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Abstract 

 
 We consider an optimal control problem defined by semilinear parabolic partial differential 
equations, with control and state constraints, where the state constraints and cost functional 
involve also the state gradient. The problem is discretized by using a finite element method in 
space and an implicit θ -scheme in time for state approximation, while the controls are 
approximated by blockwise constant ones. We propose a discrete penalized gradient projection 
method, which is applied to the continuous problem and progressively refines the discretization 
during the iterations, thus reducing computing time and memory. We prove that strong 
accumulation points in  of sequences generated by this method are admissible and weakly 
extremal for the continuous problem. Finally, numerical examples are given. 
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1   Introduction 
 
We consider an optimal distributed control problem for systems described by a 
semilinear parabolic boundary value problem, with control and state constraints, 
where the state constraints and cost functional involve also the state gradient. The 
problem is discretized by using a Galerkin finite element method with continuous 
elementwise linear basis functions in space and an implicit θ -scheme in time for state 
approximation, while the controls are approximated by blockwise constant ones. We 
first state the weak necessary conditions for optimality for the continuous problem. 
We then propose a discrete penalized gradient projection method, which is applied to 
the continuous problem and progressively refines the discretization during the 
iterations, thus reducing computing time and memory. We prove that strong 
accumulation points in  (if they exist) of sequences of discrete controls generated 
by this method are admissible and weakly extremal for the continuous problem. 
Finally, numerical examples are given. For discretization and optimization methods 
applied to distributed optimal control problems, see e.g. [1-7], [13-15] and the 
references therein. 
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2   The continuous optimal control problems 
 
Let  be a bounded domain in , with a Lipschitz boundary Ω d Γ , and let (0, )I T= , 

, be an interval. Consider the semilinear parabolic state equation T < ∞
(2.1) ( ) ( , , ( , ), ( , ))ty A t y f x t y x t w x t+ =    in ,Q I= Ω×  
(2.2)    in ( , ) 0y x t = ,IΣ = Γ×  
(2.3) 0( ,0) ( )y x y= x    in  ,Ω
where ( )A t  is the formal second order elliptic differential operator 

(2.4)  
1 1

( ) : ( / )[ ( , ) / ].
d d

i ij j
j i

A t y x a x t y x
= =

= − ∂ ∂ ∂ ∂∑∑
The constraints on the control are ( , )w x t U∈  in  where U  is a convex and 
compact subset of 

,Q
s , the state constraints are 

(2.5)    ( ) : ( , , , , ) 0,m mQ
G w g x t y y w dxdt= ∇ =∫ 1,..., ,m p=  

(2.6)    ( ) : ( , , , , ) 0,m mQ
G w g x t y y w dxdt= ∇ ≤∫ 1,..., ,m p q= +  
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and the cost functional is 
(2.7)  0 0( ) : ( , , , , ) .

Q
G w g x t y y w dxdt= ∇∫

The continuous optimal control problem is to minimize  subject to the above 
constraints. 

0 ( )G w

We define the set of controls 
(2.8) 2: { ( , ) : }sW w L Q w Q U= ∈ → , 

endowed with the relative strong topology of 2 ( , )sL Q . We denote by ⋅  the 

Euclidean norm in , by  and n ( , )⋅ ⋅ ⋅  the inner product and norm in , by 

 and 

2 ( , )nL Ω

( , )Q⋅ ⋅
Q

⋅  the inner product and norm in , by 2 ( , )nL Q 1( , )⋅ ⋅  and 
1

⋅  the inner 

product and norm in the Sobolev space 1
0: (V H )= Ω , and by ,< ⋅ ⋅ >  the duality bracket 

between the dual  and V . We also define the usual bilinear form 
associated with  and defined on V V

1* (V H −= Ω)
( )A t ×  

(2.9) 
1 1

( , , ) : ( , ) .
d d

ij
j i i j

y va t y v a x t dx
x xΩ

= =

∂ ∂
=

∂ ∂∑∑∫  

 In the following, we shall make various assumptions on the data. 
 
Assumption 2.1 The coefficients  satisfy the ellipticity conditions ija

(2.10)    2

1 1 1

( , ) ,
d d d

ij i j i
j i i

a x t z z zα
= = =

≥∑∑ ∑ ,iz∀ ∈  a.e. in  ,Q

with 0α > , . ( )ija L Q∞∈
 
 Assumption 2.1 implies that 
(2.11) 1 1 1

( , , ) ,a t y v y vα≤    2
2 1

( , , ) ,a t v v vα≥    ,t I∈  ,y V∈ ,v V∈  
for some 1 20, 0α α≥ > . 
 
Assumption 2.2 The function f  is defined on ,Q U× ×  measurable for fixed , 
continuous for fixed 

,y u
,x t  (Caratheodory function), and satisfies the following 

condition 
(2.12) ( , , , ) ( , ) ,f x t y u x t yψ β≤ +    ( , , , ) ,x t y u Q U∀ ∈ × ×  

with 2( )L Qψ ∈ , 0β ≥ , and the Lipschitz condition 
(2.13) 1 2 1 2( , , , ) ( , , , ) ,x t y u f x t y u L y y− ≤ 2

1 2( , , , , ) .−   x t y y u Q Uf ∈ × ×  ∀
 
The state equation will be interpreted in the following weak form 

(2.14) , ( , , ) ( ( , , ), ),ty v a t y v f t y w v< > + =    ,v V∀ ∈   a.e. in ,I  
(2.15)    a.e. in ( )y t V∈ ,I    0(0) .y y=  

The following result is classical. 
 

