢ =lev —1,...,0

(a) Compute Jio = Fit1, ¥i1 = D; (€1 — EX§i0)
(b) Compute Z; = Py

In comparison to the simple lossy case the number of iterations of Krylov subspace
methods increases significantly if the structure contains a PML. In this case, among
others, the speed of convergence depends on the relations of the edge lengths in an
elementary cell of the nonequidistant rectangular. The best results can be obtained
using nearly cubic cells. Moreover, overlapping conditions at the corner regions of
the computational domain cause an increase of the magnitude of the corresponding
off-diagonal elements in comparison to the diagonal of the coefficient matrix. This
deteriorates the properties of the matrix. Thus, overlapping PML should be avoided.

The PML layers, which form the absorbing boundary condition, have a significant
influence on computational efforts, which is demonstrated in Table 2 for a quasi-
TEM waveguide (in Table 2, w denotes the relaxation parameter of the Krylov
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Table 2: Influence of the PML layers on computational efforts.

|| Number of Iteration |

w = 1.00 w=1.30 w=1.58
f/GHz 10 50 100 10 50 100 10 50 100
Structure
no PML 63 72 127 51 58 104 45 53 91
z-PML 649 647 716 501 518 591 431 452 543

yz-PML 13912 | 27924 | 32298 || 13501 | 29077 | 45371 16457 | 44824 | 104642

zyz-PML | 12307 | 44723 | 213358 || 11475 | 55221 | 322155 || 15983 | 111965 | > 10°

zyz-PML
(nonov.)

628 591 742 527 479 609 493 436 624

subspace method). A nonequidistant mesh of 27 x 24 x 21 elementary cells including
graded PML regions is used, that means the order of the system of linear algebraic
equations is 40824. The structure is symmetric with respect to the (z, z)-plane.
Here, a magnetic wall is used, all other parts of the surface are assumed to be
electric walls covered by PML. The longitudinal z-PML region consists of 10 layers,
the lateral (z,y)-PML’s of 5 layers. The number of iterations also depends on the
frequency f and the relaxation parameter w.
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