Proposition 2.1 Under Assumptions 2.1-2, for every control w W∈  and , 
the state equation has a unique solution 

0 2 ( )y L∈ Ω

wy y=  such that 2 ( , )y L I V∈  and 
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2 ( , *)ty L I V∈ . Moreover, y  is essentially equal to a function in 2( , ( ))C I L Ω , and 
thus the initial condition is well defined. 
 
Assumption 2.3 The functions , mg 0,...,m q= , are defined on  
measurable for fixed 

1 ,dQ U+× ×
, ,y y u , continuous for fixed ,x t , and satisfy 

(2.16) 22( , , , ', ) ( , ) ' ' ,m m m mg x t y y u x t y yζ η η≤ + + 1( , , , ', ) ,d   x t y y u Q U+∀ ∈ × ×  

with , 1( )m L Qζ ∈ 0mη ≥ , ' 0mη ≥ . 
 

The following results are proved by using the techniques of [4], [6], [16] (see 
also [9]). 
 
Lemma 2.1 Under Assumptions 2.1-2, the operator , from W  to , is 
continuous, and under Assumptions 2.1-3, the functionals , , 
defined on W , are continuous. 

ww y 2 ( , )L I V
( )mw G w 0,...,m q=

 
Note that the above continuous optimal control problem may have no classical 

solutions. The existence of an optimal control can be proved under some convexity 
assumptions on the data (Cesari property). For nonconvex problems, where these (not 
realistic, if f  in nonlinear w.r.t. ) assumptions are avoided, and the relevant 
relaxation theory, see [3-7], [9]. 

u

 
Assumption 2.4 The functions f , yf , uf  (resp. , ) are defined on Q U  

(resp. ), where U  is an open set containing the compact set U , 
measurable on  for fixed ( ,

myg mug × ×
1dQ +× ×U
Q )y u U∈ ×  (resp. 1( , ', ) dy y u U+∈ × ) and continuous 

on  (resp. ) for fixed U× 1d U+ × ( , )x t Q∈ , and satisfy 
(2.17) 1 1 1( , , , ', ) ( , ) ' ' ,my m m mg x t y y u x t y yζ η η≤ + +    1( , , , ', ) ,dx t y y u Q U+∀ ∈ × ×  

(2.18) ' 2 2 2( , , , ', ) ( , ) ' ' ,my m m mg x t y y u x t y yζ η η≤ + + 1( , , , ', ) ,d   t y y u Q U+x ∈ × ×  ∀

(2.19) 3 3 3( , , , ', ) ( , ) ' ' ,mu m m mg x t y y u x t y yζ η η≤ + +    1( , , , ', ) ,dx t y y u Q U+∀ ∈ × ×  

with , 2
1 2 3, , ( )m m m L Qζ ζ ζ ∈ 1 2 1 2 3, , ' , ' , ' 0m m m m mη η η η ≥ , and η

(2.20) 1( , , , ) ,yf x t y u L≤    ( , , , ) ,x t y u Q U∀ ∈ × ×  

(2.21) ( , , , ) ( , )uf x t y u x t yζ η≤ + ,   ( , , , ) ,x t y u Q U∀ ∈ × ×  

with , 2 ( )L Qζ ∈ 0η ≥ . 
 

Lemma 2.2 We drop the index m  in . Under Assumptions 2.1-4, for 
, the directional derivative of  is given by 

,mG gm

, 'w w W∈ G

(2.22) 
0

( ( )) (( , ) : lim G w w w G wDG w w w
ε

)ε
ε+→

+ − −
− =  

( , , , , , )( ) ,uQ
H x t y y z w w w dxdt= ∇ −∫  

where the Hamiltonian is defined by 
(2.23)   ( , , , ', , ) : ( , , , ) ( , , , ', ),H x t y y z u zf x t y u g x t y y u= +
and the adjoint : wz z=  satisfies the adjoint equation 
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(2.24)  ', ( , , ) ( ( , , ) ( , , ), ) ( ( , , , ), ),t y y yz v a t v z zf t y w g t y w v g t y y w v− < > + = + + ∇ ∇

 ,    a.e. in v V∀ ∈ ,I    with : ,wy y=  
(2.25)    a.e. in ( )z t V∈ ,I    ( ) 0.z T =  
The mappings , from W  to , and ww z 2 ( )L Q ( , ) ( , )w w DG w w w− , from W W  
to , are continuous. 

×

 
Theorem 2.1 Under Assumptions 2.1-4, if w W∈  is optimal for the control problem, 
then  is weakly extremal, i.e. there exist multipliers w mλ ∈ , 0,...,m q= , with 

(2.26) 0 0λ ≥ , 0mλ ≥ , , 1,...,m p q= +
0

1
q

m
m

λ
=

=∑ , 

such that 

(2.27) 
0

( , ) 0,
q

m m
m

DG w w wλ
=

− ≥∑    w W∀ ∈ , 

and 
(2.28) ( ) 0,m mG wλ =       (transversality conditions). 1,...,m p q= +
The global condition (2.27) is equivalent to the weak pointwise minimum principle 
(2.29) ( , , , , , ( , )) ( , ) min ( , , , , , ( , )) ,u uu U

H x t y y z w x t w x t H x t y y z w x t u
∈

∇ = ∇    a.e. in Q , 

where the complete Hamiltonian and adjoint  are defined with  replaced by 

. 

,H z g

0

q

m m
m

gλ
=
∑
 
 
3   The discrete optimal control problem 
 
In the sequel, we suppose that the domain Ω  is a polyhedron (for simplicity), 

 is independent of t  and symmetric, the functions ( , , )a t u v f , yf , uf , 
, , ,  are continuous in all their arguments (possibly finitely piecewise in 

), the functions 
mg myg 'myg mug

t , , , 'm m mη η 3, 1 2, ,m m mζ ζ ζ , 1 2, ,m m m3η η η , 1 2' , ' , 'm m mψ ζ 3η η η  are 

constant, and . For each integer , let 0 1
0: (y V H∈ = Ω) 0n ≥ 1{ }

nn M
i iE =  be an admissible 

regular quasi-uniform triangulation of Ω  into closed elements (e.g. -simplices), 
with  as , and 

d
max [diam( )] 0n n

i ih E= → n →∞ 1{ }
nn N

j jI = , a subdivision of the interval 

I  into closed intervals 1[ ,n n n
j j j ]I t t−= , of equal length ntΔ , with 0ntΔ →  as . 

We define the blocks .  Let  be the subspace of functions that are 

continuous on 

n →∞

:n n
ij i jQ E I= × n nV

Ω  and linear (or multilinear) on each . We define the set of 
(blockwise constant) discrete controls 

n
iE

(3.1) : { ( , ) , on }
o

n n n n
ij ijW w W w x t w Q= ∈ = n , 

endowed with the relative (Euclidean here) topology of W . 
Remark. For implementation reasons, we could alternatively use a coarser partition 
for the discrete controls, that is, use discrete controls that are constant on hyperblocks 
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' ' ' '' : ' 'n n
i j i jQ E I= × n , where the  are appropriate unions of some elements  and ''niE n

iE ''njI  

are appropriate unions of some intervals n
jI .  

For a given discrete control  with  

and 
0 1: ( ,..., ) ,n n n

Nw w w W−= ∈ n
j0: ( ,..., ),n n n

j j Mw w w=

[1/ 2,1]θ ∈ , the corresponding discrete state 0: ( ,..., )n n n
Ny y y=  is given by the 

following discrete state equation (implicit θ -scheme) 
(3.2)  1(1/ )( , ) ( , ) ( ( , , ), ),n n n n n n n

j j j j j jt y y v a y v f t y w vθ θ θ−Δ − + =

 for every  ,nv V∈ 1,..., ,j N=  
(3.3)    for every     0

0 1( , )ny y v− = 0, ,nv V∈ ,n n
jy V∈ 1,..., ,j N=  

where we set  1: (1 ) ,n n n
jyj jy yθ θ θ−= − + 1: (1 )n n n

j j jt t tθ θ θ−= − +
n

.j

. The discrete control 

constraints are  and the discrete functionals nw W∈

(3.4)  
1

0

( ) : ( , , , , )
N

n n n n n n n
m m j j j

j

G w t g x t y y w dxθ θ θ

−

Ω
=

= Δ ∇∑∫
Under Assumptions 2.1-2, 3.1, for ntΔ  sufficiently small, depending on the Lipschitz 
constant  of L f , and for each j , the above θ -scheme has a unique solution , 
which can be computed by the standard predictor-corrector method, where regular 
linear systems are involved, and where the corrector scheme is contractive.  

n
jy

 
Lemma 3.1 Under Assumptions 2.1-3, the mappings  and , 

, defined on , are continuous. 

n
jw yn n

q
n

( )n n
mw G w

0,...,m = nW
Proof: The continuity of the operators  is easily proved either by induction 
on 

n
jw y

j  using the Lipschitz continuity of f , or by using the discrete Bellman inequality 
(see [12]). The continuity of  follows from the continuity of . ( )n n

mw G wn
mg

 
Lemma 3.2 We drop the index m . Under Assumptions 2.1-4, the directional 
derivative of the functional  is given by nG

(3.5) 
1

,1
0

( , ) ( ( , , , , ), ),
N

n n n n n n n n n n n n
u j j j j j j j

j

DG w w w t H t y y z w w wθ θ θ θ

−

−
=

− = Δ ∇ −∑  

where the discrete adjoint system  is given by nz
(3.6) 1 ,(1/ )( , ) ( , )n n n n

j j jt z z v a v z 1 θ− −− Δ − +  

,1 '( ( , , ) ( , , , ), ) ( ( , , , ), )n n n n n n n n n n n n
j y j j j y j j j j y j j j jz f t y w g t y y w v g t y y w vθ θ θ θ θ θ θ θ θ−= + ∇ + ∇ ,∇  

for every     ,nv V∈ ,...,1,j N= 0,n
Nz =     ,n n

jz V∈

The mappings  and nw nz ( , ) ( , )n n n n n nw w DG w w w−  are continuous. For  
sufficiently small, and for each 

ntΔ
j , the linear discrete adjoint scheme has a unique 

solution . 1
n
jz −

 
The following classical control approximation result is proved similarly to the 

lumped parameter case (see [10]). 
 

Proposition 3.1 Under Assumption 3.1, for every w W∈ , there exists a sequence 
 that converges to w  in  strongly. ( n nw W∈ ) 2L
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The next stability lemma gives useful a priori estimates. 

 
Lemma 3.3 (Stability) Under Assumptions 2.1-2, if tΔ  is sufficiently small, then for 
every , we have the following inequalities, where the constants c  are 
independent of  

nw W∈ n

n
(3.7) ,n

ky c≤     0,..., ,k N=

(3.8) 
2

1
1

,
N

n n
j j

j

y y c−
=

− ≤∑  

(3.9) 
2

1
1

,
N

n n
j

j

t y θ
=

Δ ≤∑ c   

(3.10) 
2

1
0

N
n n

j
j

t y
=

Δ ∑ c≤   (under the additional condition , for some 

constant C  independent of , if 

2( )n nt C hΔ ≤

n 1/ 2θ = ). 
Proof. Dropping the index n  for simplicity of notation, setting 2 jv tyθ= Δ  in the 
discrete equation, and using our assumptions on  and a f , we have 

(3.11) 
2 2

1 1( )j j j jy y y yθ − −− + −
2

 
2 2

1 1[ ( , ) ( , ) (1 ) ( , )]j j j j j jt a y y a y y a y yθ θ θ θ − −+Δ + − −  

12 ( ( , , ), ) (1 )j j j j j j jt f t y w y c t y y yθ θθ −≤ Δ ≤ Δ + +  
2 2

1(1 )j jc t y y−≤ Δ + +
2 2

1 1(1 ),j j jc t y y y− −≤ Δ + + −  

hence, for 
2

t
c
θ

Δ ≤   

(3.12) 
2 2

1 1
1( )
2 j j j jy y y yθ − −− + −

2

 
22 2

1 1 1[ ( , ) ( , ) (1 ) ( , )] (1 ).j j j j j j jt a y y a y y a y y c t yθ θ θ θ − − −+Δ + − − ≤ Δ +  
By summation over j , , we obtain, for 1,...,j = k 1/ 2θ >  

(3.13) 
2 22

1 2 21 1
1 1

1( )
2

k k

j j k j j
j j

y y y t y tc yθθ α α−
= =

− + + Δ + Δ∑ ∑
2

1
'

k

j=
∑  

22 22
0 1 0 11

1
(1 ) (1 ),

k

j
j

y t y c t yθ α θ −
=

≤ + Δ − + Δ +∑    with  ' 0,c >

and for 1/ 2θ =  

(3.14) 
2 22

1 2 1
1 1

1 1( )
2 2

k k

j j k j
j j

y y y t y θα−
= =

− + + Δ∑ ∑  

22 2
0 1 0 11

1

1 (1 ).
2 4

k

j
j

ty y c t yα −
=

Δ
≤ + + Δ +∑  

Since 0y  and 0 1
y  remain bounded, using the discrete Bellman-Gronwall inequality 

(see [12]), we obtain inequality (3.14). The inequalities (3.8), (3.9), and (3.10) if 
1/ 2θ > , follow. If 1/ 2θ = , by the inverse inequality (see [8]), the condition 

, and inequality (3.8), we get 2( )n nt C hΔ ≤
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(3.15) 
2 2

1 121
1 1 1

.
N N N

j j j j j j
j j j

tt y y y y C y y c
h− −

= = =

Δ
Δ − ≤ − ≤ − ≤∑ ∑ ∑

2

1−  

Inequality (3.10) follows from this inequality and inequality (3.9), in this case. 
 

For given values  in a vector space, define the piecewise constant and 
continuous piecewise linear functions 

0,..., Nv v

(3.16)       1( ) : ,jv t v− −= ( ) : ,jv t v+ = 1( ) : (1 ) ,j jv t v vθ θ θ−= − +     , 1,..., ,
o
n
jt I j N∈ =

(3.17) 1
^ 1 1j( ) : ( ),

n
j

j jn

t t
v t v v v

t
−

− −

−
= + −

Δ
, 1,..., .n

j j N∈ =  t I  

In the sequel, we suppose that , for some constant C  independent of n , 
if 

2( )n nt C hΔ ≤
1/ 2θ = . 

 
Theorem 3.1 (Consistency of states and functionals) Under Assumptions 2.1-3, if 

 in  strongly, then the corresponding discrete states  
converge to 

nw w W→ ∈ 2L ^, , ,n n n ny y y yθ− +

wy  in  strongly, 2 ( )L Q n
wy yθ →  in  strongly, and 2 ( , )L I V

(3.18) ,   lim ( ) ( )n n
m mn

G w G w
→∞

= 0,..., .m q=  

Proof. By Lemma 3.3 (estimate (3.8) multiplied by tΔ ), 0n ny y+ −− →  in  
strongly. Since, by equation (3.9) in Lemma 3.3, 

2 ( )L Q
ny−  and ny+  are bounded in , 

it follows that 

2 ( , )L I V

^
ny  and nyθ  are also bounded in . By extracting subsequences, 

we can suppose that 

2 ( , )L I V

^
ny y→  and ny yθ →  in  weakly (hence in  

weakly), for the same 

2( , )L I V 2 ( )L Q
y . The discrete state equation can be written in the form 

(3.19) ^ 1( ( ), ) ( ( ), )n n n nd y t v t v
dt

ψ= n nv V,   ∀ ∈ , a.e. in (  0, ),T

in the scalar distribution sense, where the piecewise constant function nψ  is defined, 
using Riesz’s representation theorem, by 

(3.20)    in 1( ( ), ) : ( , ) ( ( , , ), )n n n n n n n n
j j j jt v a y v f t y w vθ θ θψ = − + ,j

o
n
jI , 1,..., .j N=  

By our assumptions, we have, for 1,...,j N=  
(3.21) 1 1 1 1 1

( , ) [ (1 ) ] (1 ) ,n n n n n n n n
j j j jv c y v y v c y vθ θ θψ ≤ + + ≤ +  

hence 
(3.22) 

1 1
(1 )n

j c y θψ ≤ + n
j    and   

2 2

1 1
(1 ).n n

j jc y θψ ≤ +  

Therefore, using equation (3.9) in Lemma 3.3 

(3.23) 
2 2

1 10 0
( ) (1 ) ,

T Tn nt dt c y dt cθψ ≤ + ≤∫ ∫  

which shows that nψ  belongs to , hence to . Following the proof of 
Lemma 5.6 in [11], it can then be shown that 

2 ( , )L I V 1( , )L I V

(3.24) 
22

^ˆ ( ) ,ny d cρτ τ τ
+∞

−∞
≤∫    for 1/ 4,ρ <  

where ^ˆ ny  denotes the Fourier transform of ^
ny , with ^

ny  extended by 0 outside [0 . 
By the 2

, ]T
nd compactness theorem in [11], p. 274, there exists a subsequence (same 

notation) such that ^
ny y→  in  strongly, for some , and we must have , 2 ( )L Q y y y=
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since ^ˆ ny y→  also in  weakly. Since, by Lemma 3.3 ((3.8) multiplied by ), 
 in , we get 

2 ( )L Q tΔ
0n ny y+ −− → 2 ( )L Q ny yθ →  in  strongly. Similarly to the proof of 

Lemma 4.3 in [4], we can then pass to the limit in the weak discrete equation, 
integrated in t , using Proposition 2.1 in [3] for the nonlinear term, and show that 

2 ( )L Q

wy y= . Next, to prove the strong convergence ny yθ →  in , we first remark 
that, by the discrete and continuous state equations, the boundedness of (

2 ( , )L I V
)n

Ny  in 
 by Lemma 3.3 (3.7), the above convergences, Proposition 2.1 in [3], and 

taking the sequence  of functions interpolating an arbitrary  
(which clearly converges to  in 

2 ( )L Ω
( )n nv V∈ 1

0 ( )v C∈ Ω

v 1( )H Ω  strongly), we have 
(3.25) ( , ) ( , ) ( , )n n n n n

N N Ny v y v v y v= − +  

0 0 0
( , ) ( , ) ( ( , ), ) ( , )

T Tn n n n n n n n n
Ny v v y v f y w v dt a y v dtθ θ= − + + −∫ ∫  

0

0 0
( , ) ( ( , ), ) ( , ) ( ( ), ),

T T
y v f y w v dt a y v dt y T v→ + − =∫ ∫  

for every , hence  for every 1
0 ( )v C∈ Ω ( , ) ( ( ), )n

Ny v y T v→ 2 ( )v L∈ Ω , since  is 
dense in , i.e. 

1
0 ( )C Ω

2 ( )L Ω ( )n
Ny y T→  in 2 ( )L Ω  weakly. We then write 

(3.26) 2

2 2

2 ( , ) 0

1( , ) (
2

Tn n n n
NL I V

)y y a y y y y dt y yθ θ θα − ≤ − − + −∫ T  

2

0
1 1 1( , ( )) ( ( ), ( ))
2 2 2

n n n
N Ny y y T y T y y T= − − −  

0 0 0
( ( , ), ) ( , ) ( , )

T T Tn n n n nf y w y dt a y y dt a y y y dtθ θ θ θ+ − −∫ ∫ ∫ −

n

, 

where the last expression converges to zero. The last convergences follow using also 
Proposition 2.1 in [3]. 
 
 Note that the condition  (in fact, the inverse inequality used to 
derive inequality (3.10), if 

2( )nt C hΔ ≤
1/ 2θ = ) is a worst case one. In practice, the corresponding 

sequences of gradients ( )ny∇  constructed by the algorithms are often bounded in 
, or even in , and the above condition is not needed for 2 ( )L Q ( )L Q∞ 1/ 2θ = . 

  
Theorem 3.2 (Consistency of adjoints and functional derivatives) Under Assumptions 
2.1-4, if  in  strongly, then the corresponding discrete adjoints 

 converge to  in  strongly. If  and 

nw w W→ ∈ 2L
^, , ,n n n nz z z zθ− + wz 2 ( )L Q nw w W→ ∈ nw w W→ ∈  in 

 strongly, then 2L
(3.27) lim ( , ) ( , ),n n n n

m mn
DG w w w DG w w w

→∞
− = −    0,..., .m q=  

Proof. The proof is similar to that of Theorem 3.1, using also the consistency of the 
states. 
 
 
4   Discrete penalized gradient projection method 
 
Let ( )n

mM , , be nonnegative increasing sequences such that  as 
, and define the penalized discrete functionals 

1,...,m = q n
mM →∞

n →∞
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(4.1)  2 2
0

1 1

( ) : ( ) { [ ( )] [max(0, ( ))] }/ 2.
p q

n n n n n n n n n n
m m m m

m m p

G w G w M G w M G w
= = +

= + +∑ ∑
Let 0γ ≥ , , and let , (0,1)b c∈ ( )nβ , ( )kζ  be positive sequences, with ( )nβ  
decreasing and converging to zero, and 1kζ ≤ . 
 
Assumption 4.1 Each element 1

'
n
iE +  is a subset of some element , and either 

 or , for some integer 

n
iE

1n nN N+ = 1nN κ+ = nN 2κ ≥  (usually 2κ = ). 
 

If Assumption 4.1 holds, then we have 1n nW W +⊂ , and thus a control 
 may be considered also as belonging to nw W∈ n 1nW + , hence the computation of 

states, adjoints and functional derivatives for this control, but with the possibly finer 
discretization , makes sense. The discrete penalized gradient projection method 
is described by the following algorithm. 

1n +

 
Algorithm 
Step 1. Set , , and choose an initial control . : 0k = : 1n = 0

n nw W∈

Step 2. Find  such that n
kv W∈ n

(4.2) 
2

: ( , )
2

n n n n n n
k k k k k k Q

e DG w v w v wγ
= − + −  

 
2

min[ ( , ) ],
2n n

n n n n n n
k k k Qv W

DG w v w v wγ
∈

= − + −

k

 

and set . : ( , )n n n n
k k kd DG w v w= −

Step 3. If n
kd β≤ , set , :n n

kw w= :n n
kv v= , :n

kd d= , :n
ke e= , :n n 1= + , and go to Step 

2. 
Step 4. (Armijo step search) Find the lowest integer value s∈ , say s , such that 

 and ( ) : (0,1]s
ks cα ζ= ∈ ( )sα  satisfy the inequality   

(4.3) , ( ( )( )) ( ) ( )n n n n n n
k k k kG w s v w G w s bdα α+ − − ≤ k

and then set : (k s )α α= . 
Step 5. Set w w , 1 : ( )n

k
n n n
k k k kv wα+ = + − : 1k k + , and go to Step 2. =

 
The progressively refining method, as compared to the corresponding fixed 

finest discretization method, usually yields results of similar accuracy, but has the 
advantage of reducing computing time and memory. It is justified by the fact that 
finer discretizations become progressively more efficient as the iterate gets closer to 
an extremal control, while coarser ones in the early iterations have not much influence 
on the final results. 

If 0γ > , we have a penalized strict gradient projection method, in which case 
one can easily see by “completing the square” that Step 2 amounts to finding, for each 

, 1,...,i M= 1,...,j N= , the projection  of n
ijv

(4.4) , ,
1: ( , ,
( ) n

i

n n n n n n n
ij ij u j i j i j ijn E

i

u w H t y z w d
E θ θ θγ μ

= − ∫ , ) x  

onto the convex set U , where ( )n
iEμ  is the measure of n

iE . The parameter γ  is 
chosen experimentally to yield a good convergence rate. If 0γ = , the above 
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Algorithm is a penalized conditional gradient method, and Step 2 reduces to the 
minimization of a linear function on U . On the other hand, by the definition of the 
directional derivative and since 0k kd e≤ ≤ , (0,1)b∈ , clearly the Armijo step kα  in 
Step 4 can be found for every k , if 0kd ≠ . 

An extremal control is called abnormal if there exist multipliers as in the 
optimality conditions, but with 0 0λ = . A control is admissible and abnormal extremal 
in exceptional, degenerate, situations (see [16]). 

With  as defined in Step 3 of the Algorithm, we define the sequences of 
multipliers 

nw

(4.5) ( ),n n n n
m m mM G wλ =       1,..., ,m p= max(0, ( )),n n n n

m m mM G wλ = 1,..., ,m p q= +
 
Theorem 4.1 We suppose that Assumptions 2.1-4, 4.1 are satisfied. 
(i) Let  be a subsequence (if it exists) of the sequence generated by the 
Algorithm in Step 3 that converges to some 

( )nw
w W∈  in  strongly, as . If the 

sequences of multipliers 

2L n →∞
( )n

mλ  are bounded, then  is admissible and weakly 
extremal for the continuous problem. 

w

(ii) Suppose that the continuous problem has no admissible, abnormal extremal, 
controls. If the limit control w  in (i) is admissible, then the sequences of multipliers 
( )n

mλ  are bounded, w  is extremal as above. 
Proof. We shall first show that  in the Algorithm. Suppose, on the contrary, 
that  remains constant after a finite number of iterations in , and we could also 
drop the index  in the subsequences. Let us show that . Since  is 
compact, let 

n →∞
n k

n 0kd → nW
( ) , ( )k k K k k Kw v∈ ∈  be subsequences of the sequences generated in Steps 2 

and 5 such that   in , as  ,kw w→ ,kv v→ nW ,k →∞ .k K∈  Clearly, by Step 2, 
 for every , hence 0k kd e≤ ≤ k

(4.6) 2

,
: lim ( , ) ( / 2) 0k Qk k K

e e DG w v w v wγ
→∞ ∈

= = − + − ,≤

≤

 

(4.7)  
, ,

: lim ( , ) lim 0.k kk k K k k K
d d DG w v w e e

→∞ ∈ →∞ ∈
= = − ≤ =

Suppose that . The function 0d < ( ) : ( ( ))G w v wα αΦ = + −  is continuous on [ . 
Since the directional derivative 

0,1]
( , )DG w v w−  is linear w.r.t. ,  is 

differentiable on  and has derivative 
v w− Φ

(0,1)
(4.8) '( ) ( ( ), ).DG w v w v wα αΦ = + − −  
Using the Mean Value Theorem, we have, for each (0,1]α ∈  
(4.9) ( ( )) ( ) ( '( ), ),k k k k k k k k kG w v w G w DG w v w v wα α α+ − − = + − −  
for some ' (0, )α α∈ . Therefore, for [0,1]α ∈ , by the continuity of  (Lemma 3.2) DG
(4.10) ( ( )) ( ) ( ),k k k k kG w v w G w d αα α ε+ − − = +  
where 0kαε →  as , , and k →∞ k K∈ 0α +→ . Now, we have kd d kη= + , where 

0kη →  as k , k , and since →∞ K∈ (0,1)b∈  
(4.11) ( ) ,k kd b d bα kdε η+ ≤ + =  
for [0, ]α α∈ , for some 0α > , and  k k≥ , k K∈ . Hence 
(4.12) ( ( )) ( ) ,k k k kG w v w G w bdkα α+ − − ≤  
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for [0, ]α α∈ , for some 0α > , and k k≥ , k K∈ . It follows from the choice of the 
Armijo step kα  in Step 4 that k cα α≥ , for k k≥ , k K∈ . Hence 
(4.13) 1( ) ( ) ( ( )) ( ) / 2k k k k k k k k k kG w G w G w v w G w bd c bd c bd ,α α α α+ − = + − − ≤ ≤ ≤  
for k k≥ , . It follows that  as , k K∈ ( )kG w → −∞ k →∞ k K∈ . This contradicts 
the fact that  as , ( ) ( )kG w G w→ k →∞ k K∈ , by the continuity of the discrete 
functional (Lemma 3.1). Therefore, we must have 0d = , 0e = , and , 

, for the whole sequences, since the limit 0 is unique. But Step 3 then 
implies that , which is a contradiction. Therefore, we must have .  

0kd d→ =
0ke e→ =

n →∞ n →∞
(i) Let (  be a subsequence (same notation) of the sequence generated in Step 3 
that converges to some  in  strongly as . Suppose that the sequences 

)nw
w W∈ 2L n →∞

( )n
mλ  are bounded and that (up to subsequences) n

m mλ λ→ . By Theorem 3.1, we have 

(4.14) 0 lim lim ( ) ( ),
n

n nm
m mnn n

m

G w G w
M
λ

→∞ →∞
= = =    1,..., ,m p=  

(4.15) 0 lim lim[max(0, ( ))] max(0, ( )),
n

n nm
m mnn n

m

G w G w
M
λ

→∞ →∞
= = =    1,..., ,m p q= +  

which show that w  is admissible. Now, let any v W∈  and, by Proposition 3.1, 
 a sequence converging to . By Step 2, we have ( n nv W∈ ) v

(4.16) 
2

( , , , , )( ) ( / 2) ,n n n n n n n n n n
uQ Q

H x t y z w v w dxdt v w dxdt dθ θ θ γ− + − ≥∫ ∫  

where  and  are defined with . Using Proposition 2.1 in [3] and 

Theorems 3.1, 3.2, we can pass to the limit as n  and obtain 

nH nz
0

:
q

n
m m

m

g λ
=

= ∑ g

→∞
(4.17) 2( , , , , )( ) ( / 2) 0,uQ Q

H x t y z w v w dxdt v w dxdtγ− + − ≥∫ ∫    v W∀ ∈ , 

where  and H z  are defined with . Replacing now v  by 
0

:
q

m m
m

g λ
=

= ∑ g ( )w v wα+ − , 

dividing by α , and taking the limit as 0α → , we get 
(4.18)    ( , , , , )( ) 0,uQ

H x t y z w v w dxdt− ≥∫ v W∀ ∈ , 

If , for some index ( ) 0mG w < [ 1, ]m p q∈ + , then for sufficiently large  we have 
 and , hence 

n
( ) 0n n

mG w < 0n
mλ = 0mλ = , i.e. the transversality conditions hold. 

Therefore,  is weakly extremal. w
(ii) Suppose that the limit control  is admissible and that the continuous problem 
has no admissible, abnormal extremal, controls. Suppose that the multipliers are not 
all bounded. Then, dividing the inequality resulting from Step 2 by the greatest 
multiplier norm and passing to the limit for a subsequence, we see that we obtain an 
optimality inequality where the first multiplier is zero, and that the limit control is 
abnormal extremal, a contradiction. Therefore, the sequences of multipliers are 
bounded, and by (i),  is extremal as above. 

w

w
 
 One can easily see that Theorem 4.1 remains valid if we replace  by  in 
Step 4 of the Algorithm. In practice, by choosing moderately growing sequences 

kd ke

( n
m )M  and a sequence ( )nβ  relatively fast converging to zero, the resulting sequences 
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of multipliers ( )n
mλ  are often kept bounded. One can choose a fixed : (0,1]kζ ζ= ∈  in 

Step 4; a usually faster and adaptive procedure is to set 0 : 1ζ = , and then 1:k kζ α −= , 
for . 1k ≥
 
 
5   Numerical examples 
 
Let . : : (0,1IΩ = = )
Example 1. Define the reference control and state 

(5.1) 
1, 0 0.5,

( , ) :
1 16( 0.5) (1 ), 0.5 1,

t
w x t

t x x t
− ≤ <⎧

= ⎨− + − − ≤ ≤⎩
 ( , ) : (1 ) ,ty x t x x e= −  

and consider the following optimal control problem, with state equation 
(5.2) [ (1 ) 2] sin sint

t xxy y x x e y y w− = − + + − + −w    in  ,Q
(5.3)    in 0y = ,Σ   ( ,0) ( ,0)y x y x=    in ,Ω  
control constraint set , and cost functional : [ 1,1]U = −

(5.4) 22 2
0 ( ) : 0.5 [( ) ( ) ] .

Q
G w y y y y w w dxdt= − + ∇ −∇ + −∫  

Clearly, the optimal control and state are w  and y , and the optimal cost is zero. The 
discrete gradient projection method, without penalties, was applied to this problem, 
with successive step sizes  in three equal iteration periods, 1/ 20,1/ 40,1/80h t= Δ =
θ -scheme parameter 0.5θ = , gradient projection parameter 0.5γ = , Armijo 
parameters , and zero initial control. After 18 iterations, we obtained the 
following results: 

0.5b c= =

(5.5) ,  9
0 ( ) 2.731 10n

kG w −= ⋅ 111.014 10kd −= − ⋅ ,   51.998 10kε
−= ⋅ ,   , 51.699 10kη

−= ⋅
where  is defined in Step 2 of the Algorithm, kd kε  is the discrete state max-error at 
the vertices of the blocks, and kη  the discrete control max-error at the centers of the 
blocks. Figure 1 shows the last computed control kw w≈ . 
 
Example 2. With the same state equation, cost and parameters as in Example 1, but 
with , the control constraints being now strictly active, and zero initial 
control, we obtained after 18 iterations the control shown in Figure 2 and the results: 
(5.6) 

: [ 1,0.5]U = −

3
0 ( ) 1.234481472177051 10n

kG w −= ⋅ ,   148.847 10kd −= − ⋅ . 
 
Example 3. With the state equation (and the boundary conditions of Example 1) 
(5.7) 3t xxy y w− =    in  ,Q
the contraint set , the additional state constraint : [ 1,0.8]U = −

(5.8)  1( ) : ( , ) 0,
Q

G w y x t dxdt= =∫
and with the cost and parameters as in Example 1, we obtained, after 90 iterations in 

 of the penalized gradient projection method, the control and state shown in Figures 
3 and 4 and the results: 
k

(5.9) ,   0 ( ) 0.730014380250449n
kG w = 5

1 ( ) 5.132 10n
kG w −= − ⋅ ,   . 54.936 10kd −= − ⋅
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Since the state equation and the equality state constraint are linear in ( , )y w  and the 
cost is convex in , the optimality conditions (with ( , )y w 0 1 0λ = > ) obtained here are 
also sufficient, and therefore the method actually approximates the optimal control. 

Finally, the above results with progressive refining were found to be of 
practically similar accuracy to those obtained with constant last step sizes 

, but required here less than half the computing time. 1/ 80h t= Δ =
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Figure 1.  Example 1: Last control 
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Figure 2.  Example 2: Last control 
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Figure 3.  Example 3: Last control 
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